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Abstract: This paper investigates investment and output dynamics in a simple continuous time
setting, showing that financing constraints substantially alter the relationship between net worth
and the decisions of an optimizing firm. In the absence of financing constraints, net worth is
irrelevant (the 1958 Modigliani–Miller irrelevance proposition applies). When incorporating financing
constraints, a decline in net worth leads to the firm reducing investment and also output (when this
reduces risk exposure). This negative relationship between net worth and investment has already been
examined in the literature. The contribution here is providing new intuitive insights: (i) showing how
large and long lasting the resulting non-linearity of firm behaviour can be, even with linear production
and preferences; and (ii) highlighting the economic mechanisms involved—the emergence of shadow
prices creating both corporate prudential saving and induced risk aversion. The emergence of
such pronounced non-linearity, even with linear production and preference functions, suggests that
financing constraints can have a major impact on investment and output; and this should be allowed
for in empirical modelling of economic and financial crises (for example, the great depression of the
1930s, the global financial crisis of 2007–2008 and the crash following the Covid-19 pandemic of 2020).

Keywords: cash flow management; corporate prudential risk; the financial accelerator; financial
distress; induced risk aversion; liquidity constraints; liquidity risk; macroeconomic propagation;
multiperiod financial management; non-linear macroeconomic modelling; Tobin’s q; precautionary
savings
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1. Introduction

This paper examines the impacts of financing constraints on firm operations and finances using
the tools of continuous time dynamic stochastic optimisation. The introduction of a threshold whereat
the firm faces costly refinancing or liquidation, changes the behaviour of a firm, even when the firm’s
shareholders are risk neutral. As the threshold is approached, there emerges an increasing premium on
the value of cash held inside the firm (relative to the outside cost of capital) and an increasing aversion
to risk.

This modelling builds on the dynamic analyses of [1,2]. Following [2] firms have constant returns
to scale, i.e., linear production technology, and seek to maximise the value of cash dividends paid to
share- holders whilst facing convex costs of adjusting their capital stock. With these assumptions the
solution to the firm’s optimisation problem can be expressed in terms of a single state variable, the ratio
of balance sheet net worth to productive capital. Cash held internally reduces shareholder returns but
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also lowers the expected future costs of refinancing or liquidation. It is the interplay between these
two forces that drives behaviour.

The financing constraint is assumed to be an exogenous (to the firm) lower boundary for this state
variable at which the firm must undertake costly refinancing or bankruptcy occurs and the firm is
liquidated. An upper bound appears as part of the optimal solution and marks the threshold where
the firm pays out cash flow dividends to its impatient shareholders. As shocks drive the firm closer to
the liquidation threshold, its presence increasingly affects the optimal decisions of the firm.

An analogy for this mechanism is provided by Whittle [3] pages 287–288:

This might be termed the "fly-paper" effect... A deterministic fly, whose path is fully under
its own control, can approach arbitrarily closely to the fly-paper with impunity, knowing
he can avoid entrapment ... A stochastic fly cannot guarantee his escape; the nearer he
is to the paper, the more certain it is that he will be carried onto it. This also explains
why the fly tries so much harder in the stochastic case than in the deterministic case to
escape the neighbourhood of the fly-paper... One may say that the penalty of ending on the
fly-paper "propagates" into the free-flight region in the stochastic case, causing the fly to
take avoiding action while still at a distance from the paper.

Whittle is pointing out that in dynamic settings with (i) uncertainty in the equations of motion for
state variables (the position of the fly); and (ii) constraints on state (the fly paper), then (in the language
of economic theory) non-zero shadow prices appear even for values of the state where the constraints
are not currently binding.

In the setting of this paper there are two routes by which this mechanism affects firm decisions:

(1) A shadow price of internal funds creates a wedge between the internal and external cost of capital.
This reduces the marginal valuation of investment in terms of internal funds (Tobin’s marginal-q).
A firm invests less and less as its net worth declines. The consequence is corporate prudential
saving, analogous to the household prudential saving extensively discussed in the literature on
the consumption function (surveyed in [4]).

(2) A shadow price of risk creates an “induced risk aversion” leading to firms reducing their risk
exposure. A variation of the model allows firms to respond by renting out more and more of their
capital as net worth declines below a threshold level. It is this mechanism which, if sufficiently
powerful, creates the "net worth trap."

Since the firm cannot raise new equity capital, declines in net worth are financed by increases
in firm borrowing. When this state variable is comparatively high, near the upper boundary where
dividends are paid, then these shadow prices are close to those that would apply for a financially
unconstrained firm that can raise new equity. As the state variable falls closer to its minimum level
at which no further borrowing is possible, these shadow prices rise. Even with the assumed linear
production technology and the risk-neutrality of firm shareholders, the resulting dynamics of corporate
output and investment are highly non-linear, depending on both the direction and size of shocks:
negative shocks to productivity or net worth have a larger impact than positive shocks; small negative
shocks self-correct relatively quickly; larger negative shocks (or a succession of smaller negative shocks)
can result in extended periods of high shadow prices and contractions of output and investment.

The remainder of the paper is set out as follows. Section 2 locates the paper in the economics,
finance and mathematical insurance literature. Section 3 presents a simplified version of the model in
which capital cannot be rented out. For high values of the fixed cost of recapitalisation, firms do not
recapitalise instead liquidating on the lower net worth boundary; but for lower values firms choose
to exercise their option to recapitalise on the lower boundary and so avoid liquidation. In either
case, investment is reduced below unconstrained levels by the state dependent shadow price of
internal funds.

Section 4 then introduces the possibility that firms, by mothballing or renting capital to outsiders,
are able to reduce their risk exposure, but at the expense of a decline in their expected output.
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The extent to which this is done depends on the magnitude of a shadow price of risk capturing an
effective induced risk aversion for other wise risk-neutral shareholders. This is where the possibility of
a net worth trap emerges. Section 5 provides a concluding discussion considering the macroeconomic
implications of these findings. While the model solution is numerical, not closed form, we have
developed convenient and rapid solution routines in Mathematica. (We have created a standalone
module which can be used by any interested reader to explore the impact of parameter choice on model
outcomes. This, together with the Mathematica notebook used for creating the Figures reported in the
paper, can be downloaded via http://leveragecycles.lboro.ac.uk/networthtrap.html and run using
the free Mathematica Player software https://www.wolfram.com/player/). Four appendices contain
supporting technical details. (Appendix A solves the situation in which there is no non-negativity
constraint on dividend payments; or equivalently when uncertainty vanishes. Appendix B provides
proofs of the propositions in the main text. Appendix D derives the asymptotic approximations used
to incorporate the singularities that arise in the model with rent. Appendix C details the numerical
solution, noting how this must be handled differently in the two possible cases, wherein a “no Ponzi”
condition applies to the unconstrained model of Appendix A; and when this condition does not).

2. Related Literature

There is a substantial body of literature examining firm operations, financing and risk management
over multiple periods. Central to this work is the inventory theoretic modelling (initiated by [5,6]))
of both financial (cash, liquidity and capitalisation) and operational (inventory, employment,
fixed capital investment) decisions subject to fixed (and sometimes also proportional or convex)
costs of replenishment or investment.

Most dynamic models of corporate behaviour focus either on financial or operational decisions
without considering their interaction. Well known contributions include work on the dynamics of
fixed capital investment in the presence of adjustment costs (including [7,8]); and on applying standard
tools of inventory modelling to study corporate cash holdings and money demand [9–11]. Dynamic
modelling methods are also employed in the contingent claims literature, to examine both the pricing
of corporate liabilities [12] and the possibility of strategic debt repudiation [13,14] and the interaction of
the choice of asset risk and capital structure, taking account of the implications for the cost of debt [15].
However, this line of research does not address the dynamic interaction of financing and investment.

The interaction of financial and operational decisions is often considered in a static framework.
This allows an explicit statement of the informational asymmetries and strategic interactions that lead
to departures from the [16] irrelevance proposition (for a unified presentation of much of this literature,
see [17]). This is widely used in the corporate finance literature. Take, for example, the pecking
order theory of capital structure in which costs of equity issuance result in discrepancies between
the costs of inside funds (retained earnings), debt and outside equity [18,19]. In [20] such a static
framework was applied to develop a joint framework of the determination of investment and risk
management decisions.

There is a smaller body of literature on the dynamic interactions of financial and operational
decisions. The negative relationship between net worth and the shadow price of internal funds that
appears in the present paper is not a new finding; it appears in a number of other contributions to the
literature. In [21] the costly state verification problem of [22] is extended into a recursive model of
dynamic stochastic control wherein one period debt contract can be refinanced through a new debt
contract. His analysis does not establish an explicit solution for the optimal contract, but it does show
how if debt contracts are used to dynamically finance a productive investment opportunity, then the
value function has a "characteristic" convex shape, with a negative second derivative with respect to
net worth, reflecting a departure from [16] capital structure irrelevance and a resulting shadow price
of internal funds. In consequence, as net worth declines so does investment and output.

Progress has been made more recently on analysing optimal financial contracts in a dynamic
principal agent context (see [23,24] and references therein), yielding similar divergence between the
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cost of funds. In [24] it is shown that it can be optimal for a firm to use, simultaneously, both long term
debt and short term lines of credit, in order to create incentives for managerial effort, but this work has
not been extended to modelling the interactions of financial and operational decisions.

Most other work on the dynamic interactions of financial and operational decisions has proceeded,
as in this paper, by imposing costly financial frictions (rather than establishing an optimal contract).
Many of these papers employ continuous time modelling techniques. An early example is [25]
exploring the bond financing of a project subject to fixed costs both of opening and shutting the
project (hence creating real option values) and of altering capital structure through bond issuing.
Four papers written independently [1,26–28] explore cash flow management and dividend policy in a
context where cash holdings evolve stochastically (as a continuous time diffusion) resulting in a need
for liquidity management. This leads to the simple boundary control for dividends that is inherited by
the model of the present paper: paying no dividends when net cash holdings are below a target level
and making unlimited dividend payments on this boundary.

