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Abstract: The fundamental goal of this study was to achieve the Ricci curvature inequalities for
a skew CR-warped product (SCR W-P) submanifold isometrically immersed in a complex space
form (CSF) in the expressions of the squared norm of mean curvature vector and warping functions
(W-F). The equality cases were likewise examined. In particular, we also derived Ricci curvature
inequalities for CR-warped product (CR W-P) submanifolds. To sustain this study, an example of
these submanifolds is provided.

Keywords: Ricci curvature; skew CR-warped product submanifolds; complex space form;
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1. Introduction

There have been several studies in the past to demonstrate the geometries of submanifolds in the
settings of almost Hermitian (A-H) and almost contact metric (A-C M) manifolds. By the operation of
the almost complex structure J, the tangent space of a submanifold of an almost Hermitian manifold
can be classified into holomorphic and totally real submanifolds. The notion of CR-submanifolds was
introduced and studied by A. Bejancu [1] in 1981 as a generalization of holomorphic and totally real
submanifolds. Thus, as to have a more profound knowledge of the geometry of CR-submanifolds
of almost Hermitian "AH" manifolds, Chen [2] further explored these submanifolds and provided
many fundamental results. In 1990 Chen [3] instigated a generalized class of submanifolds, namely,
slant submanifolds. Moreover, advances in the geometry of CR-submanifolds and slant submanifolds
stimulated various authors to search for the class of submanifolds which unifies the properties of
all previously discussed submanifolds. In this context, N. Papaghuic [4] introduced the notion
of semi-slant submanifolds in the framework of almost-Hermitian manifolds and showed that
submanifolds belonging to this class enjoy many of the desired properties. Later, the contact variant of
semi-slant submanifolds was studied by Cabrerizo et al. [5]. Recently, B. Sahin [6] investigated another
class of submanifolds in the setting of almost Hermitian manifolds and he called these submanifolds
Hemi-slant submanifolds. This class includes the CR-submanifolds and slant submanifolds.

In 1990, Ronsse [7] started the study of skew CR-submanifolds in the setting of almost Hermitian
manifolds. Skew CR-submanifolds contain the classes of CR-submanifolds, semi-slant submanifolds
and Hemi-slant submanifolds.

The acknowledgment of warped product manifolds appeared after the methodology of Bishop
and O’Neill [8] on the manifolds of non positive curvature. By analyzing the way that a Riemannian
product of manifolds cannot have non positive curvature, they represented warped product (W-P)
manifolds for the class of manifolds of non-positive curvature which is characterized as follows:
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Let (S1, 〈, 〉1) and (S2, 〈, 〉2) be two Riemannian manifolds with Riemannian metrics 〈, 〉1 and 〈, 〉2
respectively and g be a smooth positive function on S1. If π : S1 × S2 → S1 and η : S1 × S2 → S2 are
the projection maps given by π(x, y) = x and η(x, y) = y for every (x, y) ∈ S1 × S2, then the W-P
manifold is the product manifold S1 × S2 holding the Riemannian structure such that

〈U1, U2〉 = 〈π∗U1, π∗U2〉1 + (g ◦ π)2〈η∗U1, η∗U2〉2,

for all U1, U2 ∈ TS. The function g is called the warping function (W-F) of the warped product (W-P)
manifold. If the W-F is constant, then the W-P is a trivial, i.e., simply Riemannian product. Further,
if U1 ∈ TS1 and U2 ∈ TS2, then from Lemma 7.3 of [8], we have the following well-known result

DU1U2 = DU2U1 = (
U1g

g
)U2, (1)

where D is the Levi-Civita connection on S. In the light of the fact that W-P manifolds have various
uses in physics and the theory of relativity [9], this has been a subject of broad interest. The idea
of displaying the space-time close to black holes admits the W-P manifolds [10]. Schwartzschild
space-time T ×k S2, is a model of W-P, wherein the base T = R× R+ is a half plane k > 0 and the
fiber S2 is the unit sphere. A cosmological model to show the universe as space-time, known as the
Robertson–Walker model, is a W-P manifold [11].

Some common properties of W-P manifolds were concentrated on in [8]. B.-Y. Chen [12] played
out an outward investigation of W-P submanifolds in a Kaehler manifold. From that point forward,
numerous geometers have investigated W-P manifolds in various settings such as almost complex
and almost contact manifolds, and different existence results have been researched (see the survey
article [13–16]). Recently, B. Sahin [17] contemplated SCR W-P submanifolds in Kaehler manifolds and
got some essential outcomes. Further, these submanifolds were explored by Haidar and Thakur in the
context of cosymplectic manifolds [18].

In 1999, Chen [19] discovered a relationship between Ricci curvature and a squared mean curvature
vector for a discretionary Riemannian manifold. More precisely, Chen proved the following theorem

Theorem 1. Let φ : St → S̄m(c) be an isometric immersion of a t− dimensional Riemannian manifold into a
Riemannian space form S̄m(c).

1. For each unit tangent vector χ ∈ TpSt, we have

‖Π‖2(p) ≥ 4
t2 {R

S(χ)− (t− 1)c}

where ‖Π‖2(p) is the squared mean curvature and RS(χ) the Ricci curvature of St at χ.
2. If Π(p) = 0, then the unit tangent vector χ at p satisfies the equality case of (1) if and only if χ lies in the

relative null space Np at p.
3. The equality case holds identically for all unit tangent vectors at x if and only if either p is a totally geodesic

point or t = 2 and p is a totally umbilical point.

Theorem 1 was generalized for semi-slant submanifolds in Sasakian space form by Cioroboiu and
Chen [20]. Further, D. W. Yoon [21] studied Chen Ricci inequality for slant submanifols in the framework
of cosymplectic space forms. Motivated by Chen [19], Mihai and Oz̈gur [22] studied Chen Ricci
inequality for real space forms with semi-symmetric connections. In [23] M. M. Tripathi formulated
an improved relationship between Ricci curvature and squared mean curvature. More recently,
Ali et al. [24] generalized Chen Ricci inequality for warped product submanifolds in spheres and

provided some applications in mechanics and mathematical physics.
The class of SCR W-P submanifolds is rich in its geometric behavior; it contains classes of

CR-warped product submanifolds, semi-slant warped product submanifolds and hemi-slant warped
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product submanifolds. In the literature it was found that Ricci curvature for these warped product
submanifolds in complex space forms has not been studied. In other words, we can say that Theorem 1
is an open problem for skew CR-warped product submanifolds in the setting of complex space forms.

