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1. Introduction

There is a huge number of papers investigating properties of the so-called Stolarsky (or extended)
two-parametric mean values, defined for positive variables x, y; x 6= y, as

Er,s(x, y) :=
( r(xs − ys)

s(xr − yr)

)1/(s−r)
, rs(r− s) 6= 0.

Those means can be continuously extended on the domain

{(r, s; x, y)|r, s ∈ R; x, y ∈ R+}

by the following

Er,s(x, y) =



(
r(xs−ys)
s(xr−yr)

)1/(s−r)
, rs(r− s) 6= 0;

exp
(
− 1

s +
xs log x−ys log y

xs−ys

)
, r = s 6= 0;(

xs−ys

s(log x−log y)

)1/s
, s 6= 0, r = 0;

√
xy, r = s = 0;

x, y = x > 0,

and in this form has been introduced by Keneth Stolarsky in [1].
Most of the classical two variable means are just special cases of the class E. For example,

E1,2 = x+y
2 is the arithmetic mean, E−r,r = E0,0 =

√
xy is the geometric mean, E0,1 = x−y

log x−log y is the

logarithmic mean, E1,1 = (xx/yy)
1

x−y /e is the identric mean, etc. More generally, the r-th power mean(
xr+yr

2

)1/r
is equal to Er,2r ([2]).

Characteristic properties of Stolarsky means are:

1. Symmetry in variables, Er,s(x, y) = Er,s(y, x);
2. Symmetry in parameters, Er,s(x, y) = Es,r(x, y);
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3. Means Er,s(x, y) are homogeneous of order one i.e, Er,s(tx, ty) = tEs,r(x, y), t > 0.
4. Means Er,s(x, y) are monotone increasing in both parameters r and s.

By two articles ([3,4]) published in Amer.Math. Monthly, this class of means attains popularity
in a wide audience. As a result, great number of papers are produced investigating its most subtle
properties. In this sense we quote here papers [5,6]. A comparison of Stolarsky and Gini means is
given in [7–9], weighted variants in [10,11]. F. Qi in [12] find intervals of r, s where these means are
logarithmically convex/concave, etc.

Furthermore, there are several papers attempting to define an extension of the class E to n, n > 2
variables. Unfortunately, this is done in a highly implicit mode ([5,6,13–15]).

Here is an illustration of this point; J. Merikoski ([13]) has proposed the following generalization
of the Stolarsky mean Er,s to several variables

Er,s(X) :=
[ L(Xs)

L(Xr)

] 1
s−r

, r 6= s,

where X = (x1, · · · , xn) is an n-tuple of positive numbers and

L(Xs) := (n− 1)!
∫

In−1

n

∏
i=1

xsui
i du1 · · · dun−1.

The symbol In−1 stands for the Euclidean simplex which is defined by

In−1 := {(u1, · · · , un−1) : ui ≥ 0, 1 ≤ i ≤ n− 1; u1 + · · ·+ un−1 ≤ 1}.

In this article we shall expose two possible explicit formulae of Stolarsky means in n ≥ 2 variables
which preserve its main properties and coincide for n = 2.

The first one is given by the following
Let Xn = (x1, x2, ..., xn) ∈ Rn

+. Then,

er,s(Xn) = er,s(x1, x2, ..., xn) :=
( r2

s2
xns

1 + xns
2 + ... + xns

n − n(x1x2...xn)s

xnr
1 + xnr

2 + ... + xnr
n − n(x1x2...xn)r

) 1
n(s−r) , rs(s− r) 6= 0,

represents an extension of Stolarsky means to the multi-variable case.

Remark 1. We assume that there exist j, k; 1 ≤ j < k ≤ n, such that xj 6= xk.

