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Abstract: The aim of this review paper is to recall known solutions for two Markov moment problems,
which can be formulated as Hahn–Banach extension theorems, in order to emphasize their relationship
with the following problems: (1) pointing out a previously published sandwich theorem of the type
f ≤ h ≤ g, where f, −g are convex functionals and h is an affine functional, over a finite-simplicial
set X, and proving a topological version for this result; (2) characterizing isotonicity of convex
operators over arbitrary convex cones; giving a sharp direct proof for one of the generalizations of
Hahn–Banach theorem applied to the isotonicity; (3) extending inequalities assumed to be valid on a
small subset, to the entire positive cone of the domain space, via Krein–Milman or Carathéodory’s
theorem. Thus, we point out some earlier, as well as new applications of the Hahn–Banach type
theorems, emphasizing the topological versions of these applications.

Keywords: Hahn–Banach type theorems; Markov moment problem; sandwich theorem; finite-simplicial
set; isotone convex operator; necessary and sufficient conditions

1. Introduction

We recall the classical formulation of the moment problem, under the terms of T. Stieltjes, given
in 1894–1895 (see the basic book of N.I. Akhiezer [1] for details): find the repartition of the positive
mass on the nonnegative semi-axis, if the moments of arbitrary orders k (k = 0, 1, 2, . . . ) are given.
Precisely, in the Stieltjes moment problem, a sequence of real numbers (Sk)k≥0 is given and one looks
for a nondecreasing real function σ(t) (t ≥ 0), which verifies the moment conditions:

∞∫
0

tkdσ = sk, (k = 0, 1, 2, . . .)

This is a one dimensional moment problem, on an unbounded interval. Namely, it is an interpolation
problem with the constraint on the positivity of the measure dσ. The numbers Sk, k ∈N = {0, 1, 2, . . . } are
called the moments of the measure dσExistence, uniqueness and construction of the solution are studied.
The present work concerns firstly the existence problem. The connection with the positive polynomials
and extensions of linear positive functional and/or operators is quite clear. Namely, if one denotes by ϕj,
ϕj(t):= tj, j ∈N, t ∈R+:= [0,∞), P the vector space of polynomials with real coefficients and

T0 : P → R, T0(
∑
j∈J0

α jϕ j) :=
∑
j∈J0

α jS j,

where J0 ⊂ N := {0, 1, 2, . . . .} is a finite subset, then the moment conditions T0
(
ϕ j

)
= s j, j ∈ N are

clearly verified. It remains to check whether the linear form T0 has nonnegative values at nonnegative

Mathematics 2020, 8, 1328; doi:10.3390/math8081328 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8081328
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/8/1328?type=check_update&version=3


Mathematics 2020, 8, 1328 2 of 18

polynomials. If this last condition is also accomplished, then one looks for the existence of a linear
positive extension T of T0 to a larger ordered function space E which contains both P and the space of
continuous compactly supported functions, then representing T by means of a positive regular Borel
measure µ on [0,∞), via Riesz representation theorem. Alternately one can apply directly Haviland
theorem. Usually, E is an ordered Banach space or even a Banach lattice. For Markov moment problem,
besides the positivity of the linear solution T, the condition T ≤ P on E is required, where P : E→ R is
a given convex (eventually continuous) functional. In most of the cases, P is a continuous sublinear
functional, which controls the norm of the linear positive solution T. Similar results make sense and
can be proved for the multidimensional moment problem. If an interval (for example [a, b], R, or
R+ := [0,∞)) is replaced by a closed subset of Rn, n ≥ 2, we have a multidimensional moment
problem. Passing to the multidimensional real Stieltjes moment problem, let us denote

ϕ j(t) = t j = t j1
1 · · · t

jn
n , j = ( j1, . . . , jn) ∈ Nn, t = (t1, . . . , tn) ∈ Rn

+, n ∈ N, n ≥ 2 (1)

If a sequence
(
y j

)
j∈Nn is given, one studies the existence, uniqueness and construction of a linear

positive form T defined on a Banach function spaces containing polynomials and continuous compactly
supported functions, such that the moment conditions

T(ϕ) = y j, j ∈ Nn (2)

are satisfied. Usually, the positive linear form T can be represented by means of a positive regular
Borel measure on Rn

+. When an upper constraint on the solution T is required too, we have a Markov
moment problem. This requirement is formulated as T being dominated by a convex functional,
which might be a norm or only a sublinear functional, whose role is to control the continuity and
the norm of the solution. All these aspects motivate the study of the abstract moment problem,
from which we deduce results for the classical Markov moment problem by means of additional
information (usually involving nonnegative polynomials, sums of squares of polynomials, quadratic
forms, measure theory, etc.). Clearly, the classical (Stieltjes) moment problem is an extension problem
for linear functionals, from the subspace of polynomials to a function space which contains both
polynomial as well as the continuous compactly supported real functions on Rn