In this study our point is to establish a connection between Ricci curvature and squared mean
curvature for SCR W-P submanifolds in the setting of complex space forms.

2. Preliminaries

Let S̄ be an A-H manifold with an almost complex structure J and a Hermitian metric 〈, 〉, i.e.,
J2 = −I and 〈JU1, JU2〉 = 〈U1, U2〉, for all vector fields U1, U2 on S̄. If J is parallel with respect to the
Levi-Civita connection D̄ on S̄, that is

(D̄U1 J)U2 = 0, (2)

for all U1, U2 ∈ TS̄, then (S̄, J, 〈, 〉, D̄) is called a Kaehler manifold (K-M).
A K-M S̄ is called a CSF if it has constant holomorphic sectional curvature c denoted by S̄(c).

The curvature tensor of the CSF S̄(c) is given by

R̄(U1, U2, U3, U4) =
c
4
[〈U2, U3〉〈U1, U4〉 − 〈U1, U3〉〈U2, U4〉+ 〈U1, JU3〉〈JU2, U4〉

− 〈U2, JU3〉〈JU1, U4〉+ 2〈U1, JU2〉〈JU3, U4〉],
(3)

for any U1, U2, U3, U4 ∈ TS̄.
Let S be a n−dimensional Riemannian manifold isometrically immersed in a m− dimensional

Riemannian manifold S̄. Then, the Gauss and Weingarten formulas are D̄U1U2 = DU1U2 + Γ(U1, U2)

and D̄U1 ξ = −AξU1 + D⊥U1
ξ respectively, for all U1, U2 ∈ TS and ξ ∈ T⊥S, where D is the induced

Levi-Civita connection on S, ξ is a vector field normal to S, Γ is the second fundamental form of
S, D⊥ is the normal connection in the normal bundle T⊥S and Aξ is the shape operator of the
second fundamental form. The second fundamental form Γ and the shape operator are related by the
following formula

〈Γ(U1, U2), ξ〉 = 〈AξU1, U2〉. (4)

The Gauss equation is given by

R(U1, U2, U3, U4) = R̄(U1, U2, U3, U4) + 〈Γ(U1, U4), Γ(U2, U3)〉 − 〈Γ(U1, U3), Γ(U2, U4)〉, (5)

for all U1, U2, U3, U4 ∈ TS, where R̄ and R are the curvature tensors of S̄ and S respectively.
For any U1 ∈ TS and ξ ∈ T⊥S, JU1 and Jξ can be decomposed as follows.

JU1 = PU1 + FU1 (6)

and
Jξ = tξ + f ξ, (7)

where PU1 (resp. tξ) is the tangential and FU1 (resp. f ξ) is the normal component of JU1 ( resp. Jξ).
It is evident that 〈JU1, U2〉 = 〈PU1, U2〉 for any U1, U2 ∈ TxS; this implies that 〈PU1, Y2〉 +

〈U1, PU2〉 = 0. Thus, P2 is a symmetric operator on the tangent space TxS, for any x ∈ S. The
eigenvalues of P2 are real and diagonalizable. Moreover, for each x ∈ S, one can observe

Lλ
x = Ker{P2 + λ2(x)I}x,

where I denotes the identity transformation on TxS, and λ(x) ∈ [0, 1] such that−λ2(x) is an eigenvalue
of P2(x). Further, it is easy to observe that KerF = L1

x and KerP = L0
x, where L1

x is the maximal
holomorphic sub space of TxS and L0

x is the maximal totally real subspace of TxS; these distributions
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are denoted by L and L⊥ respectively. If −λ2
1(x), . . . ,−λ2

k(x) are the eigenvalues of P2 at x, then TxS
can be decomposed as

TxS = Lλ1
x ⊕ Lλ2

x ⊕ . . . Lλk
x .

Every Lλi
x , 1 ≤ i ≤ k is a P−invariant subspace of TxS. Moreover, if λi 6= 0, then Lλi

x is even
dimensional the submanifold S of a Kaehler manifold S̄ is a generic submanifold if there exists an
integer k and functions λi 1 ≤ i ≤ k defined on S with λi ∈ (0, 1) such that

(i) Each −λ2
i (x), 1 ≤ i ≤ k, is a distinct eigenvalue of P2 with

TxS = LT
x ⊕ L⊥x ⊕ Lλ1

x ⊕ . . . ,⊕Lλk
x

for any x ∈ S.
(ii) The distributions of LT

x , L⊥x and Lλi
x , 1 ≤ i ≤ k are independent of x ∈ S.

If in addition, each λi is constant on S, then S is called a skew CR-submanifold [7]. It is
significant to recount that CR-submanifolds are a particular class of skew CR-submanifold for which
k = 1, LT = {0}, L⊥ = {0} and λ1 is constant. If L⊥ = {0}, L1 6= {0} and k = 1, then S is a semi-slant
submanifold, whereas if L = {0}, L⊥ 6= {0} and k = 1, then S is a hemi-slant submanifold.

Definition 1. A submanifold S of an A-H manifold S̄ is said to be a "skew CR-submanifold of order 1" if S is a
skew CR-submanifold with k = 1 and λ1 is constant.

We have the following characterization

Theorem 2. Reference [3] let S be a submanifold of an A-H manifold S̄. Then S is a slant if and only if there
exists a constant λ ∈ [0, 1] such that

P2 = −λI.

Furthermore, if θ is a slant angle, then λ = cos2 θ.

For any orthonormal basis {e1, e2, . . . , et} of the tangent space TxS, the mean curvature vector
Π(x) and its squared norm are defined as follows.

Π(x) =
1
t

t

∑
i=1

Γ(ei, ei), ‖Π‖2 =
1
t2

t

∑
i,j=1
〈Γ(ei, ei), Γ(ej, ej)〉, (8)

where t is the dimension of S. If Γ = 0 then the submanifold is said to be totally geodesic and minimal
if Π = 0. If Γ(U1, U2) = 〈U1, U2〉Π for all U1, U2 ∈ TS, then S is called totally umbilical (T-U).

