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Abstract: This study addresses a two-machine job-shop scheduling problem with fixed lower and
upper bounds on the job processing times. An exact value of the job duration remains unknown until
completing the job. The objective is to minimize a schedule length (makespan). It is investigated
how to best execute a schedule, if the job processing time may be equal to any real number from
the given (closed) interval. Scheduling decisions consist of the off-line phase and the on-line phase
of scheduling. Using the fixed lower and upper bounds on the job processing times available at
the off-line phase, a scheduler may determine a minimal dominant set of schedules (minimal DS),
which is based on the proven sufficient conditions for a schedule dominance. The DS optimally
covers all possible realizations of the uncertain (interval) processing times, i.e., for each feasible
scenario, there exists at least one optimal schedule in the minimal DS. The DS enables a scheduler
to make the on-line scheduling decision, if a local information on completing some jobs becomes
known. The stability approach enables a scheduler to choose optimal schedules for most feasible
scenarios. The on-line scheduling algorithms have been developed with the asymptotic complexity
O(n2) for n given jobs. The computational experiment shows the effectiveness of these algorithms.

Keywords: scheduling; job-shop; makespan criterion; uncertain processing times

1. Introduction

Many real-world production planning and scheduling problems have various uncertainties.
Different approaches are used for solving the uncertain planning and scheduling problems.
In particular, a stability approach [1–4] for solving sequencing and scheduling problems with the
interval uncertainty is based on the stability analysis of the optimal job permutations (schedules) to
possible variations of the job processing times (durations). In this paper, this approach is applied to
the uncertain two-machine job-shop scheduling problem, where a job processing time is only known
once the job is completed. Although, the exact value of the job processing time is unknown before
scheduling, it is known that the processing time must have a value no less than the lower bound and
no greater than the upper bound available before scheduling. It should be noted that uncertainties
of the job processing times are due to some external forces in contrast to scheduling problems with
controllable processing times [5–7], where the objective is to determine optimal processing times and
then to find an optimal schedule for the jobs with the chosen processing times.
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1.1. Research Motivation

It is not realistic to assume processing times are exactly known and fixed for many scheduling
problems arising in real-world situations. For such an uncertain scheduling problem, job processing
times are random variables. Moreover, it is often hard to obtain probability distributions for all random
processing times of the jobs to be processed. In such cases, schedules constructed due to assuming
certain probability distributions are often not close to the optimal schedule. Although, the probability
distribution of the job processing time may not be known before scheduling, the upper and lower
bounds on the job processing time are easy to obtain in most practical scheduling environments.
The available information on these lower and upper bounds on the job processing times should be
utilized in finding optimal schedules for the scheduling problem with an interval uncertainty.

Since there may not exist a unique schedule that remains optimal for all possible realizations
of the job processing times (all possible scenarios), it is desirable to construct a minimal dominant
set of schedules (permutations of the jobs to be processed), which dominate all other ones. At the
off-line phase of scheduling (i.e., before starting an execution of the constructed schedule), a minimal
dominant set of schedules may be determined based on the proven dominance relations [8].

If the constructed minimal dominant set of schedules is a singleton, then a single schedule
remaining optimal for all possible scenarios exists. Otherwise, one can reduce the size of the
determined minimal dominant set of schedules at the on-line phase of scheduling based on the
additional information about completing some jobs. This additional on-line information allows a
scheduler to find new dominance relations in order to best execute a schedule. It is clear that on-line
scheduling decisions must be realized very quickly. In other words, only polynomial algorithms may
be applied at the on-line phase of scheduling.

1.2. Contributions of This Research

In this paper, it is shown how to determine a minimal dominant set of schedules that would
contain at least one optimal schedule for every scenario that is possible. The necessary and sufficient
conditions are proven for the existence of a single pair of job permutations, which is optimal for
the two-machine job-shop scheduling problem with any possible scenario. The algorithms have
been developed for testing a set of the proven sufficient conditions for a schedule dominance and
for the realization of a schedule, which is either optimal or very close to optimal one for the factual
scenario. The developed algorithms are polynomial in the number n of the given jobs. Their asymptotic
complexities do not exceed O(n2). The computational experiments on a large number of randomly
generated instances of the uncertain (interval) two-machine job-shop scheduling problem show
the efficiency and effectiveness of the developed off-line and on-line algorithms and programs.
For different distributions of the factual job processing times, the developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% provided that n ∈ {20, 30, . . . , 100}.
For all tested classes of the randomly generated instances, the average makespan errors ∆ave% for all
tested numbers n ∈ {10, 20, . . . , 100} of jobs J are less than 0.02%. Each tested series of 1000 randomly
generated instances was solved within no more than one second.

The paper is organized as follows. Settings of the considered scheduling problems with the
interval uncertainty and main notation are introduced in Section 2. A literature review is presented
in Section 3. The results published for the uncertain (interval) scheduling flow-shop problem are
discussed in Section 3.2. These results are used in Section 4 for finding the optimal job permutations at
the off-line phase of scheduling. In Section 4.2, the precedence digraphs are described for determining
a minimal dominant set of schedules. An illustrative example is considered in Section 4.3. The on-line
phase of scheduling is investigated in Section 5, where two theorems for the dominant sets of
schedules have been proven. Section 6 contains the algorithms developed for the on-line phase
of scheduling, illustrative examples (Section 6.2) and the discussion of the conducted computational
experiments (Section 6.3). Appendix B consists of the tables with the detailed computational results.
Some concluding remarks are made in Section 7.
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2. Settings of Scheduling Problems and Main Notations

A set J = {J1, J2, ..., Jn} of the given jobs must be processed on different machines from a set
M = {M1, M2}. All jobs are available for processing from the same time t = 0. Using the standard
notation α|β|γ [9], this deterministic two-machine job-shop scheduling problem to minimize the
makespan is denoted as follows: J2|ni ≤ 2|Cmax, where α = J2 means a job-shop processing system
with two available different machines and ni a number of possible stages for processing a job Ji ∈ J .
The criterion γ = Cmax determines the minimization of a schedule length (makespan) as follows:

Cmax := min
s∈S

Cmax(s) = min
s∈S
{max{Ci(s) : Ji ∈ J }} , (1)

where Ci(s) denotes the completion time-point of the job Ji ∈ J in the schedule s and S denotes a set
of all semi-active schedules existing for the deterministic problem J2|ni ≤ 2|Cmax. (A schedule s is
called a semi-active one [10–12] if the completion time-point Ci(s) of any job Ji ∈ J cannot be reduced
without changing an order of the jobs on some machine.)

Let Oij denote an operation of the job Ji ∈ J processed on the machine Mj ∈ M. Each of the
available machines can process the job Ji ∈ J no more than once, a preemption of the operation Oij
being not allowed. The job Ji ∈ J has its own processing route through the available machines in set
M. The partition J = J1

⋃J2
⋃J1,2

⋃J2,1 of the jobs is given and fixed, where each job Ji ∈ J1,2

must be processed first on machine M1 and then on machine M2, i.e., all jobs from the set J1,2 have
the same machine route (M1, M2). Each job Ji ∈ J2,1 has an opposite machine route (M2, M1). The set
Jj, where j ∈ {1, 2}, consists of all jobs, which must be processed only on one machine Mj ∈ M.
The following notation mh = |Jh| will be used, where h ∈ {1; 2; 1,2; 2,1}.

In this research, it is investigated the uncertain (interval) two-machine job-shop scheduling
problem denoted as J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax, where the duration pij of each operation Oij is
unknown before scheduling. It is only known that the inclusion pij ∈ [lij, uij] holds for any possible
realization of the chosen schedule, where uij ≥ lij ≥ 0. It is also assumed that a probability distribution
of the random duration of a job from the set J is also unknown before scheduling. Let a set T of all
possible scenarios p = (p1,1, p1,2, . . . , pn1, pn2) of the job processing times be determined as follows:

T = {p : lij ≤ pij ≤ uij, Ji ∈ J , Mj ∈ M}.

It should be noted that the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is mathematically incorrect
since one cannot calculate makespan Cmax(s) in the equality (1) before completing the jobs Ji in the
set J provided that the strict inequality uij > lij holds. Moreover, in most cases there does not exist
a schedule, which is optimal for all possible scenarios p ∈ T for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Therefore, one cannot solve most such uncertain (interval) scheduling
problems in the generally accepted sense.

In [13], it is proven that the deterministic job-shop problem J2|ni ≤ 2|Cmax is solvable in O(n log n)
time. The optimal semi-active schedule for this deterministic problem is determined as the pair (π′, π′′)

of two job permutations (called a Jackson’s pair of permutations), where π′ = (π1,2, π1, π2,1) is an
optimal permutation of the jobs J1

⋃J1,2
⋃J2,1 processed on machine M1 and π′′ = (π2,1, π2, π1,2)

is an optimal permutation of the jobs J2
⋃J1,2

⋃J2,1 on machine M2. Such an optimal semi-active
schedule is presented in Figure 1. In what follows, it is assumed that job Ji belongs to the permutation
πh, if the following inclusion holds: Ji ∈ Jh.

In a Jackson’s pair of permutations (π′, π′′), the optimal order for processing jobs from the set J1

(from the set J2, respectively) may be arbitrary (due to this, we fix them in the increasing order of their
indexes). For the permutation π1,2 (permutation π2,1, respectively), the following inequality holds:

min{pie1, pi f 2} ≤ min{pi f 1, pie2} (2)
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for all indexes e and f provided that 1 ≤ e < f ≤ m1,2 (1 ≤ f < e ≤ m2,1, respectively).
The permutation π1,2 (permutation π2,1) is called a Johnson’s permutation; see [14].

 

M1 … … … 

1,2 1 2,1 

M2 

t 

… … … 

2,1 2 1,2 

Figure 1. An example of the optimal semi-active schedule without idle times on both machines.

The deterministic scheduling problem J2|ni ≤ 2|Cmax associated with a fixed scenario p of the
job processing times is an individual deterministic problem. In what follows, this problem is denoted
as follows: J2|p, ni ≤ 2|Cmax. For any fixed scenario p ∈ T, there exists a Jackson’s pair (π′, π′′) of
permutations, which is optimal for the problem J2|p, ni ≤ 2|Cmax, i.e., the equality Cmax(π′, π′′) =

Cp
max holds, where Cp

max denotes the optimal makespan value for the problem J2|p, ni ≤ 2|Cmax.
Let S1,2 denote a set of all permutations of m1,2 jobs from the set J1,2, where |S1,2| = m1,2!. The set

S2,1 is a set of all permutations of m2,1 jobs from the set J2,1, |S2,1| = m2,1!.
Let the set S =<S1,2, S2,1 > be a subset of the Cartesian product (S1,2, π1, S2,1)× (S2,1, π2, S1,2),

each element of the set S being a pair of job permutations (π′, π′′) ∈ S, where π′ = (πi
1,2, π1, π

j
2,1)

and π′′ = (π
j
2,1, π2, πi

1,2) with inequalities 1 ≤ i ≤ m1,2! and 1 ≤ j ≤ m2,1!. It is known that the set S
determines all semi-active schedules and vice versa; see [12]. Since index i (and index j) is the same
in each permutation from the pair (π′, π′′) ∈ S and it is a fixed permutation π1 (permutation π2),
the equality |S| = m1,2! ·m2,1! holds. The following definition of a J-solution is used for the uncertain
(interval) job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

Definition 1. An inclusion-minimal set of the pairs of job permutations S(T) ⊆ S is called a J-solution for the
uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the set J of the given jobs, if for each scenario
p ∈ T, the set S(T) contains at least one pair (π′, π′′) ∈ S of job permutations that is optimal for the individual
deterministic problem J2|p, ni ≤ 2|Cmax with a fixed scenario p.

