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Abstract: Most existing fuzzy AHP (FAHP) methods use triangular fuzzy numbers to approximate the
fuzzy priorities of criteria, which is inaccurate. To obtain accurate fuzzy priorities, time-consuming
alpha-cut operations are usually required. In order to improve the accuracy and efficiency of
estimating the fuzzy priorities of criteria, the piecewise linear fuzzy geometric mean (PLFGM)
approach is proposed in this study. The PLFGM method estimates the α cuts of fuzzy priorities and
then connects these α cuts with straight lines. As a result, the estimated fuzzy priorities will have
piecewise linear membership functions that resemble the real shapes. The PLFGM approach has
been applied to the identification of critical features for a smart backpack design. According to the
experimental results, the PLFGM approach improved the accuracy and efficiency of estimating the
fuzzy priorities of these critical features by 33% and 80%, respectively.

Keywords: fuzzy analytic hierarchy process; fuzzy geometric mean; alpha-cut operations;
piecewise linear

1. Introduction

The analytic hierarchy process (AHP), proposed by Saaty [1], is a well-known multi-criteria
decision-making method. AHP is based on the pairwise comparison of criteria, which is a subjective
process. To better consider such subjectivity, fuzzy logic has been incorporated into AHP, which resulted
in various fuzzy AHP (FAHP) methods [2]. FAHP have been extensively applied to a number of topics
in various fields, e.g., supplier selection [3–6], project selection and risk assessment/management [7,8],
personnel selection [9,10], failure mode and effect analysis [11,12], strategy analysis and technology
selection [13–16], etc.

In a FAHP problem, deriving the values of fuzzy eigenvalue and eigenvector requires a number
of fuzzy multiplication operations, which is a time-consuming task [17]. For this reason, most existing
FAHP methods [18–26] estimate, rather than derive, the values of fuzzy eigenvalue and eigenvector.
To improve both the efficiency and accuracy of solving a FAHP problem, a piecewise linear fuzzy
geometric mean (PLFGM) approach is proposed in this study. The PLFGM approach can be viewed as
a hybrid of alpha-cut operations (ACO) [18] and fuzzy geometric mean (FGM) [22]. In the PLFGM
approach, some α cuts of fuzzy eigenvalue and eigenvector are estimated using FGM. Then, these α
cuts are connected with straight lines. As a result, the membership functions of the estimated fuzzy
eigenvalue and eigenvector become piecewise linear functions, rather than triangular functions. In this
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way, the estimated fuzzy eigenvalue and eigenvector better approximate their exact values. In addition,
the required calculations can be done quickly, even for a large-scale FAHP problem. The novelty of the
proposed methodology resides in the following:

(1) The priority of a criterion is approximated with a polygon fuzzy number, rather than a triangular
fuzzy number (TFN).

(2) The commonly used FGM method is modified, and the PLFGM approach is proposed to improve
the accuracy of deriving the priorities of criteria.

(3) The proposed PLFGM approach is similar in nature to the ACO method, but much more efficient
than it.

(4) The center-of-gravity (COG) [27] of a polygon fuzzy number is derived.

The remainder of this paper is organized as follows. Section 2 is dedicated to the literature review.
Section 3 is a preliminary of some existing FAHP methods. Section 4 introduces the proposed PLFGM
approach. Section 5 details the application of the PLFGM approach to the identification of critical
features of a smart backpack design. Several existing methods were also applied to the same problem
for comparison. Section 6 concludes this study and puts forth some topics for future investigation.

2. Related Work

In theory, the fuzzy eigenvalue and eigenvector of a fuzzy judgment matrix can be derived
using ACO [18]. To enhance the computational efficiency, some researchers modified the definition
of consistency, so as to derive fuzzy eigenvalue and vector in a different way (i.e., not fuzzy
eigenanalysis) [19,20]. In addition, many existing FAHP methods approximate, rather than derive, the
values of fuzzy eigenvalue and eigenvector using techniques such as fuzzy extent analysis (FEA) [21],
FGM [22], and the fuzzy inverse of column sum (FICSM) [23]. However, such approximation may
lead to incorrect decisions [24,25]. To address this problem, Chen et al. [26] modified the ACO method
and proposed the approximating alpha-cut operations (xACO) method that derived the values of
fuzzy eigenvalue and eigenvector without enumerating all possible α cuts of a fuzzy judgment matrix.
However, Chen et al.’s method was still time-consuming for a large-scale FAHP problem.