+. From linear functional
solutions, many authors considered linear operator solutions. Of course, in this case the moments
y j, j ∈ Nn are elements of an ordered complete vector space Y (usually Y is an order complete
Banach space (or an order complete Banach lattice)). The order completeness is necessary to apply
Hahn–Banach type results for operators defined on polynomials and having Y as codomain. Various
aspects of the classical moment problem have been studied (see the References). Basic monographs on
the moment problem can be found in references [1–3]. General background can be found in chapters
or paragraphs from monographs [4–8]. The present paper is directly related to references [9–15]
and partially related to articles [16–20]. The case of multidimensional moment problem on compact
semi-algebraic subsets in Rn was intensively studied. The analytic form of positive polynomials on
special closed unbounded finite dimensional subsets is crucial in solving classical moment problems
on such subsets (see [21] for the expression of nonnegative polynomials on a strip, in terms of sums of
squares). All the references [22–46] are more or less linked to various aspects of the moment problem
and its relationship with other fields of analysis. Clearly, the classical moment problem is related to the
form of positive polynomials on the involved closed subset of Rn. As it is well-known, there exists
nonnegative polynomials on the entire space Rn, n ≥ 2, which are not sums of squares of polynomials
(cf. [23]), unlike the case n = 1. Connections with fixed point theory are emphasized in [24,25], while
related results on operator theory are pointed out in [3,27,32,34,35]. Uniqueness/nonuniqueness of
the solutions of some classical moment problems are studied in [3,29–31]. Optimization related to
Markov moment problem, and, on the other hand, construction of the solution is emphasized as well
in some of the references. It is worth noticing that our References are far from being complete. For the
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reader’s convenience, we include the following recent main research publications on Hahn–Banach
theorem, sandwich theorem and their applications [47–51]. Going further to the aims of the present
work, we start by recalling a result on the abstract moment problem, which follows from more general
theorems previously published. This statement (see Theorem 3 below) was applied in [13] to deduce
a sandwich type result of intercalating an affine functional h : X→ R between a convex functional
f :X→R and a concave functional g : X→ R, f ≤ g, where X is a finite simplicial subset of a real vector
space E (see Section 3 below for the definition and examples). Here the novelty is that a finite-simplicial
set X may be unbounded in any locally convex topology on E. In the present paper, we prove a
topological version of this sandwich result. This is the first aim of this work. Some other related results
are recalled or respectively proved. It is worth noticing that, unlike Hahn–Banach theorems, here the
dominating functional g is concave, while the minorating functional f is convex. A previous such
sandwich result for real functions defined on a (compact) Choquet simplex X is recalled in [6] and in
Section 3.1 below. A topological version of it is also proved. Section 3.2 is devoted to a direct sharp
proof of a generalization of Hahn–Banach theorem, motivated by solving Markov moment problems
and by characterization of isotonicity of convex operators over convex cones [14,15] (recall that an
operator P acting between two ordered vector spaces E, F is called isotone on the cone C ⊂ E if

x1, x2 ∈ C, x1 ≤ x2 =⇒ P(x1) ≤ P(x2).

This is the second aim of the present paper. Finally, extending inequalities from a small subset
to the entire positive cone of the domain space is the third aim of this article. This is realized by
means of Krein–Milman and, respectively, Carathéodory theorem, both of them being consequences
of the geometric form of Hahn–Banach theorem. Thus, we have four directions of application of
Hahn–Banach type results: Markov moment problem, proving sandwich results over finite-simplicial
sets, characterizing isotonicity of convex operators over convex cones and extending inequalities via
Krein–Milman type theorems.

2. Materials and Methods

The basic methods used in this work are:

(1) Extension of linear operators such that the extension is dominated by a convex operator and
minorated by a concave operator (see [9–11]). The convex and concave operators, respectively,
are defined on arbitrary convex subsets A, B of the domain space E. An important particular case
is that when A or B (or both) is (are) equal to the positive cone E+. The codomain space is always
order complete, in order to allow applying Hahn–Banach results.

(2) Characterizing existence of solutions for Markov moment problem in terms of the given moments
y j, j ∈ J.

(3) From one of the results mentioned at point (2), proving a sandwich result over a finite simplicial
set. Adding the topological version of this result.

(4) Giving a sharp direct proof for a generalization of Hahn–Banach theorem and applying it to a very
recent result on isotonicity of a convex operator over a convex cone (see [14,15]). On the other
hand, a variant of this generalized Hahn–Banach result was frequently applied to the Markov
moment problem. It allows controlling the norm of the solution T (see also Remark 5 below).

(5) Using Krein–Milman and Caratheodory’s theorems in order to extend inequalities from a smaller
set to the entire positive cone of the domain. Applying the notion of a quasiconvex operator [5].

3. Results

3.1. Simplexes, Finite-Simplicial Sets and Sandwich Theorems over Such Subsets

The aim of this subsection is to prove topological versions for known sandwich results [6,13].
We start by a preliminary lemma. Recall that a base B of a convex cone C contained in a vector space E
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is a set of the form B = C∩ H, where H is a hyperplane which misses the origin, defined with the aid
of a strictly positive linear functional

ϕ : E→ R (ϕ(x) > 0 for all x ∈ C, x , 0)

If such a functional does exist, then choose any real β > 0 and define

H =
{
x ∈ E;ϕ(x) = β

}
Then for any x ∈ C, x , 0, there exists a unique b ∈ B = H ∩ C and a unique real number α > 0

such that
x = αb

Indeed, if b = β x
ϕ(x) , then b ∈ B and x =

ϕ(x)
β b = ab.

For the next result we will restrict ourselves to the Banach lattice setting, since the topological
properties involved are important. In this respect, the hyperplane H and the positive cone E+ are
closed subsets (ϕ is continuous).

Lemma 1. Let E, F be Banach lattices. Assume that the positive cone E+ has a base

B = H ∩ E+,

where H is a closed hyperplane missing the origin, as mentioned above. Let p,−q : B→ F be convex continuous
bounded operators on B and ϕ : B→ F an affine continuous bounded operator. Define

Φ, Ψ : E+ → F, Φ(λb) = λp(b), Ψ(λb) = λq(b), b ∈ B, λ ∈ R+

Then Φ is a sublinear continuous extension of p,Ψ is supralinear, continuous and extends q, while

T(λb) = λϕ(b)

defines an additive positively homogeneous operator on E+, which can be further extended to a linear continuous
operator T from E to F. In addition, we have

p ≤ ϕ ≤ q on B i f and only i f Φ ≤ T ≤ Ψ on E+

Proof. By definition, Φ, Ψ, T extend p, q,ϕ respectively, from B to E+. To prove that Φ is subadditive,
let x1 = λ1b1, x2 = λ2b2 be two elements in the positive cone E+, where

b j ∈ B, λ j ∈ [0,∞), j = 1, 2,λ1 + λ2 > 0.

Then

Φ(x1 + x2) = Φ
(
(λ1 + λ2)

(
λ1

λ1 + λ2
b1 +

λ2

λ1 + λ2
b2

))
:=

(λ1 + λ2)p
(

λ1

λ1 + λ2
b1 +

λ2

λ1 + λ2
b2

)
≤

(λ1 + λ2)

(
λ1

λ1 + λ2
p(b1) +

λ2

λ1 + λ2
p(b2)

)
=

λ1p(b1) + λ2p(b2) = Φ(x1) + Φ(x2)
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Next we prove that Φ is positively homogeneous: if x = λb, b ∈ B, λ ∈ (0,∞), α ∈ (0,∞), then

Φ(αx) = Φ((αλ)b) = (αλ)p(b) = α(λp(b)) = αΦ(x)

Thus, Φ is sublinear, Ψ is supralinear and T is additive and positively homogeneous on the
positive cone of E since ϕ is assumed to be simultaneous convex and concave on B.

