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1. Introduction

1.1. Stability of Linear Systems

The stability problem of dynamical systems is of great interest because of its numerous
applications, mainly in control systems. This property is very important because of both its relationship
to the good performance of dynamical systems and the prevention of their physical damage. It is
well known that for time-invariant linear dynamical systems, stability is determined by the roots of
a characteristic equation that has a polynomial form. In the case of continuous systems, they are said
to be stable if their roots have negative real part. This is known as Hurwitz stability. Now, for the
discrete case, the system is stable if its roots are within a circle of radius equal to 1, this is known as
Schur stability. Polynomials that satisfy the first condition are called Hurwitz polynomials, while those
that satisfy the last one are called Schur polynomials. Therefore, the problem of verifying the stability
property in dynamical systems is transformed into verifying the Hurwitz or Schur properties of
polynomials. This contribution will address the problem of verifying the Schur stability property.
The most common strategy to verify the Schur stability property is using a bilinear transformation
(Möbius transformation, see [1,2]) and then applying Hurwitz stability tools to solve the original
problem. However, [3] shows that their application is restricted by a pathological case and so the
authors propose to use a biquadratic transformation to avoid this problem. Many papers that address
this problem have been published, for example [4] presents conditions to verify the Schur stability
property for the particular cases of real 2× 2 matrices and real n× n tridiagonal matrices for which the
concepts Schur D-stable and vertex stable are introduced and verified. In [5] some results are presented
to determine regions defined by the gains of PID controllers that guarantee the stability property of
discrete systems, those results use the bilinear transformation to exploit results of continuous systems
and the linear programming technique to delimit the regions. On the other hand, there is another
method that is also used to verify the Schur stability property, known as the Jury test (see [6,7]).
A simplified proof for this test is presented in [8].
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Another topic that has also been studied consists of verifying the Schur stability property by
considering uncertainty in the polynomial coefficients, which is known as robust Schur stability.
Some of the first results related to this topic were the extension of Kharitonov-like results using,
in some of them, the Möbius transformation in order to transform the problem into a robust Hurwitz
stability problem, see [9,10]. Other criteria used to verify the robust Schur stabiliy of a family of
polynomials are Schur-Cohn and the Vandermonde matrix, see [11–14]. Also, there are other papers
that deal with the verification of robust Schur stability of interval matrices by using the spectral
radius to determine the stability conditions, see [15,16]. Other results use multivariate polynomials to
verify the robust Schur stability property. For example [17] establishes conditions to use the Möbius
transformation in multivariate polynomials, while in [18] the authors first transform the problem into
verifying the positivity of particularly defined bivariate functions and then they use semi-defined
programming. The main disadvantage of the latter method is that it presents only sufficient conditions
of robust Schur stability. The Schur stability property of polynomials depends directly on their
coefficients, thus it is possible to define regions in the coefficient space for which the polynomial
meets the condition of Schur stability. These regions are generally represented by semi-algebraic sets,
which in turn, makes it possible to use criteria such as the Jury test. The paper [19] introduces the
concept of polynomial superlevel sets which are used as a tool to construct approximations of the
semi-algebraic sets that may be applied in control problems, in particular, the Hurwitz and Schur
stability properties.

Finally, in this paper we present a new criterion to verify the Schur stability property. This is
derived by using the relation between orthogonal polynomials on the real line and on the unit circle
known as the Szegő transformation. It is worth noting that this new approach to verify the Schur
stability property can be generalized to define new semi-algebraic sets to be used in control theory.
This approach is akin to the one presented in [19] but it has not been used before.

The structure of the manuscript is as follows. The remainder of this section contains some basic
mathematical background on stable polynomials. Section 2 deals with basic results for orthogonal
polynomials on the real line and on the unit circle that will be used in the sequel. The main contribution
of our manuscript is contained in Section 3. There, we state a new criterion for Schur stability whose
proof is based in orthogonality properties, and uses a well known mapping between the unit circle
and the interval [−2, 2]. Some illustrative examples are presented.

1.2. Stable Polynomials

A continuous linear system is stable if and only if its characteristic polynomial is a Hurwitz
polynomial, i.e., the real part of all its zeros is strictly negative. As a consequence, Hurwitz polynomials
are widely studied in the literature (see, for instance, [20,21]), and there are many criteria to determine
if a given polynomial with real coefficients is Hurwitz without explicitly computing its zeros.
Among many others, we have the Routh–Hurwitz criterion [20], the stability test [22], the continued
fraction method [20], and the Hermite-Biehler theorem [23]. The latter determines the Hurwitz
character of a polynomial f (x) by verifying some properties of two polynomials associated with f .
Indeed, if h and g are polynomials given by f (x) = h(x2) + xg(x2), i.e., the even and odd parts of f ,
then the Hermite-Biehler theorem states that f is a Hurwitz polynomials if and only if h and g have
real, negative and interlaced zeros. Moreover, if we consider the series expansions

g(x)
h(x)

=

{
s0
x −

s1
x2 +

s2
x3 − . . . + s2n−2

x2n−1 −
s2n−1
x2n + . . . , if deg( f ) is even,

s−1 +
s0
x −

s1
x2 +

s2
x3 − . . . + s2n−2

x2n−1 −
s2n−1
x2n + . . . , if deg( f ) is odd,



Mathematics 2020, 8, 1322 3 of 15

then the constants {s0, s1, ... , s2n−1} and {s−1, s0, s1, ... , s2n−1} are known as Markov’s parameters and
it is known (see [20]) that f is a Hurwitz polynomial if and only if the matrices

Hn−1 =


s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

...
sn−1 sn . . . s2n−2

 , H(1)
n−1 =


s1 s2 . . . sn

s2 s3 . . . sn+1
...