This cash flow management framework was subsequently employed in a variety of different
contexts. These include the risk exposure decisions of both insurance companies and non-financial
corporates (see [29–31]). In a sequence of papers [32–35] bank capital regulation and bank behaviour
are analysed. Other related work examined how intervention rules affect market pricing in exchange
rates and in money markets; for example, [36–38] provides a survey article linking this work to
portfolio allocation and cash management problems faced by companies and insurance firms.

Other recent and closely related studies exploring the interactions of financing, risk management
and operational decisions include [39–44]. While employing differing assumptions, these papers have
a great deal in common. The resulting dynamic optimisation again yielded a value function with the
“characteristic” convex shape reported by [21] and appearing also in this paper, and hence resulted
in internal "shadow prices" which reduce risk exposure, output and investment as net worth or cash
holdings decline.

Similar findings emerged in discrete time models, such as those of [45,46], who considered risk
management and firm decision making in the presence of taxation and imposed costs of financial
transactions. They incorporated a wide range of determining factors and firm decision variables,
again finding that a reduction in net worth leads to reduced of risk exposure and increased incentives
to hedge risks.

While the literature offers a consistent account of the dynamic interactions of corporate financing
and operational decisions, the macroeconomic implications are less fully explored. Capital market
frictions, in particular the high costs of external equity finance and the role of collateral values have
been proposed as an explanation of macroeconomic dynamics (see, e.g., [47,48]). The most widely used
implementation of these ideas is the "financial accelerator" introduced into macroeconomics by [49,50].
This is based on a static model of underlying capital market frictions, in which the macroeconomic
impact of financing constraints comes through assuming a costly state verification (as in [22]) and
modelling the resulting difficulties entrepreneurs face in obtaining external finance for new investment
projects. The resulting propagation mechanism operates through an “external financing premium”,
i.e., a additional cost that must be paid by investors in fixed capital projects in order to overcome the
frictional costs of external monitoring whenever they raise external funds, rather than internal shadow
prices such as appear in this paper.

An alternative perspective on the propagation of macroeconomic shocks is found in the literature
on endogenous risk in traded asset markets (see [51–53] in which asset price volatility limits access to
external finance. In their overview of the impacts of financing constraints on macrofinancial dynamics
using continuous-time modelling [54] highlighted some further recent analysis of this kind [2,55,56]
that focused on the impacts of financial constraints on asset prices.

In [55,56] "specialists" were able to better manage financial assets but their ability to invest in
these assets was constrained by their net worth. The outcome was two regimes: one of higher net
worth wherein the constraint does not bind and the pricing and volatility of assets are determined
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by fundamental future cash flows; the other of lower net worth wherein asset prices fall and asset
price volatility rises relative to fundamental levels. This approach is developed further in [2], treating
physical capital as a tradable financial asset and showing how endogenous volatility can then limit
investment and create the possibility of a "net worth" trap with extended declines in output and
investment following a major negative shock.

The analysis of this paper shows that such a net worth trap can also emerges through the operation
of internal shadow prices, rather than, as in [2], through external market pricing. Thus there is a
potential net worth trap for all firms, large and small and regardless of the extent to which they
participate in external financial and asset markets. This paper also extends [2] by allowing not just
for shocks to capital productivity (these can be interpreted as supply shocks such as those that have
resulted from the Covid-19 pandemic) but also for shocks to net worth (these can be interpreted as
demand and financial market shocks, such as those that occurred during the global financial crisis).
As in [2], in order to limit the number of state variables and obtain tractable results, this paper considers
only serially uncorrelated shocks represented in continuous time by a Wiener process.

This paper contributes to this literature in two further ways. First, building on [1] it distinguishes
the impact on firm decisions of the shadow price of internal funds (the first derivative of the value
function in net worth) from the shadow price of risk (the scaled second derivative of the value function).
Second, it develops efficient numerical solution methods which support convenient exploration of the
effect of changing parameters on firm decisions.

3. A Basic Model

This section solves a basic model in which firms decide only on investment and dividend
payments. We delay to Section 4 consideration of a broader model in which firms can reduce their risk
exposure by selling or renting capital to outsiders, and the circumstances in which a net worth trap
might then appear.

Section 3.1 sets out the model assumptions. Section 3.2 discusses its numerical solution.
Section 3.3 presents some illustrative simulations of the numerical solution.

3.1. Model Assumptions

Firms produce output sold at price unity through a constant returns to scale production function
(y = ak) and seek to maximise a flow of cash dividends (λ ≥ 0) to risk neutral owners/shareholders.
There are two state variables, capital k, which is augmented by investment at rate i and reduced
by depreciation at rate δ, and cash, which increases with sale of output and is reduced by capital
investment (subject to quadratic adjustment costs) and dividend payouts. Cash c held internally
(which can be negative if borrowing) attracts an interest rate r. Additionally, the firm can recapitalise
(increase its cash) at any time τ by an amount ε (τ) where τ can be chosen by the firm. Cash holdings
are disturbed by an amount σkdz with dz a Wiener process.

The state variables evolve according to:

dc =
[
−λ + ak + rc− ik− 1

2
θ (i− δ)2 k

]
dt + ε (τ) + σkdz (1a)

dk = (i− δ)kdt (1b)

where the coefficient θ captures costs of adjustment of the capital stock (increasing with the net rate of
investment i− δ).
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The firm seeks to maximise the objective:

Ω = max
{it},{λt},{ετ}

E

∞̂

t=0

e−ρtλdt−
τ∞

∑
τ=τ1

e−ρτ (ετ + χk) (2)

where χ > 0 represents the cost to shareholders of recapitalisation, arising from any associated
due-diligence or dilution of interests. These are assumed proportional to k.

The only other agents are outside investors ("households" in the terminology of [2] who lend to
firms, but do not take credit risks; instead, they require that lending is secured against the firm’s assets,
limiting the amount of credit available to the firm, and they become the residual owner of the firm’s
assets if and when the debt is not serviced. Like firm owners, these investors are risk-neutral and seek
to maximise the present discounted value of current and future consumption. Unlike firms, there is no
non-negativity constraint on their cash flow. Since they are the marginal suppliers of finance, and there
is no risk of credit losses, they lend to or borrow from firms at a rate of interest r reflecting their rate of
time discount. Investors are more patient than firms, i.e., r < ρ (without this assumption firms will
build up unlimited cash holdings instead of paying dividends). Fixed capital held directly by outside
investors generates an output of āk.

Further assumptions are required in order to obtain a meaningful solution: (i) capital is less
productive in the hands of outside investors than when held by firms (otherwise, firms will avoid
using capital for production), ā < a; (ii) upper bounds on both a and ā to ensure that the technology
does not generate sufficient output to allow self-sustaining growth faster than the rates of shareholder
or household discount; (iii) a further technical condition (a tighter upper bound on a) ensuring that
there is a solution in which dividends are paid to firm shareholders.

3.2. Solution

3.2.1. Characterisation of the Solution

The form of the solution is summarised in the following propositions:

Proposition 1. The firm can borrow (hold c < 0) up to a maximum amount determined by the valuation of the

firm by outside investors:

c > η̄k = −
[

1 + θ

(
r−

√
r2 − 2θ−1[ā− δ− r]

)]
k (3)

Proof. Appendix A.

This maximum amount of borrowing (−η̄k) is exogenous to the the firm but endogenous to the
model. It increases with the net productivity of firms’ assets in the hands of outside investors (ā− δ)
and decreases with the costs of investing in new capital (θ) and with the discount rate of outside
investors (r) which is also the available rate of interest on cash holding/cash borrowing by the firm.
It would be possible to generalise the model by enforcing either a lower exogenous limit on borrowing
or a higher exogenous limit on borrowing with an interest rate on borrowing of r̄(c) > r for c < 0 that
compensates lenders for the liquidated value of the firm—that being less than the amount borrowed at
liquidation. We do not explore these extensions.

If c reaches this bound then the firm has a choice: either liquidate (in which case its assets are
acquired by the lenders and there is no further payment to shareholders); or recapitalise (at a cost to
shareholders of χk).
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Proposition 2. Sufficient conditions for an optimal policy for choice of {it}, {λt}, {ετ} as functions of the

single state variable η = ck−1 to exist and satisfy it − δ < ρ, ∀t are

a− δ < ρ +
1
2

θρ2 − (ρ− r)
[

1 + θ

(
r−

√
r2 − 2θ−1[ā− δ− r]

)]
, (4a)

ā− δ < r +
1
2

θr2. (4b)

Further, if Equation (4a) is satisfied, the growth rate of the capital stock g (η) and the optimal investment

rate i (η) always satisfies the constraints

ḡ =

(
r−

√
r2 − 2θ−1[ā− δ− r]

)
≤ g (η) = i(η)− δ < ρ.

Proof. Appendix B.

If a solution exists then it is characterised by the following further proposition:

Proposition 3. An optimal policy choice for {it} , {λt} , {ετ} as functions of the single state variable η = ck−1,

if it exists and takes the following form: (i) making no dividend payments a long as η̄ < η < η∗ for some value

η
∗
of η, while making dividend payments at an unlimited rate if η > η

∗
; (ii) investing at a rate

i = δ + θ−1 (q− 1)

where W (η) k is the value of Ω under optimal policy; and q (η) representing the valuation of fixed assets by the

firm (the cash price it would be willing to pay for a small increase in k) is given by:

q =
W
W ′
− η, q′ = −WW ′′

W ′W ′
, (5)

with q′ > 0 whenever η < η∗; and W (η) is the unique solution to the second-order differential equation over

η ∈ [η̄, η∗]:

ρ
W
W ′

= a− δ + rη − 1
2

σ2
(
−W ′′

W ′

)
+

1
2

θ−1
(

W
W ′
− η − 1

)2
(6)

obtained subject to three boundary conditions: (i) an optimality condition for payment of dividends at η∗

W ′′(η∗) = 0 (ii) a scaling condition W ′(η∗) = 1; and (iii) the matching condition:

W(η̄) = max [W (η∗)− (η∗ − η̄ + χ) , 0] . (7)

Finally, the firm recapitalises only on the lower boundary and only if W(η̄) > 0 in which case it recapitalises

by increasing η immediately to η∗.

Proof. Appendix B.
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This solution combines barrier control at an upper level of the state variable with either impulse
control or absorption at a lower level.