It is of interest to examine the inner structure of those means. For example, applying the formula

x3 + y3 + z3 − 3xyz =
1
2
(x + y + z)[(x− y)2 + (y− z)2 + (z− x)2],

we obtain that

er,s(x1, x2, x3) = (Ar,s(x1, x2, x3))
1/3(Br,s(x1, x2, x3))

2/3,

where

Ar,s(x1, x2, x3) :=
( xs

1 + xs
2 + xs

3
xr

1 + xr
2 + xr

3

)1/(s−r)

is the well-known Gini mean, and

Br,s(x1, x2, x3) :=
( r2

s2
(xs

1 − xs
2)

2 + (xs
2 − xs

3)
2 + (xs

3 − xs
1)

2

(xr
1 − xr

2)
2 + (xr

2 − xr
3)

2 + (xr
3 − xr

1)
2

)1/(2(s−r))



Mathematics 2020, 8, 1320 3 of 11

is the new mean in 3 variables which coincides with the Stolarsky mean Er,s(x1, x2) whenever x3 = x1

or x3 = x2.
This notion leads to the second, more general representation of Stolarsky means in many variables.
Let An = (a1, a2, ..., an), Xn = (x1, x2, ..., xn), Yn = (y1, y2, ..., yn); An, Xn, Yn ∈ Rn

+.
Then

Er,s(An; Xn, Yn) :=
( r2

s2
a1(xs

1 − ys
1)

2 + a2(xs
2 − ys

2)
2 + · · ·+ an(xs

n − ys
n)

2

a1(xr
1 − yr

1)
2 + a2(xr

2 − yr
2)

2 + · · ·+ an(xr
n − yr

n)
2

) 1
2(s−r) ,

represents another multi-variable variant of Stolarsky means.
It will be shown in the sequel that both means er,s(Xn) and Er,s(An; Xn, Yn) are monotone

increasing in parameters r and s. An intriguing task is to determine some necessary and sufficient
conditions for their monotonicity in n. Although the solution is relatively simple in the second case
and reduces to the monotonicity of sequences Xn and Yn (independently of An), this question is much
more complicated for the means er,s(Xn).

For example, means e0,0(Xn) are monotone increasing/decreasing in n if and only if
xn ≷ g(z(Xn−1), e0,0(Xn−1)), n ≥ 3, where z(Xn) is the geometric mean of numbers Xn and
g(zn, e0,0(Xn)) := zn(e0,0(Xn)/zn)3(n+1)/(n+2).

2. Results and Proofs

Recall that the Jensen functional Jn(p, x; f ) is defined on an interval I ⊆ R by

Jn(p, x; f ) :=
n

∑
1

pi f (xi)− f (
n

∑
1

pixi),

where f : I → R, x = (x1, x2, · · · , xn) ∈ In and p = {pi}n
1 is a positive weight sequence.

Another well known assertion is the following
Jensen’s inequality: If f is twice continuously differentiable and f ′′ ≥ 0 on an interval I, then f is

convex on I and the inequality

Jn(p, x; f ) =
n

∑
1

pi f (xi)− f (
n

∑
1

pixi) ≥ 0

holds for each x := (x1, ..., xn) ∈ In and any positive weight sequence p := {pi}n
1 with ∑n

1 pi = 1.
The next two properties of Jensen functionals will be of importance in the sequel.

Theorem 1 ([16,17]). Let f , g : I → R be twice continuously differentiable functions. Assume that g is strictly
convex and φ is a continuous and strictly monotone function on I.

Then the expression

φ−1
( Jn(p, x; f )

Jn(p, x; g)

)
, (n ≥ 2),

represents a mean value of the numbers x1, · · · , xn ∈ I, that is

min{x1, · · · , xn} ≤ φ−1
( Jn(p, x; f )

Jn(p, x; g)

)
≤ max{x1, · · · , xn},

if and only if the relation
f ′′(t) = φ(t)g′′(t)

holds for each t ∈ I.
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Theorem 2 ([18]). Let fs be a twice continuously differentiable function on the interval J := (c, d) for each
parameter s ∈ I := (a, b). If s→ f ′′s (x) is log-convex on I for each x ∈ J, then the expression

s→ Φ f (w, x; s) :=
n

∑
1

wi fs(xi)− fs(
n

∑
1

wixi),

is log-convex on I for each x := (x1, ..., xn) ∈ Jn, where w = {wi}n
1 is any positive weight sequence.

Lemma 1. A function F is convex on an interval I if and only if the ratio

F(s)− F(r)
s− r

is monotone increasing in both r and s for r, s ∈ I.

In the following two theorems we shall prove that our expressions er,s(Xn) and Er,s(An; Xn, Yn),
extended to the whole (r, s) plane, are actually means which preserve all main properties of the
ordinary Stolarsky means and coincide with them for n = 2.