...
...

...
sn sn+1 . . . s2n−1

 (1)

are both positive definite and s−1 > 0 in the odd case.
On the other hand, a discrete linear system is stable if and only if its characteristic polynomial is

a Schur polynomial, i.e., all of its zeros are located in the open unit disc D = {z ∈ C : |z| < 1}. As we
will see in a moment, the Hermite-Bielher theorem can be extended to this situation. More generally,
an interlacing theorem can be stated for any stability region A ⊂ C such that the phase of any
polynomial stable with respect to A varies monotonically through the boundary ∂A (see [22]).

In this section, we consider polynomials with real coefficients, unless otherwise stated.
Without loss of generality, we will consider monic polynomials. Clearly, if

Sn(z) = zn + pn−1zn−1 + . . . + p1z + p0,

a necessary condition for Sn(z) to be a Schur polynomial is that |p0| < 1. On the other hand, a necessary
and sufficient condition for Sn(z) to be a Schur polynomial is that the graph of Sn(ejθ) circles n times
around the origin or, equivalently, the graph of ejnθSn(e−jθ) does not circle around the origin when
θ varies from 0 to 2π (see [22]). Notice that this result is valid even for polynomials with complex
coefficients. For the case of real coefficients, consider the polynomials

R(θ) = cos(nθ) + pn−1cos((n− 1)θ) + . . . + cos(θ)p1 + p0,

I(θ) = sin(nθ) + pn−1sin((n− 1)θ) + . . . + sin(θ)p1,

known as the real and imaginary parts of Sn(z). The last criteria can be used to show that Sn(z)
(with |p0| < 1) is a Schur polynomial if and only if (see [22])

(i) R(θ) has exactly n zeros in [0, π],
(ii) I(θ) has exactly n + 1 zeros in [0, π],
(iii) The zeros of R(θ) and I(θ) interlace.

Another interlacing theorem is the following. Let Sn(z) = Ss
n(z) + Sa

n(z), where

Ss
n(z) =

1
2
[Sn(z) + znSn(

1
z
)], Sa

n(z) =
1
2
[Sn(z)− znSn(

1
z
)]. (2)

Then, Sn(z) is a Schur polynomial if and only if

(i) Ss
n(z) and Sa

n(z) are polynomials of degree n with coefficients of the same sign.
(ii) Ss

n(z) and Sa
n(z) have simple and interlaced zeros on the unit circle T = {z ∈ C : |z| = 1}.

Notice that, since the coefficients are real, the zeros of Ss
n(z) and Sa

n(z) appear in conjugate
pairs. The polynomial znSn(

1
z ) is usually called the reciprocal (or reversed) polynomial of Sn(z) and it is

denoted by S∗n(z). We say that a polynomial A(z) is symmetric if A(z) = A∗(z) and anti-symmetric
if A(z) = −A∗(z). This explains the notation in (2) since Ss

n(z) and Sa
n(z) are clearly symmetric and

anti-symmetric polynomials, respectively. The previous criterion can be generalized as follows.

Theorem 1 ([24]). Let Sn(z) be a real Schur polynomial and k ≥ 0. Then, the polynomials A and B defined by

A(z) = Sn(z) + z−kS∗n(z), (3)

B(z) = Sn(z)− z−kS∗n(z), (4)
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have interlaced zeros in T andA has a conjugate pair of zeros closer to z = 1. Conversely, if A and B are any two
real polynomials of the same degree, such that one is symmetric and the other is anti-symmetric, with interlaced
zeros on T, then A(z) + B(z) is a Schur polynomial.

A different criterion to determine whether or not a given polynomial is a Schur polynomial uses
a recursive algorithm, as follows. Notice that it is equivalent to the Jury criteria, and its proof is based
in the so-called Boundary Crossing Theorem (see [6,7], and also [22]). It constitutes a discrete analogue
of the Routh–Hurwitz stability criterion.

Observe that each application of step 5 results in a 1 degree reduction in the computed polynomial,
with respect to the previous one. Thus, after n− 1 cycles the resulting polynomial has degree 1.

Finally, it is well known that the Möbius (also called bilinear) transformation z = x+1
x−1 maps the

open unit disc into the open left half plane. Thus, it can be used to transform a polynomial Sn(z) into
a polynomial fn(x) by using

(x− 1)nSn

(
x + 1
x− 1

)
= fn(x). (5)

Then, if the leading coefficient of fn is not zero, the transformation preserves the degree and
in this situation S(z) is a Schur polynomials if and only if f (x) is a Hurwitz polynomial [22].
As a consequence, it is possible to determine if a given polynomial is Schur by using Hurwitz criteria.