• Barrier control is applied at an upper level of cash holding/borrowing η∗k, retaining all earnings
when below this level and paying out all earnings that would take it beyond this level (a form of
barrier control). It never holds more cash (or conducts less borrowing) than this targeted amount,
and below this level no dividends are paid (as discussed in Section 2, similar barrier control
appears in a number of earlier papers studying corporate decision making subject to external
financing constraints).

• Impulse control through recapitalisation at a lower boundary η̄k, but only if the cost to
shareholders of recapitalisation is less than their valuation of the recapitalised firm. Net worth is
then restored to the upper impulse control level η∗k. The value of the firm at the lower boundary
W(η̄) is the value at the upper boundary W(η∗) less the total costs of recapitalisation (η∗ − η̄ + χ).

• Absorption if instead the cost of recapitalisation at the lower boundary representing the maximum
level of borrowing exceeds the valuation of the recapitalised firm. It then liquidates and the value
obtained by shareholders is zero.

In the absence of financing constraints (as discussed in Appendix A), impulse control is exerted
for all values of η 6= 0 to immediately enforce η = 0, leverage is no longer relevant to the decisions
of the firm (the Modigliani–Miller [16] proposition applies) and the value function is linear in η and
given by Ω = k (W0 + η), W ′ = 1 and q = W/W ′ − η = W0.

The outcome is very different in the presence of financing constraints. The value function is
then distorted downward. As η declines towards the maximum level of borrowing, an increasing
marginal valuation of cash results (the slope of W) because W ′′ < 0. This increasing marginal
valuation of cash as the firm comes closer to liquidation is reflected in a curvature of the value function
Ω = kW (η) characteristic of dynamic models of financing constraints (see the upper panel of Figure 1
and discussion in Section 2). See [1] for further discussion).

This higher marginal valuation of cash results in a reduction of q, the marginal or the internal
cost of cash (Ωc) relative to the marginal benefits of capital (Ωk). The further η falls below the
target η∗, the more investment is reduced in order to realise cash and stave off costly liquidation
or recapitalisation.

The implications of the model for dynamic behaviour can be analysed using the steady state
"ergodic distribution." The ergodic distribution, if it exists, represents both the cross-sectional
distribution of many firms subject to independent shocks to cash flow and the unconditional time
distribution of a single firm across states. It indicates the relative amount of time in which a firm stays
in any particular state. When this is high, it visits this state often; when it is low then it visits this
state rarely.

If a firm is liquidated at the lower boundary, i.e., if there is no recapitalisation, and it is not
replaced by new firms, then no ergodic density exists. In order to compute an ergodic distribution
and for comparability with the case of recapitalisation, an additional assumption is required: that
liquidated firms are replaced at the upper dividend paying boundary. The following proposition then
applies:

Proposition 4. The pdf of the ergodic distribution is described the following first-order ODE:

1
2

σ2 f ′ −
[

a + rη − δ− θ−1(1 + η)(q− 1)− 1
2

θ−1(q− 1)2
]

f = −d. (8)

and can be computed subject to the boundary conditions

f (η̄) = 0 (9)
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and F(η∗) = 1 where F(η) =
´ η

u=η̄ f (u) du.

Proof. Appendix B.

Here d is a constant representing the net flow of companies through the non-dividend paying
region, until they exit at the lower boundary η̄ through liquidation or recapitalisation and are replaced
at the upper boundary η∗.

The interpretation of this ergodic distribution is slightly different in the two cases of
recapitalisation and of liquidation. In the case of recapitalisation this represents the steady state
cross-sectional distribution of firm net worth for firms hit by independent shocks and the proportion
of time spent by a firm at each level of net worth. In the case of liquidation, it represents only the
cross-sectional distribution of firm net worth and only when liquidated firms are indeed replaced at the
upper boundary. (Other replacement assumptions are possible, for example, replacement at different
levels of net worth in proportion to the steady state distribution of firms in which case the right-hand
side of Equation (8) is replaced by −d f . The ergodic density still represents only a cross-sectioaln
distribution).

3.2.2. Numerical Solution

Appendix C presents the methods of numerical solution. The outline of these is as follows,
utilising the function q(η). Equation (6) can be written as:

q′ =
2
σ2

[
a− δ− (ρ− r)η − ρq +

1
2

θ−1(q− 1)2
]
(q + η). (10)

requiring only two boundary conditions for solution: the optimality condition locating the upper
boundary q′(η∗) = 0 together with the condition on the lower boundary Equation (7).

In the case of liquidation no iteration is necessary. This is because W(η̄) = 0 implying from
Equation (5) that q(η̄) = −η̄, i.e., the maximum amount of lending is the valuation of capital by
outsiders and this determines the value of q on the lower boundary. Equation (10) is simply computed
directly beginning from the lower boundary with q = −η and continuing for higher values of η until
q′ = 0 and the upper boundary, if it exists, is located.

Iteration is required when there is recapitalisation rather than liquidation. This is because in
this case q(η̄) is not known, but must be determined from the matching condition W(η̄) = W (η∗)−
(η∗ − η̄ + χ). Given any initial starting value for q (η̄) it is possible to jointly compute both q(η) and
the accompanying value function W(η). Iteration on the starting value q(η̄) then yields the solution
with recapitalisation (if one exists) with W(η̄) > 0. While numerical solution is straightforward, it may
fail to locate an upper boundary η∗ for some combinations of parameters. This happens, for example,
when the productivity of capital a is so high, and the adjustment costs of capital increase θ are so low,
that output can be reinvested to increase the stock of capital faster than the discount rate of firms. (See
Appendix A) for a discussion of the parameter restrictions required to prevent this in the deterministic
case σ = 0). In this case the value function is unbounded and there is no meaningful solution. Extreme
parameter values, for example, very low values of σ, can also result in numerical instability and failure
to find a solution.

3.3. Simulation Results

Numerical solution is rapid, allowing extensive simulations of the model equations. Focusing on
the shape of the ergodic distribution f (η), one question is whether it has two peaks and can therefore
help explain a transition from a high output boom to a low output slump, or instead has a single peak.
In this first version of the model in this section there is always a single peak located at the maximum
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value η∗, i.e., the model without rental or sale of capital does not create long lasting periods with
output and investment below normal levels.

Typical value functions W together with the corresponding ergodic densities f are presented in
Figure 1. For that, the chosen parameters were:

ρ = 0.06, r = 0.05, σ = 0.2,

θ = 15.0, χ = 0.75,

a = 0.1, ā = 0.04, δ = 0.02.

(11)
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Figure 1. Solutions of the model equations of Section 3 for baseline parameters ρ = 0.06, r = 0.05,
σ = 0.2, a = 0.1, ā = 0.04, δ = 0.02, θ = 15 and χ = 0.75. Subfigure (a): value function W, inset shows
the function q over the same η range; (b) the ergodic density f (solid curve) and the cumulative density
function F (dashed).
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Note the shape of these plots, with a monotonically increasing value function W, and a
single-peaked ergodic density with a maximum at η∗. Across a wide range of parameter space
search, only single-peaked distributions of this kind emerge. Although double peaks were not found,
in some simulations the main peak normally at η∗ can migrate into the central part of the η range. This
occurs when choosing parameters for which cash-flows are non-positive (dη ≤ 0). We do not report
these simulations here.

4. An Extended Model

This section extends the model of Section 4 by assuming that capital can be rented by firms
to outside investors. The structure of this section parallels that of Section 3, with subsections on
assumptions (Section 4.1), the solution (Section 4.2) and simulation results (Section 4.3).

4.1. Additional Assumptions

In this extended setting, firms continue to manage the same two "state" variables, net cash c and
capital k, but these now evolve according to:

dc =
{
−λ + [ψa + (1− ψ)ā]k + rc− ik− 1

2
θ(i− δ)2k

}
dt (12a)

+ ε (τ) + ψσ1k dz1,

dk = (i− δ)k dt + ψσ2k dz2. (12b)

There are now two independent diffusion terms (ψσ1k dz1 and σ2ψk dz2) and an additional third
control variable, the proportion of capital ψ firms themselves manage (with remaining capital 1− ψ

rented to households). All the other assumptions of Section 3 continue to apply.
Due to competition amongst households to acquire this capital, the amount households are

willing to pay and hence the income from renting out a unit of capital is ā the productivity of capital
when managed by households. A special case is when ā = 0. In this case the renting of capital can
be understood as "mothballing," taking a proportion 1− ψ capital out of production. In either case,
whether renting or mothballing, the firm benefits from a reduction in the diffusion terms from σk to
ψσk, protecting it from the risk of fluctuations in net worth.

The introduction of a second diffusion term is a modest extension of the model. This introduces
a dependency of diffusion on the level of net worth with σ2(η) = σ2

1 + σ2
2 η2 instead of a constant σ2.

The introduction of renting is a more fundamental change, leading to the possibility of a double-peaked
ergodic density and the possibility of persistence of a sequence of negative shocks that push net worth
down to very low levels (the "net worth trap").

4.2. Solution

4.2.1. Characterisation of Solution

Propositions 1 and 2 apply to the generalised model with renting. Proposition 3 applies in the
following amended form:

Proposition 5. An optimal policy choice for {it} , {ψt} , {λt} , {ετ}as functions of the single state variable

η = ck−1, if it exists, takes the following form. The rules for i(η),λ (η) are exactly as stated in Proposition 3;
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optimal policy for ψ (η) renting of fixed capital is that for lower values of η, in the range η̄ ≤ η < η̃ where

η̄ ≤ η̃ < η∗, firms retain a proportion ψ < 1 of fixed capital given by:

ψ =
a− ā
σ2(η)

[
−W ′′

W ′

]−1

(13)

and rent the remaining proportion 1− ψ > 0 to firms; and for η ≥ c, firms retain all fixed capital, i.e., ψ = 1

and none is rented out. Here σ2(η) = σ2
1 + σ2

2 η2 W (η); the unique solution to the second-order differential

equation over η ∈ [η̄, η∗], now obeys:

ρ
W
W ′

= ā + (a− ā)ψ− δ + rη − σ2(η)

2
ψ2
[
−W ′′

W ′

]
+

1
2θ

[
W
W ′
− 1− η

]2
(14)

Solution for W is found subject to same boundary conditions as in Proposition 3

Proof. Appendix B.