Extend T to the space

E = E+ − E+ by T(x1 − x2) := T(x1) − T(x2), where x j ∈ E+, j = 1, 2

The definition makes sense, since it does not depend on decomposing x as a difference of two
arbitrary elements from the positive cone E+. Indeed, if x1 − x2 = y1 − y2, then

x1 + y2 = x2 + y1, x j, y j ∈ E+, j = 1, 2.

Now additivity of T on E+ yields

T(x1) + T(y2) = T(x2) + T(y1)⇔ T(x1) − T(x2) = T(y1) − T(y2)

For each nonnegative scalar λ, clearly it results

T(λx) = T(λx1) − T(λx2) = λ(T(x1) − T(x2)) = λT(x), x j ∈ E+, j = 1, 2

On the other hand, according to definition from above, we infer that

T(−x) = T(−(x1 − x2)) = T(x2) − T(x1) = −(T(x1) − T(x2)) = −T(x)

If λ < 0, then λ = −ρ, where ρ = −λ > 0. From the preceding remark, we derive

T(λx) = T(−ρx) = ρT(−x) = −ρT(x) = λT(x)

To finish the proof, we only have to prove the assertions on the continuity. If (xn)n≥1 is a sequence
of elements from E+, such that

xn = λnbn → x = λb, bn, b ∈ B, λn,λ > 0,

then the following relations hold true

ϕ(xn) = λnϕ(bn) = λnβ→ ϕ(x) = λβ,

Since ϕ is continuous, being a positive linear functional on the Banach lattice E. Thus, λn → λ.
These relations lead to

bn =
1
λn

xn →
1
λ

x = b

Due to the continuity of p on B, it results p(bn)→ p(b) , which further implies

Φ(xn) = λnp(bn)→ λp(b) = Φ(x)

A special case is x = 0, when

xn = λnbn → 0⇒ λnβ = ϕ(xn)→ 0⇒ λn → 0⇒

Φ(xn) = λnp(bn)→ 0,
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since p is bounded on B by hypothesis. Thus, the continuity of Φ, Ψ and T on E+ is proved. We only
have to show that the linear extension of T to the whole space E is continuous, where this extension
has been denoted by T too. Clearly, the continuity at the origin will be sufficient. The following
implications hold true

xn → 0⇒ x+n → 0⇒ T
(
x+n

)
→ 0

Similarly, T(x−n )→ 0, hence T(xn) = T
(
x+n

)
− T(x−n )→ 0 . Finally, observe that

p ≤ h ≤ q on B⇔ λp(b) = Φ(λb) ≤ λh(b) = T(λb) ≤ λq(b) = Ψ(λb), λ > 0, b ∈ B⇔

Φ(x) ≤ T(x) ≤ Ψ(x), x ∈ E+

The proof is complete. �

Next, we recall the definition of a simplex in an infinite dimensional locally convex space E, and
we emphasize one of its main properties. If C is a convex cone in E, C has a base B and the order
relation defined by C is laticial on E1 = C−C, then B is called a Choquet simplex. Usually, a simplex is
assumed to be compact. For more information on simplexes see [6]. Next we recall the statement of
D.A. Edwards’ separation theorem (Theorem 16.7 [6]).

Lemma 2. (Edwards). If f and −g are convex upper semicontinuous real valued functions on a simplex B
contained in a locally convex space, with f ≤ g, then there exists a continuous affine function h on B such that
f ≤ h ≤ g.

The next result is a topological version of Lemma 2.

Theorem 1. Let E be a locally convex space, C a pointed convex cone in E which has a simplex B as a base.
Assume that the trace of the topology of E on E1 = C−C is locally solid with respect to the order relation defined
by C. Let Φ : C→ R be a continuous sublinear functional, Ψ : C→ R a continuous supralinear functional
such that Φ(e) = Ψ(e) for all e ∈ Ex(B). Then there exists a unique continuous linear functional T : E1 → R
such that

Φ(x) ≤ T(x) ≤ Ψ(x) ∀x ∈ C (3)

Proof. Let f := Φ
∣∣∣B, g := Ψ

∣∣∣
B. Then f is convex and continuous, g is concave and continuous, and

f ≤ g on B ( f − g is continuous and convex, vanishing on Ex(B) by hypothesis; it results ( f − g)(x) ≤ 0
for all x ∈ co(Ex(B)) and via continuity, ( f − g)(x) ≤ 0 for all x ∈ cl(co(Ex(B))) = B, where the last
equality is given by Krein–Milman theorem). Since B is a simplex, application of Lemma 2 leads to the
existence of a continuous affine function h : B→ R, such that f ≤ h ≤ g. According to the first part of
the proof of Lemma 1 (which does not use any topological notions), h has a unique linear extension,
say T, to E1 = C − C, such that (Lemma 1) holds true. The next step is to prove the continuity of T
on E1, which is equivalent to its continuity at the origin. Let (xδ)δ∈∆ be a generalized sequence in E1,
such that xδ → 0 . Consider the sequences

(
x+
δ

)
δ∈∆

,
(
x−δ

)
δ∈∆

in C. According to the assumptions on the
topology on E1, also using the continuity at the origin of Φ, Ψ, and (3) as well, we infer that

xδ → 0⇒
(
x+
δ
→ 0, x−δ → 0

)
⇒(

Φ
(
x+
δ

)
→ 0, Ψ

(
x+
δ

)
→ 0, Φ

(
x+
δ

)
≤ T

(
x+
δ

)
≤ Ψ

(
x+
δ

))
⇒ T

(
x+
δ

)
→ 0

Similarly, T
(
x−δ

)
→ 0, so that

T(xδ) = T
(
x+
δ

)
− T

(
x−δ

)
→ 0
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Hence T is continuous. To finish the proof, we only have to show the uniqueness of T with the
properties in the statement. Let T1 be a linear continuous functional on E1 such that (3) holds for T1

instead of T. Let h1 be the restriction of T1 to the simplex B. Then h1 is continuous and affine on B.
Moreover, we have

h1(e) = T1(e) ∈ [Φ(e), Ψ(e)] =
{
T(e)