2. Orthogonal Polynomials and the Szegő Transformation

2.1. Orthogonal Polynomials on the Real Line

Let µ be a positive measure supported in some subset E ⊂ R with infinite points and such that∣∣∣∣∫E
xkdµ(x)

∣∣∣∣ < ∞, k ≥ 0.

If µ(x) is an absolutely continuous measure, then we can write dµ(x) = ω(x)dx, where ω(x)
is an integrable, non-negative function such that

∫
E ω(x)dx > 0. It is well known that there exists

a sequence of real polynomials {pn}n≥0 such that∫
E

pn(x)pm(x)dµ(x) = γnδn,m, γn > 0, n, m ≥ 0, (6)

where δm,n is the Kronecker’s delta. {pn}n≥0 is called the sequence of polynomials orthogonal with
respect to µ (or with respect to the weight function ω) and it is unique up to constant multiplications
(see [25]). If γn = 1 for every n, then {pn}n≥0 is called an orthonormal sequence. We can also consider
a monic sequence {Pn}n≥0 by dividing each pn(x) by its leading coefficient. This is the normalization
that will be used in the manuscript.

Orthogonal polynomials on the real line have many applications and many useful properties.
In particular, it is well known that each Pn(x) has real and simple zeros, which are located in the
interior of the convex hull of E. Moreover, if we denote by xn,k the zeros of Pn(x), then they satisfy the
following interlacing property (see [26])

xn,k < xn−1,k < xn,k+1, 1 ≤ k ≤ n− 1. (7)

Furthermore, for any polynomial Pn of degree n with real and simple zeros, it is possible to find
a positive measure µ such that Pn belongs to a sequence of polynomials orthogonal with respect to
µ, although Pn−1, Pn−2, . . . , P1, P0 are not uniquely determined. However, if Pn and Pn−1 are arbitrary
polynomials with degree n and n − 1, respectively, whose zeros are real, simple and interlaced,
then there exists a measure µ such that they are orthogonal with respect to µ, and Pn, Pn−1, Pn−2, . . . , P0

are uniquely determined. This is known as the Geronimus-Wendroff Theorem (see [26,27]).
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On the other hand, the location of the zeros of orthogonal polynomials has also been studied when
the orthogonality measure is perturbed. In the literature, the case when the measure is multiplied by
a polynomial is called the Christoffel transformation. Let α(x) be a polynomial which is non-negative
in E of the form

α(x) =
m

∏
k=1

(x− xk).

If we have xk 6= xj for k 6= j, then the (monic) polynomials P[m]
n (x) defined by

An,mα(x)P[m]
n (x) =

∣∣∣∣∣∣∣∣∣∣∣∣

Pn(x1) Pn+1(x1) . . . Pn+m(x1)

Pn(x2) Pn+1(x2) . . . Pn+m(x2)
...

...
...

...
Pn(xm) Pn+1(xm) . . . Pn+m(xm)

Pn(x) Pn+1(x) . . . Pn+m(x)

∣∣∣∣∣∣∣∣∣∣∣∣
, (8)

with

An,m =

∣∣∣∣∣∣∣∣∣∣
Pn(x1) Pn+1(x1) . . . Pn+m−1(x1)

Pn(x2) Pn+1(x2) . . . Pn+m−1(x2)
...

...
...

...
Pn(xm) Pn+1(xm) . . . Pn+m−1(xm)

∣∣∣∣∣∣∣∣∣∣
, (9)

are orthogonal with respect to the perturbed measure α(x)dµ(x) in E, and P[m]
n (x) has degree n.

In particular, if {x[1]n,k}
n
k=0 denote the zeros of the polynomial P[1]

n (x) orthogonal with respect to

(x− c)dµ(x) on E = [a, b], then the zeros of the polynomials P[1]
n (x), Pn(x) and Pn+1(x) satisfy

the following interlacing property (see [26], where the polynomials {P[1]
n }n≥0 are called kernel

polynomials [28,29]):

• If c ≤ a, then
xn+1,1 < xn,1 < x[1]n,1 < xn+1,2 < · · · < xn,n < x[1]n,n < xn+1,n+1, (10)

• If c ≥ b, then
xn+1,1 < x[1]n,1 < xn,1 < · · · < xn+1,n < x[1]n,n < xn,n < xn+1,n+1. (11)

Finally, we point out that there is a close relation between Hurwitz polynomials and orthogonal
polynomials on the real line. Indeed, any Hurwitz polynomial can be expressed in terms of
an orthogonal polynomial and its associated polynomial (see [26]). Conversely, it is possible to
construct a Hurwitz polynomial by using orthogonal polynomials. For more details, we refer the
reader to [20,30–33] and, more recently, [34]. In the latter, the authors construct sequences of Hurwitz
polynomials from a sequence of orthogonal polynomials, and show several algebraic properties of
the constructed family. Also, classical orthogonal polynomials are used in [35] to construct families of
Hurwitz polynomials that are robustly stable.