In the recent literature, Sirisawat and Kiatcharoenpol [28] ranked a few solutions for reverse
logistics barriers using technique for order preference by similarity to ideal solution (TOPSIS). Factors
critical to the ranking process were prioritized by solving a FAHP problem using the FEA method.
Chen et al. [29] considered a FAHP problem as a fuzzy collaborative forecasting process [30–33], in
which the fuzzy priorities of criteria, rather than experts’ fuzzy pairwise comparison results, were
aggregated. Lyu et al. [34] compared the effects of various risks on constructing a metro tunnel, for
which the FEA method was applied to solve the FAHP problem. Chen and Wu [35] decomposed
an inconsistent fuzzy judgment matrix into several consistent fuzzy subjudgment matrixes, so as
to assess the suitability of a smart technology application for e-health. Boral et al. [36] combined
FAHP and fuzzy multi-attribute ideal deal comparative analysis (fuzzy MAIRCA) for comparing risk
factors in conducting a failure mode and effect analysis. For evaluating the sustainability of a smart
technology application to mobile health care, Chen [37] applied the FGM method to aggregate the
pairwise comparison results by multiple experts, and then derived the fuzzy priorities of criteria using
the ACO method. The differences between the proposed methodology and some existing methods are
summarized in Table 1.
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Table 1. Differences between the proposed methodology and some existing methods.

Method Type of Eigenvalue
and Eigenvector

Shape of
Membership

Functions
Efficiency Accuracy

FGM [22] Fuzzy Triangular Very high Low

FEA [21,28,34] Crisp - Very high Very low

FICSM [23] Fuzzy Triangular Very high Low

ACO [18,37] Fuzzy Nonlinear Very low Very high

xACO [26] Fuzzy Logarithmic Low ~ moderate High

The proposed
methodology Fuzzy Piecewise Linear Very high Moderate ~ High

3. Preliminary

3.1. FAHP

In a FAHP problem, a decision maker compares the relative priority of a criterion over that of
another using linguistic terms such as “as equal as,” “weakly more important than,” “strongly more
important than,” “very strongly more important than,” and “absolutely more important than.” These
linguistic terms are usually mapped to TFNs within [1,9] (see Table 2) [38,39].

Table 2. Linguistic terms for expressing relative priorities.

Symbol Linguistic Term TFN

L1 As equal as (1, 1, 3)
L2 As equal as or weakly more important than (1, 2, 4)
L3 Weakly more important than (1, 3, 5)
L4 Weakly or strongly more important than (2, 4, 6)
L5 Strongly more important than (3, 5, 7)
L6 Strongly or very strongly more important than (4, 6, 8)
L7 Very strongly more important than (5, 7, 9)
L8 Very or absolutely strongly more important than (6, 8, 9)
L9 Absolutely more important than (7, 9, 9)

Based on pairwise comparison results, the fuzzy judgment matrix Ãn×n = [̃ai j] is constructed as:

ã ji = (a ji1, a ji2, a ji3)

= 1/ãi j
� (1/ai j3, 1/ai j2, 1/ai j1)

(1)

ãii = 1 (2)

The fuzzy eigenvalue and eigenvector of Ã, indicated with λ̃ and x̃ respectively, satisfy [40]:

det
(
Ã(−)λ̃I

)
= 0 (3)

and
(Ã(−)λ̃I)(×)̃x = 0 (4)

where (−) and (×) denote fuzzy subtraction and multiplication, respectively. To derive the values of λ̃
and x̃, a number of fuzzy multiplication operations need to be performed. However, the multiplication
of TFNs does not yield a TFN [41]. Therefore, λ̃ and x̃ are not TFNs anymore, as illustrated in Figure 1.
Approximating them with TFNs may lead to incorrect decisions.
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Figure 1. Non-TFN nature of a fuzzy eigenvalue.