Theorem 3. Let,

er,s(x1, x2, ..., xn) =



(
r2(∑n

1 xns
i −n(∏n

1 xi)
s)

s2(∑n
1 xnr

i −n(∏n
1 xi)r)

)1/(n(s−r))
, rs(s− r) 6= 0;(

2
ns2

∑n
1 xns

i −n(∏n
1 xi)

s

n ∑n
1 log2 xi−(∑n

1 log xi)2

)1/(ns)
, r = 0, s 6= 0;

exp
(
−2
ns +

∑n
1 xns

i log xi−(∑n
1 log xi)(∏n

1 xi)
s

∑n
1 xns

i −n(∏n
1 xi)s

)
, r = s 6= 0;

exp
(

n2 ∑n
1 log3 xi−(∑n

1 log xi)
3

3n(n ∑n
1 log2 xi−(∑n

1 log xi)2)

)
, r = s = 0.

Then

1. Expressions er,s(Xn) are means, that is,

min{x1, x2, ..., xn} ≤ er,s(x1, x2, ..., xn) ≤ max{x1, x2, ..., xn}.

2. er,s(Xn) are symmetric in parameters r and s i.e., er,s(Xn) = es,r(Xn).
3. er,s(Xn) are symmetric in all variables.
4. er,s(Xn) are homogeneous of order one.
5. er,s(Xn) are monotone increasing in both parameters r and s.
6. er,s(x1, x2) = Er,s(x1, x2).

Proof. Note that the Properties 2–4 are evident and can be proved directly.
We apply Theorem A for the proof of Property 1.
Namely, choose that g = fr(y) and

f = fs(y) :=

{
(esy − sy− 1)/s2 , s 6= 0;

y2/2 , s = 0.

The conditions of Theorem A are fulfilled with

f ′′(y) = esy, g′′(y) = ery, φ(y) = e(s−r)y, φ−1(y) =
1

s− r
log y,

for r 6= s.
Therefore, with pi = 1/n, we obtain
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min{yi}n
1 ≤

1
s− r

log
( r2

s2
∑n

1 esyi − ne(∑
n
1 yi)s/n

∑n
1 eryi − ne(∑

n
1 yi)r/n

)
≤ max{yi},

that is,

emin{yi}n
1 ≤

( r2

s2
∑n

1 esyi − ne(∑
n
1 yi)s/n

∑n
1 eryi − ne(∑

n
1 yi)r/n

)1/(s−r)
≤ emax{yi}n

1 .

In the case r = 0, s 6= 0, we have

f ′′(y) = esy, g′′(y) = 1, φ(y) = esy, φ−1(y) =
1
s

log y.

Hence,

emin{yi}n
1 ≤

(2n
s2

∑n
1 esyi − ne(∑

n
1 yi)s/n

n ∑n
1 y2

i − (∑n
1 yi)2

)1/s
≤ emax{yi}n

1 .

Now, change of variables eyi = xi, s→ ns, r → nr, evidently leads to the desired results.
For the proof of Property 5. we shall use Theorem B.
By the function fs(y) defined above, we have that f ′′s (y) = esy is log-convex for s ∈ R.
Hence, by Theorem B we obtain that the form

F(s) = ∑n
1 esyi − ne(∑

n
1 yi)s/n

ns2 ,

is log-convex on R.
Since a positive function is log-convex on I if its logarithm is convex on I, applying Lemma 1 we

have that the form

log F(s)− log F(r)
s− r

= log
( r2

s2
∑n

1 esyi − ne(∑
n
1 yi)s/n

∑n
1 eryi − ne(∑

n
1 yi)r/n

)1/(s−r)
,

is monotone increasing in both r and s.
The same change of variables eyi = xi, s→ ns, r → nr, proves the validity of Property 5.
Finally, for the Property 6. of Theorem 3, we have

er,s(x1, x2) =
( r2

s2
x2s

1 + x2s
2 − 2(x1x2)

s

x2r
1 + x2r

2 − 2(x1x2)r

)1/(2(s−r))

=
( r2

s2
(xs

1 − xs
2)

2

(xr
1 − xr

2)
2

)1/(2(s−r))
=
∣∣∣ r
s
(xs

1 − xs
2)

(xr
1 − xr

2)

∣∣∣1/(s−r)
= Er,s(x1, x2).