2.2. Orthogonal Polynomials on the Unit Circle

Let σ be a positive, non-trivial measure supported on the unit circle T. Generally, σ is assumed
to be a probability measure, i.e.,

∫
T dσ(z) = 1. Then, there exists a sequence of complex polynomials

{φn}n≥0 with deg(φn) = n such that∫
T

φn(z) φm(z) dσ(z) = kn δn,m, ∀ n, m > 0, (12)

where kn > 0 for every n ≥ 0. We will assume that they are monic. {φn}n≥0 is called the
monic sequence of polynomials orthogonal with respect to σ, and satisfies the following recurrence
relations [25,27]
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(i) Forward recurrence:
φn+1(z) = zφn(z) + φn+1(0)φ∗n(z), (13)

(ii) Backward recurrence:

φn+1(z) = (1− |φn+1(0)|2)zφn(z) + φn+1(0)φ∗n+1(z), (14)

where φ∗n(z) = znφn(z−1).

Notice that φ∗n(z) is the reciprocal polynomial as defined in the previous section, except that
here the coefficients are in general complex and the conjugate has to be taken. The complex numbers
{φn(0)}n≥0 are called Verblunsky (Schur, reflection) coefficients, and satisfy |φn(0)| < 1 for every n ≥ 1.

It is well known that every positive, nontrivial measure σ in T determines a unique sequence
of Verblunsky coefficients {φn(0)}n≥1. Conversely, given an arbitrary sequence {an}n≥1 of complex
numbers satisfying |an| < 1 for n ≥ 1, there exists a unique measure σ supported on T such that its
corresponding monic orthogonal sequence {φn(z)}n≥1 satisfies φn(0) = an for n ≥ 1. In other words,
any complex sequence {an}n>1 in D is the sequence of Verblunsky coefficients for some measure σ.
This is known as Verblunsky’s theorem (see [27]).

Moreover, the zeros of each φn(z) are located in D. Conversely, given any complex polynomial
φn(z) with zeros in D, it is possible to find a measure σ supported in T such that φn(z) is orthogonal
with respect to σ. Furthermore, the previous polynomials in the sequence, φn−1, . . . , φ0, are completely
determined. This is a consequence of the backward recurrence relation. Indeed, this is the unit circle
analogue of the Wendroff-Geronimus theorem discussed above (see [27]). Notice that this implies that
any Schur polynomial is an orthogonal polynomial, and vice versa. This is an important difference
with respect to the relation between Hurwitz and orthogonal polynomials on the real line.

2.3. The Szegő Transformation

The Szegő transformation establishes a relation between orthogonal polynomials on the real line
and on the unit circle by defining a correspondence between measures supported on the interval
[−2, 2] and measures supported on T (see [25,27,36]).

The mappings z = eiθ 7→ 2 cos(θ), with θ ∈ [0, 2π) and x 7→ arccos(x/2) define a two-one
correspondence between T and [−2, 2], that can be used to define a mapping between probability
measures supported in T and probability measures supported in [−2, 2]. If we restrict this mapping to
measures in T that are even, i.e., dσ(θ) = dσ(−θ), then the correspondence is one to one. Such measures
are called symmetric. This mapping is commonly referred to as the Szegő transformation and it is
denoted by Sz. More precisely, we say dµ = Sz(dσ) if and only if dσ(θ) = dσ(−θ) and

∫ 2π

0
f (θ)dσ(θ) =

∫ 2

−2
f (arcos(x/2))dµ(x),

for any function f such that f (θ) = f (−θ). Notice that because of the symmetry we have [36]

dσ is even ⇔ φn(z) = φn(z)⇔ φn(0) ∈ R

for all n ≥ 1. That is, the sequence {φn}n≥0 orthogonal with respect to σ has real coefficients
and, in particular, real Verblunsky coefficients. The next theorem establishes a relation between
the sequences of orthogonal polynomials associated with µ and σ, when they are related through the
Szegő transformation. The proof can be found in [25,36].
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Theorem 2. Let dµ = Sz(dσ), and denote by {Pn}n≥0 and {φn}n≥0 the monic orthogonal sequences associated
with µ and σ, respectively. Then,

Pn(z +
1
z
) = [1 + φ2n(0)]−1z−n[φ2n(z) + φ∗2n(z)], n ≥ 0, (15)

‖Pn‖2
L2(dµ) = 2[1 + φ2n(0)]−1‖φ2n‖2

L2(dσ), n ≥ 0, (16)

Pn(z +
1
z
) = z−n[zφ2n−1(z) + φ∗2n−1(z)], n ≥ 1, (17)

‖Pn‖2
L2(dµ) = 2[1− φ2n(0)]‖φ2n−1‖2

L2(dσ), n ≥ 1, (18)

where L2(dµ) is the space of measurable functions such that
∫
[−2,2] | f (x)|2dµ(x) < ∞, and L2(dσ) is defined

in a similar way.

There is a second family related to {φn}n≥0, orthogonal with respect to the measure

dµ1(x) =
1
4
(4− x2)dµ(x).

If we denote by {Qn(x)}n≥0 the corresponding monic orthogonal polynomials, we have for n ≥ 1

Qn−1(z +
1
z
) = (1− φ2n(0))−1z−n φ2n(z)− φ∗2n(z)

z− z−1 ,

= z−n zφ2n−1(z)− φ∗2n−1(z)
z− z−1 ,

(19)

and, from Equations (15), (17) and (19) we have

φ2n(z) =
zn

2
[(1 + φ2n(0))Pn(z +

1
z
) + (1− φ2n(0))(z− z−1)Qn−1(z +

1
z
)],

φ2n−1(z) =
zn−1

2
[Pn(z +

1
z
) + (z− z−1)Qn−1(z +

1
z
)].