3.2. ACO

In the ACO method, fuzzy parameters and variables in Equations (3) and (4) are replaced with
their α cuts:

det(Ã(α) − λ̃(α)I) = 0 (5)

(Ã(α) − λ̃(α)I)̃x(α) = 0 (6)

Each α cut is an interval:
ãi j(α) = [aL

ij(α), aR
ij(α)] (7)

λ̃(α) = [λL(α), λR(α)] (8)

x̃(α) = [xL(α), xR(α)] (9)

If α takes 11 possible values (0, 0.1, . . . , 1), Equations (5) and (6) must be solved 11·2Cn
2 times to

derive the membership functions of fuzzy eigenvalue and eigenvector as [26]:

λL(α) = min
det([a∗i j(α)]−λt(α)I)=0

(λt(α)) (10)

λR(α) = max
det([a∗i j(α)]−λt(α)I)=0

(λt(α)) (11)

xL(α) = min
([a∗i j(α)−λt(α)I)xt(α)=0

(xt(α)) (12)

xR(α) = max
([a∗i j(α)−λt(α)I)xt(α)=0

(xt(α)) (13)

where * = L or R. λL
t (α), λ

R
t (α), xL

t (α), and xR
t (α) are the results derived from the t-th combination; t =

1~11·2Cn
2 . Although the ACO method can derive the membership functions of fuzzy eigenvalue and

eigenvector accurately, it is time-consuming.
Based on x̃, the fuzzy priorities of criteria can be derived as [40]:

w̃i = x̃i
n∑

j=1
x̃ j

= 1

1+
∑
j,i

x̃ j
x̃i

(14)



Mathematics 2020, 8, 1319 5 of 18

In addition, based on λ̃max, fuzzy consistency ratio can be assessed as [40]:

C̃R =

λ̃max−n
n−1

RI
(15)

where RI random consistency index. If C̃R ≤ 0.1, then the decision maker’s pairwise comparison
results are consistent. Neither w̃i nor C̃R are TFNs [26].

The COG method can be applied to defuzzify a fuzzy priority as [27]:

COG(w̃i) =

∫ 1
0 xµw̃i

(x)dx∫ 1
0 µw̃i

(x)dx
(16)

However, the ACO method takes samples uniformly along the y axis, while COG requires that
samples be taken regularly along the x axis [26]. To resolve this discrepancy, the range of w̃i can be
partitioned into Γ equal intervals [42]:

w̃i= {[
Γ − η+ 1

Γ
wL

i (0) +
η− 1

Γ
wR

i (0).. ,
Γ − η

Γ
wL

i (0) +
η

Γ
wR

i (0)]
∣∣∣∣∣ η = 1 ∼ Γ} (17)

The center of the η-th interval is indicated with Ci(η):

Ci(η) = 1
2 (

Γ−η+1
Γ wL

i (0) +
η−1

Γ wR
i (0) +

Γ−η
Γ wL

i (0) +
η
Γ wR

i (0))

=
2Γ−2η+1

2Γ wL
i (0) +

2η−1
2Γ wR

i (0)
(18)

The membership of Ci(η) is determined by interpolating those of the two closest α cuts of w̃i:

µw̃i
(Ci(η)) =

Ci(η)− max
w∗i (α)≤Ci(η)

w∗i (α)

min
w∗i (α)≥Ci(η)

w∗i (α)− max
w∗i (α)≤Ci(η)

w∗i (α)
· min

w∗i (α)≥Ci(η)
α

+

min
w∗i (α)≥Ci(η)

w∗i (α)−Ci(η)

min
w∗i (α)≥Ci(η)

w∗i (α)− max
w∗i (α)≤Ci(η)

w∗i (α)
· max

w∗i (α)≤Ci(η)
α

(19)

where * can be R or L. Then, the COG of w̃i is calculated based on the centers of the intervals:

COG(w̃i) =

Γ∑
η=1

(µw̃i
(Ci(η))Ci(η))

Γ∑
η=1

µw̃i
(Ci(η))

(20)

3.3. FGM

The FGM method estimates the fuzzy priority of criterion i as [38]:

w̃i �

n

√
n∏

j=1
ãi j

n∑
k=1

n

√
n∏

j=1
ãkj

(21)

When w̃i is approximated with a TFN, i.e., w̃i = (wi1, wi2, wi3), the following theorem holds.
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Theorem 1 ([39]).

wi1 �
1

1 +
∑
k,i

n

√
n∏

j=1
akj3

n

√
n∏

j=1
ai j1

(22)

wi2 �
1

1 +
∑
k,i

n

√
n∏

j=1
akj2

n

√
n∏

j=1
ai j2

(23)

wi3 �
1

1 +
∑
k,i

n

√
n∏

j=1
akj1

n

√
n∏

j=1
ai j3

(24)

The COG method can be applied to defuzzify a TFN-based fuzzy priority as [27]

COG(w̃i) =
wi1 + wi2 + wi3

3
(25)

The fuzzy maximal eigenvalue λ̃max can be estimated as [38]

λ̃max �
1
n

n∑
i=1

n∑
j=1

(̃ai j(×)w̃ j)

w̃i
. (26)

The following theorem holds if λ̃max is approximated with a TFN.