Here −W ′′/W ′ expresses the induced risk aversion created by the presence of financing
constraints ( Section 4 of [1] has further discussion of this induced risk aversion and a comparison with
the risk loving behaviour that emerges in many standard discrete time models as a result of moral
hazard). −W ′′/W ′ appears also in Proposition 3, the solution for the model with no option to rent out
capital. There though, while it appears in Equation (6) the second-order differential equation for the
value function, it has no direct impact on firm decisions. Now in Proposition 5, induced risk aversion
−W ′′/W ′ has a direct impact on firm decisions once net worth η falls below η̃. Renting out productive
capital to households then reduces both the drift and the diffusion of η.

The introduction of the option to rent out capital introduces a second component to the behaviour
of the firm. Now, and with the reduction of investment in the basic model because of a higher internal
cost of capital, they can also reduce their employment of capital as a response to higher induced risk
aversion. As a consequence of reduction in the employment of capital, in effect a "shrinking" of the
size of operations, the firm can get "stuck" near the bankruptcy threshold, leading to a second peak in
the ergodic distribution.

The resulting ergodic density can be computed using this Proposition (an indirect statement is
used because of the dependency of ψ and σ on η. While φ can be substituted out from Equation (15)
the resulting ODE for f is rather cumbersome):

Proposition 6. The pdf of the ergodic distribution is described by the following first-order ode:

φ′ −
[

1
2

ψ2σ2(η)

]−1 [
a + (a − ā)ψ + rη − δ − θ−1(1 + η)(q − 1) − 1

2
θ−1(q − 1)2

]
φ = −d (15)

where φ = ψ2σ2 f /2 and satisfies the boundary conditions

 f (η̄) = 0, if W (η̄) > 0

d = 0 if W (η̄) = 0
(16)
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and F(η∗) = 1where F(η) =
´ η

u=η̄ f (u) du.

Proof. Appendix B.

4.2.2. Numerical Calculation

Numerical solution methods are again detailed in Appendix C. This proceeds in the same way
as for the first model without renting of Section 3, by re-expressing Equation (14) as a differential
equation in q. Over the lower region η < η̃( Equation (14)) becomes:

q′ = −1
2

(a− ā)2

σ2
1 + η2σ2

2

q + η

ā− δ + rη − ρ(q + η) + 1
2 θ−1(q− 1)2

(17)

while in the upper region Equation (10) continues to apply (except that now σ2 = σ2
1 + σ2

2 η2 is a
function of η).

If there is no recapitalisation then the model can again be solved without iteration, commencing
the calculation at η = η̄ and continuing until the intermediate values η = η̃ and η = η∗ are located.
However, in this case q (η̄) = −η̄ and hence ψ (η̄) = 0, with the consequence that there are singularities
in f , q and W at η̄. We incorporate these singularities using asymptotic approximations summarised in
the following further proposition.

Proposition 7. W, q and φ close to η̄ are described by:

W = CW(η − η̄)β(1 +O(η − η̄)), (18)

where CW is a constant and β = 1/ (1 + q′ (η̄)) ∈ (0, 1];

q = q̄ + q′(η̄)(η − η̄). (19)

and;

φ = Cφ(η − η̄)α, (20)

where α is given by Equation (A34) of Appendix D and Cφ is another constant.

This further implies that −W ′′/W ′ (our measure of induced risk aversion) is divergent at η̄ = −q̄,

−W ′′

W ′
' 1− β

η − η̄
.

(consistent with ψ (η̄) = 0), and the ergodic density is approximated by

f ∝ (η − η̄)α−2 (21)

and thus diverges if α < 2 and becomes degenerate, with the entire probability mass at η̄ if α ≤ 1.

Proof. Appendix D.

.
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In the case of recapitalisation q (η̄) > −η̄ and there is are no singularities in the solution;
so, while iteration ia again required to determine q (η̄), this can be conducted in exactly the same way
as described in Section 3.2.2 for the model without renting.

4.3. Simulation Results

As expected from the power-law shape of f , Equation (21), the option to rent can have a strong
impact on the shape of the ergodic density. As an example of this, in Figure 2 plots the value function
W together with q, and the probability and cumulative densities, now using baseline parameters
ρ = 0.06, r = 0.05, σ1 = 0.2, σ2 = 0.0, a = 0.1, ā = 0.04, δ = 0.02, θ = 15 and χ = 0.75 (identical
parameters to those used in Figure 1). Whereas the value function W and q show little change when
renting is introduced, the density function f changes dramatically. This time a second peak is clearly
present near the left-hand side range of η values. Note that with these particular parameter values
the firm chooses not to recapitalise, with χ being slightly above the critical value of around 0.74
at which recapitalisation is not worthwhile, and W(η̄) ≈ 0.05. The interested reader can observe,
using our standalone application, how increasing χ to above this critical level results in the emergence
of singularities and the divergence of f (η) to +∞ at η = η̄.
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Figure 2. Solutions of the model of Section 4 with option to rent, using baseline parameters ρ = 0.06,
r = 0.05, σ1 = σ = 0.2, σ2 = 0.0, a = 0.1, ā = 0.04, δ = 0.02, θ = 15 and χ = 0.75. Contrast this to
Figure 1 where identical parameters were used, but without renting. Subfigure (a): value function W,
inset shows the functions q and ψ over the same η range; (b) the ergodic density f (solid curve) and the
cumulative density function F (dashed). Notice the prominent peak in f towards the left-hand side
boundary.

This ergodic instability (a second peak towards in the ergodic density associated with low values
of the state variable η representing the ratio of cash-to-capital) is parameter dependent. This parameter
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dependence emerges in two different ways: (i) through the power-law exponent α, and (ii) dependence
on the cost of recapitalisation χ. The ability to recapitalise or not has a major impact on the ergodic
distribution. For any given parameters, there is a threshold χ, χ̄, above which recapitalisation is no
longer worthwhile. If χ is equal to or greater than this value, then ψ (η̄) = 0, and the density diverges
and the ergodic density follows the power-law f ∝ (η− η̄)α−2 near η̄, which in turn can lead to infinite
densities. Hence, the strength of the instability (i.e. the amount of probability mass near η̄) is strongly
controlled by the parameter χ.

This is illustrated in Figure 3 showing how the ergodic density changes as χ is varied. For low
values of χ, there is no left-hand side peak in the model with rent (Figure 3a) and f largely resembles
that of the model without the option to rent (Figure 3b). As χ approaches χ̄ (indicated by the dotted
lines on the floor of the two panels of this figure, whereχ̄ ' 0.74 with rent, χ̄ ' 0.73 without), in the
model with renting a probability mass starts to appear near η̄. Crossing χ̄, recapitalisation becomes no
longer an option, and the density at η̄ diverges. Above χ̄ there is no longer χ dependence. Note that
the distribution f changes quite sharply; when approaching χ̄ is crossed, with a second peak of the
distribution emerging close to η = η̄, a robust result across a variety of simulations.

(a) (b)

Figure 3. Comparison of ergodic densities f given the option to rent (a) and no option to rent (b) as
the financing constraint χ is varied. Other parameters were set to baseline values. The lower boundary
is recapitalising unto χ = χ̄ (χ̄ ' 0.74 in (a) and 0.73 in (b)), indicated by the thick solid line on the
graph and dashed line on the axis. In (a) a left-boundary peak emerges for χ just less than χ̄. Density is
infinite at η̄ for χ > χ̄. Note the complete absence of the left-hand side peak in (b).

To further explore this parameter dependence consider how the median of f depends on various
parameters. Since the values of η̄ and η∗, the range on which the distribution is defined, also vary with
the parameters, it is convenient to scale the median on to the interval [0, 1]: Let m be the median; then
the scaled median is defined as

m̃ =
m− η̄

η∗ − η̄
, F(m) =

1
2

. (22)

A value of m̃ ∼ 0 implies that most of the probability mass is concentrated near η̄, while m̃ ∼ 1
suggests that firms are more probably found near η∗. While this is a somewhat crude measure (e.g.,
the median cannot distinguish between distributions that are ∪ or ∩-shaped), nonetheless, m̃ . 1/2 is
a strong indicator of large mass of probability near the lower boundary, hence the long lasting response
to a large initial shock found by [2].
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In Figure 4 presents a contour plot m̃ as a function of the financing constraint χ and the volatility
σ (note that Figure 3 represents a small slice of data presented in this figure). Three roughly distinct
regimes can be seen:

(i) The low volatility range σ . 0.2, in which the firm always prefers to recapitalise and where
m̃ & 0.8 and so most of the probability is found near the dividend paying boundary.

(ii) A region where σ & 0.3 and at the same time χ & 0.5, i.e., red region to the top right, where m̃ ∼ 0,
and much of the probability mass is located near the left-hand boundary.

(iii) An intermediate transition range wherein small changes in either σ or χ result in a very
substantial change in m̃. This transition is especially abrupt for high values of σ.

Exploring the behaviour of m̃ as a function of other model parameters yields remarkably similar
contour plots. For example, as the relative impatience of shareholders ρ− r is increased from relatively
low to high values, there are also two distinct regions similar to those of Figure 4, with a relatively
sharp transition in the balance of the probability distribution from near the upper boundary η∗ to the
lower boundary η̄.
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Figure 4. The scaled median m̃ as a function of χ and σ. m̃ is the median of the distribution of η

relative to its range. m̃ close to one indicates that the mass of the distribution is located near the
upper dividend paying boundary. m̃ close to zero indicates that the mass is located near the lower
liquidation or recapitalisation boundary. σ2 = 0.0 (the baseline value from earlier figures) so σ1 = σ.
Other parameters were set to baseline values; ρ = 0.06, r = 0.05, a = 0.1, ā = 0.04, δ = 0.02 and θ = 15.
Contours are plotted at level values of m̃ and are spaced at intervals of 0.1.

One further finding concerns induced aversion to cash flow risk −W ′′
W ′ . This induced risk

aversion is, like ergodic instability, strongly parameter and model structure dependent. In the model
with renting, when firms do not recapitalise they become extremely risk-averse close to the lower
boundary η̄. This is revealed by an analysis of power-law behaviour of W at the lower boundary η̄ (see
Proposition 7). This extreme risk aversion does not arise in the model with renting or if recapitalisation
is not costly.