}
=

{
h(e)

}
∀e ∈ Ex(B)⇒

h1(e) =
{
h(e)

}
∀e ∈ Ex(B)

This further yield h1(x) = h(x) for all x ∈ co(Ex(B)) (via the property of being affine for h, h1).
Now also using the continuity of the two involved functions, we derive

h1(x) = h(x) f or all x ∈ cl(co(Ex(B))) = B,

where the last equality is a consequence of Krein–Milman theorem. Thus, T1|B = T|B, which means
T1 = T on E1. This ends the proof. �

Remark 1. Let E = l1 and F an arbitrary Banach space endowed with a linear order relation such that the positive
cone F+ is closed. Let {en}

∞

n=1 be the canonical base of E and
{
yn

}∞
n=1 a bounded sequence in F. Assume that

Φ,−Ψ : E+ → F are given sublinear continuous operators such that Φ(en) = Ψ(en) for all natural numbers n ≥ 1.
Then there exists a unique bounded linear operator T ∈ L(E, F) such that Φ ≤ T

∣∣∣E+ ≤ Ψ . Indeed, if we denote

yn = Φ(en), n ≥ 1.

and define

T(x) =
∞∑

n=1

xnyn, x = (xn)n≥1 ∈ E, (4)

then the series on the right hand side is absolutely convergent in the Banach space F for each fixed element x ∈ E.
Thus, (4) defines a linear operator, which is continuous, with

||T|| = sup
n≥1
||yn|| < ∞

From (4), also using the hypothesis, it results T(en) = yn = Φ(en) = Ψ(en), n ≥ 1. These last
equalities and continuity of all involved operators, as well as sublinearity of Φ,−Ψ lead to

Φ(x) ≤ T(x) ≤ Ψ(x)

for all x ∈ E+. It is possible that such examples could be adapted for more general spaces E.
In the end of this section, we recall that related sandwich theorems hold on the finite-simplicial

sets, as discussed in [13]. A convex subset X of the vector space E is called finite-simplicial if for any
finite dimensional convex compact subset K ⊂ X, there exists a finite dimensional simplex S such that
K ⊂ S ⊂ X. The novelty here is that X is not supposed to be bounded in a locally convex topology on E.
Here are a few examples.

(1) In Rn, n ≥ 2, any convex cone X having a base that is a simplex (the corresponding order relation
is laticial) is an unbounded finite simplicial set.

(2) In Rn, n ≥ 2, for each p ∈ (1,∞), the convex cone X defined by

X =

(x1, . . . , xn); xn ≥

n−1∑
j=1

∣∣∣x j
∣∣∣p

1/p
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has a compact base, but X is not finite-simplicial.
(3) Let E be an arbitrary infinite or finite dimensional vector space (of dimension ≥ 2), T : E→ R

a non-null linear functional and α ∈ R. Then the sets X1 =
{
x; T(x) ≥ α

}
, X2 =

{
x; T(x) ≤ α

}
are finite-simplicial.

(4) Let E, T be as in Example (3), α, β two real numbers such that α < β. The set

X =
{
x; α ≤ T(x) ≤ β

}
is not finite-simplicial. From the last two examples, we easily infer that generally the intersection
of two finite-simplicial sets is not finite-simplicial.

The following sandwich type result holds true (cf. [13]).

Theorem 2. Let E be an arbitrary vector space, X a finite-simplicial subset, f : X→ R a convex
functional, g : X→ R a concave functional such that f ≤ g on X. Then there exists an affine functional
h : X→ R such that f ≤ h ≤ g.

The proof is based on the following theorem first published in [11] and recently generalized in [46].

Theorem 3. Let E be an ordered vector space, F an order complete vector lattice,
{
ϕ j

}
j∈J
⊂ E,

{
y j

}
j∈J
⊂ F given

arbitrary families, T1, T2 ∈ L(E, F) two linear operators. The following statements are equivalent:

(a) There is a linear operator T ∈ L(E, F) such that

T1(x) ≤ T(x) ≤ T2(x) ∀x ∈ E+, T
(
ϕ j

)
= y j ∀ j ∈ J;

(b) For any finite subset J0 ⊂ J and any
{
λ j; j ∈ J0

}
⊂ R, the following implication holds true∑

j∈J0

λ jϕ j = ψ2 −ψ1,ψ1,ψ2 ∈ E+

 =⇒∑
j∈J0

λ jy j ≤ T2(ψ2) − T1(ψ1)

If E is a vector lattice, then assertions (a) and (b) are equivalent to (c), where
(c) T1(w) ≤ T2(w)for all w ∈ E+ and for any finite subset J0 ⊂ J and ∀

{
λ j; j ∈ J0

}
⊂ R, we have

∑
j∈J0

λ jy j ≤ T2


∑

j∈J0

λ jϕ j


+− T1


∑

j∈J0

λ jϕ j


−

The next result is new, representing a topological version of Theorem 2.

Theorem 4. Let E be an ordered Banach space. Assume that E+ is finite-simplicial and there exists

x0 ∈ E+

such that E+ − x0 contains a balanced, absorbing, convex subset. Let

f ,−g : E+ → R

be convex continuous functions such that f ≤ g Assume also that f (0) = g(0) = 0. Then there exists a
continuous linear form S : E→ R such that f ≤ S ≤ g on E+.
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Proof. According to Theorem 2, there exists an affine functional h : E+ → R such that

f ≤ h ≤ g on E+

Using also the hypothesis, we infer that

0 = f (0) ≤ h(0) ≤ g(0) = 0,

hence h(0) = 0. On the other hand, since E+ − x0 is convex, absorbing and balanced, it is a neighborhood
of 0 in the finest locally convex topology on E (see [7]). Recall that in this topology, any convex balanced
absorbing subset is a neighborhood of 0 (this is the topology generated by the family of all seminorms
on E). Thus, there exists a convex open neighborhood V of 0 in this topology, such that