Theorem 2 ([39]).

λmax,1 � 1 +
1
n

n∑
i=1

∑
j,i

ai j1w j1

wi3
(27)

λmax,2 � 1 +
1
n

n∑
i=1

∑
j,i

ai j2w j2

wi2
(28)

λmax,3 � 1 +
1
n

n∑
i=1

∑
j,i

ai j3w j3

wi1
. (29)

Based on λ̃max, fuzzy consistency ratio, in terms of a TFN, can be evaluated according to Equation
(15) as

CR1 =

λmax,1−n
n−1

RI
(30)

CR2 =

λmax,2−n
n−1

RI
(31)

CR3 =

λmax,3−n
n−1

RI
. (32)
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4. The PLFGM Approach

4.1. Assumptions and Limitations

The following assumptions are made in this study:

(1) The decision-maker is able to compare the relative priorities of criteria in pairs.
(2) Pairwise comparison results are consistent.
(3) An efficient ACO-based method for solving large-scale FAHP problems is still lacking.

In addition, the proposed PLFGM approach is subject to the following limitations:

(1) The PLFGM approach can only improve the accuracy of α cuts when α is not equal to 0 or 1.
(2) When pairwise comparison results are inconsistent, the effect of the PLFGM method is limited.
(3) When the uncertainty of pairwise comparison results is not high, the effect of the PLFGM method

is also limited.

A flowchart is provided in Figure 2 to illustrate the procedure of the PLFGM approach.
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Figure 2. Procedure of the proposed methodology.

4.2. Piecewise Linear Membership Functions

Letting the left and right α cuts of w̃i be indicated with wL
i (α) and wR

i (α), respectively. According
to Theorem 1:

wL
i (α) �

1

1 +
∑
k,i

n

√
n∏

j=1
aR

kj(α)

n

√
n∏

j=1
aL

ij(α)

(33)
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wR
i (α) �

1

1 +
∑
k,i

n

√
n∏

j=1
aL

kj(α)

n

√
n∏

j=1
aR

ij(α)

(34)

In PLFGM, a fuzzy priority is estimated by connecting some of its α cuts with straight lines, as
illustrated in Figure 3, in which the membership function on either side is approximated by connecting
four α cuts with straight lines [43]. FGM is a special case of PLFGM because only the α cuts when α = 0
and 1 are connected.
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An example is provided in Figure 4 that illustrates the differences among ACO, xACO, FGM,
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4.3. Defuzzification

To defuzzify a fuzzy priority estimated using the PLFGM approach, the following theorems
are helpful:

Theorem 3 ([6]). The integral of a non-normal trapezoidal fuzzy number (TrFN) P̃, shown in Figure 5, is:∫ x2

x1

µP̃(x)(x)dx =
µ2x2

2 + µ1x2
2 − 2µ2x1x2 + µ1x2

1 − 2µ1x1x2 + µ2x2
1

2(x2 − x1)
(35)



Mathematics 2020, 8, 1319 10 of 18Mathematics 2020, 8, x FOR PEER REVIEW 10 of 18 

 

 

Figure 5. A non-normal TrFN. 

Theorem 4 ([6]). 

2

1

3 3 2 3 3 2
2 2 1 2 2 1 2 2 1 1 1 1 1 2

( )
2 1

2 3 2 3( )
6( )

x
P xx

x x x x x x x xx x dx
x x

μ μ μ μ μ μμ + − + + −
=

−  . (36) 

A fuzzy priority estimated using the PLFGM approach can be decomposed into several non-
normal TrFNs, as illustrated in Figure 6. In this figure, there are four non-normal TrFNs, whose corner 
data are summarized in Table 3. Then, the defuzzified value of iw  can be derived by applying 
Theorems 3 and 4 as follows. 

 
Figure 6. Decomposing a fuzzy priority estimated using PLFGM into several non-normal TrFNs. 

Table 3. Corner data of the non-normal TrFNs. 

 I II III IV 

1x  (0)Lwi  (0.5)Lwi  *(1)wi  (0.5)Rwi  

2x  (0.5)Lwi  *(1)wi  (0.5)Rwi  (0)Rwi  

1μ  0 0.5 1 0.5 

2μ  0.5 1 0.5 0 

  

x

μ(x)

0                                      x1 x2

μ2

μ1

~
P

x

μ(x)

1

0.5

0

~wi

I

II III

IV

Figure 5. A non-normal TrFN.