This finding is illustrated in Figure 5 which compares induced risk-aversion for the two versions
of the model, with and without the option to rent. The parameters here are the same as in Figures 1
and 2. For relatively large values of η close to η∗ the option to rent provides protection against cash
flow risk and induced risk aversion −W ′′

W ′ is lower for the model with renting; but as η falls down
towards η̄, the model with renting induced risk aversion −W ′′

W ′ diverges upwards—rising increasingly
rapidly as η approaches η̄, whereas it rises only slightly in the model without renting.
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Figure 5. Induced risk aversion −W ′′/W ′ as a function of η. Parameters were set to baseline. Solid
curve: model with option to rent; dashed curve: model without option to rent. Significantly, the risk
aversion diverges strongly near η̄ in the model without renting, in contrast to the model with renting.

5. Conclusions

This paper investigated the impact of financing constraints on corporate output and investment
in a simple continuous time setting with linear production and preferences. Firms face liquidation
or costly recapitalisation, if their net worth (relative to capital) falls to a minimum level following
a shock to cash flows or productivity. The boundary conditions resulting from these financing
constraints generate potentially large and long-lasting non-linearities in the response of firm output
and investment to external shocks, even in this otherwise linear setting. A fall of net worth leads to a
decline of investment below normal levels. Moreover, if firms can rent out or mothball their capital
stock, output also declines along with investment, and this may continue for an extended period of
time: the “net worth trap”.

Several further insights emerged. One is the importance of “corporate prudential saving”,
analogous to the household prudential saving extensively discussed in the literature on the
consumption function. As their net worth declines, firms invest less and less (a fall in marginal
q). The second is "induced risk aversion": firms with sufficiently high net worth have the same attitude
to risk as their share holders (assumed for simplicity to be risk-neutral); but as net worth declines
then firms behave increasingly as if they were averse to risk in order to reduce the probability of
future liquidation or costly recapitalisation, here by mothballing or renting out more and more of
their capital. Figures 4 and 5 show how resulting behaviour can vary markedly (both qualitatively and
quantitatively) with parametrisation and model specification.

The finding that financing constraints mean that firm decisions can be highly non-linear functions
of their indebtedness means that both the size and direction of shocks matter. This in turn helps to
clarify when a linearisation—of the kind routinely employed in new Keynesian DSGE macroeconomic
models—provides a reasonable approximation to the fully dynamic optimal behaviour

In normal times when shocks are comparatively small, aggregate behaviour can be sufficiently
well captured in standard linearised specifications. This is illustrated by Figures 1a and 2a. In normal
times most firms are located near the right-hand sides of these figures, close to the upper dividend
payment boundary η∗ where the value function W(η) is approximately linear. The reserve of net worth
provides and adequate hedge against both aggregate and idiosyncratic risk. Moreover, in normal
times, external equity capital can, if necessary, be raised at relatively low cost; i.e., the cost of
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recapitalisation parameter χ is low. As a result, impulse responses, expressed as a percentage of initial
shock are then approximately the same regardless of the size or direction of the initial disturbance;
linearisation of impulse responses based on past data provides a convenient and reliable summary of
macroeconomic behaviour.

In times of extreme financial and economic stress, such as the Great Depression of the 1930s or the
Global Financial Crisis of 2007–2008, the situation can be quite different. Uncertainty σ and the cost of
recapitalisation χ rises. Large shocks push many firms towards the lower minimum level of net worth
η̄, where as illustrated in Figures 1a and 2a, the value function W(η) is concave not linear and both
corporate prudential saving and induced risk aversion emerge. Impulse responses based on past data
are no longer a reliable guide to the response to shocks. As our Figure 4 illustrates, such an adverse
change in the economic environment can lead to a "phase change," with a shift to a regime where the
net worth trap emerges. The response to the Covid-19 pandemic may provide another such episode.

Most striking here, as illustrated in our Figure 4, is that relatively small parameter changes can
lead to this phase change. A small increase in perceived uncertainty (our parameter σ) leads to a large
change in behaviour, from relatively rapid rebuilding of physical and financial capacity following
the emergence of financial distress to a slow rebuilding with a long lasting period of reduced output
and investment. Small changes in the external environment faced by firms can lead to the emergence
of the persistent "net worth trap." Policy makers and regulators need to be aware that whilst linear
approximations may provide a good description of usual events, they can give misleading insights in
more turbulent times.
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Appendix A. Solution in the Absence of the Non-Negativity Constraint on Dividends

This appendix considers the solution to the model of this paper in the baseline case wherein
dividend payments can be negative, or equivalently, there is no uncertainty. This provides a benchmark
for studying and solving the case of the constrained firm for which there is uncertainty and dividends
are required to be non-negative. It also yields a convenient formula for the maximum amount of
borrowing provided by households to firms.

A crucial intuition emerges from this benchmark model, relevant to the model with a
non-negativity constraint on dividend payments. The rate of growth preferred by firms is an increasing
function of the ratio of debt to capital (this is because debt increases at the same rate of growth of
capital, creating an additional cash flow that can be used for investment, and the higher the ratio
of debt to capital, the greater this cash flow). If the financing constraint is sufficiently lax then it is
possible for firms to achieve a growth rate equal to their own rate of discount while still being able
to pay dividends. In this case the objective of this firm (expected discounted dividend payments)
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is unbounded and the solution is no longer meaningful. Therefore, some financing constraint is
required in order for the model to have a meaningful solution.

To solve this benchmark, note that since firm owners can freely transfer funds into or out of the
firm, optimal policy is to maintain the ratio of cash balances η = c/k at whatever rate is preferred by
borrowers, subject to the highest level of indebtedness allowed by lenders η ≥ η̄. If the initial time
t = 0 ratio η0 differs from the desired ratio η then an instantaneous dividend payment of (η0 − η) k is
immediately made to bring the cash to capital ratio to the desired value of η.

There is therefore now only a single state variable k. The value function (the value of the objective
function under optimal policy) is linearly homogeneous in k and so can be written as V = kW, where
W is a constant that depends on the parameters representing preferences and the evolution of the
state variable k. This in turn implies that Vk = W and Vkk = 0. Expected dividend payments will be
determined by the expected net cash flow of the firm plus any additional borrowing possible because
k and hence c are growing. The remaining policy decision is to choose a rate of investment i and hence
expected growth of the capital stock g = i− δ to maximise Ω, Equation (2)

The solution can be summarised in the following proposition.

Proposition A1. Assuming ρ > r, then an optimal policy yielding positive pay-offs for the owners of the firm
can be found provided that:

−2
ρ− (a− δ) + (ρ− r)η̄

ρ2 < θ <


∞ if a + rη̄ ≥ δ

1
2

(1 + η̄)2

δ− rη̄ − a
if a + rη̄ < δ

(A1)

in which case an instantaneous dividend payment of η0 − η̄ is made so that η = η̄, the growth rate of the capital
stock is constant (state independent) and is given by:

g = ρ−
√

ρ2 − 2θ−1[a− δ− ρ + (r− ρ)η̄] < ρ, (A2)

while the value of the maximised objective is given by:

V (η0, k) = (η0 − η̄) k +
(a− δ) + (r− g)η̄ − g− 1

2 θg2

ρ− g
k = (1 + η0 + gθ) k (A3)

where
[
(a− δ) + (r− g)η̄ − g− 1

2 θg2
]

k is the expected flow of dividends per period of time paid to
shareholders.

Proof. The firm has two choice variables, η and g (with investment expenditure given by ik = (g + δ) k
and associated quadratic adjustment costs of 1

2 θ (i− δ)2 = 1
2 θg2). The equations of motion (1) still

apply and dividends are paid according to:

λ dt =
[
(a− δ) + (r− g) η − g− 1

2
θg2
]

k dt + σk dz

Substituting for λ the discounted objective can be written as:

Ω = max
η,g

{
E
ˆ ∞

0
e−ρt

[
(a− δ) + (r− g) η − g− 1

2
θg2
]

k dt + (η0 − η) k0 +

ˆ
e−ρtσk dz

}
(A4)

yielding, since E[k] = k(0) exp(gt) and e−ρtσk = 0:

Ω = k(0)max
η,g

[
η0 − η +

(a− δ) + (r− g) η − g− 1
2 θg2

ρ− g

]
. (A5)
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The growth rate g that maximises the right-hand side of this expression is determined by the
first-order condition with respect to g:

1
2

g2 − ρg− θ−1 [ρ− (a− δ) + (ρ− r)η] = 0 (A6)

yielding the solution (the positive root of the quadratic can be ruled out because g < ρ to ensure that
the value function is finite and that the second-order condition for maximisation is satisfied):

g = ρ−
√

ρ2 + 2θ−1[ρ− (a− δ) + (ρ− r)η]. (A7)

Writing ρ − g =
√

ρ2 + 2θ−1[ρ− (a− δ) + (ρ− r)η] = R, implying g2 = ρ2 − 2ρR + R2,
and substitution into Equation (A5) then yields: (A3).

The indebtedness is determined by the first-order condition in (A5) with respect to η:

r− g
ρ− g

− 1 =
r− ρ

ρ− g
< 0

establishing that the firm will seek to borrow as much as it possibly can. Hence, the firm will make
an instantaneous dividend at time t = 0 to reduce η as far as possible, until the borrowing constraint
binds so η = η̄. The first inequality onθ in the proposition ensures that the borrowing constraint does
indeed bind at a level of borrowing at which Equation (A6) has real roots.

The remaining inequality conditions on θ ensure that it is possible to achieve positive dividends
per unit of capital (these are relatively weak conditions since normally a > δ in which case a policy
of zero growth g = 0 and no indebtedness will always yield positive dividends; but if depreciation
is larger than the productivity of capital then a further restriction on θ is required). To establish
these further conditions note that expected dividends per unit of capital a− δ + rη̄ − (1 + η̄) g− 1

2 θg2

are maximised by choosing g = − (1 + η̄) θ−1 resulting in expected dividend payments of λ =

a − δ + rη̄ + 1
2 θ−1 (1 + η̄)2. This is always greater than zero if a > δ; otherwise this requires that

θ < (1 + η̄)2/2(δ− a− rη̄).