From Definition 1, it follows that for any proper subset S′ of the set S(T), S′ ⊂ S(T), there exists
a scenario p′ ∈ T such that the set S′ does not contain an optimal pair of job permutations for the
individual deterministic problem J2|p′, ni ≤ 2|Cmax with a fixed scenario p′.

3. A Literature Review and Closed Results

It should be noted that the uncertain flow-shop scheduling problem denoted as
F2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is well studied [15], unlike the uncertain job-shop scheduling problem.
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3.1. Approaches to Scheduling Problems with Different Forms of Uncertainties

For the well-known stochastic approach, it is assumed that the job processing times are random
variables with certain probability distributions determined before scheduling. There are two types of
the stochastic scheduling problems [10], where one is on stochastic jobs and another is on stochastic
machines. In the stochastic job scheduling problem, each job processing time is a random variable with
a known probability distribution. With the objective of minimizing the expected makespan value, the
flow-shop problem was studied in [16–18]. In the stochastic machine scheduling problem, each job
processing time is a constant, while each completion time of the given job is a random variable due to
the machine breakdown or machine non-availability. In [19–21], the flow-shop scheduling problems to
stochastically minimize either makespan or total completion time were investigated.

If it is impossible to determine probability distributions for all random job processing times,
other approaches have to be used [11,22–25]. In the approach of seeking a robust schedule [22,26–28],
a decision-maker looks for a schedule that hedges against the worst-case possible scenario.

A fuzzy approach [29–35] allows a scheduler to find best schedules with respect to fuzzy
processing times of the jobs to be processed. The work of [35] addresses to the job-shop scheduling
problem with uncertain processing times modeled as triangle fuzzy numbers, where the criterion is
to minimize the expected makespan value. Based on the disjunctive graph model of the job-shop
problem, a definition of criticality is proposed for this job-shop problem along with neighborhood
structure for a local search. It is shown that the proposed neighborhood structure has two properties:
feasibility and connectivity, which allow a scheduler to improve the efficiency of the local search and to
ensure asymptotic convergence (in probability) to a globally optimal solution of the uncertain job-shop
problem. The conducted computational experiments supported these theoretical results.

The stability approach was developed in [1,4,36,37] for the Cmax criterion, and in [2,38–40] for
the total completion time criterion, ∑ Ci := ∑Ji∈J Ci(π

′). The aim of this approach is to construct a
minimal dominant set S(T) of schedules, which optimally covers all feasible scenarios T. The dominant
set S(T) is used in the multi-phase decision framework; see [41]. The set S(T) is constructed at the first
off-line phase of scheduling. Based on the set S(T), it is possible to find a schedule remaining optimal
for most feasible scenarios. The set S(T) enables a scheduler to execute best a schedule in most cases
of the uncertain flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax [41].

The stability radius of the optimal semi-active schedule was studied in [4], where a formula for
calculating the stability radius and corresponding algorithms were described and tested.

In [36], the sufficient conditions were proven when a transposition of the given jobs minimizes
the makespan criterion. The work of [42] addressed the objective criterion ∑ Ci in the uncertain
two-machine flow-shop scheduling problem. The case of separate setup times with the criterion of
minimizing a total completion time or makespan was investigated in [43].

For the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax, an additional criterion is often
introduced. In particular, a robust schedule minimizing the worst-case deviation from the optimal
value was proposed in [44] to hedge against the interval or discrete uncertainties. In [45], a binary
NP-hardness was proven for finding a pair (πq, πq) ∈ S of the identical job permutations that
minimizes the worst-case absolute regret for the uncertain two-machine flow-shop problem with
the criterion Cmax and only two possible scenarios. In [46], a branch and bound method was developed
for the uncertain job-shop scheduling problem to minimize makespan and optimize robustness based
on a mixed graph model and the propositions proposed in [47]. The effectiveness of the developed
algorithm was clarified by solving test uncertain job-shop scheduling problems.

The work of [48] addresses robust scheduling for a flexible job-shop scheduling problem with
a random machine breakdown. Two objectives makespan and robustness were considered. Robustness
was indicated by the expected value of the relative difference between the deterministic and factual
makespan values. Two measures for robustness have been developed. The first suggested measure
considers the probability of machine breakdowns. The second measure considers the location of
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float times and machine breakdowns. A multi-objective evolutionary algorithm is presented and
experimentally compared with several other existing measures.

A function of predictive scheduling in order to obtain a stable and robust schedule for a shop floor
was investigated in [49]. An innovative maintenance planning and production scheduling method has
been proposed. The proposed method uses a database to collect information about failure-free times,
a prediction module of failure-free times, predictive rescheduling module, a module for evaluating the
accuracy of prediction and maintenance performance. The proposed approach is based on probability
theory and applied for solving a job-shop scheduling problem. For unpredicted failures, a rescheduling
procedure was also developed. The evaluation procedure provides information about the degradation
of a performance measure and the stability of a schedule.

The simulation and experimental design methods play a useful role in solving job-shop scheduling
problems with uncertain parameters (see survey [50], where many studies about dynamic and static
job-shop scheduling problems with material handling are described and systematized).

In [51], a quality robustness and a solution robustness were investigated in order to compare the
operational efficiency of the job-shop in the events of machine failures. Two well-known proactive
approaches were compared to compute the operational efficiency of the job-shop with unpredicted
machine failures. In the computational experiments, the predictive-reactive approach (without
a prediction) and the proactive-reactive one (with a prediction) were applied for the job-shop model
with possible disruptions. The computational results of computer simulations for the above two
approaches were compared in order to select better schedules for reducing costs and waste due to
machine failures.

The paper [52] presents a methodological pattern to assess the effectiveness of Order Review
and Release (ORR) techniques in a job-shop environment. It is presented a comparison among three
ORR approaches, i.e., a time bucketing approach, a probabilistic approach and a temporal approach.
Simulation results highlighted that the performances of the ORR techniques tested depend on how
perturbed the environment, where they are implemented, is. Based on a computer simulation, it was
shown that the ORR techniques greatly differ in their robustness against environment perturbations.

The paper [53] presents an effective heuristic algorithm for the job-shop problem with uncertain
arrival times of the jobs, processing times, due dates and part priorities. A separable problem
formulation that balances modeling accuracy and solution complexity is described with the goal
to minimize expected part tardiness and earliness cost. The optimization is subject to arrival times
and operation precedence constraints (for each possible realization), and machine capacity constraints
(in the expected value sense). The solution algorithm based on a Lagrangian relaxation and stochastic
dynamic programming was developed to obtain dual solutions. The computational complexity of
the developed algorithm is only slightly higher than the one without considering uncertainties of the
numerical parameters. Numerical testing supported by a simulation demonstrated that near optimal
solutions were obtained, and uncertainties are effectively handled for problems of practical sizes.

The published results on the application of the stability approach for the uncertain two-machine
flow-shop problem are presented in Section 3.2. These results are described in detail since they are
used for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax in Sections 4–6.

3.2. Closed Results for Uncertain (Interval) Flow-Shop Scheduling Problems

The uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is a generalization of the
uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax, where all given jobs have the same machine
route. Two uncertain flow-shop problems are associated with an uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. In one of these flow-shop problems, an optimal schedule for processing
the jobs J1,2 must be determined, i.e., it is assumed that J2,1 = J1 = J2 = ∅. In another associated
flow-shop problem, an optimal schedule for processing jobs J2,1 must be determined, i.e., it is assumed
that J1,2 = J1 = J2 = ∅. Our approach to the solution of the uncertain job-shop scheduling problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is based on the following remark.
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Remark 1. The solution of the uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax may be
based on the solutions of the associated flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J = J1,2, where J2,1 = J1 = J2 = ∅, and that with the job set J = J2,1 (i.e., J1,2 = J1 = J2 = ∅).

The sense of Remark 1 becomes clear from Figure 2, where the semi-active schedule s for the
job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is presented. Indeed, in Figure 2, the length
Cmax(s) of the schedule s is equal to the length of the corresponding semi-active schedule determined
for the associated flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax with the job set J = J1,2.
Thus, if one will solve both associated flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J = J1,2 and associated flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J = J2,1, then the
original job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax will be also solved.

 

… … … 

1,2 
1 2,1 

M2 
t 

… … 

2,1 2 
1,2 

… 

2 max 1,2( )c C  

idle time 

M1 

Figure 2. The optimal semi-active schedule for the job-shop scheduling problem.

We next observe in detail the results obtained for the two-machine flowshop problem
F2|lij ≤ pij ≤ uij|Cmax with the job set J = J1,2. For using the above notations introduced for the
uncertain job-shop problem, we need the following remark for the uncertain flow-shop problem.

Remark 2. The considered problem F2|lij ≤ pij ≤ uij|Cmax has the following two mandatory properties:

(i) the set S is a set of n! pairs (πq, πq) of the identical permutations of n = m1,2 jobs from the set J = J1,2

since the machine route for processing all jobs J1,2 is the same (M1, M2);
(ii) the J-solution (see Definition 1) is a set of Johnson’s permutations of the jobs J = J1,2, i.e., for each scenario

p ∈ T the set S(T) contains at least one optimal pair (πq, πq) of identical Johnson’s permutations πq such
that the inequality (2) holds for all indexes e and f .

The following Theorems 1 and 2 have been proven in [54].

Theorem 1 ([54]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with a fixed order Jv → Jw of the jobs Jv and Jw in all permutations πq, (πq, πq) ∈ S(T), if and only if at least
one of the following two conditions hold:

uv1 ≤ lv2 and uv1 ≤ lw1; (3)

uw2 ≤ lw1 and uw2 ≤ lv2. (4)
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Theorem 2 provides the necessary and sufficient conditions for existing a single-element
J-solution S(T) = {(πq, πq)} for the uncertain flow-shop scheduling problem F2|lij ≤ pij ≤ uij|Cmax.
The partition J = J 0 ∪ J 1 ∪ J 2 ∪ J ∗ of the set J = J1,2 is given, where

J 0 = {Ji ∈ J : ui1 ≤ li2, ui2 ≤ li1},
J 1 = {Ji ∈ J : ui1 ≤ li2, ui2 > li1} = {Ji ∈ J \ J 0 : ui1 ≤ li2},
J 2 = {Ji ∈ J : ui1 > li2, ui2 ≤ li1} = {Ji ∈ J \ J 0 : ui2 ≤ li1},
J ∗ = {Ji ∈ J : ui1 > li2, ui2 > li1}.
Note that for each job Jg ∈ J 0, the inequalities ug1 ≤ lg2 and ug2 ≤ lg1 imply the equalities

lg1 = ug1 = lg2 = ug2. Thus, the equalities pg1 = pg2 =: pg hold.

Theorem 2 ([54]). There exists a single-element J-solution S(T) ⊂ S, |S(T)| = 1, for the uncertain flow-shop
problem F2|lij ≤ pij ≤ uij|Cmax, if and only if the following two conditions hold:

(j) for any pair of jobs Ji and Jj from the set J 1 (from the set J 2, respectively), either ui1 ≤ lj1 or uj1 ≤ li1
(either ui2 ≤ lj2 or uj2 ≤ li2, respectively);

(jj) inequality |J ∗| ≤ 1 holds and for the job Ji∗ ∈ J ∗ both inequalities li∗1 ≥ max{ui1 : Ji ∈ J 1},
li∗2 ≥ max{uj2 : Jj ∈ J 2} hold with inequality max{li∗1, li∗2} ≥ pg valid for each job Jg ∈ J 0.

Theorem 2 characterizes the simplest case of the uncertain flow-shop problem
F2|lij ≤ pij ≤ uij|Cmax, i.e., there is a job permutation πq dominating all others.

Let J × J denote a Cartesian product of the set J . If J 0 = ∅, then there exists the following
binary relation A≺ ⊆ J ×J over the set J = J1,2.