The scalar curvature of S̄ is denoted by τ̄(S̄) and is defined as

τ̄(S̄) = ∑
1≤p<q≤m

κ̄pq, (9)

where κ̄pq = κ̄(ep ∧ eq) and m is the dimension of the Riemannian manifold S̄. Throughout this study,
we shall use the equivalent version of the above equation, which is given by

2τ̄(S̄) = ∑
1≤p<q≤m

κ̄pq. (10)

In a similar way, the scalar curvature τ̄(Lx) of a L−plane is given by

τ̄(Lx) = ∑
1≤p<q≤m

κ̄pq. (11)
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Let {e1, . . . , et} be an orthonormal basis of the tangent space TxS and if er belongs to the
orthonormal basis {en+1, . . . em} of the normal space T⊥S, then we have

Γr
pq = 〈Γ(ep, eq), er〉 (12)

and

‖Γ‖2 =
t

∑
p,q=1
〈Γ(ep, eq), Γ(ep, eq)〉. (13)

Let κpq and κ̄pq be the sectional curvatures of the plane sections spanned by ep and eq at x in
the submanifold S and in the Riemannian space form S̄m(c), respectively. Thus by Gauss equation,
we have

κpq = κ̄pq +
m

∑
r=t+1

(Γr
ppΓr

qq − (Γr
pq)

2). (14)

The global tensor field for orthonormal frame of vector field {e1, . . . , et} on S is defined as

M̄(U1, U2) =
t

∑
i=1
{〈R̄(ei, U1)U2, ei〉}, (15)

for all U1, U2 ∈ TxS. The above tensor is called the Ricci tensor. If we fix a distinct vector en from
{e1, . . . , et} on S, which is governed by χ, then the Ricci curvature is defined by

RS(χ) =
t

∑
p=1
p 6=n

κ(ep ∧ en). (16)

For a smooth function g on a Riemannian manifold S with Riemannian metric 〈, 〉, the gradient of
g is denoted by ∇g and is defined as

〈∇g, U1〉 = U1g, (17)

for all U1 ∈ TS.
Let the dimension of S be t and {e1, e2, . . . , et} be a basis of TS. Then as a result of (17), we get

‖∇g‖2 =
t

∑
i=1

(ei(g))2. (18)

The Laplacian of g is defined by

∆g =
t

∑
i=1
{(∇ei ei)g− eieiψ}. (19)

For a W-P submanifold St1
1 ×g St2

2 isometrically immersed in a Riemannian manifold S̄, we observe
the well known result, which can be described as follows [25]:

t1

∑
p=1

t2

∑
q=1

κ(ep ∧ eq) =
t2∆g

g
= t2(∆lng− ‖∇lng‖2), (20)

where t1 and t2 are the dimensions of the submanifolds St1
1 and St2

2 respectively.

3. Skew CR-Warped Product Submanifolds

Recently, B. Sahin [17] demonstrated the existence of SCR W-P of the type S = S1 × f S⊥,
where S1 is a semi-slant submanifold as defined by N. Papaghuic [4] and S⊥ is a totally real



Mathematics 2020, 8, 1317 6 of 19

submanifold. Throughout this section we consider the SCR W-P S = S1 × f S⊥ in a Kaehler manifold S̄.
Then it is evident that S is a proper SCR W-P of order 1. Moreover, the tangent space TS of S can be
decomposed as follows.

TS = Lθ ⊕ LT ⊕ L⊥, (21)

where Lθ
x = Lλ1

x . If Lθ = {0}, then S becomes a CR-warped product submanifold defined in [26].
If LT = {0}, then S is reduced to a warped product hemi-slant submanifold [6]. Thus, skew CR-warped
product submanifold presents a single platform to study the CR W-P submanifolds and W-P
hemi-slant submanifold.

Now, we have an example of SCR W-P submanifold in an A-H manifold

Example 1. Let S be a submanifold in R12 defined by x1 = u, x2 = v sechα, x3 = k tanhβ, x4 = k sechβ, x5 =

u sechβ, x6 = u tanhβ, y1 = −v, y2 = v tanhα, y3 = −r tanhβ, y4 = −r sechβ, y5 = 0, y6 = 0.
Then, we have the following basis of TS

U1 = sechβ
∂

∂x5
+ tanhβ

∂

∂x6
+

∂

∂x1
, U2 = sechα

∂

∂x2
− ∂

∂y1
+ tanhα

∂

∂y2
,

U3 = tanhβ
∂

∂x3
+ sechβ

∂

∂x4
, U4 = −tanhβ

∂

∂y3
− sechβ

∂

∂y4
,

U5 = −k sechβ
∂

∂x3
+ k tanhβ

∂

∂x4
+ u tanhβ

∂

∂x5
− u sechβ

∂

∂x6
+r sechβ

∂

∂y3
− r tanhβ

∂

∂y4
.

It is straightforward to identify that Lθ = span{U1, U2} is a slant distribution with slant angle 60◦,
L = span{U3, U4} is a holomorphic distribution and JU5 is orthogonal to S. Thus L⊥ = span{U5} is a
totally real distribution. Moreover, it is easy to observe that Lθ , L and L⊥ are integrable. If Sθ , ST and S⊥ are
the integral manifolds of the distributions Lθ , L and L⊥ respectively. Then the induced metric tensor of S is
given by

ds2 = 〈, 〉Sθ
+ 〈, 〉ST + (k2 + u2 + r2)〈, 〉S⊥

or
ds2 = 〈, 〉S1 + (k2 + u2 + r2)〈, 〉S⊥ .

Definition 2. The warped product S1 × f S2 isometrically immersed in a Riemannian manifold S̄ is called Si
totally geodesic if the partial second fundamental form Γi is zero identically. It is called Si-minimal if the partial
mean curvature vector Πi becomes zero for i = 1, 2.

Let {e1, . . . , ep, ep+1 = Je1, . . . , et1=2p = Jep, e1, . . . , eq, eq+1 = sec θPe1, . . . , e(t2=2q) =

sec θPeq, et2+1, . . . , et3} be a local orthonormal frame of vector fields such that {e1, . . . , ep, ep+1 =

Je1, . . . , et1=2p = Jep} is an orthonormal basis of L, {e1, . . . , eq, eq+1 = sec θPe1, . . . , e(t2=2q) = sec θPeq}
is an orthonormal basis of Lθ and {et2+1, . . . , et3} is an orthonormal basis of L⊥.

Throughout this paper we consider that the SCR W-P submanifold S1 × f S⊥ is L−minimal.
Presently we have the following outcome for further applications

Lemma 1. Let St = St1+t2
1 × f St3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a Kaehler
manifold; then

‖Π‖2 =
1
t2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

t2t2
+ · · ·+ Γr

tt)
2, (22)

where ‖Π‖2 represents squared mean curvature.