(20)

3. Stability Criteria via Orthogonality

In this section, we use the basic results of the previous section to study stability criteria for Schur
polynomials. First, notice that the expression in step 5 of Algorithm 1 is equivalent to the Szegő
backward relation Equation (14). Thus, by applying Algorithm 1 to a polynomial of degree n with
complex coefficients we are in fact computing a sequence {Sk}n

k=0 of polynomials that satisfy the Szegő
recursion. The criterion asserts that the initial polynomial is Schur if and only if we have |Sk(0)| < 1
for k = 1, . . . , n. Thus, Verblunsky’s theorem and the analogue of the Geronimus-Wendroff theorem
for the unit circle directly lead to another proof for the validity of the algorithm. This was already
discussed in [27].
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Algorithm 1: Algorithm to determine if a given polynomial is Schur

Input: Any monic polynomial Sn(z) = zn + pn−1zn−1 + . . . + p0 (coefficients can be complex).
Output: Determination of the Schur character of Sn(z).

1 initialization;
2 for i = 0, 2, . . . n− 1 do
3 S(i=0)

n = Sn(z),

4 Verify |p(i)0 | < 1,

5 Compute S(i+1)
n (z) = 1

z [
S(i)

n (z)−S(i)
n (0)zn−iS(i)

n ( 1
z )

(1−|S(i)
n (0)|2)

],

6 Return to step 4 until the condition is not satisfied. In such a case, Sn(z) is not a Schur

polynomial. If the condition in step 4 holds for p(0)0 , p(1)0 , ... , p(n−1)
0 , then S(z) is a

Schur polynomial.
7 return

Before stating our main result, we need the following lemma.

Lemma 1. Let {Pn(x)}n≥0 be the sequence of monic orthogonal polynomials with respect to a measure dµ

supported on the interval E = [−c, c], for some c > 0, and denote by {P[2]
n (x)}n≥0 the monic orthogonal

sequence with respect to dµ[2] = (x2 − c2)dµ. Then, if we denote by {x[2]n,k}
n
k=1 the zeros of P[2]

n (x) and by
{xn+1,k}n+1

k=1 the zeros of Pn+1(x), we have the interlacing property

xn+1,k < x[2]n,k < xn+1,k+1, 1 ≤ k ≤ n.

Proof. Denote by {x[1]n,k}
n
k=0 the zeros of P[1]

n (x), orthogonal with respect to the measure

dµ[1] = (x− c)dµ. Then, they satisfy the interlacing property Equation (11). Since {P[2]
n (x)}n≥0 is

orthogonal with respect to dµ[2] = (x + c)dµ[1], then from Equation (10) we see that the zeros {x[2]n,k}
n
k=0

of P[2]
n (x) satisfy

x[1]n+1,1 < x[1]n,1 < x[2]n,1 < x[1]n+1,2 < . . . < x[1]n,n < x[2]n,n < x[1]n+1,n+1.

As a consequence, we have

xn+1,1 < x[2]n,1 < xn+1,2 < . . . < xn+1,n < x[2]n,n < xn+1,n+1.

As mentioned before, a useful tool to determine the Schur character of a polynomial is the Möbius
transformation from D to the left half-plane of the complex plane. Then, the problem of determining the
Schur stability becomes a problem of determining Hurwitz stability. Our next result establishes a novel
criterion to determine Schur stability by using the Szegő transformation defined in the previous section.

Theorem 3. Let Sm(z) be a m-th degree monic polynomial with real coefficients satisfying |Sm(0)| < 1.
If m = 2n, define

Pn(z +
1
z
) = [1 + S2n(0)]−1z−n[S2n(z) + S∗2n(z)], (21)

Qn−1(z +
1
z
) = [(1− S2n(0))(z− z−1)]−1z−n[S2n(z)− S∗2n(z)]. (22)
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If m = 2n− 1, define

Pn(z +
1
z
) = z−n[zS2n−1(z) + S∗2n−1(z)], (23)

Qn−1(z +
1
z
) = (z− z−1)−1z−n[zS2n−1(z)− S∗2n−1(z)]. (24)

Then, Sm(z) is a Schur polynomial if and only if Pn(x) and Qn−1(x) are real polynomials with real,
simple, and interlaced roots in (−2, 2).

Proof. Notice that Equations (21)–(24) are Equations (15), (17) and (19). If Sm(z) is a Schur polynomial
with real coefficients, then it is orthogonal with respect to some even function σ supported on
T. Then, by applying the Szegő transformation, we obtain a measure µ supported on [−2, 2],
with an associated monic orthogonal sequence {Pn}n≥0. Notice that the zeros of each Pn are real,
simple, and located in (−2, 2). Moreover, the sequence {Qn}n≥0 is orthogonal with respect to
1
4 (4− x2)dµ, and their zeros are also simple and lie in (−2, 2). By the previous lemma, Pn(x) and
Qn−1(x) have interlaced roots.