Definition 2. For the jobs Jx ∈ J and Jy ∈ J , the inclusion (Jx, Jy) ∈ A≺ holds if and only if at least one of
the conditions (3) and (4) holds with v = x and w = y and neither the condition (3) no the condition (4) holds
with v = y and w = x (or at least one of the conditions (3) and (4) holds both with v = x and w = y and with
v = y, w = x and x < y).

The above relation (Jx, Jy) ∈ A≺ may be represented as follows: Jx ≺ Jy. The binary relation
A≺ is a strict order [55] that determines the precedence digraph G = (J ,A≺) with the vertex set J
and the arc set A≺. The permutation πq = (Jq1 , Jq2 , . . . , Jqn), (πq, πq) ∈ S, is a total strict order over
the set J . The total strict order determined by the permutation πq is a linear extension of the partial
strict order A≺, if the inclusion (Jqx , Jqy) ∈ A≺ implies the inequality x < y. Let Π(G) denote a set of
all permutations πq ∈ S1,2 determining linear extensions of the partial strict order A≺. The equality
Π(G) = {πq} is characterized in Theorem 2, where the strict order A≺ over the set J is represented as
follows: Jq1 ≺ . . . ≺ Jqi ≺ Jqi+1 ≺ . . . ≺ Jqn . The following two claims have been proven in [55].

Theorem 3 ([55]). For any scenario p ∈ T, the set Π(G) contains a Johnson’s permutation for the deterministic
flow-shop problem F2|p|Cmax with the job set J = J1,2 = J ∗ ∪ J 1 ∪ J 2.

Corollary 1 ([55]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with the job set J = J1,2 = J ∗ ∪ J 1 ∪ J 2, such that the inclusion πq ∈ Π(G) holds for all pairs of job
permutations, where (πq, πq) ∈ S(T).

In [55], it is shown how to determine a minimal dominant set S(T) = {(πq, πq)} with πq ∈ Π(G).
The digraph G = (J ,A≺) is considered as a condense form of a J-solution for the uncertain flow-shop
problem F2|lij ≤ pij ≤ uij|Cmax. The above results are used in Sections 4–6 for reducing a size of the
dominant set S(T) for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

4. The Off-Line Phase of Scheduling

The above setting of the uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ n|Cmax

implies the following remark.
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Remark 3. The factual value p∗ij of the job processing time pij becomes known at the time-point cj(i) when the
operation Oij is completed on the machine Mj ∈ M.

Due to Remark 3, if all jobs J are completed on the corresponding machines from the setM,
the durations of all operations Oij take on exact values p∗ij, where lij ≤ p∗ij ≤ uij, and a unique factual
scenario p∗ ∈ T is realized. A pair of job permutations selected for this realization should be optimal
for scenario p∗. For constructing such an optimal pair of job permutations, we propose to implement
two phases, namely: the off-line phase of scheduling and the on-line phase of scheduling.

The off-line phase is completed before starting a realization of the selected semi-active schedule.
At the off-line phase, a scheduler knows the exact lower and upper bounds on the job processing times
and the aim is to determine a minimal dominant set of the pairs of job permutations (π′, π′′).

The on-line phase is started when the corresponding machine starts the processing of the first
job in the selected schedule. At this phase, a scheduler can use an additional information on the job
processing time, since for each operation Oij, the exact value p∗ij of the processing time pij ∈ T becomes
known at the completion time cj(i) of this operation; see Remark 3.

We next consider the off-line phase of scheduling for the uncertain job-shop problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax and describe the sufficient conditions for existing a small dominant set of the
semi-active schedules. Along with Definition 1, the following one is also used.

Definition 3. A set of the pairs of job permutations DS(T) ⊆ S is a dominant set for the uncertain job-shop
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax, if for each scenario p ∈ T the set DS(T) contains at least one optimal
pair of job permutations for the individual deterministic job-shop problem J2|p, ni ≤ 2|Cmax with scenario p.

Obviously, the J-solution is a dominant set for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Before processing the set J of given jobs, a scheduler does not know the
exact values of the job processing times. Nevertheless, it is needed to determine an optimal pair of
permutations of the jobs J for their processing on the machinesM = {M1, M2}.

In Section 4.1, the sufficient conditions are presented for existing a pair of job permutations
(π′, π′′) such that the equality DS(T) = {(π′, π′′)} holds. Section 4.2 contains the sufficient conditions
allowing a scheduler to construct a semi-active schedule (if any), which dominates all other schedules
in the set S. If a singleton DS(T) = {(π′, π′′)} does not exist, a scheduler should construct partial
strict orders A1,2

≺ and A2,1
≺ over set J1,2 and set J2,1; see Section 3.

4.1. Conditions for Existing a Single Optimal Pair of Job Permutations

The following conditions for existing an optimal pair of job permutations are proven in [8].

Theorem 4 ([8]). If one of the following conditions either (5) or (6) holds:

∑
Ji∈J1,2

ui1 ≤ ∑
Ji∈J2,1∪J2

li2 and ∑
Ji∈J1,2

li2 ≥ ∑
Ji∈J2,1∪J1

ui1, (5)

∑
Ji∈J2,1

ui2 ≤ ∑
Ji∈J1,2∪J1

li1 and ∑
Ji∈J2,1

li1 ≥ ∑
Ji∈J1,2∪J2

ui2, (6)

then any pair of permutations (π′, π′′) ∈ S is a singleton DS(T) = {(π′, π′′)} for the uncertain job-shop
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Corollary 2 ([8]). If the following inequality holds:

∑
Jj∈J1,2

ui1 ≤ ∑
Jj∈J2,1∪J2

li2, (7)
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then the set <{π1,2}, S2,1>⊆ S, where π1,2 is an arbitrary permutation in the set S1,2, is a dominant set for the
uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Corollary 3 ([8]). If the following inequality holds: ∑Jj∈J2,1
ui2 ≤ ∑Jj∈J1,2∪J1

li1, then the set <

S1,2, {π2,1} >, where π2,1 is an arbitrary permutation in the set S2,1, is a dominant set for the uncertain
job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

In order to determine an optimal permutation for processing jobs from the set J2,1 (set J1,2,
respectively), we consider the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set
J1,2 ⊆ J and the machine route (M1, M2), and that with the job set J2,1 ⊆ J and the machine route
(M2, M1). The following theorem has been proven in [8].

Theorem 5 ([8]). Let the set S′1,2 ⊆ S1,2 be a set of permutations from the dominant set for the flow-shop
problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2, and the set S′2,1 ⊆ S2,1 be a set of permutations
from the dominant set for the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J2,1. Then the set
<S′1,2, S′2,1 >⊆ S is a dominant set for the job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set
J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

4.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules

Based on Remark 1, the off-line phase of scheduling for the uncertain job-shop problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax may be based on solving the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax

with the job set J1,2 and that with the job set J2,1. A criterion for the existence of a single-element
J-solution for the uncertain flow-shop problem F2|lij ≤ pij ≤ uij|Cmax is determined in Theorem 2.

In what follows, it is assumed that the equality J1,2 = J 1
1,2 ∪ J 2

1,2 ∪ J ∗1,2 holds, i.e., J 0
1,2 = ∅.

Using the results presented in Section 3, one can determine a binary relation A1,2
≺ for the uncertain

flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2. For the job set J1,2, the binary relation
A1,2
≺ determines the digraph G1,2 = (J1,2, A1,2

≺ ) with the vertex set J1,2 and the arc set A1,2
≺ .

Definition 4. Two jobs Jx ∈ J1,2 and Jy ∈ J1,2, x 6= y, are conflict if they are not in the relation A1,2
≺ , i.e.,

(Jx, Jy) 6∈ A1,2
≺ and (Jy, Jx) 6∈ A1,2

≺ .

Due to Definition 2, for the conflict jobs Jx ∈ J1,2 and Jy ∈ J1,2, x 6= y, relations (3) and (4) do not
hold for the case v = x with w = y, nor for the case v = y with w = x.

Definition 5. The inclusion-minimal set Jx ⊆ J1,2 of the jobs is called a conflict set of the jobs, if for any job
Jy ∈ J1,2 \ Jx either relation (Jx, Jy) ∈ A1,2

≺ or relation (Jy, Jx) ∈ A1,2
≺ holds for each job Jx ∈ Jx.

There may exist several conflict sets in the set J1,2. Let the strict order A1,2
≺ for the flow-shop

problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2 be represented as follows:

J1 ≺ J2 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ Jk+r+2 ≺ . . . ≺ Jm1,2 . (8)

Here, an optimal permutation for processing jobs from the set {J1, J2, . . . , Jk} (for jobs from the set
{Jk+r+1, Jk+r+2, . . . , Jm1,2}) is as follows: (J1, J2, . . . , Jk) ((Jk+r+1, Jk+r+2, . . . , Jm1,2), respectively). All jobs
between braces in the presentation (8) constitute the conflict set of the jobs and they are in relation
A1,2
≺ with any job located outside the braces. Due to Theorem 3, the set Π(G1,2) of the permutations

generated by the digraph G1,2 includes an optimal permutation for each vector p1,2 of the processing
times of the jobs J1,2. Due to Corollary 1, the set S1,2(T) = {(π1,2, π1,2)} with π1,2 ∈ Π(G1,2) is a
J-solution for the flow-shop problem F2|lij ≤ pij ≤ uij|Cmax with the job set J1,2. Analogously, the set
S2,1(T) = {(π2,1, π2,1)} with π2,1 ∈ Π(G2,1) is a J-solution for the problem F2|lij ≤ pij ≤ uij|Cmax
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with the job set J2,1. Due to Theorem 5, one can determine a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J as follows: <Π(G1,2), Π(G2,1)> ⊆ S; see Remark 1.

The following three theorems are proven in [8], where the notation L2 := ∑Jj∈J2,1∪J2
lj2 is used.

These theorems allow a scheduler to reduce the cardinality of a dominant set for the uncertain job-shop
scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

Theorem 6 ([8]). Let the strict order A1,2
≺ over the set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as follows:

J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the following inequality holds:

k+r

∑
i=1

ui1 ≤ L2 +
k

∑
i=1

li2, (9)

then the set S′ = <{π1,2}, Π(G2,1)> ⊂ S, where π1,2 ∈ Π(G1,2), is a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Theorem 7 ([8]). Let the partial strict order A1,2
≺ over the set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as

follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the inequality

uk+s,1 ≤ L2 +
k+s−1

∑
i=1

(li2 − ui1) (10)

holds for each s ∈ {1, 2, . . . , r}, then the set S′ =< {π1,2}, S2,1 >, where π1,2 =

(J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

Theorem 8 ([8]). Let the partial strict order A1,2
≺ over the set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 have the form

J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If the inequality

r−s+1

∑
i=r−s+2

lk+i,1 ≥
r

∑
j=r−s+1

uk+j,2 (11)

holds for each s ∈ {1, 2, . . . , r}, then the set S′ = < {π1,2}, S2,1 >, where π1,2 = (J1, . . . , Jk−1, Jk, Jk+1,
Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax with the job set J = J1 ∪ J2 ∪ J1,2 ∪ J2,1.

One can describe the analogs of Theorems 6–8 for reducing the cardinality of a dominant set for the
job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax provided that for the flow-shop problem F2|lij ≤ pij ≤
uij|Cmax with the job set J2,1, there exists a partial strict order A2,1

≺ over the set J2,1 = J ∗2,1 ∪ J 1
2,1 ∪ J 2

2,1
with the following form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm2,1 .

If the set {J1, . . . , Jk} is empty in the constructed job permutation, then it is needed to check the
conditions of Theorem 8. If the set {Jk+r+1, . . . , Jm1,2} is empty, then one needs to check the conditions
of Theorem 7. Note that it is enough to test only one permutation for checking the conditions of
Theorem 7 and only one permutation for checking the conditions of Theorem 8; see [8].

