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Abstract: Left ventricular assist devices provide circulatory support to patients with end-stage heart
failure. The standard operating conditions of the pump imply limitations on the rotation speed of the
rotor. In this work we validate a model for three pumps (Sputnik 1, Sputnik 2, Sputnik D) using a
mock circulation facility and known data for the pump HeartMate II. We combine this model with a
1D model of haemodynamics in the aorta and a lumped model of the left heart with valves dynamics.
The model without pump is validated with known data in normal conditions. Simulations of left
ventricular dilated cardiomyopathy show that none of the pumps are capable of reproducing the
normal stroke volume in their operating ranges while complying with all criteria of physiologically
feasible operation. We also observe that the paediatric pump Sputnik D can operate in the conditions
of adult circulation with the same efficiency as the adult LVADs.

Keywords: rotary blood pump; 1D haemodynamics; lumped heart model

1. Introduction

Left ventricular assist devices (LVADs) provide a therapeutic option to treat patients with
end-stage heart failure (HF). LVAD connects the left ventricle (LV) and the aortic arch (AA),
provides pulsatile or continuous blood flow and maintains circulatory support. The total aortic flow is
the sum of the LV and LVAD outflows. Thus, LVAD decreases the work of the LV on ejecting blood
to the aorta. The outflow from the LVAD to the aorta depends on the pressure drop over the LVAD.
The pressure drop over LVAD is a complex interplay of many factors including LV contraction and
ejection, aortic valve function, aorta extensibility and outflow to the distal parts of the systemic arteries.
Modern LVADs are the rotary blood pumps (RBPs) which produce continuous flow to maintain
temporary and permanent circulatory support [1,2]. The area of the pressure–volume (P-V) loop of the
LV represents its stroke work. Dynamic head pressure-bypass flow (H-Q) curves characterise the RBP
function during the cardiac cycle. These two curves correlate with each other [3]. They help to analyze
dynamic interaction between the LV and RBP [4]. The other useful parameters of such analysis are the
stroke work, the hydraulic pump work, and the cardiac mechanical efficiency [5,6].

Clinical efficacy of LVADs has been recently proven [7], although their impact on the
cardiovascular system is not always clear. Algorithms of autonomous optimal control for LVADs
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are still widely discussed. A lot of information on LVADs operation in different regimes is available
from mock circulation facilities [8–10]. Blood flow near aortic valve after implantation of LVAD was
simulated in [11]. However, systematic data of the impact of pump operation in patient’s physiological
conditions are limited due to complexity of measurements and a relatively small number of observable
cases. In this work we develop an in silico model of the left heart and aorta with LVAD which allows
us to simulate the impact of a pump in realistic physiological conditions. Our primary goal is to
study behaviour of RBPs Sputnik 1, Sputnik 2 and Sputnik D [8–10,12,13] in patient’s physiological
conditions. We also compare models of the Sputnik devices with a model of the HeartMate II [14],
the well known and widely used pump.

In Section 2 of this work, we present an integrated model of the left heart function with aortic
and mitral valves dynamic opening and closing (see Section 2.3). The model includes two segments
of the aorta which are simulated by a 1D haemodynamic model (see Section 2.2). We identify the
LVAD model for pumps Sputnik 1, Sputnik 2, Sputnik D by fitting parameters with data from mock
circulation facilities (see Section 2.1). The parameters of the LVAD HeartMate II model are set according
to the literature [14]. The LVAD model is included in the integrated model as a nonlinear lumped
compartment which connects the left ventricle and the aorta. In Section 3.1, the heart and aorta
model is validated in healthy conditions using data from the literature. Essential conditions of the
physiologically feasible pump function include the temporary opening of the aortic valve, the positive
direction of the flow through the LVAD as well as absence of ventricular suction and recovery of
the typical stroke volume [13]. In Section 3.2, we study the haemodynamic effect of every pump in
case of HF accompanied with left ventricular dilated cardiomyopathy in a range of rotational speed
which covers ranges defined by manufacturers. We observe that in the considered conditions none
of the pumps are capable of restoring the normal stroke volume in the ranges recommended by the
manufacturers and at the same time complying with all criteria of physiologically feasible operation.
We show that although Sputnik D was initially designed for paediatric patients, it can operate in the
conditions of adult circulation at a higher pump speed, with about the same efficiency as adult LVADs.
In Section 4 we discuss the results, limitations, conclusions and our future work.