Theorem 4. Let,

Er,s(An; Xn, Yn) =



(
r2(∑n

1 ai(xs
i−ys

i )
2

s2(∑n
1 ai(xr

i−yr
i )

2

)1/(2(s−r))
, rs(s− r) 6= 0;(

∑n
1 ai(xs

i−ys
i )

2

s2 ∑n
1 ai(log xi−log yi)2

)1/(2s)
, r = 0, s 6= 0;

exp
(
−1
s +

∑n
1 ai(xs

i−ys
i )(xs

i log xi−ys
i log yi)

∑n
1 ai(xs

i−ys
i )

2

)
, r = s 6= 0;

exp
(

∑n
1 ai(log xi−log yi)(log2 xi−log2 yi)

2 ∑n
1 ai(log xi−log yi)2

)
, r = s = 0.

Then

1. Functions Er,s(An; Xn, Yn) are means.
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2. Means Er,s(An; Xn, Yn) are symmetric in parameters r and s.
3. Means Er,s(An; Xn, Yn) are symmetric in variables, that is, En

r,s(An; Xn, Yn) = En
r,s(An; Yn, Xn).

4. Means Er,s(An; Xn, Yn) are homogeneous of order one.
5. Er,s(An; Xn, Yn) are monotone increasing in both parameters r and s.
6. Er,s(a1; x1, y1) = Er,s(x1, y1).

Remark 2. We assume that there exists i, 1 ≤ i ≤ n, such that xi 6= yi.

Proof. Properties 2–6 are self-evident. For the rest of the proof we can assume that xi > yi, i = 1, 2, ..., n.
Otherwise, we put xi ∈ Yn, yi ∈ Xn.

Furthermore, because of symmetry, we take s ≥ r.
To prove Property 1, note that from the definition of Stolarsky means, for s > r 6= 0 and each

i = 1, 2, ..., n, the bounds

yi ≤
( r(xs

i − ys
i )

s(xr
i − yr

i )

)1/(s−r)
≤ xi.

are known.
Hence,

(s(xr
i − yr

i ))
2y2(s−r)

i ≤ (r(xs
i − ys

i ))
2 ≤ (s(xr

i − yr
i ))

2x2(s−r)
i ,

and

s2
n

∑
i=1

ai(xr
i − yr

i )
2y2(s−r)

i ≤ r2
n

∑
i=1

ai(xs
i − ys

i )
2 ≤ s2

n

∑
i=1

ai(xr
i − yr

i )
2x2(s−r)

i ,

wherefrom one easily obtains that

s2(min{yi})2(s−r)
n

∑
i=1

ai(xr
i − yr

i )
2 ≤ r2

n

∑
i=1

ai(xs
i − ys

i )
2 ≤ s2(max{xi})2(s−r)

n

∑
i=1

ai(xr
i − yr

i )
2,

i.e.,

min{yi} ≤
( r2(∑n

1 ai(xs
i − ys

i )
2

s2(∑n
1 ai(xr

i − yr
i )

2

)1/2(s−r)
≤ max{xi}, i = 1, 2, ..., n.

The other cases follow simultaneously as a results of limit processes inside the definite
fixed bounds.

For example, for r = s = 0, we have

E0,0(An; Xn, Yn) = exp
(∑n

1 ai(log xi − log yi)(log2 xi − log2 yi)

2 ∑n
1 ai(log xi − log yi)2

)
= exp

(∑n
1 ai(log xi − log yi)

2 log(
√

xiyi)

∑n
1 ai(log xi − log yi)2

)
,

and applying the inequality

min{yi} ≤ yi ≤
√

xiyi ≤ xi ≤ max{xi},

we obtain

min{yi} ≤ E0,0(An; Xn, Yn) ≤ max{xi}, i = 1, 2, ..., n.
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Therefore, the fact that expressions Er,s(An; Xn, Yn) are means is proved.

For the proof of Property 5., let us recall some basic facts from Convexity Theory.
A function f is convex on an interval I if it is continuous on I and it is Jensen convex on I, that is

for all x, y ∈ I,

f (x) + f (y)
2

≥ f
( x + y

2

)
.

Lemma 2. A positive function g is log-convex on an interval I if it is continuous on I and the inequality

α2g(s) + 2αβg(
s + t

2
) + β2g(t) ≥ 0,

holds for all α, β ∈ R and s, t ∈ I.