This proof also shows that the Modigliani–Miller [16] proposition on the irrelevance of capital
structure to the value of the firm applies, in this case when negative dividends are allowed. It does so in
the sense that any net worth in excess of the minimum level η̄k is immediately paid out to shareholders
and the firm always operates with maximum leverage. The value function is additive in η̄k.

Finally, note that the fundamental valuation of a firm’s capital by outside investors can be
obtained by substituting ρ = r, a = ā and η̄ = 0 into this solution. A finite positive valuation is
obtained provided the parameters satisfy:

2
ā− δ− r

r2 < θ <

∞ if ā ≥ δ
1
2

1
δ− ā

if ā < δ

in which case the growth rate (when held by outside investors) is given by

ḡ = r−
√

r2 − 2θ−1[ā− δ− r],

and the value of the maximised objective by

V =
ā− ḡ− δ− 1

2 θ ḡ2

r− ḡ
k = (1 + θ ḡ) k.

This provides an immediate proof of Proposition 1 in Section 3.
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Proof of Proposition 1. This valuation of the firm’s assets by outside investors is also the maximum
amount of debt that it can borrow from these investors, implying that the lower boundary for η is
given by Equation (3).

Appendix B. Proofs of Propositions in Sections 3 and 4

Proof of Proposition 5. (Proposition 3 requires no separate proof, since it is the special case when
σ2 = 0 and ψ = 1). While uniqueness of solution can be established using standard arguments based
on the non-convexity of the optimisation program, the proof provided here is geometric proof, offering
some additional insights into both the existence of solution and its numerical calculation.

Applying standard methods of stochastic dynamic programming, with two state variables k
and c, the optimal policy by firms, at times when there is no recapitalisation (εt = 0), satisfies the
Hamilton–Jacobi–Bellman equation:

ρV = max
i,λ,ψ

{
λ +

[
−λ + (ā + (a− ā)ψ) k + rc− ik− 1

2
θ(i− δ)2k

]
Vc (A8)

+ (i− δ)kVk +
1
2

σ2
1 ψ2k2Vcc +

1
2

σ2
2 ψ2k2Vkk

}
, (A9)

with three first-order conditions for maximisation. The first is:{
λ ≥ 0 of unbounded magnitude, Vc = 1

λ = 0, Vc > 1 ,

there is "bang-bang" control with two distinct regions of dividend behaviour: one when c ≥ c∗ (k) with
Vc = 1 in which case the policy is to payout a discrete dividend to reduce cash holdings immediately to
the dividend paying boundary c∗; the other when c < c∗ (k) wherein there is no payment of dividends
and Vc > 1. The second first-order condition is:

(1 + θ (i− δ))Vc = Vk

yielding the investment rule:

i = δ + θ−1
(

Vk
Vc
− 1
)

. (A10)

The third first-order condition for maximisation (subject to the constraint 0 ≤ ψ ≤ 1) is:

(a− ā)kVc + ψk2
(

σ2
1 Vcc + σ2

2 Vkk

)
= 0

yielding the final control rule:

ψ = max
{

min
{
(a− ā)

[
−k

σ2
1 Vcc + σ2

2 Vkk

Vc

]−1

, 1
}

, 0
}

. (A11)

Due to the linearity of production the value function is linearly homogeneous in k and so value
can be expressed as a function W of a single state variable η = c/k:

W (η) = k−1V(c, k) = V(η, 1) (A12)

implying the substitutions V = kW, Vc = W ′, Vk = W − ηW ′, q = Vk/Vc = W/W ′ − η, Vcc = k−1W ′′,
Vck = −k−1ηW ′′ and Vkk = k−1η2W ′′ Substituting for both optimal policy and for V and its derivatives
yields Equation (14). The maximisation in this second boundary condition reflects the choice available
to the firm when η falls to η̄; it may choose either to liquidate, in which case W(η̄) = 0, or to recapitalise,
which is worth doing if it can achieve a higher valuation by paying the fixed cost of recapitalisation χk
and increasing η to η∗. The firm will never choose to recapitalise to a value of η < η∗. This is because
when η < η∗, Vc = W ′ > 1, so the maximum possible value of W(η̄) in Equation (7) is achieved by
a full recapitalisation up to η∗. Turning to the uniqueness of this solution, note that as discussed in
Appendix C solution of the upper boundary η∗ is characterised by Equation (10) (itself obtained from
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Equation (6) using q = W/W ′ − η which yields q′ = −WW ′′/(W ′)2). Equation (10) can be written
(allowing for dependencies of σ on η) as:

q′ =
2

σ2
1 + η2σ2

2
Q (q, η) (q + η)

from which, since σ2
1 + η2σ2

2 > 0 and q∗ + η∗ > q̄ + η̄ ≥ 0 and Q (q, η) = a − δ − (ρ − r)η − ρq +
1
2 θ−1(q− 1)2 is a quadratic function of q and linear function of η. This in turn implies that the possible
locations of q∗ are given by Q (q, η) = 0, i.e., a parabola in (q, η) space, which when solved yields the
location of η on the dividend paying boundaries as a function of q∗:

η∗ =
a− δ− ρq∗ + 1

2 θ−1 (q∗ − 1)2

ρ− r
(A13)

Inverting this equation to solve for q = q∗ on the dividend paying boundary yields:

q∗ = 1 + θ

(
ρ±

√
ρ2 − 2θ−1 {a− δ− ρ− η∗ (ρ− r)}

)
(A14)

The uniqueness of the solution then follows (assuming continuity of q (η)) from noting that
the value of q = q∗ is a function of the value of q (η̄)=q̄ on the lower boundary. Given any starting
value q̄ the ODE characterising the solution can be computed (with q′ > 0) until it meets Q(q, η) = 0.
There can only be one such intersection. Having crossed Q(q, η) = 0, q′ < 0 until there is another
intersection, and this means any potential second intersection can only take place on the lower branch
of Q(q, η) = 0. However, in order for there to be an intersection on this lower branch it is necessary
that the q−curve falls faster than the lower branch, i.e., that on the point of intersection:

q′ <
∂q
∂η

∣∣∣∣
Q(q,η)=0

< 0

which contradicts the requirement that q′ = 0 on Q(q, η) = 0. This contradiction shows that any
solution of the ODE has at most one unique intersection with Q(q, η) = 0.

This proof does not establish existence. While there can only be one solution to the ODE for W
satisfying the boundary conditions of Proposition 5, the existence of this solution is dependent on
parameter values. Proposition 2 gave sufficient conditions for a solution to exist.

Proof of Proposition 2. First note that Equation (4a) is equivalent to

η̄ > η
∗

min = −
ρ− (a− δ) + 1

2 θρ2

ρ− r
, (A15)

where η∗min is the minimum value of η on the dividend paying boundary. This condition can be
described as the "no-Ponzi" condition because, as stated in Proposition A1 in Appendix A when
η̄ > η

∗

min is satisfied, then the solution to the problem in the deterministic limit limσ↓0 exists, in which
the growth of the fixed capital stock is less than the discount rate of firm shareholders g < ρ, and the
value to shareholders comes from both growth of the capital stock and dividend payments.

The idea of proof is illustrated in Figure A1. Consider possible solutions of the ODE for q (η). In the
case of no recapitalisation, q̄ = −η̄ and the lower intersection of Q (q, η) = 0 with η = η̄ is at
q = q∗− = 1 + θ(ρ−

√
ρ2 − 2θ−1 {a− δ− ρ− η̄ (ρ− r)}). This implies (using Equation (3)) that:

q∗− − q̄ = 1 + θ

(
ρ−

√
ρ2 − 2θ−1 {a− δ− ρ− η̄ (ρ− r)}

)
+ η̄ > 0

This shows that a solution with no recapitalisation exists, because the ODE begins at a point
strictly below q∗−, and since q′ > 0 must eventually intersect with Q (q, η) = 0. This in turn implies the
existence of solutions with recapitalisation, since these are associated with higher values of q̄ satisfying
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−η̄ < q̄ < q∗−, in all cases with the ODE eventually intersecting with the lower branch of Q (q, η) = 0;
and with values of χ > 0. Eventually in the limit limχ↓0 q̄ = q∗−.
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Figure A1. Illustration of Proof of Proposition 2. In subfigure (a), the "no-Ponzi" condition,
Equation (A15), holds: the initial η is below the dividend paying boundary, and so the solution
is guaranteed to hit it. Subfigure (b) shows a scenario wherein the condition does not hold: The
solution starts from a point to the left of η∗min, and grows fast enough to miss the lower branch of
q′ = 0 curve, entering a region where growth exceeds the discount rate. In (a), parameters are set to
baseline, ρ = 0.06, r = 0.05, σ1 = 0.2, σ2 = 0.0, a = 0.1, ā = 0.04, δ = 0.02, θ = 15 and χ = 0.75; in (b),
parameters are the same, except that θ = 6.5.

Some additional intuition into the factors that determine whether the "no-Ponzi" condition is
satisfied or not can be obtained by re-expressing Equation (A15) as

ḡ∗ <
[

1
2
(ρ− g∗)2 / (ρ− r)− θ−1

]
where

ḡ∗ =
(

r−
√

r2 − 2θ−1[ā− δ− r]
)
< r

is the rate of growth when capital stock is owned by external investors and

g∗ =
(

ρ−
√

ρ2 − 2θ−1[ā− δ− ρ]

)
< ρ

the rate of growth of the capital stock in the situation where firms can costlessly issued equity (χ = 0)
but are unable to borrow (see Appendix A). This expression indicates that in order for the "no-Ponzi"
to be satisfied requires that the difference between the discount rates of firms and outside investors
ρ− r is comparatively small, or the net productivity of capital either in the hands of firms or investors
(a− δ, ā− δ) relative to the maximum values given by the constraints of Equations (4a) and (4b) is
comparatively small, or the costs of adjustment of capital θ are comparatively high.

What about solution in the stochastic case if the "no-Ponzi" condition is not satisfied? A numerical
solution can still be obtained and indicate that an optimal policy for choice of {it} , {λt} , {ετ} satisfying
the conditions of Proposition 3, i.e., with future dividend payments after any initial dividend payment
to reduce η to the desired target level η∗, may still exist, provided that g∗ is not too close to ρ.