2. Materials and Methods

2.1. Identification of Pump Models

Head pressure–flow rate (H-Q) relationship is a mechanical characteristic of a pump which can
be determined from the laboratory tests. It provides a convenient interface for incorporating the pump
model to a model of the cardiovascular system as a nonlinear compartment. The two options for
deriving the H-Q relationship are the usage of (semi-)empirical formulas and the derivation from the
physical principles. In rather general form H (Q, ω) is a quadratic form which is sometimes extended

with the terms of the flow and pump rotation accelerations H
(

Q, ω,
dQ
dt

,
dω

dt

)
. Here H is the head

pressure, Q is the flow through the pump, ω is the rotation speed of the pump rotor. The Euler head
equation with added quadratic term Q2 due to experimental evidence and the flow inertia term [15]
gives Model 1:

H = aQ2 + bQ + cω2 + d
dQ
dt

. (1)

A similar model [16] with the rotational acceleration of the pump defines Model 2:

H = aQ2 + bQ + cω2 + d
dQ
dt

+ e
dω

dt
. (2)

The steady-flow model based on the conservation laws of mass, momentum and energy [17]
yields Model 3:

H = aQ2 + bQω + cω2. (3)
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An addition to Model 3 of unsteady-flow effects and periphery parts [14] results in Model 4:

Plv − Pp = aQ2 + bQω + cω2 + d
dQ
dt

+ Prec − Hper, (4)

where Pp is the pressure in the junction of the pump outlet and aorta, Plv is the pressure in the LV,

Prec =

{
0, Q > eω

Rrec (Q− eω)2 , Q 6 eω
, (5)

Hper = −Lper
dQ
dt

+ RperQp
∣∣Qp

∣∣ . (6)

We note that Model 4 is not actually an H-Q relationship. It also includes parameters of the
external (periphery) part which connects the pump to the LV and the aorta. The physical background
of (4) is discussed in [14]. The theoretical Euler head equation gives the terms proportional to ω2

and Qω. The fluid friction losses produce quadratic growth (Q2) with the flow elevation. The flow
detachment at the leading and trailing edges of the blade produces eddy and separation losses
proportional to ω2, Qω and Q2. Part-load recirculation in the blade channels occurs below the design
flow rate. It partly blocks the channels, decreases their effective diameter and increases the head
pressure introducing (Q− eω)2 term. The flow inertia term is proportional to dQ

dt . Fluid friction and
inertia frequency-dependent losses in the peripheral part are included via Hper in (6). See [14] and
references herein for more details.

All the pump models (1)–(4) have physical interpretation. They were successfully validated with
experimental data from different pumps in [14–17]. We take all these models as possible candidates
for the H-Q mathematical relationship of non-pulsatile axial flow LVADs Sputnik D, Sputnik 1 and
Sputnik 2. We use data from laboratory experiments with physical models of the paediatric mock
circulation with Sputnik D [8–10] and the adult mock circulation with Sputnik 1 and Sputnik 2 [8,12]
for validation. Sensors are placed as close to the pumps as possible, thus, we exclude peripheral
term Hper from (4) at the model fitting stage. Experimental setup imitates physiological conditions,
including the Frank-Starling autoregulation mechanism of the heart which regulates the cardiac output
depending on the ventricle preload. The 32% aqueous glycerol solution was used as the model fluid.
Head pressure–flow rate (H-Q) curves for Sputnik D, Sputnik 1 and Sputnik 2 were measured at
various constant pump speeds. For Sputnik D, the data from the range 6× 103–12× 103 rpm with the
step 103 rpm were used as the training dataset, and the data from the range 13× 103–15× 103 rpm
were used as the test dataset. For Sputnik 1 and Sputnik 2 the data from the range 5× 103–104 rpm
with the step 200 rpm and a contractility factor of the artificial LV 0.25 were used as the training dataset
and the data from the range 5× 103–104 rpm and the contractility factor of the artificial LV 0.5 were
used as the test dataset. The contractility factor [8] is a coefficient which decreases the end-systolic
elasticity.

We set head pressure H as a target variable. The parameters of the models were identified by the
damped least-squares method (Levenberg–Marquardt algorithm) [18,19]. We smooth up the raw data
by Savitzky–Golay filter [20] for computing time derivatives of the flow and the rotational speed of
the pump. The coefficient of determination R2 was used as the best-fit criterion. According to results
presented in Table 1, Model 4 provides the best fit with experimental data for all Sputnik pumps.
Table 2 comprises identified parameters of Sputnik pumps for Model 4, as well as Model 4 parameters
of the LVAD HeartMate II from [14]. Due to the lack of experimental data for Sputnik pumps periphery,
we use mean values of the corresponding parameters for HeartMate II from [14].