Mathematics 2020, 8, 1317 7 of 19

4. Ricci Curvature for Skew CR-Warped Product Submanifold

In this section, we investigate Ricci curvature in terms of the squared norm of mean curvature
and the warping functions as follows:

Theorem 3. Let St = St1+t2
1 × f Ss3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a
Complex space form S̄m(c). If the holomorphic and slant distributions L and Lθ are integrable with integral
submanifolds St1

T and St2
θ respectively, then for each orthogonal unit vector field χ ∈ TxS, the tangent to St1

T , St2
θ

or St3
⊥, we have that

(1) The Ricci curvature satisfies the following expressions:

(i) If χ ∈ TSt1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3∆ f

f
+

c
4
(t− t1t2 − t2t3 − t1t3 −

1
2
). (23)

(ii) χ ∈ TSt2
θ , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3∆ f

f
+

c
4
(t− t1t2 − t2t3 − t1t3 + 1− 3

2
cos2 θ). (24)

(iii) If χ ∈ TSt2
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3∆ f

f
+

c
4
(t− t1t2 − t2t3 − t1t3 + 1). (25)

(2) If Γ(x) = 0 for each point x ∈ St, then there is a unit vector field χ which satisfies the equality of (1) iff St

is mixed totally geodesic and χ ∈ Nx at x.
(3) For the equality case we have

(a) The equality of (23) holds identically for all unit vector fields tangential to St1
T at each x ∈ St iff St

is mixed TG and L−totally geodesic SCR W-P submanifold in S̄m(c).
(b) The equality of (24) holds identically for all unit vector fields tangential to Sθ at each x ∈ St iff S

is mixed totally geodesic and either St is Lθ- totally geodesic SCR W-P submanifold or St is a Lθ

totally umbilical in S̄m(c) with dim Lθ = 2.
(c) The equality of (25) holds identically for all unit vector fields tangential to St2

⊥ at each x ∈ St iff
S is mixed totally geodesic and either St is L⊥- totally geodesic SCR W-P or St is a L⊥ totally
umbilical in S̄m(c) with dim L⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St iff either
St is totally geodesic submanifold or Mt is a mixed totally geodesic totally umbilical and L totally
geodesic submanifold with dim St2

θ = 2 and dim St3
⊥ = 2.

where t1, t2 and t3 are the dimensions of St1
T , St2

θ and St3
⊥ respectively.

Proof. Suppose that St = St1+t2
1 × f St3

⊥ be a SCR W-P submanifold of a CSF. From Gauss equation,
we have

t2‖Π‖2 = 2τ(St) + ‖Γ‖2 − 2τ̄(St). (26)
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Let {e1, . . . , et1 , et1+1, . . . , et2 , . . . et} be a local orthonormal frame of vector fields on St such that
{e1, . . . , et1} is tangential to St1

T , {et1+1, . . . , et2} is tangential to St2
θ and {et2+1, . . . , et} is the tangent to

St3
⊥. Thus, the unit tangent vector χ = eA ∈ {e1, . . . , et} can be expanded (26) as follows.

t2‖Π‖2 = 2τ(St) + 1
2 ∑m

r=t+1{(Γr
11 + . . . Γr

t2t2
+ · · ·+ Γr

tt − Γr
AA)

2 + (Γr
AA)

2}
−∑m

r=t+1 ∑1≤i 6=j≤t Γr
iiΓ

r
jj − 2τ̄(St).

(27)

The above expression can be represented as

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
11 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+ (2Γr
AA − (Γr

11 + · · ·+ Γr
tt))

2}+ 2
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

− 2
m

∑
r=t+1

∑
1≤i<j≤t

Γr
iiΓ

r
jj − 2τ̄(St).

In view of the assumption that SCR W-P submanifold S1 × f S⊥ is L−minimal submanifold, the
preceding expression takes the form

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j 6=A

Γr
iiΓ

r
jj − 2τ̄(St)

+
m

∑
r=t+1

t

∑
a=1
a 6=A

(Γr
aA)

2 +
m

∑
r=t+1

∑
1≤i<j≤t

i,j 6=A

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j 6=A

Γr
iiΓ

r
jj.

(28)

Equation (14) can be written as

∑
1≤p<q≤t

p,q 6=A

κ̄pq − ∑
1≤p<q≤t

p,q 6=A

κpq =
m

∑
r=t+1

∑
1≤p<q≤t

p,q 6=A

(Γpq
r )2 −

m

∑
r=t+1

∑
1≤p<q≤t

p,q 6=A

Γr
ppΓr

qq.

Substituting this value in (28), we derive

t2‖Π‖2 = 2τ(St) +
1
2

m

∑
r=t+1

{(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j 6=A

Γr
iiΓ

r
jj − 2τ̄(St)

+
m

∑
r=t+1

t

∑
a=1
a 6=A

(Γr
aA)

2 + ∑
1≤i<j≤t

i,j 6=A

κ̄ij − ∑
1≤i<j≤t

i,j 6=A

κij.

(29)
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On the other hand, from (9) we have

τ(St) = ∑
1≤i<j≤t

κ(ei ∧ ej) =
t1+t2

∑
α=1

t

∑
β=t1+t2+1

κ(eα ∧ eβ) + ∑
1≤α<γ≤t1

κ(eα ∧ eγ)

+ ∑
t1+1≤l<0≤t2

κ(el ∧ e0) + ∑
t2+1≤u<v≤t

κ(eu ∧ ev).
(30)

Using (9) and (20), we derive

τ(St) =
t3∆ f

f
+ τ̄(St1

T ) + τ̄(St2
θ ) + τ̄(St3

⊥).