4.3. An Illustrative Example

To illustrate the above results, we consider Example 1 of the uncertain job-shop scheduling
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with eight jobs {J1, J2, . . . , J8} = J . Let three jobs J1, J2 and J3

have the machine route (M1, M2), jobs J6, J7 and J8 have the opposite machine route (M2, M1), job J4

and job J5 have to be processed only on machine M1 and machine M2, respectively. The partition J =
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J1,2 ∪ J2,1 ∪ J1 ∪ J2 is given, where J1,2 = {J1, J2, J3}, J2,1 = {J6, J7, J8}, J1 = {J4} and J2 = {J5}.
The lower and upper bounds on the job processing times are determined in Table 1.

Table 1. The numerical input data for Example 1.

Jj J1 J2 J3 J4 J5 J6 J7 J8

li1 6 8 7 2 - 1 1 1

ui1 7 9 9 3 - 3 3 3

li2 6 5 4 - 2 2 3 4

ui2 7 6 5 - 3 4 4 4

To solve this uncertain job-shop scheduling problem, one need to determine an optimal pair
(π′, π′′) of permutations of the eight jobs for their processing on machine M1 and machine M2.
These permutations π′ and π′′ have the following forms: π′ = (π1,2, π1, π2,1), π′′ = (π2,1, π2, π1,2).

It is necessary to find four permutations π1,2, π2,1, π1 and π2 of the jobs from the sets J1,2, J2,1, J1

and J2, respectively. The permutations π1 and π2 are determined as follows: π1 = (J4) and π2 = (J5).
We test the sufficient conditions given in Section 4.1. The conditions (5) of Theorem 4 do not hold.

For testing the conditions (6) of Theorem 4, one can obtain the following relations:

∑
Ji∈J2,1

ui2 = u6,2 + u7,2 + u8,2 = 4 + 4 + 4 = 12 ≤ ∑
Ji∈J1,2∪J1

li1 = l1,1 + l2,1 + l3,1 + l4,1 = 6 + 8 + 7 + 2 = 23,

∑
Ji∈J2,1

li1 = l6,1 + l7,1 + l8,1 = 1 + 1 + 1 = 3 6≥ ∑
Ji∈J1,2∪J2

ui2 = u1,2 + u2,2 + u3,2 + u5,2 = 7 + 6 + 5 + 3 = 21.

It should be noted that the case when conditions of Theorem 4 hold was considered in [8].
As the first condition in (6) holds, due to Corollary 3, one can construct permutation π2,1 =

(J6, J7, J8) by arranging the jobs from the set J2,1 in the increasing of their indexes.
For the jobs from the set J1,2, the partition J1,2 = J 1

1,2 ∪ J 2
1,2 ∪ J ∗1,2 holds, where J ∗1,2 = {J1} and

J 2
1,2 = {J2, J3}. The condition of Theorem 2 holds for these jobs. Therefore, the following optimal

permutation: π1,2 = (J1, J2, J3) is determined.
Thus, there exists a pair of job permutations (π′, π′′), where π′ = (J1, J2, J3, J4, J6, J7, J8) and

π′′ = (J6, J7, J8, J5, J1, J2, J3), which is optimal for all possible scenarios p ∈ T. Hence, there exists a
single-element dominant set DS(T) = {(π′, π′′)} for Example 1 of the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the bounds on the job processing times given in Table 1.

The optimal semi-active schedule is constructed for Example 1 at the off-line phase of scheduling,
despite of the uncertainty of the job processing times. Such an issue is called as STOP 1 in the
scheduling algorithms developed in [8] and used in Section 6 of this paper.

5. The On-line Phase of Scheduling

Due to Remark 3, if the job Ji is completed on the corresponding machine Mj ∈ M, the duration
of the operation Oij takes on exact value p∗ij, where lij ≤ p∗ij ≤ uij. A scheduler can use this information
on the duration of the operation Oij for a selection of the next job for processing on machine Mj. Since it
is on-line phase of scheduling, such a selection should be very quick.

It is first assumed that the set S′ = < Π(G1,2), {π∗2,1}> ⊂ S, is a dominant set for the problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J . In other words, the optimal permutations for
processing all jobs from the set J2,1 are already determined at the off-line phase of scheduling.

Let the strict order A1,2
≺ over the set J1,2 = J ∗1,2 ∪ J 1

1,2 ∪ J 2
1,2 be determined as

follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . At the initial time t = 0, machine
M1 has to start processing jobs from the set {J1, . . . , Jk} in the following optimal order: (J1, . . . , Jk).
At the same time t = 0, machine M2 has to start processing jobs from the set J2,1 in the order
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determined by the permutation π∗2,1, then jobs from the set J2 in the arbitrary order, and then jobs
from the set {J1, . . . , Jk} in the following optimal order: (J1, . . . , Jk); see Figure 3.
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Figure 3. The initial part of the schedule execution.

At the time-point t = c1(k), machine M1 completes the operation Ok1. Let J (i, j) denote a set
of all jobs processed on machine Mj from the initial part of the schedule till the job Ji, e.g., the set of
jobs {J1, J2, . . . , Jk} is denoted as J (k, 1); see Figure 3. Due to Remark 3, at the time-point t = c1(k),
the factual values p∗i1 of the processing times pi1 of all jobs Ji in the set J (k, 1) are already known.

Let machine M2 process the job Jl ∈ J2,1 ∪ J2 ∪ {J1, J2, . . . , Jk} at the time-point t = c1(k), i.e.,
t = c1(k) < c2(l). Let J (l − 1, 2) denote a set of all jobs whose processing is completed on machine
M2 before time-point t = c1(k). Figure 3 depicts this situation for the job Jl−1 ∈ {J1, J2, . . . , Jk} ⊂ J1,2.

The factual values p∗i2 of the processing times pi2 of all jobs Ji in the set J (l − 1, 2) are known at
the time-point t = c1(k) > c2(l − 1), i.e., pi2 = p∗i2, while the factual values of the processing times pj2
of other jobs in the set J remain unknown at the time-point t = c1(k) < c2(l). Thus, at the time-point
t = c1(k), the following subset of possible scenarios:

T(k, l − 1) = {p ∈ T : pi1 = p∗i1, pj2 = p∗j2, Ji ∈ J (k, 1), Jj ∈ J (l − 1, 2)}

may be realized instead of the initial set T of all possible scenarios; T(k, l − 1) ⊆ T.
At the time-point t = c1(k) (it is called a decision-point), a scheduler has to make a decision about

the order for processing jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r}. The sufficient conditions given
in Theorems 6 and 7 can be reformulated in the following two theorems. (Note that Theorem 8 cannot
be reformulated for the use at the on-line phase of scheduling.)

Theorem 9. Let the set S′ = <Π(G1,2), {π∗2,1}> ⊂ S be a dominant set for the uncertain problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax with the job set J . Let the strict order A1,2

≺ over the set J1,2 = J ∗1,2 ∪ J 1
1,2 ∪ J 2

1,2 be
determined as follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 . If at the time-point
t = c1(k), the following inequality holds:

c1(k) +
k+r

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

li2, (12)

then at the time-point t = c1(k), the set S′ = <{π1,2}, {π∗2,1}> ⊂ S, where π1,2 ∈ Π(G1,2), is a dominant set
for the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.
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Proof. Let p be an arbitrary vector from the set T(k, l − 1) of possible scenarios at the time-point
t = c1(k). Let Cp

max denote the optimal makespan value for the deterministic job-shop problem
J2|p, ni ≤ 2|Cmax with the set J of the given jobs and the vector p of the job processing times.

We consider an arbitrary permutation π1,2 ∈ Π(G1,2) and show that the pair of job permutations
(π′, π′′) = ((π1,2, π1, π∗2,1), (π

∗
2,1, π2, π1,2)) ∈ S′ is an optimal one for the deterministic job-shop

problem J2|p, ni ≤ 2|Cmax with the set J of the jobs and with any vector p ∈ T(k, l − 1) of the job
processing times, i.e., the equality Cmax(π′, π′′) = Cp

max holds. Since the equality Cmax(π′, π′′) =

max{c1(π
′), c2(π

′′)} holds, one has to consider two possible cases (a) and (b).
Case (a): It is assumed that c1(π

′) ≥ c2(π
′′). Then, one can obtain the following equalities:

Cmax(π
′, π′′) = c1(π

′) = max
{

∑
Ji∈J1,2∪J2,1∪J1

pi1, Cmax(π
∗
2,1)
}

, (13)

where Cmax(π∗2,1) is the value of makespan for the deterministic flow-shop problem F2|p2,1|Cmax with
the job set J2,1 and the vector p2,1 whose components are equal to the corresponding components of
the vector p. Due to the conditions of Theorem 9, the permutation π∗2,1 is optimal for the deterministic
flow-shop problem F2|p2,1|Cmax with the set J2,1 of the given jobs and with vector p2,1 of the job
processing times. Therefore, Cmax(π∗2,1) is an optimal makespan value for the deterministic flow-shop
problem F2|p2,1|Cmax and Cmax(π∗2,1) is a minimal completion time for processing all jobs from the set
J2,1 on both machines. From the equalities (13), one can obtain the equality Cmax(π′, π′′) = Cp

max.
Case (b): It is assumed that c1(π

′) < c2(π
′′). Then, one can obtain the following equalities:

Cmax(π
′, π′′) = c2(π

′′) = max
{

∑
Ji∈J2,1∪J2∪J1,2

pi2, Cmax(π1,2)
}

, (14)

where Cmax(π1,2) is an optimal value of the makespan criterion for the deterministic flow-shop problem
F2|p1,2|Cmax with the job set J1,2 and with the vector p1,2 of the job processing times (the components
of this vector are equal to the corresponding components of the vector p). Since π1,2 ∈ Π(G1,2),
the initial part of the permutation π1,2 has the following form: (J1, J2, . . . , Jk). For every pair of jobs
from the set {J1, J2, . . . , Jk}, at least one of the conditions, either (3) or (4), holds, see Theorem 1.

Therefore, for the job processing times determined by the vector p for the jobs {J1, J2, . . . , Jk},
the inequalities (2) hold. Thus, in the permutation π

beg
1,2 := (J1, J2, . . . , Jk), all the jobs are arranged in

the Johnson’s order. One can conclude that the following value

Cmax(π
beg
1,2 ) = max

1≤m≤k

{ m

∑
i=1

pi1 +
k

∑
i=m

pi2

}
(15)

determines an optimal makespan value for the deterministic flow-shop problem F2|pbeg
1,2 |Cmax with the

job set {J1, J2, . . . , Jk} and the corresponding vector pbeg
1,2 of the job processing times (the components of

the vector pbeg
1,2 are equal to the corresponding components of the vector p). Therefore, Cmax(π

beg
1,2 ) is a

minimal makespan value for processing jobs of the set {J1, J2, . . . , Jk} on both machines. Then, for the
time-point c2(k) when machine M2 completes the operation Ok2, one can obtain the following equality:

c2(k) = max
{

∑
Ji∈J2,1∪J2∪J1,2(k,1)

pi2, Cmax(π
beg
1,2 )

}
. (16)

Due to the inequality (12) and the equality (16), one can obtain the following inequalities for the
jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r}:

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c1(k) +
k+r

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

li2 ≤ (17)



Mathematics 2020, 8, 1314 15 of 51

≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

pi2 ≤ max
{

∑
Ji∈J2,1∪J2∪J1,2(k,1)

pi2, Cmax(π
beg
1,2 )

}
= c2(k).