In the following sections, we incorporate Model 4 into a lumped model of the heart coupled with
a 1D model of the aorta.
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Table 1. Coefficients of determination (R2) for models (1)–(4).

Sputnik D Sputnik 1 Sputnik 2

Model 1 −0.2 0.92 0.93
Model 2 −0.19 0.92 0.94
Model 3 0.87 0.37 0.39
Model 4 0.96 0.93 0.97

Table 2. Parameters of model (4).

Parameter Unit Sputnik D Sputnik 1 Sputnik 2 HeartMate II [14]

a mmHg/(L/min)2 0.48 3.58× 10−2 −0.46 −0.86
b mmHg/(rpm · L/min) −1.52× 10−3 −9.86× 10−4 −5.64× 10−4 3.21 ×10−4

c mmHg/rpm2 8.49× 10−7 1.74× 10−6 1.73× 10−6 9.54× 10−7

d mmHg·s2/L −60.06 −83.50 −85.91 −22.97
e (L/min)/rpm 4.92× 10−5 −2.18× 10−4 −3.70× 10−4 3.59× 10−4

Rrec mmHg/(L/min)2 5.63 4.15 5.59 3.07
Lper mmHg·s2/L 19.33 19.33 19.33 20
Rper mmHg/(L/min)2 0.35 0.35 0.35 0.38

2.2. 1D Mathematical Model of the Blood Flow in Aorta Segments

The blood flow in the aorta is simulated by a 1D reduced-order model of unsteady flow of viscous
incompressible fluid in elastic tubes. The aorta is divided into two segments. The 1D model of the
aorta is connected to the LV at the inlet, to the Windkessel compartment at the outlet and to the pump
compartment between its segments I and II (see Figure 1).

Figure 1. Scheme of the integrated model and notations used throughout the paper: left ventricle (lv),
left atrium (la), pulmonary veins (pv), mitral valve (mi), aortic valve (ao), Windkessel compartment
(WK), left ventricle assist device (LVAD), pump compartment (p).

Reviews and details of 1D haemodynamic models can be found in [21–25]. Algorithms of
patient-specific parameter identification of such models were suggested in [26,27]. In this section,
we briefly present this approach. We consider two 1D segments of the aorta which correspond to
two parts of the ascending aorta (I and II in Figure 1). We assume that the pump is connected to the
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aorta at the aortic arch before the carotid arteries. The flow in every vessel is described by mass and
momentum conservation equations

∂V
∂t

+
∂F(V)

∂x
= G(V) , (7)

V =

(
A
u

)
, F(V) =

(
Au

u2/2 + p(A) /ρ

)
, G(V) =

(
0
ψ

)
,

where t is the time, x is the distance along the vessel counted from the vessel junction point, ρ is the
blood density (constant), A(t, x) is the vessel cross-section area, p is the blood pressure, u(t, x) is the
linear velocity averaged over the cross-section, ψ is the friction force

ψ = −8πµ
u

ρA
, (8)

µ is the dynamic viscosity of the blood. The elasticity of the vessel wall material is characterised by the
p(A) relationship

p(A) = ρc2
0 f (A) , (9)

where c0 is the velocity of small disturbances propagation in the vessel wall, f (A) is the monotone
S-like function (see [28] for the review of other options)

f (A) =

{
exp (η − 1)− 1, η > 1

ln η, η 6 1
, η =

A
A0

, (10)

A0 is the cross-sectional area of the unstressed vessel.
The mass conservation condition at the aortic root includes the blood flow through the aortic root

Qao which is also a variable of the heart model from Section 2.3:

uI(t, 0) AI(t, 0) = Qao(t) . (11)

Boundary conditions at the connection of aorta and the pump include mass conservation condition

uI (t, LI) AI (t, LI) + Qpump = uI I (t, 0) AI I (t, 0) (12)

and the continuity of the total pressure

pI (AI (t, LI)) +
ρu2

I (t, LI)

2
= pI I (AI I (t, 0)) +

ρu2
I I (t, 0)

2
= pp +

ρ

2

(
Qp

Sp

)2
, (13)

where pp is the static pressure at the output of the pump, Qp is the flow through the pump contributing
to (4), Sp is the cross-section area of the tube which connects the output of the pump and the aorta.