Conversely, assume that Pn(x) and Qn−1(x) are real polynomials with real, simple and
interlaced roots in (−2, 2). Then, Pn(z + 1

z ) and (z − z−1)Qn−1(z + 1
z ) clearly have simple and

interlacing zeros in T. If m = 2n − 1 (resp. m = 2n), then it follows from Equations (17) and (19)
(resp. from Equations (15) and (19)) that [zSm(z) + S∗m(z)] and [zSm(z)− S∗m(z)] (resp. [Sm(z) + S∗m(z)]
and [Sm(z) − S∗m(z)]) have interlaced zeros in T. Notice that [zSm(z) + S∗m(z)] is a symmetric
polynomial and [zSm(z)− S∗m(z)] is an anti-symmetric polynomial (resp. [Sm(z) + S∗m(z)] is symmetric
and [Sm(z) − S∗m(z)] is anti-symmetric) and both polynomials have degree m + 1 (resp. m).
Since zS(z) = 1

2 [zSm(z) + S∗m(z) + zSm(z)− S∗m(z)] (resp. S(z) = 1
2 [Sm(z) + S∗m(z) + Sm(z)− S∗m(z)])

it follows from Theorem 1 that Sm(z) is a Schur polynomial.

The following result follows at once. It establishes a necessary condition for the Schur character
of a real polynomial.

Corollary 1. Let Sm(z) be a m-th degree monic Schur polynomial with real coefficients. Define Pn(x) as in the
previous theorem. Then, Pn(x + 2) is a Hurwitz polynomial with zeros in (−4, 0).

In other words, given any real polynomial Sm(z) of degree m, we can compute Pn(x) as in the
previous theorem and then check Pn(x + 2) for Hurwitz stability. If it is not Hurwitz, then Sm(z) is not
Schur. As another straightforward consequence, we can state the following Wendroff-Geronimus
type theorem.

Corollary 2. Let Pn(x) and Qn−1(x) be two monic, real polynomials with degree n and n− 1, respectively.
If Pn and Qn−1 have real, simple and interlaced zeros in (−2, 2), then there exists a positive measure µ

supported in [−2, 2] such that Pn is orthogonal with respect to µ and Qn−1 is orthogonal with respect to the
Christoffel transformation (x2 − 4)dµ. Moreover, the orthogonal sequences Pn−1, . . . , P0 and Qn−2, . . . , Q0 are
uniquely determined.

Proof. If Pn(x) and Qn−1(x) have simple and interlaced roots in (−2, 2), then the polynomial
φ2n−1(z) obtained from Equation (20) is a Schur (and thus orthogonal) monic polynomial with real
coefficients, from Theorem 3. By using Equations (23) and (24) for φ2n−1(z) we obtain again Pn(x) and
Qn−1(x), and therefore Pn(x) is orthogonal with respect to some µ supported on [−2, 2] and Qn−1(x)
is orthogonal with respect to (x2 − 4)dµ. The polynomials Pn−1, . . . , P0 and Qn−2, . . . , Q0 are uniquely
determined by the polynomials φ2n−3, φ2n−5, . . . , φ1 obtained by applying the backward recurrence
relation to φ2n−1(z).
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The following lemma shows how to compute the coefficients of the polynomials Pn and Qn−1 in
Theorem 3. Notice that instead of computing the coefficients of Qn−1(x), we will find the coefficients
of the polynomial (x2 − 4)Qn−1(x), which has two additional zeros at x = ±2.

Lemma 2. Let Sm(z) = zm + pm−1zm−1 + . . . + p1z + p0 and Pn(x) = xn + γn−1xn−1 + . . . + γ1x + γ0

be the polynomials in Theorem 3. Then, the coefficients of Pn(x) are determined by the linear system

(0
0) 0 (2

1) 0 (4
2) . . . . . .

0 (1
0) 0 (3

1) 0 . . . . . .
0 0 (2

0) 0 (4
1) . . . . . .

...
...

...
. . .

...
...

...
...

0 0 0 0
. . . 0 (n−1

1 ) 0
0 0 0 0 · · · (n−2

1 ) 0 (n
1)

0 0 0 0 · · · 0 (n−1
0 ) 0

0 0 0 0 · · · 0 0 (n
0)




γ0

γ1

γ2
...

γn

 =


c0

c1

c2
...

cn

 , (25)

where ci = 1
1+p0

(pn+i + pn−i) for 0 ≤ i ≤ n if m = 2n, and ci = pn+i−1 + pn−i−1 for 0 ≤ i ≤ n
if m = 2n − 1, and defining γn = pm = 1 and p−1 = 0. On the other hand, the coefficients of
(x2 − 4)Qn−1(x) = xn+1 + ηnxn + . . . + η1x + η0 are given by the linear system



(0
0) 0 (2

1) 0 (4
2) . . . . . .

0 (1
0) 0 (3

1) 0 . . . . . .
0 0 (2

0) 0 (4
1) . . . . . .

...
...

...
. . .

...
...

...
...

0 0 0 0
. . . 0 (n

1) 0
0 0 0 0 · · · (n−1

1 ) 0 (n+1
1 )

0 0 0 0 · · · 0 (n
0) 0

0 0 0 0 · · · 0 0 (n+1
0 )




η0

η1

η2
...