Finally there are the propositions about the ergodic density.
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Proof of Proposition 4. (Proposition of Section 3 can again be obtained by imposing appropriate
parameter restrictions.) Denote the density function for the location of firms across the possible values
of η at the moment t by f (t, η), with the corresponding cumulative density:

F(t, η) =

ˆ η

η̄
f (t, η′) dη′, F(t, η∗) = 1

The evolution of f (t, η) is then determined by the Kolmogorov forward or Fokker-Planck equation:

∂ f
∂t

(t, η) = − ∂

∂η

[
µη(η) f (t, η)

]
+

1
2

∂2

∂η2

[
ση(η)2 f (t, η)

]
, (A16)

where η follows the equation of motion

dη = µη dt + ση dz.

with coefficients obtained simply by Itô differentiating η = c/k:

dη =
1
k

[
µc − ηµk +

η

k
(σk)2

]
dt +

σc

k
dz1 − η

σk

k
dz2, (A17)

where µc,k and σc,k are respectively the drift and diffusion terms for c and k: dc = µcdt + σcdz1,
dk = µkdt + σkdz2; i.e.,

µc = [ψa + (1− ψ)ā− δ + rη − θ−1(q− 1)− 1
2

θ−1(q− 1)2]k,

µk = θ−1(q− 1)k,

σc = σ1ψk, σk = σ2ψk.

The increments dz1, dz2 are independent and normally distributed, and so the noise sources in
dη can be combined into a single term,

k−1σcdz1 − k−1ησkdz2 = k−1
√
(σc)2 + η2(σk)2 dz.

Substituting in the expressions for µc,k and σc,k yields

dη =

[
ā + (a− ā)ψ− δ + rη − (1 + η)θ−1(q− 1)

−1
2

θ−1(q− 1)2 + ησ2
2 ψ2

]
dt +

√
σ2

1 + η2σ2
2 ψ dz. (A18)

The ergodic probability density is then the stationary, ∂ f /∂t = 0, solution of Equation (A16), also
denoted by f (η). Integration of the Kolmogorov forward equation in η yields

d = µη(η) f (η)− 1
2

∂

∂η

[
ση(η)2 f (η)

]
. (A19)

It is convenient to write this in terms of φ,

φ =
(ση)2

2
f ,

so this becomes:

d =

[
(ση)2

2

]−1

µη(η)φ(η)− 1
2

∂

∂η
φ(η). (A20)

and this yields Equation (15).
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Appendix C. Numerical Solution

Appendix C.1. Preliminary Considerations and Some Economic Intuition

The ordinary differential equation governing q (Equation (17) for η ≤ η̃ and Equation (10) for
η ≥ η̃) can be solved by forward integration using standard methods starting from any given initial
condition q(η̄) = q̄. The solution is completed by finding an intersection with Q (q, η) = 0 on which
q′ = 0, if one exists, or establishing that there is no such intersection (moreover, any solution with
an intersection with Q (q, η) = 0). Any initial value q̄ ≥ 1 + θρ can be ruled out, since it implies that
g > ρ for all η.

The inequality in Equation (A15), which is required if the special case of the model with no
uncertainty (σ = 0) is to a be one with no "Ponzi-borrowing" and also ensures the existence of solution,
leads to extremely straightforward numerical solution, since intersection with the lower branch of
Q (q, η) = 0 is guaranteed.

If however this inequality is not satisfied then for some values of q̄, a value of q∗ whereat the
ODE interacts with Q (q, η) = 0 may be located on the upper boundary (if the ODE "misses" the lower
branch, in which case it may or may not hit the upper branch). This considerably complicates the
search for numerical solution because it is no longer possible to restrict the initial values q̄ to a range of
values for which intersection with Q (q, η) = 0 is guaranteed.

Such solutions with upper branch intersections are of less economic interest than those where
intersection is on the lower branch. It is possible that investment close to η∗ is so high that the firm has
negative cash flow. This can be seen by substituting Equation (A13), ψ = 1, q = q∗and η = η∗ into
Equation (A18), yielding the following expression for cash flow on the dividend paying boundary:

µη =
(a− δ) ρ− ρr +

[
(r− (a− δ)) θ−1 − ρr

]
(q∗ − 1)

ρ− r

+
1
2 (2r + ρ) θ−1 − 1

2 θ−2 (q∗ − 1)
ρ− r

(q∗ − 1)2 + η∗σ2
2 (A21)

which, for sufficiently high q∗, is negative. The economic intuition in this case is similar to that
applicable to the "Ponzi" solution of the model with no non-negativity constraint on dividends in
Appendix A. The firm creates the most value not by dividend payments but from growing the capital
stock at a rate close to and often above the shareholder’s rate of discount, and this very high rate of
investment can generate the negative expected cash flows.

The function W(η∗) is obtained by substitution into Equation (A14) on the boundary η∗, using
the boundary conditions W ′ = 1, to yield:

W∗ = (q∗ + η∗)W ′ = 1 + η∗ + ρθ ±
√

2θ
{(

η∗ − η∗min
)
(ρ− r)

}
(A22)

with the positive root applying on the upper branch of q∗ and the negative root on the lower branch.
This in turn results in some useful insights into the solution. In the case of recapitalisation,

Equation (7) can be written:

0 < W∗ − (η∗ − η̄ + χ) = 1 + ρθ + η̄ − χ±
√

2θ
{(

η∗ − η∗min
)
(ρ− r)

}
< 1 + ρθ + η̄ (A23)

where the first inequality is required by the maximisation in Equation (7) and the second because
the presence of financing constraints must lower value W (η̄) relative to the valuation for the case
of no non-negativity constraint on dividend payments given by Equation (A3)). This establishes the
following further proposition:
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Proposition A2. A solution with recapitalisation (for some sufficiently low value of χ) exists. Let χ = χ0
be the critical value of χ at which the firm is indifferent between recapitalisation and liquidation. Then: (i) If
η∗min ≤ η̄ a solution exists with η∗ on the lower branch of Q(q, η) = 0, q̄ satisfies:

− η̄ ≤ q̄ < q̄max = 1 + θ

(
ρ−

√
ρ2 − 2θ−1 {a− δ− ρ− η̄ (ρ− r)}

)
> q̄ (A24)

and the maximum possible value of η∗ satisfies:

η∗min ≤ η∗ < η∗min +

(
(ρ− r) +

√
r2 − 2θ−1[ā− δ− r]− θ−1χ0

)2

2 (ρ− r)
(A25)

(ii) If instead η∗min > η̄ then −η̄ ≤ q̄ < 1 + ρθ; a solution may or may not exist solution may be on the upper
branch of Q(q, η) = 0, in which case η∗ satisfies:

η∗min < η∗ ≤ η∗min +
χ2

2θ (ρ− r)
(A26)

Proof. The existence of a solution with recapitalisation is guaranteed because 1 + ρθ + η̄ = (ρ− r) θ +

θ
√

r2 − 2θ−1[ā− δ− r] > 0. As noted above, solutions for which q̄ > 1 + θρ can be ruled out, and
hence all possible solutions, with recapitalisation or without, are with an intersection of the ODE
for q on the lower branch of Q (q, η) = 0; and (the value that applies when cost of recapitalisation
χ=0 and hence the maximum possible value of q̄) is given by the intersection of this lower branch
of Equation (A14) with η = η̄. If solution is on the lower branch then the largest possible value of
η∗ and the smallest value of q̄ (q̄ = −η̄) arise when χ = χ0 (the same solution also applies if χ is
higher than this critical value and no-recapitalisation takes place). If χ = χ0 then the first inequality in
Equation (A23) binds and this implies the second inequality in Equation (A25). If instead solution is
on the upper branch, then the largest possible value is when χ < χ0, so that Equation (A23) binds and
this implies the second inequality in Equation (A26).

Proposition A2 helps guide the numerical solution. If η∗min ≤ η̄ then a solution with a bounded
value function exists and an intersection is guaranteed on the lower branch of Q(q, η) = 0. A first
calculation of the case with no recapitalisation determines χ0 and this can then be used to limit the
scope of iteration on q̄ (using Equation (A24)) in the search for solution in the case of recapitalisation.
If instead η∗min > η̄ then a solution with a bounded value function and finite η∗ may not exist.
The existence of a solution for the case of no-recapitalisation can be established by computing the
ODE Equation (10) upwards. If η exceeds the upper bound given by Equation (A26) then there is
no intersection and no solution) is not satisfied, then while there is an intersection there is no finite
solution to the value function. A solution with recapitalisation will exist for at least some values of χ if
there is a solution for no-recapitalisation. The proposition then provides a slightly different limits on
the scope of iteration on q̄ and the same criteria can be applied to establish if there is an intersection
with Q(q, η) = 0, and if so whether this represents a finite value for the value function.

Appendix C.2. Model without Option to Rent

For any given q̄, the right-hand side boundary at η = η∗ wherein q′(η∗) = 0 is found by evaluating
the function q′(η) during the integration. After a single integration step is found to bracket a root
of q′(η), the critical value of η is pin-pointed using standard root finding methods, here the Brent’s
method.

The value function W can be solved from W ′ = W/(η + q) parallel to integrating the equation
for q. The boundary condition W ′′(η∗) = 0 will be satisfied since the q variable integration is stopped
at q′ = 0. In order to also satisfy the boundary condition W ′(η∗) = 1, solve W for an arbitrary initial
value at η̄. Let the resulting solution be W̃. Since the ODE for W is linear and homogeneous, simply
multiply W̃ ex post by [W̃ ′(η∗)]−1 to get a solution for which W ′(η∗) = 1.
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In the case of liquidation, the lower boundary is η̄ = −q̄, and consequently, the derivative of
W, W ′ = W/(η + q) cannot be evaluated. Appendix D shows that W ∝ η − η̄, and so W ′(η̄) is finite.
Thus, if η̄ is indeed liquidating, we simply set W̃ ′(η̄) = 1 and W(η̄) = 0.

Solving for the ergodic density with an absorbing boundary requires determining the constant
of integration (the rate of flow across the boundary) d and this requires two boundary conditions.
These conditions are that the absorbing boundary must have a zero density, i.e., f (η̄) = 0, and the
cumulative density must satisfy F (η∗) = 1.