From the inequalities (17), one can obtain the following inequality:

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c2(k). (18)

Thus, machine M2 processes all jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r} without idle times
and without an idle before processing the first job from this conflict set for any order of these conflict
jobs. Using the inequality (18), one can conclude that the time-point when machine M2 completes
the processing of the last job from the conflict set {Jk+1, Jk+2, . . . , Jk+r} in the permutation π1,2 is
determined as follows:

c2 = c2(k) +
k+r

∑
i=k+1

pi2, (19)

where c2 is an optimal makespan value for processing jobs from the set {J1, J2, . . . , Jk, Jk+1,
Jk+2, . . . , Jk+r}. Next, we consider jobs from the set {Jk+r+1, . . . , Jm1,2}.

Let πend
1,2 := (Jk+r+1, . . . , Jm1,2) denote the permutation of the jobs {Jk+r+1, . . . , Jm1,2} in the

permutation π1,2. Analogously as for the job set {J1, J2, . . . , Jk}, one can obtain that the value of

Cmax(π
end
1,2 ) := max

k+r+1≤m≤m1,2

{ m

∑
i=k+r+1

pi1 +
m1,2

∑
i=m

pi2

}
(20)

is an optimal makespan value for the deterministic flow-shop problem F2|pend
1,2 |Cmax with the job

set {Jk+r+1, . . . , Jm1,2} and with the vector pend
1,2 whose components are equal to the components of

the vector p. Thus, Cmax(πend
1,2 ) is a minimal makespan value for processing all jobs from the set

{Jk+r+1, . . . , Jm1,2} on both machines. The time-point when machine M2 completes the processing of
the last job from the permutation π′′ can be calculated as follows:

c2(π
′′) = max

{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), c2 +

m1,2

∑
i=k+r+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), c2(k) +

k+r

∑
i=k+1

pi2 +
m1,2

∑
i=k+r+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), max

{
∑

Ji∈J2,1∪J2∪J1,2(k,1)
pi2, Cmax(π

beg
1,2 )

}
+

m1,2

∑
i=k+1

pi2

}
=

= max
{k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2(k,1)
pi2 +

m1,2

∑
i=k+1

pi2, Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2

}
=

= max
{

Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2,
k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
, (21)

where relations (16) and (19) are used.
Due to Theorem 3, the set Π(G1,2) contains a Johnson’s permutation for the deterministic

flow-shop problem F2|p1,2|Cmax with the job set J1,2 and with the vector p1,2 of the job durations.
We denote this Johnson’s permutation as π∗1,2. Since π∗1,2 ∈ Π(G1,2), the permutation π∗1,2 has the
following form: π∗1,2 = (J1, . . . , Jk, J[k+1], J[k+2], . . . , J[k+r], Jk+r+1, . . . , Jm1,2), where the set of indexes is
determined as follows: {[k + 1], [k + 2], . . . , [k + r]} = {k + 1, k + 2, . . . , k + r}.
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The optimal makespan value Cmax(π∗1,2) can be calculated as follows:

Cmax(π
∗
1,2) = max

1≤m≤m1,2

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
= max

{
max

1≤m≤k

{ m

∑
i=1

pi1 +
k

∑
i=m

pi2 +
m1,2

∑
i=k+1

pi2

}
,

max
[k+1]≤m≤[k+r]

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
, max

k+r+1≤m≤m1,2

{k+r

∑
i=1

pi1 +
m

∑
i=k+r+1

pi1 +
m1,2

∑
i=m

pi2

}}
=

= max
{

Cmax(π
beg
1,2 ) +

m1,2

∑
i=k+1

pi2, max
[k+1]≤m≤[k+r]

{ m

∑
i=1

pi1 +
m1,2

∑
i=m

pi2

}
,

k+r

∑
i=1

pi1 + Cmax(π
end
1,2 )

}
, (22)

where relations (15) and (20) are used. From relations (21) and (22), one can obtain the relations

c2(π
′′) = max

{
Cmax(π

beg
1,2 ) +

m1,2

∑
i=k+1

pi2,
k+r

∑
i=1

pi1 + Cmax(π
end
1,2 ), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
≤

≤ max
{

Cmax(π
∗
1,2), ∑

Ji∈J2,1∪J2∪J1,2

pi2

}
. (23)

Therefore, relations (14) and (23) imply the equality Cmax(π′, π′′) = Cp
max.

Thus, in both cases (a) and (b), the equality Cmax(π′, π′′) = Cp
max holds and the pair of

permutations (π′, π′′) = ((π1,2, π1, π∗2,1), (π
∗
2,1, π2, π1,2)) is optimal for the deterministic job-shop

problem J2|p, ni ≤ 2|Cmax with the scenario p ∈ T(k, l − 1). Therefore, the set S′ =<{π1,2}, {π∗2,1}>
contains an optimal pair of job permutations for the job-shop problem J2|p, ni ≤ 2|Cmax with vector
p ∈ T(k, l − 1) of the job processing times. Since the vector p is arbitrarily chosen in the set T(k, l − 1),
the set S′ contains an optimal pair of job permutations for each scenario in the set T(k, l − 1).

Due to Definition 3, the set S′ is a dominant set for the uncertain job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax with the job set J and with the set T(k, l − 1) of possible scenarios.

Theorem 10. Let the set S′ = <Π(G1,2), {π∗2,1}> ⊂ S be a dominant set for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J . Let the partial strict order A1,2

≺ over the set J1,2 =

J ∗1,2 ∪ J 1
1,2 ∪ J 2

1,2 be determined as follows: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 .
If at the time-point t = c1(k), the following inequalities hold:

c1(k) +
k+s

∑
i=k+1

ui1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 +
k+s−1

∑
i=k

li2 (24)

for all indexes s ∈ {1, 2, . . . , r}, then at the time-point t = c1(k), the set S′ = < {π1,2}, {π∗2,1} >, where
π1,2 = (J1, . . . , Jk−1, Jk, Jk+1, Jk+2, . . . , Jk+r, Jk+r+1, . . . , Jm1,2) ∈ Π(G1,2), is a dominant set for the uncertain
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.

Proof. The proof of this theorem is similar to the above proof of Theorem 9 with the exception of the
inequalities (17) and (18). From the condition (24) with s = 1, one can obtain the following inequality:

c1(k) + uk+1,1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 + lk2. (25)

Based on the inequality (25), one can obtain the following relations:

c1(k) + pk+1,1 ≤ c1(k) + uk+1,1 ≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k−1,1))\J (l−1,2)

li2 + lk2 ≤
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≤ c2(l − 1) + ∑
Ji∈(J2,1∪J2∪J (k,1))\J (l−1,2)

pi2 = c2(k). (26)

Due to relations (26), the following inequality holds:

c1(k) + pk+1,1 ≤ c2(k). (27)

Thus, machine M2 processes the job Jk+1 in permutation π1,2 without an idle time between the
jobs Jk and Jk+1. Analogously, using s ∈ {2, 3, . . . , r}, one can show that the following inequalities hold:

c1(k) + pk+1,1 + pk+2,1 ≤ c2(k + 1);

c1(k) + pk+1,1 + pk+2,1 + pk+3,1 ≤ c2(k + 2);

· · · ;

c1(k) +
k+r

∑
i=k+1

pi1 ≤ c2(k + r− 1).

Therefore, machine M2 processes jobs from the conflict set {Jk+1, Jk+2, . . . , Jk+r} in permutation
π1,2 without idle times between the jobs Jk+1 and Jk+2, between the jobs Jk+2 and Jk+3 and so on,
between the jobs Jk+r−1 and Jk+r. Then, the following relations hold:

c2 = c2(k + r) = c2(k + r− 1) + pk+r,2 = c2(k + r− 2) + pk+r−1,2 + pk+r,2 = . . . = c2(k) +
k+r

∑
i=k+1

pi2

leading to the equality (19). The rest of the proof is the same as the rest of the proof of Theorem 9.
It is shown that the pair of job permutations (π′, π′′) = ((π1,2, π1, π∗2,1), (π

∗
2,1, π2, π1,2)) ∈ S′ is

optimal for the deterministic job-shop problem J2|p, ni ≤ 2|Cmax with any vector p ∈ T(k, l − 1) of the
job processing times. Due to Definition 3, the set S′ is a dominant set for the uncertain job-shop problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the job set J and the set T(k, l − 1) of possible scenarios.

It is easy to be convinced that the sufficient conditions given in Theorems 9 and 10 may be tested
in polynomial time O(r2) of the number r of the conflict jobs.

Similarly, one can prove analogs of Theorems 9 and 10 if the set S′ = <{π∗1,2}, Π(G2,1)> ⊂ S
provided that a dominant set for the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with
the job set J and the partial strict order A2,1

≺ over the set J2,1 = J ∗2,1 ∪ J 1
2,1 ∪ J 2

2,1 has the following
form: J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm2,1 .

6. Scheduling Algorithms and Computational Results

The experimental study was performed on a large number of randomly generated instances of the
uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. The off-line phase of scheduling
was based on Algorithms 1 and 2 developed in [8]. Algorithms 1 and 2 are presented in Appendix A.

Algorithms 3–5 are developed for the on-line phase of scheduling. The input for each of these three
algorithms includes the output of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling.

Let outputs of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling consist of the
optimal permutation π1,2 of the jobs J1,2 and the optimal permutation π2,1 of the jobs J2,1. In such a
case, the single-element dominant set DS(T) = {(π1,2, π1, π2,1), (π2,1, π2, π1,2)} is already constructed
for the considered instance of the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Therefore, the
pair {(π1,2, π1, π2,1), (π2,1, π2, π1,2)} of the job permutations is optimal for the deterministic instance
J2|p, ni ≤ 2|Cmax with any scenario p ∈ T. Thus, such an instance of the uncertain problem J2|lij ≤
pij ≤ uij, ni ≤ 2|Cmax is optimally solved by Algorithms 1 and 2 at the off-line phase of scheduling.
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Hence, there is no need to use the on-line phase of scheduling for such an instance of the uncertain
job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.

In Section 6.1, it shown how to solve instances of the uncertain job-shop problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax, which cannot be optimally solved at the off-line phase of scheduling.

6.1. Algorithms 3–5 for the On-Line Phase of Scheduling

Let the considered instance of the uncertain job-shop problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

cannot be optimally solved by Algorithms 1 and 2 [8] applied at the off-line phase of scheduling. Thus,
due to an application of Algorithm 1 or Algorithm 2, one can obtain one of the following three possible
outputs:

(a) the permutation π2,1 of the jobs from set J2,1 and the partial strict order A1,2
≺ of the jobs J1,2;

(b) the permutation π1,2 of the jobs from set J1,2 and the partial strict order A2,1
≺ of the jobs J2,1;

(c) the partial strict order A1,2
≺ of the jobs J1,2 and the partial strict order A2,1

≺ of the jobs J2,1.

Let B denote a number of the conflict sets in a partial strict order (in both partial strict orders)
for the obtained output (a), (b) or (c). In other words, B denotes a maximal number of time-points in
the decision-making at the on-line phase of scheduling. Let integer b, where b ≤ B, denote a number
of time-points in the decision-making, where optimal orders of the conflict jobs were found using
Theorem 9 or Theorem 10. Using these notations, we next describe Algorithm 3 provided that there is
no factual processing times of the jobs J in the input of Algorithm 3; see Remark 3.

Let Algorithm 3 terminate at Step 16, i.e., it has not been constructed an optimal pair of job
permutations for the factual scenario p∗ ∈ T randomly determined after completing the on-line
phase of scheduling. Therefore, there is a strictly positive error ∆(s) of the objective function Cmax(s)
calculated for the constructed and realized schedule s. In such a case, the proven sufficient conditions
for the optimality of the schedule s do not hold in some decision-points (or in a single decision-point)
at the on-line phase of scheduling. If Algorithm 3 terminates at Step 17, then an optimal pair of
job permutations has been constructed for the factual scenario p∗ ∈ T randomly generated after
completing the on-line phase of scheduling. The optimality of this pair of the job permutations was
established only after the schedule execution, since the tested sufficient conditions for the optimality
of the schedule s do not hold in some decision-points (or in a single decision-point).