Using this in (29), we get

t2‖Π‖2 =
t3∆ f

f
+

1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
1
2

m

∑
r=t+1

(2Γr
AA − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2)

+
m

∑
r=t+1

∑
t1+1≤p<q≤t2

(Γr
ppΓr

qq − (Γr
pq)

2)

+
m

∑
r=t+1

∑
t2+1≤s<n≤t

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
1≤i<j≤t

i,j 6=A

(Γr
iiΓ

r
jj)

− 2τ̄(St) + ∑
1≤i<j≤t

i,j 6=A

κ̄ij + τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(31)

Considering unit tangent vector χ = eA, we have three choices: χ is the tangent to the base
manifold St1

T or St2
θ , or to the fiber St3

⊥ .
Case 1: If χ ∈ St1

T , then we need to choose a unit vector field from {e1, . . . , et1}. Let χ = e1; then by (15)
and the assumption that the submanifolds is L−minimal, we have

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3∆ f

f
+

1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + . . . Γr
t2t2

+ · · ·+ Γr
tt))

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2)

+
m

∑
r=t+1

∑
t1+1≤p<q≤t2

(Γr
ppΓr

qq − (Γr
pq)

2)

+
m

∑
r=t+1

∑
t2+1≤s<n≤t

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2 −
m

∑
r=t+1

∑
2≤i<j≤t

(Γr
iiΓ

r
jj)

− 2τ̄(St) + ∑
2≤i<j≤t

κ̄(ei, ej) + τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(32)
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Putting U1, U3 = ei, U2, U4 = ej in the formula (3), we have

2τ̄(S) =
c
4
[t(t− 1) + 3t1 + 3t2 cos2 θ] (33)

∑
2≤i<j≤t

κ̄(ei, ej) =
c
8
[(t− 1)(t− 2) + 3(t1 − 1) + 3t2 cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St2
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(St3
⊥) =

c
8
[t3(t3 − 1)].

Using these values in (32), we get

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
tt))

2

+
t3∆ f

f
+

m

∑
r=t+1

t1

∑
i=1

t2

∑
j=t1+1

(Γr
ij)

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
k=t2+1

(Γr
ik)

2 +
m

∑
r=t+1

t1

∑
β=2

Γr
11Γr

ββ

−
m

∑
r=t+1

t1

∑
i=2

t2

∑
j=t1+1

Γr
iiΓ

r
jj −

m

∑
r=t+1

t1

∑
i=2

t

∑
k=t2+1

Γr
iiΓ

r
kk

+
c
4
(t− t1t2 − t2t3 − t3t1 −

1
2
).

(34)

In view of the assumption that the submanifold is L−minimal, then

m

∑
r=t+1

t1

∑
β=2

Γr
11Γr

ββ =
m

∑
r=t+1

(Γr
11)

2

−
m

∑
r=t+1

t1

∑
i=2

[ t2

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]
=

m

∑
r=t+1

t

∑
j=t1+1

Γr
11Γr

jj.

Utilizing that in (34), we have

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
nn))

2

+
t3∆ f

f
+

m

∑
r=t+1

t1

∑
i=1

t2

∑
j=t1+1

(Γr
ij)

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
k=t2+1

(Γr
ik)

2 −
m

∑
r=t+1

(Γr
11)

2 +
t1

∑
i=1

t

∑
j=t1+1

Γr
iiΓ

r
jj

+
c
4
(t− t1t2 − t2t3 − t3t1 −

1
2
).

(35)
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The third term on the right hand side can be written as

1
2

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
t2t2

+ · · ·+ Γr
nn))

2

= 2
m

∑
r=t+1

(Γr
11)

2 +
1
2

t2‖Π‖2 − 2
m

∑
r=t+1

[ t2

∑
j=t1+1

Γr
11Γr

jj

+
t

∑
k=t2+1

Γr
11Γr

kk
]
.

(36)

Combining above two expressions, we have

1
2

t2‖Π‖2 ≥RS(χ) +
m

∑
r=t+1

(Γr
11)

2 −
m

∑
r=t+1

t

∑
j=t1+1

Γr
11Γr

jj

+
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

t2t2
+ · · ·+ Γr

nn)
2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
t3∆ f

f

+
c
4
(t− t1t2 − t2t3 − t3t1 −

1
2
),

(37)

or equivalently

1
4

t2‖Π‖2 ≥RS(χ) +
1
4

m

∑
r=t+1

(2Γr
11 − (Γr

t1+1t1+1 + · · ·+ Γr
t2t2

+ · · ·+ Γr
nn))

2

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
t3∆ f

f

+
c
4
(t− t1t2 − t2t3 − t3t1 −

1
2
),

(38)

which proves the inequality (i) of (1).

Case 2. If χ is tangential to St2
θ , we choose the unit vector from {et1+1, . . . , et2}. Suppose χ = et2 ;

then from (28), we deduce

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3∆ f

f
+

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
t2t2

)2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2) +
m

∑
r=t+1

∑
t1+1≤s<n≤t2

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
t2+1≤p<q≤t

(Γr
ppΓr

qq − (Γr
pq)

2) +
m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

−
m

∑
r=t+1

∑
1≤i<j≤n

i,j 6=t2

(Γr
iiΓ

r
jj)− 2τ̄(St) + ∑

1≤i<j≤t
i,j 6=t2

κ̄(ei, ej)

+ τ̄(St1
T ) + τ̄(St2

θ + τ̄(St3
⊥)).

(39)
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From (3) by putting U1, U3 = ei, U2, U3 = ej, one can compute

∑
1≤i<j≤t

i,j 6=t2

κ̄(ei, ej) =
c
8
[(t− 1)(t− 2) + 3t1 + 3t2 cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St3
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(St3
⊥) =

c
8
[t3(t3 − 1)].

Using these values together with (33) in (39) and applying similar techniques as in Case 1,
we obtain

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
t2t2

))2

+
1
2

t2‖Π‖2 +
t3∆ f

f
+

m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2

+
m

∑
r=t+1

[ t2−1

∑
n=t1+1

Γr
t2t2

Γr
nn +

t

∑
l=t2+1

Γr
t2t2

Γr
ll
]

m

∑
r=1

t1

∑
i=1

[ t2−1

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]

+
c
4
(t− t1t2 − t2t3 − t3t1 + 1).

(40)

By the assumption that the submanifold St is L−minimal, one can conclude

m

∑
r=1

t1

∑
i=1

[ t2−1

∑
j=t1+1

Γr
iiΓ

r
jj +

t

∑
k=t2+1

Γr
iiΓ

r
kk
]
= 0.