The outflow boundary conditions assume that the terminal part of the aorta is connected to the
Windkessel compartment which describes the rest of the systemic circulation

dQ
dt

=
1

R1

(
dpI I (AI I (t, LI I))

dt
− dpWK

dt

)
, (14)

dpWK
dt

=
Q
C

(
1 +

R1

R2

)
− dpI I (AI I (t, LI I))− p∞

R2C
, (15)

Q = uI I(t, LI I) AI I(t, LI I) , (16)

where R1, R2, C, p∞ are parameters presented in Table 3, pWK is pressure in the
Windkessel compartment.
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The formulations of boundary conditions at the aortic root (11), at the connection of the aorta and
the pump (12), (13) and at the terminal part of the aorta (14)–(16) include a numerical discretisation of
compatibility condition along the characteristic curve of the hyperbolic system (7) which leaves the
integration domain for every incoming and/or outgoing segment of the aorta (see [21–23] for details).
The systems of nonlinear algebraic equations, which represent boundary conditions with the time
discretisation of the differential part are numerically solved by the Newton’s method.

The hyperbolic system (7) inside every segment is numerically solved by the second order
grid-characteristic method (see [29] for the details of the method and [21,22] for the features of its
implementation to the 1D model of the blood flow). The analysis of the characteristic curves of (7)
and similar formulations of 1D blood flow model allows implementing discontinuous Galerkin
method [30,31]. The deep analysis of the quasilinear effects in a hyperbolic model blood flow through
compliant axi-symmetric vessels can be found in [32]. The generalised approach to the numerical
implementation of the models describing various nonlinear wave process on graphs is described
in [33].

The parameters of the 1D model are given in Table 3. The cross-sectional area and the length of the
aortic segments I and II are set according to [34]. The parameters of the Windkessel compartment are
set manually. These values allow us to achieve the well known systolic and diastolic aortal pressures
in the normal conditions (rf. Section 3.1). For ρ and µ we use the well known values [35].

Table 3. Parameters of the 1D model of haemodynamics in the segments of the aorta.

Parameter Unit Value Parameter Unit Value

A0,I cm2 7.1 A0,I I cm2 5.7
c0,I cm/s 700 c0,I cm/s 700
LI cm 4.4 LI I cm 3
R1 Ba·s/mL 60 R2 Ba·s/mL 1500
C mL/Ba 10−3 p∞ Ba 7000
ρ g/cm3 1.04 µ cP 4

2.3. Integrated Mathematical Model of the Heart Function, Pump and Aortic Flow

The two chamber model of the heart comprises the LV and the left atrium (LA), the mitral
and aortic valves. It connects the pulmonary veins (PV) with the aorta. The nonlinear LVAD
compartment connects the LV with the aorta (see Figure 1). The variable elasticity concept of the
heart contractions [36,37] allows describing the heart chambers dynamics by the following lumped
compartment model

Ik
d2Vk
dt2 + RkPk

dVk
dt

+ Ek (t)
(

Vk −V0
k

)
+ P0

k = Pk, (17)

where k ∈ {lv, la}, indices lv and la refer to the LV and the LA, respectively, Vk(t) is the volume of
the chamber, V0

k is the reference volume of the chamber, Pk(t) is the pressure in the chamber, P0
k is

the reference pressure in the chamber, Ik is the inertia coefficient of the chamber, Rk is the hydraulic
resistance coefficient of the chamber, Ek(t) is variable elasticity which is approximated by

Ek (t) = Ek,d +
Ek,s − Ek,d

2
ek (t) , (18)
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Ek,d and Ek,s are elasticity constants related to the end diastolic and end systolic states of chamber k
(rf. Table 4). For the LV we set

elv (t) =


1− cos

(
t

Ts1
π

)
, 0 6 t 6 Ts1,

1 + cos
(

t− Ts1

Ts2 − Ts1
π

)
, Ts1 < t < Ts2,

0, Ts2 6 t 6 T,

(19)

whereas for the LA

ela (t) =


0, 0 6 t 6 Tpb,

1− cos
( t− Tpb

Tpw
2π

)
, Tpb < t < T.

(20)

Here we modify the model [38] by adding to (17) the term proportional to Pk
dVk
dt , which accounts

for viscoelasticity of the myocardium [39–41]. The values of constants Ts1, Ts2, Tpb, Tpw are presented
in Table 4.

The mass conservation law for the LV and LA states

dVlv
dt

= Qmi −Qao −Qp,

dVla
dt

= Qpv −Qmi,
(21)

where Qmi is the flow through the mitral valve, Qao is the flow through the aortic valve, Qp is the flow
through the pump, Qpv is the flow from the PV.