If Algorithm 3 terminates at Step 18, then the tested sufficient conditions hold for all
decision-points considered at the on-line phase of scheduling. Therefore, the constructed pair of
job permutations is optimal for all factual scenarios p∗ ∈ T which were possible during the on-line
phase of scheduling. In this case, the optimal pair of job permutations was established before the end
of the schedule execution (after the last decision-point). The described Algorithm 3 must be used if the
input (a) is obtained due to the application of Algorithms 1 and 2 [8] at the off-line phase of scheduling.
Similarly, one can describe Algorithm 4 with the sufficient conditions from the analogs of Theorems 9
and 10 for their use in the case, when the input (b) is obtained due to the application of Algorithms 1
and 2 at the off-line phase of scheduling.

Similar Algorithm 5 must be used in the case, when the input (c) is obtained due to the application
of Algorithms 1 and 2 at the off-line phase of scheduling. In Algorithm 3, a decision-point may occur
on machine M1 and on machine M2 simultaneously. Therefore, one has to check the conditions of
Theorems 9 and 10 or their analogs alternately for the corresponding conflict sets of the jobs from the
set J1,2 and those from the set J2,1.
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Algorithm 3 for the on-line phase of scheduling

Input: Lower bounds lij and upper bounds uij on the durations pij
of all operations Oij ∈ J processed on machines Mj ∈ M;
a permutation π1 of the jobs J1 and a permutation π2 of the jobs J2;
an optimal permutation π2,1 of the jobs from the set J2,1;
a partial strict order A1,2

≺ of the jobs from the set J1,2;
a number B of the conflict sets in the partial strict order A1,2

≺ .
Output: Permutation π1,2 of the jobs from the set J1,2.

Step 1: Set b = 0.
Step 2: UNTIL the completion time-point of the last job in the set J ,

process the whole linear part of the jobs in the partial strict order A1,2
≺

on the machine M1 till a conflict set of the jobs is met;
let t denote a time-point of the completion of the linearly ordered set of jobs.

Step 3: Process jobs of the permutation (π2,1, π2) and then process the linear part
in the partial strict order A1,2

≺ on the machine M2 up to time-point t.
Step 4: Check the conditions of Theorem 9 for the conflict set of the jobs.
Step 5: IF the sufficient conditions of Theorem 9 hold

THEN set b := b + 1 and choose an arbitrary order πq of the conflict jobs
GOTO step 11.

Step 6: ELSE set dz = lz2 − uz1 for all conflict jobs Jz
and partition the conflict jobs Jz into two subsets X1 and X2,
where Jz ∈ X1 if dz ≥ 0, and Jz ∈ X2 otherwise.

Step 7: Construct the following order πq of the conflict jobs:
First, arrange the jobs from the set X1 in the non-decreasing order

of the values of ui1, then arrange the jobs from the set X2
in the non-increasing order of the values of li2.

Step 8: Check the conditions of Theorem 10 for the constructed
permutation of the conflict jobs.

Step 9: IF the sufficient conditions of Theorem 10 hold THEN
set b := b + 1 GOTO step 11.

Step 10: Construct a Johnson’s permutation πq of the conflict jobs
based on the inequalities (2) provided that pij = (uij + lij)/2.

Step 11: Include the permutation πq of the conflict jobs in the strict order
A1,2
≺ instead of the conflict set of these jobs.

Step 12: RETURN
Step 13: IF b = B THEN GOTO step 18.
Step 14: Calculate makespan Cmax(s) for the schedule s constructed at steps 1 – 12;

calculate makespan Cmax(s∗) for the optimal schedule s∗ polynomially
calculated for the corresponding deterministic problem J2|p∗, ni ≤ 2|Cmax,
where the factual processing times p∗ are randomly generated for all jobs J .

Step 15: IF Cmax(s) = Cmax(s∗) THEN GOTO step 17.
Step 16: STOP 4: The constructed schedule s is not optimal for the factual

processing times p∗ of the jobs J .
Step 17: STOP 3: The optimality of the constructed schedule s for the factual

processing times p∗ of the jobs J was established only after
the execution of the schedule s.

Step 18: STOP 2: The optimality of the constructed schedule s for the factual
processing times p∗ of the jobs J was proven before the end
of the execution of this schedule.
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6.2. The Modified Example with Different Factual Scenarios

To demonstrate the on-line phase of scheduling based on Algorithm 3, it is considered Example 2
of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with the numerical input data given in Table 1 similarly
as for Example 1 with the only one exception. It is assumed that u3,2 = 6.

The first part of the off-line phase of scheduling for solving Example 2 is similar to that for
Example 1 till checking the conditions of Theorem 2. Indeed, the conditions of Theorem 2 do not hold
for the jobs from the set J1,2 since the following strict inequalities hold: u2,2 > l3,2 and u3,2 > l2,2.

Due to checking the inequalities (3) and (4), one can determine the binary relation A1,2
≺ over

the set J1,2 in the following form: J1 ≺ {J2, J3}. Thus, the set {J2, J3} is a conflict set with two jobs;
see Definition 5. Then, one can consecutively check the conditions of Theorems 6–8 for the jobs from
the set J1,2. After letting k = 1, r = 2, one can calculate L2 = ∑Ji∈J2,1∪J2

li2 = l6,2 + l7,2 + l8,2 + l5,2 =

2 + 3 + 4 + 2 = 11 and then obtain the following relations:

k+r

∑
i=1

ui1 = u1,1 + u2,1 + u3,1 = 7 + 9 + 9 = 25 6≤ L2 +
k

∑
i=1

li2 = L2 + l1,2 = 11 + 6 = 17.

Thus, the condition of Theorem 6 does not hold for Example 2. Next, one can check the conditions
of Theorem 7. Similarly as in the previous case, one can obtain that L2 = 11, k = 1, and r = 2. Due to
the condition (10), one can obtain two inequalities as follows: s = 1 and s = 2. Then, one can check
both permutations of the jobs from the set J1,2, which satisfy the partial strict order A1,2

≺ , as follows:
Π(G1,2) = {π1

1,2, π2
1,2}, where π1

1,2 = {J1, J2, J3} and π2
1,2 = {J1, J3, J2}.

Thus, the permutation π1
1,2 must be tested. One can obtain the following relations:

u2,1 = 9 ≤ L2 + (l1,2 − u1,1) = 11 + (6− 7) = 10;

u3,1 = 9 6≤ L2 +
2

∑
i=1

(li2 − ui1) = L2 + (l1,2 − u1,1) + (l2,2 − u2,1) = 11 + (6− 7) + (5− 9) = 6.

Hence, the condition of Theorem 7 does not hold for the permutation π1
1,2.

Analogously, for the permutation π2
1,2, the following relations hold:

u3,1 = 9 ≤ L2 + (l1,2 − u1,1) = 11 + (6− 7) = 10;

u2,1 = 9 6≤ L2 +
2

∑
i=1

(li2 − ui1) = L2 + (l1,2 − u1,1) + (l3,2 − u3,1) = 11 + (6− 7) + (4− 9) = 5.

Hence, the condition of Theorem 7 does not hold for the permutation π2
1,2 as well.

It is impossible to check the condition of Theorem 8, since the conflict set of the jobs {J2, J3} is
located at the end of the partial strict order A1,2

≺ . Thus, the off-line phase of scheduling is completed,
and the constructed partial strict order A1,2

≺ is not a linear order. Therefore, there does not exist a pair of
permutations of the jobs, which is optimal for any scenario p ∈ T. In this case, Algorithms 1 and 2 [8]
do not terminate with STOP 1. A scheduler needs to use the on-line phase of scheduling for solving
Example 2 further.

The output of the off-line phase of scheduling for Example 2 contains the permutation π2,1 =

(J6, J7, J8) of the jobs J2,1 processed on both machines M1 and M2. The partial strict order A1,2
≺ = (J1 ≺

{J2, J3}) of the jobs J1,2 is constructed. The obtained output (a) of the off-line phase of scheduling
shows that Algorithm 3 must be used at the on-line phase of scheduling for solving Example 2.

We next show that Algorithm 3 can be stopped either with STOP 2 (Step 18) or with STOP 3 (Step
17) or with STOP 4 (Step 16) depending on the factual values of the job processing times. Note that
B = 1; see Algorithm 3.

Case (j): Algorithm 3 is stopped at step 18 (STOP 2).
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Consider Step 2 and Step 3 of Algorithm 3. The schedule execution begins as follows: at the initial
time-point t = 0, machine M1 starts to process operation O1,1, while machine M2 starts to process
operation O6,2. This process is continued until the time-point t = 4 when machine M2 completes
operation O6,2. At this time-point, an exact value of the processing time p∗6,2 becomes known, namely:
p∗6,2 = 4. Then, machine M2 starts to process operation O7,2 and machine M1 continues the processing
of operation O1,1. At the time-point t = 6, machine M1 completes operation O1,1. Therefore, an exact
value of the duration of operation O1,1 becomes known as follows: p∗1,1 = 6. At this time-point, a
scheduler needs to choose either job J2 or job J3 to be processed next on machine M1. Note that machine
M2 continues to process the operation O7,2 for two time units, wherein l7,2 = 3.

Consider Step 4 of Algorithm 3, where the condition (12) of Theorem 9 is checked for the conflict
set of jobs {J2, J3}. Due to equalities k = 1, r = 2, c1(1) = 6, c2(6) = 4, one can obtain the following
relations: c1(1) + u2,1 + u3,1 = 6 + 9 + 9 = 23 6≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 = 4 + 3 + 4 + 2 + 6 = 19.

At Steps 6 and 7 of Algorithm 3, one can obtain d2 = −4, d3 = −5 and permutation πq having
the following form: πq = (J2, J3). At Steps 8 and 9 of Algorithm 3, the conditions of Theorem 10 are
checked as follows: c1(1) + u2,1 = 6 + 9 = 15 ≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 = 4 + 3 + 4 + 2 + 6 = 19;

c1(1) + u2,1 + u3,1 = 6+ 9+ 9 = 24 ≤ c2(6) + l7,2 + l8,2 + l5,2 + l1,2 + l2,2 = 4+ 3+ 4+ 2+ 6+ 5 = 24.

At Step 11 of Algorithm 3, one can obtain the following strict order A1,2
≺ = (J1 ≺ J2 ≺ J3) along

with the permutation π1,2 = (J1, J2, J3). Since b = 1 = B (see Step 13), Algorithm 3 is stopped at Step
18; see STOP 2. The optimal order of the conflict jobs J2 and J3 is found at the time-point t = 6 and the
pair of job permutations π′ = (J1, J2, J3, J4, J6, J7, J8) and π′′ = (J6, J7, J8, J5, J1, J2, J3) is optimal for any
scenario from the remaining set of possible scenarios T(1, 6) = {p ∈ T : p∗1,1 = 6, p∗6,2 = 4}.

Thus, an additional information on the exact values of the processing times p∗6,2 and p∗1,1 allows a
scheduler to find an optimal order of all conflict jobs. It schould be noted that the optimality of the
constructed schedule is proven at the time-point t = 6, i.e., before the end of the schedule execution.

At the time-point t = 6, machine M1 begins to process operation O2,1. Note that all the above
checks are performed at the time-point t = 6.