Proof. The above inequality holds for all α, β ∈ R if and only if

g(s)g(t) ≥ g2(
s + t

2
),

that is

log g(s) + log g(t)
2

≥ log g
( s + t

2

)
.

This means that log ◦g is convex in the Jensen sense, and hence the continuity of g implies that it
is log-convex.

Lemma 3. Let the function h(x, y; s), x > y > 0, be defined as

h(s) = h(x, y; s) :=

{ xs−ys

s , s 6= 0;

log(x/y) , s = 0.

Then h(s) is log-convex on s ∈ R.

Proof. Indeed, h(s) is continuous on s ∈ R and the inequality

α2h(s) + 2αβh(
s + t

2
) + β2h(t) ≥ 0

holds, because

α2h(s) + 2αβh(
s + t

2
) + β2h(t)

= α2
∫ x

y
us−1du + 2αβ

∫ x

y
u

s+t
2 −1du + β2

∫ x

y
ut−1du

=
∫ x

y
(αus/2 + βut/2)2u−1du.

Therefore Lemma 2 can be applied.

Lemma 4. If, for positive u, v, w, the inequality

α2u + 2αβv + β2w ≥ 0,

holds for each α, β ∈ R, then also

α2up + 2αβvp + β2wp ≥ 0,
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holds for each p > 0.

Proof. Obvious. Now we are enabled to prove Property 5. of Theorem 4. For this cause, denote

gn(s) =
n

∑
1

aih2
i (s),

where hi(s) := h(xi, yi; s) and ai, i = 1, 2, ..., n are positive numbers.
By Lemmas 2–4, we see that gn(s) is log-convex in s, s ∈ R, since

α2gn(s) + 2αβgn(
s + t

2
) + β2gn(t) =

n

∑
1

ai(α
2h2

i (s) + 2αβh2
i (

s + t
2

) + β2h2
i (t)) ≥ 0.

Therefore the function F(s) = log gn(s) is convex and, applying Lemma 1, we obtain that

log gn(s)− log gn(r)
s− r

= log
( gn(s)

gn(r)

) 1
s−r

= 2 log Er,s(An; Xn, Yn),

is monotone increasing in both r and s, which is equivalent with the Property 5 in the case s > r 6= 0.
By continuity, the proof of other cases follows immediately. For example, since for any ε > 0

we have

Er+ε,s+ε(An; Xn, Yn) ≥ Er,s(An; Xn, Yn),

letting r → s, we obtain

Es+ε,s+ε(An; Xn, Yn) ≥ Es,s(An; Xn, Yn),

that is, Es,s(An; Xn, Yn) is monotone increasing in s.

Our task in the sequel is to investigate under what conditions the means er,s(Xn) and
Er,s(An; Xn, Yn) are monotone increasing/decreasing in n.

For this cause we need the following two lemmas.

Lemma 5. Stolarsky means Er,s(x, y) are monotone increasing in both variables x and y.

This is the well-known assertion ([1]).

Lemma 6. For two given sequences {un} and {vn} of positive numbers, denote

wn :=
un

vn
; Wn :=

u1 + u2 + ... + un

v1 + v2 + ... + vn
.

If the sequence wn is monotone decreasing/increasing, then the sequence Wn is also monotone
decreasing/increasing.

Proof. Let wn be a decreasing sequence. The other case can be treated similarly.
We prove firstly that vn+1 ∑n

1 ui ≥ un+1 ∑n
1 vi.

Indeed,

vn+1

n

∑
1

ui = vn+1

n

∑
1

viwi ≥ vn+1wn+1

n

∑
1

vi = un+1

n

∑
1

vi.

Hence,
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n

∑
1

ui

n+1

∑
1

vi =
n

∑
1

ui

n

∑
1

vi + vn+1

n

∑
1

ui ≥
n

∑
1

ui

n

∑
1

vi + un+1

n

∑
1

vi =
n

∑
1

vi

n+1

∑
1

ui,

i.e., Wn ≥Wn+1.

Theorem 5. If both sequences {Xn} and {Yn} are monotone decreasing (increasing), then means
Er,s(An; Xn, Yn) are monotone decreasing (increasing)in n.

Proof. We shall prove the “decreasing” part of Theorem 5. The proof of the other part is analogous.
Hence, we assume that both sequences {Xn} and {Yn} are monotone decreasing. In the case

s > r 6= 0, denote

un := anr2(xs
n − ys

n)
2; vn := ans2(xr

n − yr
n)

2.