The second and seventh terms on right hand side of (40) can be solved as follows:

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + · · ·+ Γr

tt)− 2Γr
t2t2

))2 +
m

∑
r=t+1

[ t2−1

∑
n=t1+1

Γr
t2t2

Γr
nn +

t

∑
l=t2+1

Γr
t2t2

Γr
ll
]

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)
2 + 2

m

∑
r=t+1

(Γr
t2t2

)2

− 2
m

∑
r=t+1

t

∑
j=t1+1

Γr
t2t2

Γr
jj +

m

∑
r=t+1

t

∑
n=t1+1

Γr
t2t2

Γr
nn −

m

∑
r=t+1

(Γr
t2t2

)2

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)
2 +

m

∑
r=t+1

(Γr
t2t2

)2

−
m

∑
r=t+1

t

∑
j=t1+1

Γr
nnΓr

jj.

(41)
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By utilizing those two values in (40), we arrive at

1
2

t2‖Π‖2 ≥RS(χ) +
m

∑
r=t+1

(Γr
t2t2

)2 −
m

∑
r=t+1

t

∑
i=t1+1

Γr
nnΓr

jj

+
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + · · ·+ Γr

nn)2 +
1
2

t2‖Π‖2 +
t3∆ f

f

+
m

∑
r=t+1

t1

∑
i=1

t

∑
j=t1+1

(Γr
ij)

2 +
c
4
(t− t1t2 − t2t3 − t3t1 + 1).

(42)

By using similar steps as in Case 1, the above inequality can be written as

1
4

t2‖Π‖2 ≥RS(χ) +
1
4

m

∑
r=t+1

(2Γr
t2t2
− (Γr

t1+1t1+1 + · · ·+ Γr
nn))

2

+
t3∆ f

f
+

c
4
(t− t1t2 − t2t3 − t1t3 + 1).

(43)

The last inequality leads to inequality (ii) of (1).

Case 3. If χ is tangential to St3
⊥, then we choose the unit vector field from {et2+1, . . . , en}. Suppose the

vector χ is en. Then from (28)

t2‖Π‖2 ≥RS(χ) +
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2

+
t3∆ f

f
+

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
m

∑
r=t+1

∑
1≤α<β≤t1

(Γr
ααΓr

ββ − (Γr
αβ)

2) +
m

∑
r=t+1

∑
t1+1≤s<n≤t2

(Γr
ssΓr

nn − (Γr
sn)

2)

+
m

∑
r=t+1

∑
t2+1≤p<q≤t

(Γr
ppΓr

qq − (Γr
pq)

2) +
m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2

−
m

∑
r=t+1

∑
1≤i<j≤t−1

Γr
iiΓ

r
jj − 2τ̄(St) + ∑

1≤i<j≤t−1
κ̄(ei, ej)

+ τ̄(St1
T ) + τ̄(St2

θ ) + τ̄(St3
⊥).

(44)

From (3), one can compute

∑
1≤i<j≤t−1

κ̄(ei, ej) =
c
8
[(t− 1)(t− 2) + 3t1 + 3(t2 − 1) cos2 θ]

τ̄(St1
T ) =

c
8
[t1(t1 − 1) + 3t1]

τ̄(St2
θ ) =

c
8
[t2(t2 − 1) + 3t2 cos2 θ]

τ̄(tt3
⊥) =

c
8
[t3(t3 − 1)].

By usage of those values together with (33) in (44), and analogously to Case 1 and Case 2, we obtain
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t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
t3∆ f

f
+

m

∑
r=t+1

∑
1≤i<j≤t

(Γr
ij)

2

+
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq −

m

∑
r=t+1

t1

∑
i=1

t−1

∑
j=t1+1

Γr
iiΓ

r
jj

+
c
4
(t− t1t2 − t2t3 − t1t3 + 1− 3

2
cos2 θ).

(45)

Again, using the assumption that St is L−minimal, it is easy to verify

m

∑
r=t+1

t1

∑
i=1

t−1

∑
j=t1+1

Γr
iiΓ

r
jj = 0. (46)

Using in (45), we obtain

t2‖Π‖2 ≥RS(χ) +
1
2

t2‖Π‖2 +
1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2

+
t3∆ f

f
+

m

∑
r=t+1

∑
1≤i<j≤n

(Γr
ij)

2 +
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq

+
c
4
(t− t1t2 − t2t3 − t1t3 + 1− 3

2
cos2 θ).

(47)

The third and sixth terms on the right hand side of (47) in a similar way as in Case 1 and Case 2
can be simplified as

1
2

m

∑
r=t+1

((Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)− 2Γr
tt)

2 +
m

∑
r=t+1

t−1

∑
q=t1+1

Γr
ttΓ

r
qq

=
1
2

m

∑
r=t+1

(Γr
t1+1t1+1 + . . . Γr

t2t2
+ · · ·+ Γr

tt)
2 +

m

∑
r=t+1

(Γr
tt)

2

−
m

∑
r=t+1

t

∑
j=t1+1

Γr
ttΓ

r
jj.

(48)

By combining (47) and (48) and using similar techniques as used in Case 1 and Case 2,
we can derive

1
4

t2‖Π‖2 ≥ RS(χ) +
1
4

m

∑
r=t+1

(2Γr
tt − (Γr

t1+1t1+1 + · · ·+ Γr
tt))

2

+
t3∆ f

f
+

c
4
(t− t1t2 − t2t3 − t1t3 + 1− 3

2
cos2 θ).

(49)

The last inequality leads to inequality (iii) in (1).
Next, we explore the equality cases of (1). First, we redefine the notion of the relative null space

Nx of the submanifold St in the CSF S̄m(c) at any point x ∈ St; the relative null space was defined by
B.-Y. Chen [19], as follows:

Nx = {U1 ∈ TxSt : Γ(U1, U2) = 0, ∀U2 ∈ TxSt}.

For A ∈ {1, . . . , t} a unit vector field eA tangential to St at x satisfies the equality sign of (23)
identically iff
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(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t

∑
A=1
b 6=A

Γr
bA = 0 (iii) 2Γr

AA =
t

∑
q=t1+1

Γr
qq, (50)

such that r ∈ {t + 1, . . . m} the condition (i) implies that St is mixed totally geodesic SCR W-P
submanifold. Combining statements (ii) and (iii) with the fact that St is L−minimal, we get that the
unit vector field χ = eA ∈ Nx. The converse is trivial; this proves statement (2).