Theorem 4 ([6]).∫ x2

x1

xµP̃(x)(x)dx =
2µ2x3

2 + µ1x3
2 − 3µ2x1x2

2 + µ2x3
1 + 2µ1x3

1 − 3µ1x2
1x2

6(x2 − x1)
. (36)

A fuzzy priority estimated using the PLFGM approach can be decomposed into several non-normal
TrFNs, as illustrated in Figure 6. In this figure, there are four non-normal TrFNs, whose corner data are
summarized in Table 3. Then, the defuzzified value of w̃i can be derived by applying Theorems 3 and
4 as follows.
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Table 3. Corner data of the non-normal TrFNs.

I II III IV

x1 wL
i (0) wL

i (0.5) w∗i (1) wR
i (0.5)

x2 wL
i (0.5) w∗i (1) wR

i (0.5) wR
i (0)

µ1 0 0.5 1 0.5
µ2 0.5 1 0.5 0
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Theorem 5. Let w̃i be a polygonal fuzzy number as shown in Figure 6. Then the COG of w̃i is:

COG(w̃i) =

wL
i (0.5)3γ2γ3γ4 − 1.5wL

i (0)w
L
i (0.5)2γ2γ3γ4 + 0.5wL

i (0)
3γ2γ3γ4 + 2.5w∗i (1)

3γ1γ3γ4

−3wL
i (0.5)w∗i (1)

2γ1γ3γ4 + 2wL
i (0.5)3γ1γ3γ4 − 1.5wL

i (0.5)2w∗i (1)γ1γ3γ4 + 2wR
i (0.5)3γ1γ2γ4

−1.5w∗i (1)w
R
i (0.5)2γ1γ2γ4 + 2.5w∗i (1)

3γ1γ2γ4 − 3w∗i (1)
2wR

i (0.5)γ1γ2γ4 + 0.5wR
i (0)

3γ1γ2γ3

+wR
i (0.5)3γ1γ2γ3 − 1.5wR

i (0.5)2wR
i (0)γ1γ2γ3

1.5wL
i (0.5)2γ2γ3γ4 − 3wL

i (0)w
L
i (0.5)γ2γ3γ4 + 1.5wL

i (0)
2γ2γ3γ4 + 7.5w∗i (1)

2γ1γ3γ4

−9wL
i (0.5)w∗i (1)γ1γ3γ4 + 4.5wL

i (0.5)2γ1γ3γ4 + 7.5wR
i (0.5)2γ1γ2γ4 − 9w∗i (1)w

R
i (0.5)γ1γ2γ4

+4.5w∗i (1)
2γ1γ2γ4 + 1.5wR

i (0)
2γ1γ2γ3 + 1.5wR

i (0.5)2γ1γ2γ3 − 3wR
i (0.5)wR

i (0)γ1γ2γ3

(37)

where γ1 = wL
i (0.5) −wL

i (0); γ2 = w∗i (1) −wL
i (0.5); γ3 = wR

i (0.5) −w∗i (1); γ4 = wR
i (0) −wR

i (0.5).

Proof.

COG(w̃i) =

∫
xµw̃i

(x)dx∫
µw̃i

(x)dx

=

∫
x∈I xµw̃i

(x)dx+
∫

x∈II xµw̃i
(x)dx+

∫
x∈III xµw̃i

(x)dx+
∫

x∈IV xµw̃i
(x)dx∫

x∈I µw̃i
(x)dx+

∫
x∈II µw̃i

(x)dx+
∫

x∈III µw̃i
(x)dx+

∫
x∈IV µw̃i

(x)dx

=

wL
i (0.5)3

−1.5wL
i (0)w

L
i (0.5)2+0.5wL

i (0)
3

6wL
i (0.5)−6wL

i (0)

+
2.5w∗i (1)

3
−3wL

i (0.5)w∗i (1)
2+2wL

i (0.5)3
−1.5wL

i (0.5)2w∗i (1)

6w∗i (1)−6wL
i (0.5)

+
2wR

i (0.5)3
−1.5w∗i (1)w

R
i (0.5)2+2.5w∗i (1)

3
−3w∗i (1)

2wR
i (0.5)

6wR
i (0.5)−6w∗i (1)