Case (jj): Algorithm 3 is stopped at Step 17 (STOP 3).
It is considered another possible realization of the semi-active schedule since another factual

processing times are randomly generated at the on-line phase of scheduling for Example 2.
At the time-point t = 0, machine M1 begins to process operation O1,1, while machine M2 begins

to process operation O6,2. Let machine M2 complete operation O6,2 at the time-point t = 2.8. Thus,
the exact processing time p∗6,2 = 2.8 becomes known. Then, machine M2 begins to process operation
O7,2 and completes this process at the time-point t = 6 (i.e., p∗7,2 = 3.2), while machine M1 continues
processing operation O1,1. Let at the time-point t = 6.9, machine M1 completes operation O1,1

(i.e., p∗1,1 = 6.9). One needs to choose either job J2 or job J3 to be processed next on machine M1. At this
time, machine M2 continues to process the operation O8,2 since t = 6 and (6.9− 6) = 0.9 < 4 = l8,2.

Based on the checking of the condition (12) of Theorem 9 for the conflict set of the jobs, one can
obtain the following relations: k = 1, r = 2, c1(1) = 6.9, c2(7) = 6;

c1(1) + u2,1 + u3,1 = 6.9 + 9 + 9 = 23.9 6≤ c2(7) + l8,2 + l5,2 + l1,2 = 6 + 4 + 2 + 6 = 18.

Similarly as in the previous case (j), one can obtain d2 = −4, d3 = −5, and the permutation πq

having the following form: πq = (J2, J3). The conditions of Theorem 10 are checked as follows:

c1(1) + u2,1 = 6.9 + 9 = 15.9 ≤ c2(7) + l8,2 + l5,2 + l1,2 = 6 + 4 + 2 + 6 = 18;

c1(1) + u2,1 + u3,1 = 6.9 + 9 + 9 = 24.9 6≤ c2(7) + l8,2 + l5,2 + l1,2 + l2,2 = 6 + 4 + 2 + 6 + 5 = 23.

Thus, the conditions of Theorem 10 do not hold. At Step 10 of Algorithm 3, one can construct
a Johnson’s permutation πq of the conflict jobs based on the inequalities (2) for the processing times
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of all conflict jobs determined as follows: pij = (uij + lij)/2. For the jobs J2 and J3, one can calculate
p2,1 = 8.5, p2,2 = 5.5, p3,1 = 8, p3,2 = 5 and the Johnson’s permutation πq of the conflict jobs in the
following form: πq = (J2, J3).

At the time-point t = 6.9, one can obtain the pair of permutations π′ = (J1, J2, J3, J4, J6, J7, J8)

and π′′ = (J6, J7, J8, J5, J1, J2, J3) of the jobs for their processing on machines M. Therefore, at the
time-point t = 6, machine M1 begins to process operation O2,1. Then, at the time-point t = 10, machine
M2 completes operation O8,2 (the exact processing time p∗8,2 = 4 becomes known), and then begins
to process operation O5,2 till the time-point t = 12.4 (thus, p∗5,2 = 2.4), and then begins to process
operation O1,2. At the time-point t = 15.5, machine M1 completes operation O2,1 (i.e., the exact
processing time p∗2,1 = 8.6 becomes known), and then begins to process operation O3,1.

Then, at the time-point t = 18.7, machine M2 completes operation O1,2 (the exact processing time
p∗1,2 = 6.3 becomes known), and then begins to process operation O2,2 till the time-point t = 23.7
(thus, p∗2,2 = 5). At this time-point, machine M1 still processes operation O3,1. As a result, machine M2

has an idle time in the realized schedule.
At the time-point t = 24.5, machine M1 completes operation O3,1 (i.e., p∗3,1 = 9), and then begins

to process operation O4,1. Machine M2 begins to process operation O3,2 immediately.
At the time-point t = 26.5, machine M1 completes operation O4,1 (i.e., p∗4,1 = 2), and then begins

to process operation O6,1 till the time-point t = 27.5 (i.e., p∗6,1 = 1). Then, machine M1 processes
operation O7,1 till the time-point t = 28.5 (i,e., p∗7,1 = 1), and then begins to process operation O8,1.

At the time-point t = 30.5, machine M2 completes operation O3,2 (i.e., the exact processing time
p∗3,2 = 6 becomes known). Thus, machine M2 completes to process all jobs in the realized permutation
π′′ at the time-point c2(3) = 30.5. At the time-point t = 31.5, machine M1 completes operation O8,1

(and the exact processing time p∗8,1 = 3 becomes known). Thus, machine M1 completes to process all
jobs in the realized permutation π′ at the time-point c1(8) = 31.5.

All uncertain processing times p ∈ T took their factual values p∗ij as follows:

p∗ = (p∗1,1, p∗1,2, p∗2,1, . . . , p∗7,2, p∗8,1, p∗8,2) = (6.9, 6.3, 8.6, 5, 9, 6, 2, 0, 0, 2.4, 1, 2.8, 1, 3.2, 3, 4).

It should be remind that these factual processing times p∗ were randomly generated at the
time-points of the completions of the corresponding operations; see Remark 3.

For the constructed and realized schedule (π′, π′′), the equalities Cmax(π′, π′′) =

max{c1(8), c2(3)} = max{31.5, 30.5} = 31.5 hold; see Step 14 of Algorithm 3.
Now, one can check whether the constructed and realized schedule (π′, π′′) is optimal for the

factual vector p∗ of the job processing times. To this end, one can construct the pair of Jackson’s
permutations (π′∗, π′′∗ ) for the deterministic problem J2|p∗, ni ≤ 2|Cmax with the factual vector p∗ of
the job processing times. Then, one can find the optimal makespan value for the deterministic problem
J2|p∗, ni ≤ 2|Cmax as follows: Cmax(π′∗, π′′∗ ) = 31.5; see Step 15 of Algorithm 3.

The obtained equalities Cmax(π′∗, π′′∗ ) = 31.5 = Cmax(π′, π′′) mean that Algorithm 3 has
constructed the optimal schedule for the deterministic problem J2|p∗, ni ≤ 2|Cmax with the factual
vector p∗ of the job processing times. However, the optimality of this constructed and realized schedule
(π′, π′′) was established after the execution of the whole schedule (π′, π′′). Indeed, Algorithm 3 is
stopped at Step 17; see STOP 3. The constructed and realized schedule (π′, π′′) is presented in Figure 4
for case (jj) of the randomly generated factual processing times p∗ of the jobs J .

Case (jjj): Algorithm 3 is stopped at Step 16 (STOP 4).
It is considered the same process as in the previous case (jj) up to the time-point t = 28.5 when

machine M1 begins to process operation O8,1 (machine M2 processes operation O3,2 at this time-point).
Let the equality p∗∗8,1 = 1 hold for the factual processing time p∗∗8,1 of the operation O8,1 and

machine M1 complete operation O8,1. Thus, machine M1 completes all operations of the jobs J in the
permutation π′ at the time-point 29.5. Therefore, the equality c1(8) = 29.5 holds. Similarly as in the
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previous case, machine M2 completes operation O3,2 at the time-point t = 30.5. Thus, p∗3,2 = 6 and
c2(3) = 30.5. The factual vector of the job processing times is randomly generated as follows:

p∗∗ = (p∗1,1, p∗1,2, p∗2,1, . . . , p∗7,2, p∗∗8,1, p∗8,2) = (6.9, 6.3, 8.6, 5, 9, 6, 2, 0, 0, 2.4, 1, 2.8, 1, 3.2, 1, 4).

The makespan value for the constructed and realized schedule (π′, π′′) is determined as follows:
Cmax(π′, π′′) = max{c1(8), c2(3)} = max{29.5, 30.5} = 30.5. However, the optimal makespan value
for the deterministic problem J2|p∗∗, ni ≤ 2|Cmax with the factual vector p∗∗ of the job processing times
is equal to 29.7 < 30.5 = Cmax(π′, π′′), since the optimal order of the jobs J2 and J3 is determined as
follows: (J3, J2). Hence, the constructed and realized schedule (π′, π′′) is not optimal for the factual
vector p∗∗ ∈ T of the job processing times. In this case, Algorithm 3 is stopped at Step 16; see STOP 4.
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Figure 4. The optimal semi-active schedule for the Example 2 in case (jj).

6.3. Computational Experiments

We describe the computational experiments and computational results obtained for the tested
randomly generated instances of the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. Each tested
series consisted of 1000 randomly generated instances with fixed numbers n ∈ {10, 20, . . . , 100} of the
jobsJ and the maximum possible errors δ ∈ {5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%}
of the random durations of the operations Oij. The lower bounds lij and upper bounds uij on the
possible values of the durations pij of operations Oij, pij ∈ [lij, uij], were randomly generated as follows.
The lower bound lij was randomly chosen from the segment [10, 100000] using a uniform distribution.

The upper bound uij was determined using the equality uij = lij
(

1 + δ
100

)
. The bounds lij and uij

are decimal fractions with the maximum numbers of digits after the decimal points. The inequality
lij < uij holds for each job Ji ∈ J and each machine Mj ∈ M.

Algorithms 1 and 2 developed in [8] were used at the off-line phase of scheduling. If the tested
instance was not optimally solved using Algorithms 1 and 2, then corresponding Algorithms 3, 4 or 5
was used at the on-line phase of scheduling for solving further the instance of the uncertain problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. All developed algorithms were coded in C# and tested on a PC with
Intel Core i7-7700 (TM) 4 Quad, 3.6 GHz, 32.00 GB RAM.

In the computational experiments, two procedures were used to generate factual durations of the
operations Oij (a factual duration of the job Ji remained unknown until completing this job). In the
first part of the computational experiments, the factual duration p∗ij of the operation Oij was randomly
generated using a uniform distribution in the range [lij, uij]. In the second part of the computational
experiments, two distribution laws were used in the experiments to determine the factual scenarios.
Namely, we used the gamma distribution with parameters (0.5; 1) (we call it as the distribution law
with number 1) and the gamma distribution with parameters (7.5; 1) (we call it as the distribution law
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with number 2). For generating factual processing times for each tested instance, the number of the
used distribution was randomly chosen from the possible set {1, 2}.

The sufficient conditions proven in Section 5 are verified in polynomial time O(n2) of the number
n of the jobs J . Therefore, all series of the tested instances in our computational experiments were
solved very quickly (less than one second per a series with 1000 instances).

The experiments include testing of 14 classes of the instances of the uncertain problem
J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax with different ratios of the numbers m1, m2, m1,2 and m2,1 (where
n = m1 + m2 + m1,2 + m2,1) of the jobs in the subsets J1, J2, J1,2 and J2,1 of the set J , respectively.
Every class of the tested instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax is characterized by the
following ratio:

m1

n
· 100% :

m2

n
· 100% :

m1,2

n
· 100% :

m2,1

n
· 100% (28)

of the percentages of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the set J , respectively.
Tables A1–A14 present the computational results obtained for the tested classes of instances with

the following ratios (28):
0% : 0% : 10% : 90% (class 1, Table A1); 0% : 0% : 20% : 80% (class 2, Table A2);
0% : 0% : 30% : 70% (class 3, Table A3); 0% : 0% : 40% : 60% (class 4, Table A4);
0% : 0% : 50% : 50% (class 5, Table A5); 5% : 5% : 5% : 85% (class 6, Table A6);
5% : 15% : 5% : 75% (class 7, Table A7); 5% : 20% : 5% : 70% (class 8, Table A8);
10% : 10% : 10% : 70% (class 9, Table A9); 10% : 10% : 40% : 40% (class 10, Table A10);
10% : 20% : 10% : 60% (class 11, Table A11); 10% : 30% : 10% : 50% (class 12, Table A12);
10% : 40% : 10% : 40% (class 13, Table A13); 10% : 60% : 10% : 20% (class 14, Table A14).
All Tables A1–A14 are organized as follows. The procedure for generating factual processing

times (the uniform distribution or the gamma distribution) is indicated in the first row of each table.
Numbers n of the given jobs J in the tested instances of the problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax are
presented in the second row. The maximum possible errors δ of the randomly generated processing
times (in percentages) are presented in the first column. For the fixed maximum possible error δ, the
obtained computational results are presented in four rows called Stop1, Stop2, Stop3 and Stop4.