For a SCR W-P submanifold, the equality sign of (23) holds identically for all unit tangent vector
belong to St1

T at x iff

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t1

∑
A=1
b 6=A

Γr
bA = 0 (iii) 2Γr

pp =
t

∑
q=t1+1

Γr
qq, (51)

where p ∈ {1, . . . , t1} and r ∈ {t + 1, . . . , m}. Since St is L−minimal SCR W-P submanifold, the third
condition implies that Γr

pp = 0, p ∈ {1, . . . , t1}. Using this in the condition (ii), we conclude that St is
L−totally geodesic SCR W-P submanifold in S̄m(c) and totally mixed geodesicness follows from the
condition (i), which proves (a) in the statement (3).

For a SCR W-P submanifold, the equality sign of (24) holds identically for all unit tangent vector
fields tangential to St2

θ at x if and only if

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t2

∑
A=t1+1

b 6=A

Γr
bA = 0 (iii) 2Γr

KK =
t

∑
q=t1+1

Γr
qq, (52)

such that K ∈ {t1 + 1, . . . , t2} and r ∈ {t + 1, . . . , m}. From the condition (iii) two cases emerge; that is,

Γr
KK = 0, ∀K ∈ {t1 + 1, . . . , t2} and r ∈ {t + 1, . . . , m} or dim St2

θ = 2. (53)

If the first case of (52) is satisfied, then by virtue of condition (ii), it is easy to conclude that St is a
Dθ− totally geodesic SCR W-P submanifold in S̄m(c). This is the first case of part (b) of statement (3).

For a SCR W-P submanifold, the equality sign of (25) holds identically for all unit tangent vector
fields tangent to St3

⊥ at x if and only if

(i)
t1

∑
p=1

t

∑
q=t1+1

Γr
pq = 0 (ii)

t

∑
b=1

t3

∑
A=t2+1

b 6=A

Γr
bA = 0 (iii) 2Γr

LL =
t

∑
q=t1+1

Γr
qq, (54)

such that L ∈ {t2 + 1, . . . , t} and r ∈ {t + 1, . . . , m}. From the condition (iii) two cases arise; that is,

Γr
LL = 0, ∀L ∈ {t2 + 1, . . . , t} and r ∈ {t + 1, . . . , m} or dim St3

⊥ = 2. (55)

If the first case of (54) is satisfied, then by virtue of condition (ii), it is easy to conclude that St is a
L⊥− totally geodesic SCR W-P submanifold in S̄m(c). This is the first case of part (c) of statement (3).

For the other case, assume that St is not L⊥−totally geodesic SCR W-P submanifold and dim
St3
⊥ = 2. Then condition (ii) of (54) implies that St is L⊥− totally umbilical SCR W-P submanifold in

S̄(c), which is second case of this part. This verifies part (c) of (3).
To prove (d) using parts (a), (b) and (c) of (3), we combine (51), (52) and (54). For the first case

of this part, assume that dimSt2
θ 6= 2 and dimSt3

⊥ 6= 2. From parts (a), (b) and (c) of statement (3)
we concluded that Mt is L−totally geodesic, Lθ− is totally geodesic and D⊥− is a totally geodesic
submanifold in S̄m(c). Hence St is a totally geodesic submanifold in S̄m(c).
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For another case, suppose that first case is not satisfied. Then parts (a), (b) and (c) provide
that St is mixed totally geodesic and L− totally geodesic submanifold of S̄m(c) with dimSt2

θ = 2 and
dimSt3

⊥ = 2. From the conditions (b) and (c) it follows that St is Lθ− and L⊥−totally umbilical SCR
W-P submanifolds and from (a) it is L−totally geodesic, which is part (d). This proves the theorem.

If, St2
θ = {0} then the SCR W-P submanifold becomes the CR W-P submanifold. In this case we

have the following corollary

Corollary 1. Let St = St1
T × f St3

⊥ be a CR W-P submanifold isometrically immersed in a CSF S̄m(c). Then for
each orthogonal unit vector field χ ∈ TxSt, either tangent to St1

T or St3
⊥ , we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ ∈ St1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3∆ f

f
+

c
4
(t− t1t3 −

1
2
). (56)

(ii) If χ ∈ St3
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) +
t3∆ f

f
+

c
4
(t− t1t3 + 1). (57)

(2) If H(x) = 0, then each point x ∈ St there is a unit vector field χ which satisfies the equality case of (1) if
and only if St is mixed totally geodesic and χ lies in the relative null space Nx at x.

(3) For the equality case we have

(a) The equality case of (56) holds identically for all unit vector fields tangent to St1
T at each x ∈ St iff

St is mixed totally geodesic and L−totally geodesic CR W-P submanifold in S̄m(c).
(b) The equality case of (57) holds identically for all unit vector fields tangent to St3

⊥ at each x ∈ Mt iff
St is mixed totally geodesic and either St is L⊥- totally geodesic CR-warped product or St is a L⊥
totally umbilical in S̄m(c) with dim L⊥ = 2.

(c) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St if and only
if either St is totally geodesic submanifold or St is a mixed totally geodesic totally umbilical and
L− totally geodesic submanifold with dim St3

⊥ = 2

where t1 and t3 are the dimensions of St1
T and St3

⊥ respectively.

In view of (20) we have the another version of the Theorem 2 as follows:

Theorem 4. Let St = St1+t2
1 × f St3

⊥ be a L−minimal SCR W-P submanifold isometrically immersed in a CSF
M̄(c). If the holomorphic and slant distributions L and Lθ are integrable with integral submanifolds St1

T and St2
θ

respectively. Then for each orthogonal unit vector field χ ∈ TxS, either tangent to St1
T , St2

θ or St3
⊥, we have

(1) The Ricci curvature satisfy the following inequalities

(i) If χ ∈ TSt1
T , then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(∆ln f − ‖∇ln f ‖2) +
c
4
(t− t1t2 − t2t3

− t1t3 −
1
2
).

(58)
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(ii) χ ∈ TSt2
θ , then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(∆ln f − ‖∇ln f ‖2) +
c
4
(t− t1t2 − t2t3

− t1t3 + 1− 3
2

cos2 θ).
(59)

(iii) If χ ∈ TSt2
⊥, then

1
4

t2‖Π‖2 ≥ RS(χ) + t3(∆ln f − ‖∇ln f ‖2) +
c
4
(t− t1t2 − t2t3 − t1t3 + 1). (60)

(2) If Γ(x) = 0 for each point x ∈ St, then there is a unit vector field χ which satisfies the equality of (1) iff St

is mixed totally geodesic and χ ∈ Nx at x.
(3) For the equality case we have

(a) The equality of (58) holds identically for all unit vector fields tangent to St1
T at each x ∈ St iff St is

mixed TG and L−totally geodesic SCR W-P submanifold in S̄m(c).
(b) The equality of (59) holds identically for all unit vector fields tangent to Sθ at each x ∈ St iff S is

mixed totally geodesic and either St is Lθ- totally geodesic SCR W-P submanifold or St is a Lθ

totally umbilical in S̄m(c) with dim Lθ = 2.
(c) The equality of (60) holds identically for all unit vector fields tangent to St2

⊥ at each x ∈ St iff S is
mixed totally geodesic and either St is L⊥- totally geodesic SCR W-P or St is a L⊥ totally umbilical
in S̄m(c) with dim L⊥ = 2.