D = x0 + V ⊂ E+

In particular, the interior in(E+) of E+ with respect to the finest locally convex topology on E is
not empty. Denote this interior by C. Since h is convex and concave on the convex open subset C (in
the finest locally convex topology on E) and x0 ∈ C, the subdifferentials of h and −h at x0 are nonempty.
This means that there exist linear functionals T and U on E such that

T(x) − T(x0) ≤ h(x) − h(x0) ≤ U(x) −U(x0)

for all x ∈ C. Since clearly any linear form on E is continuous with respect to the finest locally convex
topology, from the last two inequalities we infer that h is continuous at x0. Repeating this argument
for any x0 ∈ C, we infer that h is continuous on C with respect to the topology under attention. As a
consequence, the subsets

A =
{
(x, r) ∈ C×R; h(x) < r

}
, B =

{
(x, r) ∈ C×R; h(x) > r

}
are open convex disjoint subsets in C×R endowed with the product topology. By separation theorem,
there exists a hyperplane H ⊂ E×R, separating (strictly) the subsets A and B. So, there is a not null
linear form L on E×R and α ∈ R such that

H =
{
(x, r) ∈ E×R; L(x, r) = α

}
, A ⊂

{
(x, r) ∈ C×R; L(x, r) < α

}
,

B ⊂
{
(x, r) ∈ C×R; L(x, r) > α

}
All the topological notions in the sequel refer to the finest locally convex topology, unless another

specification is mentioned. Since L is linear, it is continuous on E×R. For (x, r1) ∈ A, we have

L(x, 0) + r1L(0, 1) < α,

while for any (x, r2) ∈ B, it results
L(x, 0) + r2L(0, 1) > α

From these last two inequalities written for a x ∈ C and r1 , r2, we infer that

L(x, 0) + r1L(0, 1) < α < L(x, 0) + r2L(0, 1),

that implies (r2 − r1)L(0, 1) > 0. In particular, it results L(0, 1) , 0. Going back to the definitions of
the subsets A and B, observe that for any x ∈ C and any ε > 0 the element (x, h(x) + ε) ∈ A, while
(x, h(x) − ε) ∈ B. This remark yields

L(x, 0) + (h(x) + ε)L(0, 1)< α, L(x, 0) + (h(x) − ε)L(0, 1) >α



Mathematics 2020, 8, 1328 10 of 18

Passing to the limit as ε→ 0 , one obtains

L(x, 0) + h(x)L(0, 1) = α

for all x ∈ C. This may be written as

h(x) =
α

L(0, 1)
−

L(x, 0)
L(0, 1)

Hence h is the restriction to C = in(E+) of the linear form S defined on E by

S(x) = −
L(x, 0)
L(0, 1)

,

then adding the constant α
L(0,1) . Recall now that we have already proved that h(0) = 0, that yields

α = 0, so that h is the restriction to C of the linear form S. On the other hand, by our hypothesis, f and
g are assumed to be continuous with respect to the norm topology. In particular, they are continuous
with respect to the finest locally convex topology and S has this property as well. We also have

f
∣∣∣C ≤ S

∣∣∣C ≤ g
∣∣∣
C

and C = in(E+) is dense in E+. From the continuity of the three involved functionals, the inequalities
written above are extended to the entire positive cone E+. To finish the proof, we must show that S is
continuous with respect to the norm topology, that is equivalent to its continuity at 0. From now on,
only the norm topology is involved. Let xn → 0 . As it is known, the ordered Banach space E can be
renormed by means of an equivalent norm, such that it becomes a regularly ordered Banach space. In
such a space for any sequence xn → 0 , there exists sequences (un)n, (vn)n, un, vn ∈ E+, xn = un − vn for
all n ∈ N, such that un → 0, vn → 0 . It results

0 = f (0)← f (un) ≤ S(un) ≤ g(un)→ g(0) = 0

which obviously implies S(un)→ 0 . Similarly, S(vn)→ 0 , so that

S(xn) = S(un) − S(vn)→ 0

This concludes the proof. �

3.2. A Direct Proof for a Generalization of Hahn–Banach Theorem and Its Motivation

The following theorem has been recently applied in [14] to a characterization of isotonicity of
a continuous convex operator over a convex cone in terms of its subgradients (see [14], Theorem 6).
It can be obtained from more general results published in [9,10]. The proof of these very general results
is quite long and technical. Therefore, it is preferable to have a direct proof, using only Zorn lemma
and appropriate inequalities.

Theorem 5. (Theorem 3 [14]). Let E be an ordered vector space, F an order complete vector space, H ⊂ E a
vector subspace, T1 : H→ F a linear operator, Φ : E+ → F a convex operator. The following statements are
equivalent:

(a) There exists a positive linear extension T : E→ F of T1 such that T
∣∣∣E+ ≤ Φ;

(b) We have T1(h) ≤ Φ(x) for all (h, x) ∈ H × E+ such that h ≤ x.
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Proof. The implication (a) =⇒ (b) is obvious; indeed, we have

T1(h) = T(h) ≤ T(x) ≤ Φ(x)

(h, x) ∈ H × E+ such that h ≤ x, thanks to the positivity of T, also using the property T(x) ≤ Φ(x)
for all x ∈ E+. To prove the converse, let Φ be an arbitrary convex operator over E+, verifying the
conditions mentioned at (b). We are going to apply Zorn lemma to the set L of all pairs (K, TK),
where K is a vector subspace of E, H ⊂ K, TK : K→ F is a linear operator such that TK|H = T1 and
TK(h) ≤ Φ(x) for all h ∈ K and x ∈ E+ such that h ≤ x. The set L contains the pair (H, T1) and is
inductively ordered by the order relation

(K, TK)� (L, TL)⇔ K ⊂ L, TL
∣∣∣K = TK

According to Zorn’s Lemma, there exists a maximal pair
(
HM, THM

)
∈ L. Our aim is to prove that

HM = E. Assuming this is achieved, and taking T := THM , we have T(h) ≤ Φ(x) for all h ∈ H and
x ∈ E+ such that h ≤ x. Application of this inequality for h = −ny, y ∈ E+, n ∈ N, x = 0, yields

nT(−y) = T(−ny) ≤ Φ(0), n ∈ N

Since any order complete vector space is Archimedean, it results T(−y) ≤ 0, y ∈ E+, that is the
positivity of T. Additionally, taking h = x ∈ E+, one obtains T(x) ≤ Φ(x) and T will be the expected
positive extension of T1, T