We set the pressure drop ∆P = Ppv − Pla for PV – LA connection, ∆P = Pla − Plv for LA – LV
connection, and ∆P = Plv − p(AI(t, 0)) for LV – AA connection. For unsteady flow in a channel with a
variable cross-section, the pressure drop satisfies the relation [39,42]

∆P = L (g)
dQ
dt

+ α (g) Q + β (g) Q |Q| , (22)

where g(θ) =
{

θmin 6 θ 6 θmax, 0 6 g(θ) 6 1
}

is a smooth monotone function of the angle of a valve
opening θ [43]:

g (θ) =



(
1− cos θmin)2

(1− cos θmax)2 , θ < θmin,

(1− cos θ)2

(1− cos θmax)2 , θmin 6 θ 6 θmax,

1, θ > θmax.

(23)

The value g(θmin) corresponds to the closed valve, while the value g(θmax) = 1 corresponds to
the opened valve. For L = 0, β = 0 we have linear Poiseuille pressure drop condition which also
accounts for the viscous friction losses. By analogy with [44,45] we neglect this term and set α = 0 for
all cases. For L = 0, α = 0 we have the orifice pressure drop condition. The first term in (22) accounts
for the inertia of non-stationary flow. The coefficient β is defined as [42,46,47]

β (A∗) =
ρ

2B∗

(
1

Ã∗
− 1

A∗

)2
, (24)

where parameters Ãmi, Bao and Bmi are defined in Table 4 whereas Ãao = AI(t, 0). For the PV – LA
connection β = const. For both mitral and aortic valves, their cross-section A∗ depends on the angle of
the valve opening, A∗ (θ) = Amax

∗ g (θ).
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The dynamics of the aortic and mitral valves is governed by the second Newton law.
Pressure gradient across the valve, vorticity generation and shear forces acting on the valve leaflets [48]
have to be accounted in the model, rf. [43,49]. In this work we set valve dynamics equations as

d2θao

dt2 = −K f
ao

dθao

dt
+ (Plv − Pao)Kp

ao cos θao − Fr
ao (θao) ,

d2θmi
dt2 = −K f

mi
dθmi

dt
+ (Pla − Plv)Kp

mi cos θmi − Fr
mi (θmi) .

(25)

where θao(t) is the angle of the aortic valve opening, θmi(t) is the angle of the mitral valve opening,
K f

ao, Kp
ao, K f

mi, Kp
mi are parameters presented in Table 4, the first term at the right-hand side corresponds

to the friction force, the second term corresponds to the pressure force driving the valve motion, Fr is
the force which helps to avoid physiologically abnormal valve positions (θ < θmin and θ > θmax)

Fr (θ) =


0, θmin 6 θ 6 θmax,

e103(θ−θmax) − 1, θ > θmax,

1− e103(θmin−θ), θ < θmin.

(26)

The other forces are neglected.
Parameters of the lumped model of the left heart are summarized in Table 4. We take some values

from [38,41,43] and set other values manually basing on the values from [38,43] and keeping them in
the physiological range.

Table 4. Parameters of the lumped model of the left heart. ? Parameter is set manually.

Parameter Unit Value Reference Parameter Unit Value Reference

Elv,s
mm Hg

mL 4.0 ? θmin
ao 0◦ [38]

Elv,d
mm Hg

mL 0.09 ? θmax
ao 75◦ [43]

Ilv
mm Hg·s2

mL 10−7 ? θmin
mi 0◦ [38]

Rlv
s

mL 1.5× 10−3 [41] θmax
mi 75◦ [43]

Ela,s
mm Hg

mL 1.2 ? V0
lv mL 5 ?

Ela,d
mm Hg

mL 0.3 ? V0
la mL 4 ?

Ila
mm Hg·s2

mL 10−7 ? Ts1 s 0.3 [43]

Rla
s

mL 1.5× 10−3 [41] Ts2 s 0.35 [43]
Tpw s 0.1 [43] Tpb s 0.9 [43]

Kp rad
s2·mm Hg 104 ? K f rad

s 50 [43]

Ppv mm Hg 13 ? Sp cm2 1.1 ?

Lpv
mm Hg·s2

mL 10−2 ? βpv
mm Hg·s2

mL2 4× 10−4 ?

Lmi
mm Hg·s2

mL 5× 10−10 ? Bmi 300 ?

Lao
mm Hg·s2

mL 5× 10−5 ? Bao 500 ?