+
0.5wR

i (0)
3+wR

i (0.5)3
−1.5wR

i (0.5)2wR
i (0)

6wR
i (0)−6wR

i (0.5)

0.5wL
i (0.5)2

−wL
i (0)w

L
i (0.5)+0.5wL

i (0)
2

2wL
i (0.5)−2wL

i (0)

+
2.5w∗i (1)

2
−3wL

i (0.5)w∗i (1)+1.5wL
i (0.5)2

2w∗i (1)−2wL
i (0.5)

+
2.5wR

i (0.5)2
−3w∗i (1)w

R
i (0.5)+1.5w∗i (1)

2

2wR
i (0.5)−2w∗i (1)

+
0.5wR

i (0)
2+0.5wR

i (0.5)2
−wR

i (0.5)wR
i (0)

2wR
i (0)−2wR

i (0.5)

=

wL
i (0.5)3γ2γ3γ4 − 1.5wL

i (0)w
L
i (0.5)2γ2γ3γ4 + 0.5wL

i (0)
3γ2γ3γ4 + 2.5w∗i (1)

3γ1γ3γ4

−3wL
i (0.5)w∗i (1)

2γ1γ3γ4 + 2wL
i (0.5)3γ1γ3γ4 − 1.5wL

i (0.5)2w∗i (1)γ1γ3γ4 + 2wR
i (0.5)3γ1γ2γ4

−1.5w∗i (1)w
R
i (0.5)2γ1γ2γ4 + 2.5w∗i (1)

3γ1γ2γ4 − 3w∗i (1)
2wR

i (0.5)γ1γ2γ4 + 0.5wR
i (0)

3γ1γ2γ3

+wR
i (0.5)3γ1γ2γ3 − 1.5wR

i (0.5)2wR
i (0)γ1γ2γ3

1.5wL
i (0.5)2γ2γ3γ4 − 3wL

i (0)w
L
i (0.5)γ2γ3γ4 + 1.5wL

i (0)
2γ2γ3γ4 + 7.5w∗i (1)

2γ1γ3γ4

−9wL
i (0.5)w∗i (1)γ1γ3γ4 + 4.5wL

i (0.5)2γ1γ3γ4 + 7.5wR
i (0.5)2γ1γ2γ4 − 9w∗i (1)w

R
i (0.5)γ1γ2γ4

+4.5w∗i (1)
2γ1γ2γ4 + 1.5wR

i (0)
2γ1γ2γ3 + 1.5wR

i (0.5)2γ1γ2γ3 − 3wR
i (0.5)wR

i (0)γ1γ2γ3

(38)

where γ1 = wL
i (0.5) −wL

i (0); γ2 = w∗i (1) −wL
i (0.5); γ3 = wR

i (0.5) −w∗i (1); γ4 = wR
i (0) −wR

i (0.5). This
completes the proof. �

Based on the derived (or estimated) fuzzy priorities of criteria, fuzzy weighted average (FWA) [16],
multi-attribute utility theory (MAUT) [44], fuzzy technique for order preference by similarity to ideal
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solution (fuzzy TOPSIS) [42], or fuzzy VIseKriterijumska Optimizacija I Kompromisno Resenje (fuzzy
VIKOR) [45] can be applied to evaluate the overall performances of alternatives.

5. Smart Backpack Design Case

5.1. Application of the Proposed Methodology

A smart backpack, also known as an enhanced backpack, is an innovative application of
smart technologies, with functions such as motion detection, navigation, and power generation [46].
However, most of the research and development focus is on rechargeable backpacks with a variety of
compartments, that is, placing a mobile power supply in a backpack and connecting the power to the
USB plug of each compartment [47]. Although it is very convenient to record activities and navigation
using a smart phone, there are still occasions when a smart backpack with functions such as motion
detection, navigation, and power generation is required. For example, sometimes it is inconvenient to
hold a smart phone, a smart phone is out of power, a mobile power supply is out of power, there is no
base station signal, or there is no offline map [48].

The research and development of smart backpacks is still in a nascent stage. As a result, it is a
challenging task to identify factors that are critical to a smart backpack design. After reviewing the
relevant literature and current practices, the following five factors were considered critical to a smart
backpack design:

(1) C1: sleek design;
(2) C2: low price;
(3) C3: many smart technologies;
(4) C4: high practicability;
(5) C5: lightweight.

A designer first compared the relative priorities of these critical factors with linguistic terms. The
results are summarized in Table 4.