(d) The equality case of (1) holds identically for all unit tangent vectors to St at each x ∈ St iff either
St is totally geodesic submanifold or Mt is a mixed totally geodesic totally umbilical and L totally
geodesic submanifold with dim St2

θ = 2 and dim St3
⊥ = 2.

Where t1, t2 and t3 are the dimensions of St1
T , St2

θ and St3
⊥ respectively.

5. Conclusions

In the present study we obtained some fundamental results for skew CR-warped product
submanifolds in the frame of complex space forms. Further, some inequalities in terms of Ricci
curvature and squared norm of mean curvature vector were derived. In particular, a Ricci curvature
for CR-warped product submanifolds was also discussed. Recently, we also studied warped product
submanifolds in complex space forms (see [15,16]) and obtained some inequalities in terms of squared
norm of second fundamental form, slant function and the warping functions, but the results obtained
in the present study are dissimilar from the previous works of the authors and were proved by using
different techniques.
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Abbreviations

W-P Warped product
W-F Warping function
CSF Complex Space form
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din Iaşi 1994, 40, 55–61.
5. Cabrerizo, J.L.; Carriazo, A.; Fernandez, L.M.; Fernandez, M. Slant submanifolds in Sasakian manifolds.

Glasg. Math. J. 2000, 42, 125–138. [CrossRef]
6. Sahin, B. Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 2009, 95,

207–206. [CrossRef]
7. Ronsse, G.S. Generic and skew CR-submanifolds of a Kaehler manifold. Bull. Inst. Math. Acad. Sin. 1990, 18,

127–141.
8. Bishop, R.L.; O’Neill, B. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–9. [CrossRef]
9. Beem, J.K.; Ehrlich, P.; Powell, T.G. Warped Product Manifolds in Relativity, Selected Studies; North-Holland:

Amsterdam, NY, USA, 1982.
10. Hawkings, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge,

UK, 1973.
11. O’Neill, B. Semi-Riemannian Geometry with Application to Relativity; Academic Press: Cambridge, MA, USA, 1983.
12. Chen, B.Y. Geometry of warped product CR-submanifolds in Kaehler manifolds, I. Monatsh Math. 2001, 133,

177–195. [CrossRef]
13. Siddiqui, A.N.; Chen, B.Y.; Bahadr, O. Statistical solitons and inequalities for statistical warped product

submanifolds. Mathematics 2019, 7, 797. [CrossRef]
14. Chen, B.Y. Geometry of warped product submanifolds: A survey. J. Adv. Math. Study 2013, 6, 1–43.
15. Khan, M.A. Warped product point wise semi-slant submanifolds of the complex space forms. Rendiconti del

Circolo Matematico di Palermo Series 2 2019, 69, 195–207. [CrossRef]
16. Khan, M.A.; Khan, K. Biwarped product submanifolds of complex space forms. Int. J. Geom. Methods

Mod. Phys. 2019, 16, 1950072. [CrossRef]
17. Sahin, B. Skew CR-warped products of Kaehler manifolds. Math. Commun. 2010, 15, 189–204.
18. Haider, S.M.K.; Thakur, M. Warped product skew CR-submanifolds of cosymplectic manifold. Lobachevskii J.

Math. 2012, 33, 262–273. [CrossRef]
19. Chen, B.Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary

codimension. Glasg. Math. J. 1999, 41, 33–41. [CrossRef]
20. Cioroboiu, D.; Chen, B.Y. Inequalities for semi-slant submanifolds in Sasakian space forms. Int. J. Math.

Math. Sci. 2003, 27, 1731–1738. [CrossRef]
21. Yoon, D.W. Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms. Turk. J. Math.

2006, 30, 43–56.
22. Mihai, A.; Ozgur, C. Chen inequalities for submanifolds of real space forms with a semi-symmetric metric

connection. Taiwan. J. Math. 2010, 14, 1465–1477. [CrossRef]
23. Tripathi, M.M. Improved Chen Ricci Inequality for curvature-like tensors and its applications.

Diff. Geom. Appl. 2011, 29, 685–698. [CrossRef]
24. Ali, A.; Laurian-Ioan, P.; Al-Khalidi, A.H. Ricci curvature on warped product submanifolds in spheres with

geometric applications. J. Geom. Phys. 2019, 146, 103510. [CrossRef]

http://dx.doi.org/10.4310/jdg/1214436106
http://dx.doi.org/10.1017/S0017089500010156
http://dx.doi.org/10.4064/ap95-3-2
http://dx.doi.org/10.1090/S0002-9947-1969-0251664-4
http://dx.doi.org/10.1007/s006050170019
http://dx.doi.org/10.3390/math7090797
http://dx.doi.org/10.1007/s12215-018-00396-8
http://dx.doi.org/10.1142/S0219887819500725
http://dx.doi.org/10.1134/S1995080212030109
http://dx.doi.org/10.1017/S0017089599970271
http://dx.doi.org/10.1155/S016117120311215X
http://dx.doi.org/10.11650/twjm/1500405961
http://dx.doi.org/10.1016/j.difgeo.2011.07.008
http://dx.doi.org/10.1016/j.geomphys.2019.103510


Mathematics 2020, 8, 1317 19 of 19

25. Chen, B.Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Characterization of Riemannian space forms, Einstein
spaces and conformally flate spaces. Proc. Am. Math. Soc. 2000, 128, 589–598 [CrossRef]

26. Chen, B.Y. Differential Geometry of Warped Product Manifolds and Submanifolds; World Scientific: Singapore, 2017.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1090/S0002-9939-99-05332-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries 
	Skew CR-Warped Product Submanifolds
	Ricci Curvature for Skew CR-Warped Product Submanifold
	Conclusions
	References