Ãmi cm2 5 ? Amax
ao cm2 4 ?

T s 1 ? Amax
mi cm2 4 ?

3. Results

Validation of the pump model is addressed in Section 2.1. In Section 3.1, we validate the integrated
model by comparing simulations of the normal heart function with known physiological data from
the literature. In Section 3.2, we analyze the effect of four LVADs in patients with the end-stage HF
associated with the LV dilated cardiomyopathy (DCM).
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3.1. Validation of the Model

The parameters of the integrated model for healthy conditions are shown in Tables 2–4.
Simulations with these parameters without LVAD produce values of stroke volume of LV, systolic and
diastolic pressures in the aortic root which are in a good agreement with the well-known physiological
data [35,50] (rf. Table 5). We observe remarkable difference in the end systolic and end diastolic
volumes of the LV. We note, that these parameters are highly individual. Even in healthy cases
they depend on many factors including age, sex, sports lifestyle etc. [50,51]. Our values fall in the
physiological range: they are typical for men of the age 70–80, women of the age about 40–70 [51] and
other individual cases.

The PV diagram of the LV and time curves of the LV volume, the aortic flow and the aortic
pressure in the terminal point of segment II (rf. Figure 1) in healthy conditions without a pump are
shown in Figure 2. The loop in the lower right part of the PV diagram (rf. Figure 2a) accounts for
the backflow from LV to LA through the mitral valve in early systole. This backflow is a result of
non-instant closing of the mitral valve. Such loop is observed in critically ill patients. It is typical both
for the right ventricle and the atria, but also it may be monitored in the left ventricle [52]. We also
observe aortic regurgitation at the end of systole which accounts for the non-instant closing of the
aortic valve [35,50] (rf. Figure 2c for t ≈ 0.3 s).

(a) PV diagram of LV (b) Volume of LV

(c) Aortic root flow (d) Aortic root pressure

Figure 2. Validation of the integrated model for the heart and the aorta.
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Table 5. Validation of the integrated model for the heart and the aorta in healthy conditions without LVAD.

Parameter Unit [35,50] Model

End systolic LV volume mL 50–70 42
End diastolic LV volume mL 130 121

Stroke volume of LV mL 60–80 79
Systolic pressure in the aortic root mm Hg 130 124
Diastolic pressure in the aortic root mm Hg 78 76

3.2. Haemodynamic Simulations in the Aorta for LV DCM with LVAD

We simulate the haemodynamic characteristics in the left heart and the aorta in the presence
of one of four LVADs (Sputnik 1, Sputnik 2, Sputnik D and HeartMate II) operating at various
rotation speeds under HF conditions. RBPs are applied as long term circulatory support systems in
patients with end-stage HF both as a bridge to heart transplantation and as an alternative to heart
transplantation [53,54]. Some types of HF are accompanied with LV DCM which is the common
indication for the long term LVAD installation. LV DCM is characterized by decreased LV contractility,
thinning of the LV wall and increased cavity volume of the LV. These changes produce substantial
decrease in the cardiac output and related cardiovascular dysfunction. LVAD unloads the LV and
decreases its volume by pumping a portion of blood to the aorta. Thus, it supports the heart and
sometimes may produce conditions for LV wall recovery. We update some parameters of the heart with
LV DCM as shown in Table 6. The other parameters from Table 4 remain intact. The simulations with
these parameters produce values which correlate with physiological data from the literature [53,54]
(see Table 7 for comparison).

Table 6. Parameters of the heart model with LV DCM.

Parameter Unit Value

Ppv mm Hg 10
Elv,d mm Hg/mL 0.04
Elv,s mm Hg/mL 0.44
V0,lv mL 20
Ela,s mm Hg/mL 1.1
Rlv s/mL 5× 10−4

Rla s/mL 5× 10−4

Table 7. Comparison of LV DCM simulations without LVAD with the data from the literature [53,54].

Parameter Unit [13,53,54] Model

End systolic LV volume mL 215 227
End diastolic LV volume mL 259 275

Stroke volume of LV mL 44 48
Systolic pressure in the aortic root mm Hg 83 81
Diastolic pressure in the aortic root mm Hg 55 47

We compare the function of the four pumps by setting the same parameters of the heart function
and the aorta for all cases. The normal operating conditions of the pump are defined according to [13].
In the context of our model we formulate them as follows:

1. The aortic valve should be opened within a part of cardiac cycle, i.e., the LV should eject some
portion of blood to the aorta.