ηn+1

 =



−2l1
−l2
−l3 + l1
−l4 + l2

...
−ln−1 + ln−3

−ln + ln−2

ln−1

ln


, (26)

where li = 1
1−p0

(pn+i − pn−i) for 1 ≤ i ≤ n if m = 2n, and li = pn+i−1 − pn−i−1 for 1 ≤ i ≤ n if
m = 2n− 1, with ηn+1 = 1.

Proof. Assume Sm(z) has even degree m = 2n. Then, Pn(x) has degree n and we have

Pn(z + 1/z) =
n

∑
k=0

γk(z + 1/z)k =
n

∑
k=0

γk

k

∑
j=0

(
k
j

)
zk−2j. (27)

On the other hand, from Equation (21) we get

Pn(z + 1/z) =
1

p0 + 1
[(p0 + p2n)(zn + z−n) + (p1 + p2n−1)(zn−1 + z−(n−1))

+ (p2 + p2n−2)(zn−2 + z−(n−2)) + · · ·+ 2pn].
(28)
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Thus, by comparing the coefficients of the positive powers in Equations (27) and (28) we easily
get Equation (25). Now, applying the change of variable x = z + 1/z in (x2 − 4)Qn−1(x), we get
(z− z−1)2Qn−1(z + 1/z). Then, from Equation (22) we obtain

(z− z−1)2Qn−1(z + 1/z) =
1

1− p0
[(1− p0)(zn+1 + z−(n+1)) + (p2n−1 − p1)(zn + z−n)

+ (p2n−2 − p2 − (1− p0))(zn−1 + z−(n−1))

+ (p2n−3 − p3 − (p2n−1 − p1))(zn−2 + z−(n−2))

+ · · ·+ (pn+1 − pn−1 − (pn+3 − pn−3))(z2 + z−2)

+ (pn−2 − pn+2)(z + z−1) + 2(pn−1 − pn+1)].

(29)

Thus, comparing coefficients in Equations (27) and (29) we obtain Equation (26). Notice that the
matrix in the linear system has size (n + 2)× (n + 2) since the polynomial (x2− 4)Qn−1(x) has degree
n + 1. The odd case m = 2n− 1 follows in a similar way.

Finally, we illustrate the criterion in Theorem 3 with the following examples. Notice that the
matrices of the linear systems in the previous lemma are lower triangular and therefore their solutions
can be computed efficiently.

Example 1. Consider the polynomial S4(z) = z4 − z3 + 3
4 z2 + z + 1

2 . The corresponding linear system is(0
0) 0 (2

1)

0 (1
0) 0

0 0 (2
0)


γ0

γ1

γ2

 =

1
0
1

 ,

and has solution (−1, 0, 1)t. On the other hand, the linear system
(0

0) 0 (2
1) 0

0 (1
0) 0 (3

1)

0 0 (2
0) 0

0 0 0 (3
0)




η0

η1

η2

η3

 =


8
−1
−4
1

 ,

has solution (16,−4,−4, 1)t. As a consequence, the polynomials P2(x) and Q1(x) of Theorem 3
are P2(x) = x2 − 1 and (x2 − 4)Q1(x) = x3 − 4x2 − 4x + 16. Notice that P2(x) has
zeros at x = ±1, and (x2 − 4)Q1(x) has zeros at 2,−2 and 4. Thus, S4(z) is not a Schur
polynomial. Indeed, S(z) has zeros z1 ≈ −0.391713− 0.335138i, z2 ≈ −0.391713 + 0.335138i,
z3 ≈ 0.891713 − 1.04224i, z4 ≈ 0.891713 + 1.04224i.

Notice that the previous example shows that Pn(x) having zeros in (−2, 2) is not sufficient to
guarantee that S2n(z) is a Schur polynomial.

Example 2. Consider S11(z) = z11− 9
4 z10 + 157

32 z9− 55
8 z8 + 4637

512 z7− 9485
1024 z6 + 8909

1024 z5− 6717
1024 z4 + 2261

512 z3−
37
16 z2 + 31

32 z− 1
4 . Then, the linear system

(0
0) 0 (2

1) 0 (4
2) 0 (6

3)

0 (1
0) 0 (3

1) 0 (5
2) 0

0 0 (2
0) 0 (4

1) 0 (6
2)

0 0 0 (3
0) 0 (5

1) 0
0 0 0 0 (4

0) 0 (6
1)

0 0 0 0 0 (5
0) 0

0 0 0 0 0 0 (6
0)





γ0

γ1

γ2

γ3

γ4

γ5

γ6


=



2 8909
1024

− 9485
1024 −

6717
1024

4637
512 + 2261

512
− 55

8 −
37
16

157
32 + 31

32
− 9

4 −
1
4

1


,
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has solution ( 105
512 ,− 389

512 ,− 263
256 , 53

16 ,− 1
8 ,− 5

2 , 1)t, and the linear system

(0
0) 0 (2

1) 0 (4
2) 0 (6

3) 0
0 (1

0) 0 (3
1) 0 (5

2) 0 (7
3)

0 0 (2
0) 0 (4

1) 0 (6
2) 0

0 0 0 (3
0) 0 (5

1) 0 (7
2)

0 0 0 0 (4
0) 0 (6

1) 0
0 0 0 0 0 (5

0) 0 (7
1)