∣∣∣E+ ≤ Φ, and this will end the proof. Assuming that HM , E, we can choose
v0 ∈ E\HM and define H0 = HM

⊕
Rv0, T0 : H0 → F,

T0(h + rv0) = THM(h) + ry0, h ∈ HM, r ∈ R

where y0 ∈ F will be chosen such that
(
HM, THM

)
� (H0, T0) and (H0, T0) ∈ L. This will contradict the

maximality of
(
HM, THM

)
in L. Thus, HM = E. To prove that (H0, T0) ∈ L for suitable y0 ∈ F, we have

to show that
h ∈ HM, r ∈ R, h + rv0 ≤ x ∈ E+ ⇒ THM(h) + ry0 ≤ Φ(x)

For r = α > 0, multiplyingα−1 with the relation h1 +αv0 ≤ x1 ∈ E+. the above implication becomes

h1 + αv0 ≤ x1 ∈ E+ ⇒ y0 ≤ α
−1

(
Φ(x1) − THM(h1)

)
,α > 0,

and, respectively,
h2 + βv0 ≤ x2 ∈ E+ ⇒ y0 ≥ β

−1
(
Φ(x2) − THM(h2)

)
, β < 0

To have both conditions on y0 verified, according to order completeness of F, it is necessary and
sufficient to prove that

β−1
(
Φ(x2) − THM(h2)

)
≤ α−1

(
Φ(x1) − THM(h1)

)
.

The last inequality may be written as

THM

(
α−1h1 − β

−1h2
)
≤ α−1Φ(x1) − β

−1Φ(x2)

To prove this last inequality, we eliminate v0 by adding the previous inequalities, multiplied by
α−1 > 0, respectively, by −β−1 > 0, as follows

(α−1h1 + v0 ≤ α
−1x1,−β−1h2 − v0 ≤ −β

−1x2)⇒ α−1h1 − β
−1h2 ≤ α

−1x1 − β
−1x2 ∈ E+,
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where h j ∈ HM, x j ∈ E+, j = 1, 2, α > 0, β < 0. Since
(
HM, THM

)
∈ L and Φ is convex, this further yields

1
α−1 − β−1

THM

(
α−1h1 − β

−1h2
)
= THM

(
α−1

α−1 − β−1
h1 +

−β−1

α−1 − β−1
h2

)
≤

Φ
(

α−1

α−1 − β−1
x1 +

−β−1

α−1 − β−1
x2

)
≤

α−1

α−1 − β−1
Φ(x1) +

−β−1

α−1 − β−1
Φ(x2)

Thus, the expected inequality follows and the proof is complete. �

Here is the variant of the previous Theorem 5, valid for the case when the convex operator Φ is
defined over the entire space E.

Theorem 6. Let E be an ordered vector space, F an order complete vector space, H ⊂ E a vector subspace,
T1 : H→ F a linear operator, Φ : E→ F a convex operator. The following statements are equivalent:

(a) There exists a positive linear extension T : E→ F of T1 such that T ≤ Φ on E;
(b) We have T1(h) ≤ Φ(x) for all (h, x) ∈ H × E such that h ≤ x.

The proof of Theorem 6 is practically the same as that of Theorem 5.

Remark 2 Given a vector space E, application of Theorem 6 to the very particular case when we endow E with
the order relation defined by the equality-relation (E+ = {0}), leads to the classical Hahn–Banach extension
result (where positivity of T is not involved in any way).

In the end of this subsection, we rewrite Theorem 6 in terms of the corresponding abstract
moment problem.

Theorem 7. (Theorem 1 [11]). Let E, F,Φ be as in Theorem 6,
{
ϕ j

}
j∈J
⊂ E,

{
y j

}
j∈J
⊂ F given families.

The following statements are equivalent:

(a) There exists a positive linear operator T : E→ F such that T
(
ϕ j

)
= y j, ∀ j ∈ J, T ≤ Φ on E;

(b) For any finite subset J0 ⊂ J and any
{
λ j; j ∈ J0

}
⊂ R, the following implication holds true∑

j∈J0

λ jϕ j ≤ ψ ∈ E =⇒
∑
j∈J0

λ jy j ≤ Φ(ψ)

3.3. Extending Inequalities via Krein–Milman and Carathéodory’s Theorems

The next results extend an inequality occurring on a small set to a much larger subset.

Theorem 8. Let E be a reflexive Banach lattice, F an order complete Banach lattice in which every topological
bounded subset is order-bounded and yn ↑ y implies yn → y , Φ : E+ → F a quasiconvex continuous positively
homogeneous operator, T ∈ B+(E, F) a positive linear operator such that Φ(e) ≤ T(e) for all extreme points e of
the set K := E+

⋂
B1,E. Then

Φ(x) ≤ ||x||· sup
e∈Ex(K)

Φ(e) ∈ F+∀x ∈ E+
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Proof. Recall that an operator Φ from a convex subset C of a vector space E to a vector lattice F is called
quasiconvex if

Φ((1− t)x1 + tx2) ≤ sup
{
ϕ(x1),ϕ(x2)

}
, ∀t ∈ [0, 1], ∀x1, x2 ∈ C

Following the proof (by induction) of Jensen’s inequality for real quasiconvex functions, for any
convex combination

∑n
j=1 α jx j, x j ∈ C, j = 1, . . . , n, a quasiconvex operator Φ verifies

Φ
(∑n

j=1
α jx j

)
≤ sup

{
Φ(x1), . . . , Φ(xn)

}
(5)

See [5] for details, examples and exercises related to this important notion. The set K := E+
⋂

B1,E
is convex, weakly compact and

K = cl(co(Ex(K))) (6)

holds thanks to Krein–Milman theorem. Let

xn =
∑n

j=1
α je j ∈ co(Ex(K)), e j ∈ Ex(K), α j ∈ [0,∞), j = 1, . . . , n,

n∑
j=1

α j = 1

According to (6) and also using the hypothesis, we infer that

Φ(xn) ≤ sup
{
Φ(e1), . . . , Φ(en)

}
≤ sup

{
T(e1), . . . , T(en)

}
(7)