2. The flow through the pump should be positive, i.e., it always should be directed from the LV to
the aorta.

3. The ventricular suction is not admitted.
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4. The total ejected volume per cardiac cycle in the aorta should be possibly close to the physiological
value in normal conditions (see Section 3.1).

Figure 3 shows the duration of the opening of the aortic and mitral valves. Duration of the
opening of the aortic and mitral valves at zero speed of the pumps are in agreement with the data on
valve function in the normal conditions [43,49]. Decrease of time of the aortic valve opening starts at
5× 103 rpm for all four pumps. The permanent closure of the aortic valve is observed at 7× 103 rpm
for Sputnik 1 and Sputnik 2, at 12× 103 rpm for Sputnik D and at 8× 103 rpm for HeartMate II which
produce the upper bounds for the settings of these devices in the considered conditions. The noticeable
increase of the mitral valve opening time starts at 9.5× 103 rpm for all four pumps. The permanent
opening of the mitral valve is observed beyond the values 12× 103 rpm for Sputnik 1, 11.5× 103 rpm
for Sputnik 2, 13.5× 103 rpm for HeartMate II and is not observed for Sputnik D in the whole range.

Figure 3. Duration of the opening of the aortic and mitral valves. S1—Sputnik 1, S2—Sputnik 2,
SD — Sputnik D, HM2 — HeartMate II. The lower index ao stands for aortic valve, mi stands for
mitral valve.

Figure 4 shows the minimum flow through the pump over the cardiac cycle. We observe
that a negative flow through the pump disappears at 5.75× 103 rpm for Sputnik 1 and Sputnik 2,
at 8.5× 103 rpm for Sputnik D and at 7× 103 rpm for HeartMate II which sets the lower bound for the
settings of these devices in the considered conditions.

Figure 5 shows the volume of the blood which is ejected through the aortic valve, through the
pump and the total volume ejected to the ascending aorta per cardiac cycle. These volumes are
calculated as the time integral of the corresponding flow. Thus, the negative value of the volume
ejected through the pump means that the pump takes the blood from aorta back to the LV (see Figure 4).
The total volume ejected to the ascending aorta per cardiac cycle is an analog of the stroke volume (SV).
In the rest of the paper we refer to it as SV. We observe zero value of the volume ejected through the
aortic valve for the values of the LVAD rotation speed which correspond to the permanent closure of
the aortic valve (see Figure 3). The normal physiological value of the SV is observed at 8.5× 103 rpm
for Sputnik 1 and Sputnik 2, at 15× 103 rpm for Sputnik D and at 104 rpm for HeartMate II. This means
that none of the four pumps can produce the normal SV in the considered conditions jointly with the
opening of the aortic valve (see Figure 3).
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Figure 4. The minimum flow through the pump.

It is interesting to observe (see Figure 5) that the volume of blood passing through the aortic valve
is close to the normal value at zero rotation speed of the pump rotor. This effect is due to the negative
flow through the pump from the aorta back to the LV (rf. Figure 4). From Figure 5 we notice that
the pumps with speed below 5× 103 rpm produce the same SV as LV DCM model without a pump.
The effect of the pumps on the SV becomes significant only after decrease of the aortic valve opening
time (rf. Figure 3).

Figure 6 shows the systolic and diastolic pressures in the aortic root. We observe that in a particular
range (up to 7× 103 rpm for Sputnik 1 and Sputnik 2, up to 12× 103 rpm for Sputnik D and up to
8× 103 rpm for HeartMate II ) the pump increases the diastolic pressure. The systolic pressure remains
the same in this range. At the upper bound of this range, the systolic and diastolic pressures are almost
equal, and the pulse pressure tends to zero. The elevation of the systolic pressure starts at the rotation
speed corresponding to the permanent closure of the aortic valve (rf. Figure 3). The pulse pressure
remains almost zero. The flow becomes non-pulsatile.

Figure 7 shows the work of the LV. It decreases with the increase of the pump speed and,
thus, with the rise of the pump work. We observe three specific values of the pump speed. For values
below 5× 103 rpm, the LV work is almost constant due to the decreasing time of the aortic valve
opening (rf. Figure 3). For values above 5× 103 rpm, the LV work decreases. The kink of the work
curve at 7× 103 rpm for Sputnik 1 and Sputnik 2, 12× 103 rpm for Sputnik D and 8× 103 rpm for
HeartMate II occurs due to the permanent closure of the aortic valve (rf. Figure 3). The LV performs
almost zero work at 12× 103 rpm for Sputnik 1 and Sputnik 2, 14× 103 rpm for HeartMate II. Zero LV
work is not observed for Sputnik D due to the permanent opening of the mitral valve (rf. Figure 3).
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(a) Sputnik 1 (b) Sputnik 2

(c) Sputnik D (d) HeartMate II

Figure 5. Ejected volume per cardiac cycle through the aortic valve, through the pump and the total
value for the segment II of the aorta (see Figure 1). Norm—normal (healthy) value, LV DCM—left
ventricular dilated cardiomyopathy value without pump.