By Lemma 5, we have

wn =
un

vn
=

r2(xs
n − ys

n)
2

s2(xr
n − yr

n)
2 ≥

r2(xs
n+1 − ys

n+1)
2

s2(xr
n+1 − yr

n+1)
2 = wn+1.

Therefore the sequence wn is monotone decreasing and, by Lemma 6, this implies Wn ≥ Wn+1,
that is,

r2

s2
a1(xs

1 − ys
1)

2 + a2(xs
2 − ys

2)
2 + · · ·+ an(xs

n − ys
n)

2

a1(xr
1 − yr

1)
2 + a2(xr

2 − yr
2)

2 + · · ·+ an(xr
n − yr

n)
2

≥ r2

s2

a1(xs
1 − ys

1)
2 + a2(xs

2 − ys
2)

2 + · · ·+ an(xs
n − ys

n)
2 + an+1(xs

n+1 − ys
n+1)

2

a1(xr
1 − yr

1)
2 + a2(xr

2 − yr
2)

2 + · · ·+ an(xr
n − yr

n)
2 + an+1(xr

n+1 − yr
n+1)

2 .

Since s > r, this is equivalent to Er,s(An; Xn, Yn) ≥ Er,s(An+1; Xn+1, Yn+1).
In the cases r = s 6= 0, s > 0 = r and r = s = 0 one should take

un = an(xs
n − ys

n)(xs
n log xi − ys

n log yi), vn = an(xs
n − ys

n)
2;

un = an(xs
n − ys

n)
2, vn = s2an(log xn − log yn)

2;

un = an(log xn − log yn)(log2 xn − log2 yn), vn = 2an(log xn − log yn)
2,

respectively, and proceed as above.

On the other hand, the problem of monotonicity in n for means er,s(Xn) seems significantly harder.
We are able to solve it only in the simplest case r = s = 0.

Theorem 6. The means e0,0(Xn) are monotone increasing/decreasing in n if and only if

xn ≷ z(Xn−1)(e0,0(Xn−1)/z(Xn−1))
3n/(n+1), n ≥ 3,

where z(Xn) denotes the geometric mean of numbers Xn.

Proof. We have

log e0,0(Xn) =
bn(Xn)

3an(Xn)
,

with
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an(Xn) =
1
n

n

∑
1

log2 xi −
( 1

n

n

∑
1

log xi

)2
=

1
n

n

∑
1

log2(xi/z(Xn)) ≥ 0,

and

bn(Xn) =
1
n

n

∑
1

log3 xi −
( 1

n

n

∑
1

log xi

)3
.

Note that for xn = z(Xn−1) we have e0,0(Xn) = e0,0(Xn−1). Therefore by Taylor expansion around
this point, we obtain

an(Xn) =
n− 1

n
[an−1(Xn−1) +

1
n

log2(xn/z(Xn−1))],

and

bn(Xn) =
n− 1

n
[bn−1(Xn−1) +

3 log z(Xn−1)

n
log2(xn/z(Xn−1)) +

n + 1
n2 log3(xn/z(Xn−1))].

Since bn−1(Xn−1)/3an−1(Xn−1) = log e0,0(Xn−1), we finally get

log e0,0(Xn)− log e0,0(Xn−1) =
bn(Xn)

3an(Xn)
− bn−1(Xn−1)

3an−1(Xn−1)

=
log2(xn/z(Xn−1))

3nan(Xn)
[3 log z(Xn−1) +

n + 1
n

log(xn/z(Xn−1))− bn−1(Xn−1)/an−1(Xn−1)],

and the proof follows.

3. Conclusions

In this article we give two explicit generalizations of Stolarsky means to the multi-variable case
and proved that they preserve all main properties of the original means. Let us note that other subtle
properties are not equally transposed. For example, log-convexity of Er,s(x1, x2) entirely depends on
parameters r, s ([12]), but in the case of means Br,s(x1, x2, x3), mentioned in the Introduction, it also
depends on x3 ≶

√
x1x2.

Furthermore, many open questions can be proposed. For example, is monotone increase of the
sequences {Xn} and {Yn} necessary for Er,s(An; Xn, Yn) to be increasing in n?

Or, is the monotonicity in variables possible for the means er,s(Xn) only if n = 2 or n = 3?
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