0 0 0 0 0 0 (6
0) 0

0 0 0 0 0 0 0 (7
0)





η0

η1

η2

η3

η4

η5

η6

η7


=



−2(− 9485
1024 + 6717

1024 )

−( 4637
512 −

2261
512 )

−(− 55
8 + 37

16 )−
9485
1024 + 6717

1024
−( 157

32 −
31
32 ) +

4637
512 −

2261
512

−(− 9
4 + 1

4 )−
55
8 + 37

16
−1 + 157

32 −
31
32

− 9
4 + 1

4
1


,

has solution ( 9
16 , 15

16 ,− 377
64 , 1

64 , 151
16 ,− 65

16 ,−2, 1)t. Therefore, the polynomials P6(x) and Q5(x) of Theorem 3 are

P6(x) = x6 − 5
2
− x4

8
+

53
16

x3 − 263
256

x2 − 389
512

x +
105
512

,

and

(x2 − 4)Q5(x) = x7 − 2x6 − 65
16

x5 +
151
16

x4 +
x3

64
− 377

64
x2 +

15
16

x +
9

16
.

It is not difficult to show that P6 and Q5 have real, simple and interlaced roots in (−2, 2) and therefore S11

is a Schur polynomial. The zeros of the polynomials involved are plotted in the following Figure 1.
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Im
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Zeros of P6 (x)

Zeros of Q5(x)

Zeros of P6 (z+1/z)

Zeros of Q5(z+1/z)

Zeros of S11 (z)

Figure 1. Zeros of P6(x), P6(z + 1/z), Q5(x), Q5(z + 1/z) and S11(z).

On the other hand, if T denotes the transformation defined by Equation (5), define

Ŝ(x) := TS(z) = (x− 1)nS
(

x + 1
x− 1

)
.

Then we have the following straightforward Schur analogue of Markov’s parameters criterion for
Hurwitz polynomials.

Proposition 1. Let Sm(z) be a polynomial of degree m with real coefficients such that Sm(1) 6= 0. Then, Sm(z)
is a Schur polynomial if and only if the constants si of the expansion

Ŝa
m(x1/2)

x1/2Ŝs
m(x1/2)

=

{
s0
x −

s1
x2 +

s2
x3 − . . . + s2n−2

x2n−1 −
s2n−1
x2n + . . . , if m = 2n,

s−1 +
s0
x −

s1
x2 +

s2
x3 − . . . + s2n−2

x2n−1 −
s2n−1
x2n + . . . , if m = 2n + 1.
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are such that the matrices

Hn−1 =


s0 s1 . . . sn−1

s1 s2 . . . sn
...

...
...

...
sn−1 sn . . . s2n−2

 , H(1)
n−1 =


s1 s2 . . . sn

s2 s3 . . . sn+1
...

...
...

...
sn sn+1 . . . s2n−1

 , (30)

are positive definite. If m = 2n + 1 it is also required that s−1 > 0.

Proof. Sm(z) is a Schur polynomial if and only if

Ŝs
m(x1/2) = h(x), x−1/2Ŝa

m(x1/2) = g(x),

where f (x) = h(x2) + xg(x2) is a Hurwitz polynomial (see [22]). The result follows from Markov’s
parameters criterion.

Notice that the above means that under the action of the Möbius transformation Equation (5),
the symmetric (resp. asymmetric) part of a Schur polynomial is related to the even (resp. odd) part of
a Hurwitz polynomial.

Example 3. Consider the polynomial S4(z) = z4 − 2z3 + 67
36 z2 − 31

36 z + 13
72 . Then,

Ss
4 =

85
144

z4 − 103
72

z3 +
67
36

z2 − 103
72

z +
85
144

, and Sa
4 =

59
144

z4 − 41
72

z3 +
41
72

z− 59
144

,

and by applying Equation (5) we get

Ŝs
4 =

1
72

(425 + 242z2 + 13z4), Ŝa
4 =

50
9

z + z3.

Thus,

Ŝa
4(x1/2)

x1/2Ŝs
4(x1/2)

=
400 + 72x

425 + 242x + 13x2 =
72

13x
− 12,224

169x2 +
2,560,408

2197x3 −
552,081,136

28,561x4 + · · · ,

and the matrices

H1 =

(
72
13

12,224
169

12,224
169

2,560,408
2197

)
, H(1)

1 =

(
12,224

169
2,560,408

2197
2,560,408

2197
552,081,136

28,561

)
(31)

are positive definite. As a consequence, S4(z) is a Schur polynomial.

4. Conclusions and Further Remarks

We have obtained a criterion in Theorem 3 to determine whether or not a given polynomial
Sm(z) is Schur. To the best of our knowledge, this method is not known in the literature. Notice
that it is a Hermite-Biehler type criterion in the sense that it involves verifying the interlacing of a
pair of polynomials that are obtained from Sm. Our result is an improvement of Theorem 1, since
there it is required to verify the interlacing of two polynomials of degree n, whereas in our method
the interlacing is verified for polynomials of degree m/2 (resp. (m + 1)/2) when n is even (resp.
odd). As an immediate consequence, we also obtain a simple necessary condition for Schur stability in
Corollary 1. A criterion related to the positivity of Hankel matrices is obtained in Proposition 1.
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