On the other side, any positive linear operator from E to F is continuous, so that the image of the
bounded set K ⊂ E+ through the positive (bounded) linear operator T is topologically bounded, hence
is o− bounded in F+. Thus, it results

T(K) ⊂ [0F, y0] for some y0 ∈ F+

From this and also using (7), it results

Φ(xn) ≤ y0, xn ∈ co(Ex(K)), n ∈ N, n ≥ 1

If x = lim
n→∞

xn ∈ cl(co(Ex(K))) = K, where xn ∈ co(Ex(K)) for all n ≥ 1, then, thanks to the
continuity of Φ, we are leaded to

Φ(x) = lim
n→∞

Φ(xn) ≤ lim
n→∞

(
sup

{
Φ
(
e j
)
; j = 1, . . . , n

})
=

sup
n≥1

Φ(en) ≤ sup
e∈Ex(K)

Φ(e) ≤ sup
e∈Ex(K)

T(e) ≤ y0, x ∈ K

Since Φ is positively homogeneous, application of this evaluation to x/||x||∈ K, for all
x ∈ E+, x , 0E, yields

Φ(x) ≤ ||x||· sup
e∈Ex(K)

Φ(e) ≤ ||x||y0, x ∈ E+

This concludes the proof. �

Theorem 9. Let E be an order complete normed vector lattice, K ⊂ E a finite dimensional compact subset,
(Φn)n≥0 a sequence of continuous sublinear operators from E to E, such that for each x ∈ E, there exists
Φ̃(x) := lim

n→∞
Φn(x) ∈ E. Assume that for each n ∈ N, there exists an affine operator Tn from E to E, such that

Tn(x) ≤ Φn(x)∀x ∈ E and there exists

T̃(e) := lim
n→∞

Tn(e) = e ∀e ∈ Ex(K)
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Then x ≤ Φ̃(x) ∀x ∈ Cone(K), where Cone(K) is the convex cone generated by (co(K))
⋃
{0E}.

Proof. It is known that for any finite dimensional compact K, its convex hull co(K) is compact too
(the proof of this assertion is based on Carathéodory’s theorem, which leads to a way of expressing
co(K) as image of a compact (finite dimensional) subset through a continuous mapping). Let p be
the dimension of the linear variety generated by K (and by co(K)) and x ∈ co(K). Assume that p ≥ 2.
Due to Carathéodory’s theorem, there exist at most p+ 1 extreme points in the compact (convex) subset
co(K), say e1, . . . , ep+1 and

{
α1, . . . ,αp+1

}
⊂ [0,∞),

∑p+1
j=1 α j = 1, such that x =

∑p+1
j=1 α je j. In addition, it

is known that any extreme point of co(K) is (an extreme) point of K. From the hypothesis we infer that

Tn(x) =
p+1∑
j=1

α jTn
(
e j
)
→

p+1∑
j=1

α jT̃
(
e j
)
=

p+1∑
j=1

α je j = x, n→∞

Thus, there exists T̃(x) = x ∀x ∈ co(K). On the other side, the positive cone E+ of the space E is
closed and we have assumed that Φn(x) − Tn(x) ∈ E+ for all x ∈ E and all n ∈ N. Passing to the limit,
one obtains

Φ̃(x) − T̃(x) = Φ̃(x) − x ∈ E+ ∀x ∈ co(K)⇔ Φ̃(x) ≥ x ∀x ∈ co(K) (8)

(Since T̃ is the pointwise limit of affine operators, it is affine on co(K); a Hahn–Banach argument
shows that it has an affine extension from the whole space E to E. We denote this extension by T̃ too).
Recall that if 0E is not an element of co(K), then

C := Cone(K) =
{
αx; α ∈ [0,∞), x ∈ co(K)

}
(9)

It is easy to see that in this case: C∩ (−C) = {0E}. Now (8) and (9) yield

Φ̃(αx) = αΦ̃(x) ≥ αx ∀α ∈ [0,∞), ∀x ∈ co(K)⇔ Φ̃(w) ≥ w ∀w ∈ C

If 0E ∈ ∂(co(K))\ri(co(K)), then C could satisfy the condition C∩ (−C) = {0E}, or C∩ (−C) might
be a nonzero vector subspace (here ri(co(K)) is the relative interior of co(K)). When 0E ∈ ri(co(K)), C is
a p− dimensional vector subspace of E. In both these last two cases, the conclusion of the theorem
still holds true, following the same proof as in the first case, (when 0E was not an element of co(K)).
This concludes the proof. �

Remark 3. Assume now that 0E is not an element of co(K). Then there exists a strictly positive linear continuous
form T on E endowed with the order relation defined by C, such that ||T|| = 1, and a constant β > 0 with

inf
x∈co(K)

T(x) = β = T(e) for some e ∈ Ex(co(K))

Indeed, denote by d0 := d(0E, co(K)) > 0, V := Bd0(0E) = {x ∈ E; |x| < d0}. Then V is a convex
open neighborhood of the origin, which does not intersect co(K). By geometric form of Hahn–Banach
theorem, there exists a closed hyperplane separating V from co(K), and not intersecting V i.e., there
exists a linear continuous form T on E such that 0 < supT(V) ≤ β ≤ in f T(co(K)). In particular,
T(x) ≥ β > 0 ∀x ∈ co(K)⇒ T(w) > 0 ∀w ∈ C\{0E}. When T is strictly positive and for any γ > 0, the
set B =

{
x ∈ C; T(x) = γ

}
is a compact base for C. Now scaling T by a positive scalar we obtain a new

strictly continuous positive form (which we also denote by T) with the special property

0 < supT(V) = d0 = in f T(co(K)), T(x) < d0 ∀x ∈ V
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It results

T
(
d0

x
||x||+ ε

)
< d0 ∀ε > 0, ∀x ∈ X⇒

∣∣∣T(x)∣∣∣ ≤ ||x||, ∀x ∈ E⇒ ||T|| ≤ 1

Let x? ∈ co(K) ∩ ∂V be such that T(x?) = d0. Then ||x?|| = d0 and T
(

x?
||x? ||

)
= 1. Thus, ||T|| = 1.