Table 4. Results of pairwise comparisons.

Critical Factor #1 Critical Factor #2 Relative Priority of Critical Factor #1 Over
Critical Factor #2

Low price Sleek design Weakly more important than

Many smart technologies Sleek design Strongly more important than

Sleek design High practicability Weakly more important than

Lightweight Sleek design Weakly more important than

Many smart technologies Low price Weakly more important than

Low price High practicability Weakly more important than

Lightweight Low price As equal as

Many smart technologies High practicability Strongly more important than

Many smart technologies Lightweight Weakly or strongly more important than

High practicability Lightweight As equal as

The following fuzzy judgment matrix was constructed:

Ã =


1 1/(1, 3, 5) 1/(3, 5, 7) (1, 3, 5) 1/(1, 3, 5)

(1, 3, 5) 1 1/(1, 3, 5) (1, 3, 5) 1/(1, 1, 3)
(3, 5, 7) (1, 3, 5) 1 (3, 5, 7) (2, 4, 6)

1/(1, 3, 5) 1/(1, 3, 5) 1/(3, 5, 7) 1 (1, 1, 3)
(1, 3, 5) (1, 1, 3) 1/(2, 4, 6) 1/(1, 1, 3) 1
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At first, the ACO method was applied to derive the exact values of fuzzy maximal eigenvalue and
fuzzy priorities from this fuzzy judgment matrix. The results are shown in Figures 7 and 8, respectively.
The fuzzy consistency ratio was around 0.096 with a minimum of 0 and a maximum of 0.611. After
applying COG to defuzzify fuzzy priorities, the results were 0.121, 0.196, 0.443, 0.11, and 0.174.
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The ACO method was implemented using MATLAB on a PC with an i7-7700 CPU 3.6 GHz and
8 GB RAM. The execution time was up to 20 s. To enhance computational efficiency, the PLFGM
approach was applied.

In the PLFGM approach, the α-cuts of fuzzy priorities when α is in {0, 0.5, 1} were estimated
according to Equations (33) and (34) and then connected, which resulted in their piecewise-linear
membership functions, as shown in Figure 9. Obviously, most of the fuzzy priorities estimated using
the PLFGM approach resembled their exact values. Subsequently, COG is applied to defuzzify these
fuzzy priorities. The results were 0.121, 0.209, 0.482, 0.11, and 0.174. Three of the estimated priorities
were equal to the corresponding exact values, showing the effectiveness of the PLFGM approach.
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5.2. Comparison with Existing Methods

For comparison, three existing methods, FGM, FEA, and xACO were also applied to this case. In
the FGM method, fuzzy priorities were approximated with TFNs. In the FEA method, priorities were
given in crisp values. In the xACO method, about 20% of the α-cut combinations required by the ACO
method were enumerated, which shortened the execution time to about 5 s. Subsequently, the COG
method was applied to defuzzify fuzzy priorities. To compare the accuracy achieved using various
methods, the average deviation (AD) from exact values was measured:

AD =

n∑
i=1

∣∣∣COGmethod(wi) −COGACO(wi)|

n
(39)

The results are summarized in Table 5. The execution time for each method was also shown in
this table.

Table 5. Performances of various methods.

Method AD Execution Time (seconds)

FGM 0.015 1
FEA 0.031 1

xACO 0.01 5
PLFGM 0.01 1

5.3. Discussion

According to the experimental results,

(1) Both xACO and PLFGM achieved the highest estimation accuracy, followed by FGM. The
prevalent FEA method was the least accurate method. Compared to FEA, PLFGM improved the
estimation accuracy, in terms of AD, by 33%.

(2) On the other hand, the execution time of xACO was considerably longer than that of PLFGM, FEA,
or FGM. If the size of a FAHP problem becomes larger, xACO will take much more time, while
other methods can still be completed instantaneously. Compared to xACO, PLFGM improved
the estimation efficiency, in terms of the execution time, by 80%.

(3) In this case, the PLFGM approach was considered to be superior to the three existing methods,
since it achieved the highest estimation accuracy within the shortest execution time.

(4) The most obvious advantage of the proposed methodology is that it improves the estimation
accuracy and efficiency at the same time.
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(5) One disadvantage of the PLFGM approach is the complexity of the formula for calculating the
defuzzification value.