The following method enforces these conditions. Solve two independent differential equations
for two densities f0 and f1 satisfying:

f ′0(η) =
2µ(η)

σ2 f0(η), f ′1(η) =
2µ(η)

σ2 f1(η) + 1. (A27)

These are obtained by integration starting from arbitrary non-zero initial conditions. Let F0 and
F1 be the resulting corresponding cumulative functions, with F′0 = f0, F′1 = f1 and F0(η̄) = F1(η̄) = 0.
This determines values for F(η∗) and F1(η

∗).
Then find the ergodic density by choosing appropriate constants a0 and a1 in the following

function f :
f (η) = a0 f0(η) + a1 f1(η), (A28)

These coefficients a0, a1 are determined by the conditions f (η̄) = 0 and F(η∗) = 1 as follows.
Upon substituting the trial solution (A28), one obtains

a0 f0(η̄) + a1 f1(η̄) = 0, a0F0(η
∗) + a1F1(η

∗) = 1.

yielding a pair of linear equations that can be solved for a0 and a1. To obtain d differentiate (A28) and
use Equation (A27), to get:

f ′(η) =
2µ

σ2 f (η) + a1,

so a1 = −2d/σ2 (cf. Equation (A19)).
The possibility for recapitalisation is tested by finding roots of

G(q̄) = W[q̄, η∗(q̄)]−W(q̄, η̄)− [η∗(q̄)− η̄]− χ,

making explicit the dependence of the location of the upper dividend paying boundary η = η∗ and
the function W (η) on the value of q on the lower boundary q (η̄) = q̄. Clearly G = 0 is equivalent to
achieving Equation (7). Functions η∗, q and W are all obtained using the same method outlined above
(i.e., jointly computing the two odes for q and W using q̄ and an arbitrary value of W on η̄, locating η∗

from q′ = 0, and rescaling W to enforce W ′ = 1).
The task then is to iterate on the starting value q̄ to find the root of G(q̄). First a coarse root

bracketing is attempted by evaluating G at q̄i = −η̄ + (q1 + η̄)i/nq, where i = 0 . . . nq and nq an
integer (using nq = 10), and q1 is q as given by Equation (A14) if that value is real, or 1 + θρ if it is not.
If sign of G changes across a bracketing interval (q̄i, q̄i+1), the root is pin-pointed using standard root
finding algorithms. This locates a recapitalisation solution. If no roots are found, or a root is found
with q̄ < −η̄ or q∗ > 1 + θρ then the solution is identified as liquidation with q̄ = −η̄.

Appendix C.3. Model with Option to Rent

The algorithm outline is same as in the model without the rental option. However, the solution
near the lower boundary is more involved when recapitalisation is not undertaken, and so ψ(η̄) = 0.

The differential equations for q can again be solved by simple forward integration starting from
q(η̄) = q̄. If recapitalisation is available (q̄ > −η̄), no singularities are present, and the equation for q,
Equation (17), can be integrated directly to obtain q(η), η∗ and now also η̃. The point η̃ is found in the
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same way as η∗, i.e., by monitoring the function ψ− 1 as integration advances and polishing the root
after a coarse approximation is found. Initial q̄ is found the same way as for the model without renting
(but with q, W computed slightly differently as described below).

If q̄ = −η̄, then ψ = 0 and singularities appear. As is shown in Appendix D, the derivative q′(η̄)
is finite. In order to evaluate it numerically, use Equation (A32) since Equation (17) is indeterminate
at η̄ (in practice, numerical round-off would cause significant error in q̄). Otherwise the solution of q
proceeds the same way as with a recapitalising lower boundary.

Using φ, and expanding the resulting equation in the renting (0 < ψ < 1) and not renting regimes
(ψ = 1), yields

φ′ =



ā + (a− ā)ψ− δ + rη + σ2
2 ψ2η − θ−1(q− 1)[η + 1

2 (q + 1)]
1
2 (σ

2
1 + η2σ2

2 )ψ
2

φ− d,

when ψ ∈ (0, 1),
a− δ + rη + σ2

2 η − θ−1(q− 1)[η + 1
2 (q + 1)]

1
2 (σ

2
1 + η2σ2

2 )
φ− d,

when ψ = 1.

(A29)

When there are no recapitalisation, equations for f ′ and W ′, unlike that for q′, do not tend to
finite values at η̄, since ψ(η̄) = 0 if q(η̄) = −η̄, q′(η̄) > 0. Due to this divergence, the point η̄ cannot
be reached by directly integrating the model equations, which in principle could be done backwards
from, say, η̃ down to η̄ + ε, 0 < ε� 1. Cutting the integration short in this way would lead to severe
underestimation of the probability mass near η̄ if f diverges fast enough at this edge.

This issue is resolved using the analytically obtained power-law solutions, fa ∝ (η − η̄)α−2

(Equation (21)) and Wa ∝ (η − η̄)β (Equation (18)), from η̄ up to a cross-over value η×. Numerical
solutions are matched to the analytic ones so that the resulting functions are continuous. The cross-over
point can determined by requiring that ∣∣∣∣ f ′a(η×)

fa(η×)

∣∣∣∣ = ε−1, (A30)

where 0 < ε � 1, implying that the divergent terms dominate the expression for the derivative of
f . However, since W ′ also tends to infinity, the same condition applies to Wa as well. This gives two
different cross-over values; the smallest is chosen:

η× = ε min(|α|, β) + η̄, (A31)

where α is given by Equation (A34) and β = 1/(1+ q′(η̄)), with q′(η̄) from Equation (A32). The results
reported here use the value ε = 1.0× 10−3 and the analytic solution for f to obtain the cumulative
density F below η×.

If the lower boundary is at q̄ = −η̄, then directly integrate Equation (A29) with d = 0 from η× to
η∗. The obtained solution can then be multiplied by a constant to make the cumulative distribution
satisfy F(η∗) = 1. If η̄ is absorbing (recapitalisation), use the same trick as in the model without rent:
solve for φ0 and φ1 satisfy Equation (A29) with d = 0 and d = 1, respectively. The final φ is then
constructed as a superposition of these two, φ = a0φ0 + a1φ1. Coefficients a0 and a1 are determined
from

φ(η̄) = 0,
ˆ η∗

η̄

2
(ση(η))2 φ(η) dη = 1.

When needed, the same analytic solution, Equation (21), can be used for both φ0 and φ1 (φ0,1 ∝
(η − η̄)α/(ση)2), since d term is negligible near η̄.
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Note that reverting to the analytic solution for f is equivalent to using a truncated integration
range with an additional correction term coming from the analytical solution near η̄. Numerical
simulations confirm that this approach is sound: (i) the analytical and numerical solutions are in very
good agreement across a wide range of η, (ii) the obtained solutions are independent of ε, provided it is
small enough while keeping the numerical solution from reaching the singularity, and (iii) qualitative
features of the solution do not change if the analytical correction is omitted.

Appendix D. Behaviour of Solutions Near Boundaries

This Appendix provides the derivation of the asymptotic approximations summarised in
Proposition 7.

Appendix D.1. Model without Option to Rent

While no singularities emerge in the model with no option to rent, it is still useful to begin with
this simple case. The evolution of the value function W is given by W ′/W = 1/(q + η), which in
the case of liquidation tends to infinity as the point of maximum borrowing where q(η̄) = −η̄ is
approached. This means there is a potential singularity in W at η̄. It can be shows that in the model
without the option to rent this does not occur and W is linear close to η = η̄.

Suppose now that q is of the form q(η) = −η̄ + q′(η̄)(η − η̄) +O((η − η̄)2). Near the boundary,
W follows

W ′ =
1

1 + q′(η̄)
W

η − η̄
+O(η − η̄).

The solution is then given by Equation (18) in the main text. In the case of the model without
renting, it is clear from Equation (10) that q′(η̄) = 0 and so W is linear near η̄.

Appendix D.2. Model with Option to Rent

Turning to the model with option to rent, again a singularity can occur only on the lower boundary
and only when there is no recapitalisation, i.e., when q (η̄) = −η̄ and ψ (η̄) = 0.

Note now that in the equation for q′, Equation (17), both the numerator and the denominator
vanish. Applying the l’Hopital’s rule, the derivative can be solved as:

q′(η̄) =
−(ρ− r− γ)±

√
(ρ− r− γ)2 + 4γθ−1[1 + θρ− q̄]

2θ−1[1 + θρ− q̄]
, (A32)

where γ = (a− ā)2/2(σ2
1 + η̄2σ2

2 ). Above, only the plus sign applies. This can be seen by recalling that
q̄ < qmax = 1 + ρθ must apply (see above for the reasoning), in which case only the plus sign gives a
positive q′. Thus, the solution near η̄ is given by Equation (19) in the main text.

The power-law form of W given in Equation (18) holds here as well. Since now q′(η̄) > 0,
the exponent β = 1/(1 + q′(η̄)) is always less than one, in contrast to the model without option to rent,
implying that limη↓η̄W ′ = limη↓η̄ (−W ′′/W ′) = +∞.

To find the behaviour of the ergodic density near η̄, q̄, requires ψ. This time η − η̄ is not negligible
compared to q− q̄. A straight-forward calculation gives:

ψ = ψ′(η̄)(η − η̄) (A33)

where
ψ′(η̄) =

2
a− ā

{
ρ− r + θ−1 [1 + θρ− q̄] q′(η̄)

}
.

Next, the η → η̄ limiting forms of q and ψ are substituted into Equation (A20), and only terms up
toO(η− η̄) are kept. Notice that the numerator vanishes in the leading order, and hence φ′ ∝ (η− η̄)−1

and not ∝ (η − η̄)−2:

φ′ = α
φ

η − η̄
,
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where

α =
(a− ā)ψ′(η̄) + r− 1

2 θ−1q′(η̄)(η̄ + 1) + θ−1(η̄ + 1)(1 + q′(η̄)/2)
1
2 (σ

2
1 + η̄2σ2

2 )ψ
′(η̄)2

. (A34)

This gives the power-law solution Equation (20) in the main text. Finally using Equation (A33) yields
Equation (21) of the main text.
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