Figure 6. The systolic and diastolic pressures in the aortic root.
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Figure 7. The work of the LV.

4. Discussion

In this work we study the impact of LVADs Sputnik 1, Sputnik 2, Sputnik D and HeartMate II on
haemodynamics in the left heart and the aorta at various pump speeds. For every pump we validate
the model of pressure – flow relationship using data from physical experiments. The pump model is
combined with the 1D model of the aorta and the lumped model of the left heart with valves dynamics.
The model without the pump reproduces successfully the known physiological characteristics of
the heart in the healthy conditions: PV diagram of the LV, the LV volume, the aortic flow and the
aortic pressure. We fit the model parameters to the LV DCM conditions and perform haemodynamic
simulations with the pumps.

We observe different regimes of the heart function depending on the value of the pump speed.
At low rotation speeds, the work of the pump is insufficient, and we observe reverse blood flow
from the aorta to the LV through the pump. Formally, the volume of the blood ejected through the
aortic valve is close to the standard value, but the pump backflow decreases the total amount of blood
ejected to segment II of the aorta and makes it close to the value of LV DCM case without the pump.
Increase of the rotation speed reduces the time of the aortic valve opening until valve’s permanent
closure. Three of the four operating conditions of the normal pump functioning (see Section 3.2) hold
within this range. Unfortunately, none of the pumps are capable of recovering the standard SV within
this range. Further increase of the rotation speed produces non-pulsatile flow and permanent opening
of the mitral valve. The technical characteristics and clinical restrictions limit the in vivo change of the
rotation speed. For Sputnik 1 and Sputnik 2 the range is 5× 103–104 rpm, for Sputnik D the range is
6× 103–2× 104 rpm, for HeartMate II the range is 6× 103–15× 103 rpm.

In general, we observe the slight difference between Sputnik 1 and Sputnik 2 in all parameters
(see Figures 3–7). These pumps produce similar impacts on the haemodynamics, although they
have different technical characteristics. Therefore, Sputnik 2 should be preferred as it provides
such benefits as lesser weight, size, etc. [8–10]. The HeartMate II has a wider range of the rotation
speed with acceptable operating conditions and provides flexibility in tuning the device settings.
However, this LVAD recovers the normal SV at a higher rotation speed (see Figures 5a,b,d, which may
require more energy. Sputnik D was initially designed for paediatric patients. It has lesser weight and
size, but it also has less power. In our simulations, we test this LVAD in the adult LV DCM conditions.
We show that it is possible to achieve heart operating conditions which are similar to the conditions
with the adult LVADs. Sputnik D produces these conditions at a higher pump speed.
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In this work we validate the model using the general characteristics of the heart function in the
healthy and LV DCM conditions and data from the test facility. Personalized parameters may produce
a more accurate assessment of LVAD impact.

The following parameters cause a substantial impact on the haemodynamics: elasticity of the aorta
and the heart chambers, the central venous pressure, insufficiency of the heart valves, parameters of
the peripheral circulation (Windkessel model). The dependency of LVAD function on these parameters
should be studied in a future work.

In Section 3.2 we observe that the normal SV is achieved at zero pulse pressure and the closed
aortic valve. Healthy blood flow in systemic arteries is a nonlinear wave phenomenon. The absence
of pulsations may decrease the blood velocity and promote conditions for blood coagulation and
thrombus formation in distal arteries. Thus, the loss of pressure and flow pulsatility in the systemic
circulation in the presence of LVAD should be analyzed.

The variation of the pump speed changes the haemodynamic parameters in the heart and the aorta.
These changes may activate regulatory mechanisms of the heart function. For instance, the change
of the heart rate is associated with a modified duration of the systole and the value of the LV output
through the aortic valve. These effects are beyond the scope of this work.

The changes in the SV and the aortic pressure modify the central venous pressure which, in turn,
changes the LA filling conditions and adjusts the other haemodynamic parameters of the heart function.
A closed model of the cardiovascular system is needed to study such feedback system.
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