6. Conclusions

In a FAHP problem, deriving the fuzzy priorities of criteria is a time-consuming task. As a result,
most existing FAHP methods estimate, rather than derive, the values of fuzzy priorities of criteria.
In this way, fuzzy priorities are approximated with TFNs. However, the edges of fuzzy priorities
are actually curved. Such inaccuracy may lead to incorrect decisions. To address this problem, the
PLFGM approach is proposed in this study. The PLFGM approach is a hybrid of ACO and FGM, so it
is expected to have the advantages of these two methods. In the PLFGM approach, some α cuts of
fuzzy priorities are estimated using the FGM method and connected with straight lines. As a result, the
estimated fuzzy priorities have piecewise linear membership functions that resemble the real shapes.
In addition, since FGM is much faster than ACO and xACO, the PLFGM approach can greatly improve
the efficiency of estimating fuzzy priorities.

The PLFGM approach has been applied to identify the critical features of a smart backpack design.
The following conclusions were drawn from the experimental results:

(1) “Many smart technologies” and “low price” were the two most important features of a smart
backpack design. In contrast, “high practicability” was the least important feature.

(2) Compared to the FGM method, the PLFGM approach improved the estimation accuracy, in terms
of AD, by 33%.

(3) In addition, the efficiency of the PLFGM approach, in terms of the execution time, was 80% higher
than that of the xACO method.

(4) The efficiency of the xACO method deteriorates rapidly as the size of the FAHP problem increases.
Therefore, the advantage of the PLFGM approach over the xACO method will be more significant
for a larger-scale FAHP problem.

The PLFGM approach needs to be applied to more real cases to further elaborate its effectiveness.
In addition, a simpler formula for defuzzifying a polygon fuzzy number must be proposed to enhance
the practicability of the PLFGM approach. These constitute some directions for future research.

Author Contributions: Data curation, methodology and writing original draft: H.-C.W., T.C. and C.-H.H.;
writing—review and editing: H.-C.W. and T.C. All authors contributed equally to the writing of this paper. All
authors read and approved the final manuscript.

Funding: This study was partly funded by Ministry of Science and Technology, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Saaty, T.L. Axiomatic foundation of the analytic hierarchy process. Manag. Sci. 1986, 32, 841–855. [CrossRef]
2. Ruoning, X.; Xiaoyan, Z. Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets Syst.

1992, 52, 251–257. [CrossRef]
3. Shaw, K.; Shankar, R.; Yadav, S.S.; Thakur, L.S. Supplier selection using fuzzy AHP and fuzzy multi-objective

linear programming for developing low carbon supply chain. Expert Syst. Appl. 2012, 39, 8182–8192.
[CrossRef]

4. Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to
supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [CrossRef]

5. Awasthi, A.; Govindan, K.; Gold, S. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR
based approach. Int. J. Prod. Econ. 2018, 195, 106–117. [CrossRef]

6. Wang, Y.C.; Chen, T.C.T. A partial-consensus posterior-aggregation FAHP method—Supplier selection
problem as an example. Mathematics 2019, 7, 179. [CrossRef]

7. Abdelgawad, M.; Fayek, A.R. Risk management in the construction industry using combined fuzzy FMEA
and fuzzy AHP. J. Constr. Eng. Manag. 2010, 136, 1028–1036. [CrossRef]

http://dx.doi.org/10.1287/mnsc.32.7.841
http://dx.doi.org/10.1016/0165-0114(92)90236-W
http://dx.doi.org/10.1016/j.eswa.2012.01.149
http://dx.doi.org/10.1016/j.asoc.2014.03.014
http://dx.doi.org/10.1016/j.ijpe.2017.10.013
http://dx.doi.org/10.3390/math7020179
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000210


Mathematics 2020, 8, 1319 17 of 18

8. Taylan, O.; Bafail, A.O.; Abdulaal, R.M.; Kabli, M.R. Construction projects selection and risk assessment by
fuzzy AHP and fuzzy TOPSIS methodologies. Appl. Soft Comput. 2014, 17, 105–116. [CrossRef]

9. Erdem, M.B. A fuzzy analytical hierarchy process application in personnel selection in it companies: A case
study in a spin-off company. Acta Phys. Pol. A 2016, 130, 331–334. [CrossRef]

10. Ozdemir, Y.; Nalbant, K.G. Personnel selection for promotion using an integrated consistent fuzzy preference
relations-fuzzy analytic hierarchy process methodology: A real case study. Asian J. Interdiscip. Res. 2020, 3,
219–236. [CrossRef]
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