Consider the hyperplane H :=
{
x; T(x) = d0

}
and the base B = H ∩ C. Then the distance

d(0E, H) =

∣∣∣T(0) − d0
∣∣∣

||T||
= d0 = d(0E, co(K)),

as expected (H and B are separating cl(V) and co(K), but they are “tangent” to both these closed convex
subsets). If E is a real Hilbert space and T has the properties from above, then x? is the orthogonal
(or metric) projection of 0E to co(K). Consequently,

||x?|| = d(0E, co(K)) = d0, x?⊥H

Having in mind the idea of the proof of Riesz representation theorem for linear continuous forms
on a Hilbert space, it results that T is represented by a vector which is collinear to x?. Since ||T|| = 1,
we have to normalize x?. It results

T(x) = <
x?
||x?||

, x > = <
x?
d0

, x > ∀x ∈ E

4. Discussion

The above results point out four directions for applications of generalizations of Hahn–Banach
theorem, mentioned in the end of the Introduction. On the other hand, as we have already seen in the
Introduction, solving multidimensional moment problems (and other problems involving inequalities
or positivity of linear operators) in terms of signatures of quadratic forms is a difficult task, simply
since nonnegative polynomials on closed subsets of Rn, n ≥ 2 generally are not expressible by means
of sums of squares. When working on Cartesian products of closed (in general unbounded) intervals,
this difficulty can be partially or completely solved by means of polynomial approximation on such
subsets. Namely, one approximates any nonnegative continuous compactly supported function by a
sequence of special nonnegative polynomials pm, m ∈ N, pm(t1, . . . , tn) = pm,1(t1) · · · pm,n(tn), where
pm j is positive on a whole closed interval I j, j = 1, . . . , n. Since any nonnegative polynomial of one
real variable on a closed interval is expressible in terms of sums of squares, passing to the limit by
means of Fatou lemma, one goes from inequalities on such expressible polynomials to inequalities on
arbitrary nonnegative continuous compactly supported functions. This could be the aim of a future
review paper.

Going back to the results of the present work, notice that an important particular case of a
continuous convex operator is that of a sublinear continuous operator, which will denoted by P. In this
respect, we mention the following two remarks.

Remark 4. Let E be a Banach space, F an order complete Banach space, P : E→ F a continuous sublinear operator.
Then for each x0 ∈ E and any T ∈ ∂x0P, we have T(x0) = P(x0), T ∈ ∂P. Consequently, ∂P = ∂0P =

⋃
x0∈E

∂x0P.

Indeed, if T ∈ ∂x0P, then, by definition, P(x) − P(x0) ≥ T(x) − T(x0) for all x ∈ E. Writing this for
rx instead of x, r ∈ [0,∞), one obtains (via positively homogeneity)

r(P(x) − T(x)) ≥ P(x0) − T(x0), x ∈ E
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If r = 0 we infer that T(x0) ≥ P(x0). On the other hand, dividing by r > 0 and passing to the
limit as r→∞ we obtain P(x) ≥ T(x), x ∈ E. In particular, we have obtained T(x0) = P(x0) and
T(x) ≤ P(x), x ∈ E. The conclusion follows. For notations and detailed information see [14] or any
other reference concerning subdifferentials of convex operators.

Remark 5. Let E, F be Banach lattices and, P : E→ F a continuous sublinear operator. If T : E→ F is a linear
operator such that T ≤ P on E, then ||T|| ≤ ||P|| in the following two cases at least: (1) P is isotone; (2) P is
symmetric (P(x) = P(−x) ∀x ∈ E).

Indeed, in case (1), if P is isotone on E, then

T(x) ≤ P(x) ≤ P(|x|),−T(x) = T(−x) ≤ P(−x) ≤ P(|x|)

implies
∣∣∣T(x)∣∣∣ ≤ P(|x|), x ∈ E, that further yields

||T(x)|| ≤ ||P(|x|)|| ≤ ||P||||x||, x ∈ E =⇒ ||T|| ≤ ||P||

In case (2), assuming that P is symmetric, we obtain

T(x) ≤ P(x),−T(x) = T(−x) ≤ P(−x) = P(x) =⇒∣∣∣T(x)∣∣∣ ≤ P(x) =⇒ ||T(x)|| ≤ ||P(x)||, x ∈ E =⇒ ||T|| ≤ ||P||

The preceding remark is still valid for convex symmetric operators P : E→ F verifying

sup
||x||≤1
||P(x)|| ≤M < ∞, P(0) = 0

In this case, if T is linear, dominated by P on the entire domain space E, then ||T|| ≤ M. Indeed,
similar to the case (2) from above, we have: ||T(x)|| ≤ ||P(x)||, x ∈ E. This leads to

||T|| = sup
||x||≤1
||T(x)|| ≤ sup

||x||≤1
||P(x)|| ≤M

Examples of such convex operators which are not sublinear can be constructed defining

P(x) = ||x||py1, x ∈ E, p ∈ (1,∞),

where y1 ∈ F+, y1 , 0. For the above operator, the constant M equals ||y1||.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver & Boyd: Edinburgh,
UK; London, UK, 1965.

2. Krein, M.G.; Nudelman, A.A. Markov Moment Problem and Extremal Problems; American Mathematical Society:
Providence, RI, USA, 1977.

3. Schmüdgen, K. Graduate Texts in Mathematics. In The Moment Problem; Springer: Berlin/Heidelberg,
Germany; New York, NY, USA, 2017.

4. Cristescu, R. Ordered Vector Spaces and Linear Operators; Academiei: Bucharest, Romania; Abacus Press: Kent,
UK, 1976.

5. Niculescu, C.P.; Persson, L.-E. Convex Functions and Their Applications. A Contemporary Approach, 2nd ed.;
(CMS Books in Mathematics); Springer: New York, NY, USA, 2018; Volume 23.



Mathematics 2020, 8, 1328 17 of 18

6. Phelps, R.R. Lectures on Choquet’s Theorem, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001.
7. Schaefer, H.H. Topological Vector Spaces. Third Printing Corrected; Springer: Berlin/Heidelberg, Germany;

New York, NY, USA, 1971.
8. Olteanu, O. Recent Results on Markov Moment Problem, Polynomial Approximation and Related Fields in Analysis;

Generis Publishing: Chişinău, Moldova, 2020.
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