The row Stop1 determines the percentage of instances from the tested series, which were optimally
solved at the off-line phase of scheduling using either Algorithms 1 or 2 developed in [8]. For such
an instance, an optimal pair (π′, π′′) of the job permutations was constructed before the time-point
of starting the first job of the realized schedule, i.e., the equality Cmax(π′, π′′) = Cmax(π∗, π∗∗) holds,
where (π∗, π∗∗) ∈ S is an optimal pair of job permutations for the deterministic problem J2|p∗, ni ≤
2|Cmax with the factual scenario p∗ ∈ T that is unknown before completing the whole jobs J .

The row Stop2 determines the percentage of instances, which were optimally solved at the on-line
phase of scheduling using corresponding Algorithms 3, 4 or 5. For each such an instance, an optimal
pair (π′, π′′) of job permutations for the deterministic problem J2|p∗, ni ≤ 2|Cmax associated with the
factual scenario p∗ ∈ T was constructed by checking sufficient conditions in Theorem 9 or Theorem 10.
Remind that the factual scenario p∗ ∈ T for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax

remains unknown until completing the jobs J .
The row Stop3 determines the percentage of instances, which were optimally solved at the on-line

phase of scheduling using Algorithms 3, 4 or 5. In such a case, an optimal pair of job permutations
has been constructed for the factual scenario p∗ ∈ T. However, the optimality of this pair of job
permutations was established only after the execution of the constructed schedule.

The row Stop4 determines the percentage of instances, for which the constructed and realized
schedule is not optimal for the deterministic instance J2|p∗, ni ≤ 2|Cmax with the factual scenario p∗.

6.4. Computational Results

First of all, it is important to determine a total number of the tested instances, for which 3
(or Algorithms 4 and 5) were completed at Step 18 (STOP 2) or at Step 17 (STOP 3). This number shows
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how many tested instances of the uncertain job-shop scheduling problem have been optimally solved
either with the proofs of their optimality before the completion of processing all jobs J (STOP 2) or the
optimality of the obtained schedule was established after the realization of the constructed schedule
(STOP 3). For the numbers of jobs from n = 10 to n = 100 and for each value of the tested errors δ of
the processing times, average percentages of the instances optimally solved by Algorithms 1, 2, 3, 4 or 5
(these average percentages summarize the values given in rows Stop1 and Stop2 in all Tables A1–A14)
are presented in Table 2 and Figure 5.

Table 2. Average percentages of the instances whose optimality of the constructed permutations was
proven at the off-line and on-line phases of scheduling.

δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% : 0% : 10% : 90% 98.38 95.66 74.32 40.09 18.56 8.65 4.4 2.48 1.58 0.95 0.57

0% : 0% : 20% : 80% 99.48 98.81 94.37 74.52 45.33 24.20 12.32 6.55 3.87 2.59 1.65

0% : 0% : 30% : 70% 99.87 99.71 98.99 95.09 81.33 59.33 36.65 21.67 11.93 7.28 4.39

0% : 0% : 40% : 60% 99.97 99.94 99.73 99.02 97.09 90.86 78.5 59.76 40.85 25.93 15.2

0% : 0% : 50% : 50% 100 99.99 99.93 99.73 99.13 97.55 94.21 86.65 72.35 51.41 29.45

5% : 5% : 5% : 85% 99.67 98.45 78.97 43.19 19.26 9.11 4.31 2.02 1.1 0.58 0.27

5% : 15% : 5% : 75% 99.64 98.86 84.44 51.06 24.65 11.88 6.43 3.34 1.95 1.02 0.68

5% : 20% : 5% : 70% 99.57 98.97 86.92 55.79 29.59 14.98 7.97 4.42 2.59 1.45 1.01

10% : 10% : 10% : 70% 99.84 99.48 97.46 83.55 57.09 34.11 18.95 11.14 6.81 4.29 2.8

10% : 10% : 40% : 40% 99.99 100 99.96 99.89 99.69 99.35 98.41 96.55 92.84 85.66 73.22

10% : 20% : 10% : 60% 99.87 99.68 98.37 90.56 71.05 48.26 30.28 18.22 11.36 7.21 4.79

10% : 30% : 10% : 50% 99.9 99.72 99.11 95.33 83.85 66.15 49.34 34.35 24.13 16.64 11.44

10% : 40% : 10% : 40% 99.92 99.75 99.33 97.97 92.52 82.69 70.01 58.6 48.52 40.36 32.76

10% : 60% : 10% : 20% 99.98 99.98 99.93 99.83 99.59 99.01 97.96 96.16 93.01 89.46 85.75

Table 2 shows the total percentages of the optimally solved instances for all classes of the tested
instances, for which the optimal schedules were constructed either at the off-line phase of scheduling
(STOP 1) or at the on-line phase of scheduling (STOP 2). One can see that for three small values of
the maximal errors δ ∈ {5%, 10%, 20%} for most classes, more than 90% (up to 100%) of the tested
instances were optimally solved. For all tested classes with a maximal error δ ≤ 20%, more than 70%
tested instances were optimally solved at the off-line or on-line phases of scheduling.

With a further increasing of the maximal error δ, the percentage of solved instances drops rapidly.
For most tested classes with the maximal error δ greater than 70%, the percentage of solved instances
is less than 10%. However, these indicators differ for different tested classes. For classes 4, 5, 10, 13
and 14 with maximal errors δ ≤ 70%, more than 60% of the tested instances were optimally solved
with the proof of the optimality before completing all the jobs. The best computational results are
obtained for classes 5, 10 and 14 of the tested instances. More than 80% of the instances from these
three classes were optimally solved at the off-line phase of scheduling or at the on-line phases of
scheduling provided that the maximal error δ of the given job processing times was no greater than
70%, i.e., for δ ∈ {5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%}. For both classes 10 and 14 of the
tested instances even with an error δ = 100%, more than 70% of the instances were optimally solved.

On the other hand, for both classes 1 and 6 with a maximal error δ = 40%, only less than 20%
of the tested instances were optimally solved at both off-line phase and on-line phase of scheduling.
For classes 1 and 6 with δ = 50%, less than 10% of the tested instances were optimally solved.
Furthermore, these two classes of instances are most difficult ones to find an optimal schedule with
the proof of its optimality before completing all the jobs using the on-line phase and off-line phase
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of scheduling. It should be noted that all tested classes of instances demonstrate a monotonic decrease
in the percentages of the optimally solved problems with an increase of the values of the maximal
error δ of the job processing times; see Figure 5.

Figure 5. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the off-line phase and on-line phase of scheduling.

Let us consider the percentages of the tested instances, for which the optimality of the constructed
schedules was proven at the on-line phase of scheduling and the proofs of their optimality being
obtained before completing all the jobs. Note that it is novelty of this paper; see rows Stop2 in
Tables A1–A14. For all tested numbers of the jobs, n ∈ {10, 20, . . . , 100}, and for all maximal values of
the errors δ ∈ {5%, 10%, 20%, . . . , 100%} of the job processing times, the average percentages of the
instances, which were optimally solved by Algorithms 3, 4 or 5 at the on-line phase of scheduling are
presented in Table 3, where only Stop2 is indicated.

It should be noted that the monotonous increase of the percentages of the optimally solved
instances takes place only for classes 10 and 14 of the tested instances. For other tested classes of
instances, there is a maximum, and for the different classes of the tested instances, these maximal vales
being achieved for different maximal values of the errors δ. Then the percentages of the optimally
solved instances decrease again with the increasing of the maximal values δ. The values of the maximal
numbers of instances, which optimal solutions have been proven at the on-line phase of scheduling
(STOP 2), vary from 0.59% to 8.69% for different classes of instances.

Classes 1–5 are distinguished from the above classes since their maximal numbers of the instances
optimally solved at the on-line phase of scheduling vary from 6% to 9%. Average percentages of the
instances from these five classes, which were optimally solved by Algorithms 3, 4 or 5 at the on-line
phase of scheduling (only Stop2) are shown in Figure 6.

Note that for the difficult classes 1 and 6, the percentages of instances, which were optimally
solved at the on-line phase of scheduling with the proofs of their optimality, behave identically with
the reaching of the maximum for the maximal error δ = 20%. However their maximal values differ,
namely: from 2.96% for class 6 up to 8.69% for class 1.
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Table 3. Average percentages of the instances whose optimality of the constructed permutations was
proven at the on-line phase of scheduling.

δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% : 0% : 10% : 90% 0.97 3.68 8.69 7.26 3.86 1.92 1.06 0.5 0.34 0.2 0.11

0% : 0% : 20% : 80% 0.24 1.24 5.23 8.59 7.85 5.33 2.63 1.49 0.78 0.59 0.32

0% : 0% : 30% : 70% 0.03 0.22 1.33 4.27 6.82 8.13 5.78 4 2.49 1.66 1.07

0% : 0% : 40% : 60% 0.02 0.06 0.31 0.93 2.05 4.15 5.57 6.53 5.6 4.44 3.23

0% : 0% : 50% : 50% 0 0.01 0.06 0.25 0.53 1.24 2.62 4.33 6.06 7.4 6.23

5% : 5% : 5% : 85% 0.33 1.01 2.96 2.31 1.63 0.88 0.49 0.25 0.15 0.07 0.03

5% : 15% : 5% : 75% 0.27 0.84 2.64 2.39 1.78 0.93 0.47 0.3 0.19 0.09 0.08

5% : 20% : 5% : 70% 0.28 0.69 2.38 2.86 1.76 1.07 0.6 0.46 0.26 0.12 0.04

10% : 10% : 10% : 70% 0.06 0.165 0.83 1.87 1.95 1.56 1.08 0.69 0.43 0.32 0.24

10% : 10% : 40% : 40% 0 0 0.02 0.04 0.05 0.14 0.21 0.3 0.45 0.68 0.77

10% : 20% : 10% : 60% 0.05 0.13 0.6 1.29 1.77 1.6 1.22 0.82 0.57 0.41 0.25

10% : 30% : 10% : 50% 0.01 0.07 0.36 0.91 1.49 1.32 1.48 1.03 0.7 0.48 0.36

10% : 40% : 10% : 40% 0 0.03 0.16 0.41 0.78 1.17 1.29 1.01 0.9 0.62 0.46

10% : 60% : 10% : 20% 0 0 0.01 0.05 0.08 0.17 0.28 0.38 0.45 0.51 0.59

For the instances, for which the optimality of the constructed schedules was not proven before
completing all the jobs J , the relative errors ∆% of the achieved objective function vales for the
realized schedules were calculated. Note that the positive errors ∆% may occur only if Algorithm
3 (or Algorithms 4 and 5) have been stopped at Step 16; see STOP 4. For all tested numbers of jobs
n ∈ {10, 20, . . . , 100} and for all maximal values of the errors δ ∈ {5%, 10%, 20%, . . . , 100%} of the
job processing times, the maximal values of ∆max% and the average values of ∆ave% were calculated
separately for instances with uniform distributions (see Table 4) and gamma distributions (see Table 5).

It can be seen that the values of maximal errors ∆ave% significantly differ when applying different
distribution laws. With using a uniform distribution, the maximal error ∆max does not exceed 9%,
while when using a gamma distribution, the maximal error ∆max could reach a value more than 17%.

It can be seen that for using various distribution laws, Algorithm 3 (Algorithms 4 and 5 as well)
terminates at STOP 4 with various combinations of the tested classes and maximal errors δ%. If a
uniform distribution is used, then for classes 1–2, strictly positive errors ∆ave% arise for all values of the
tested maximal errors δ%. For classes 9–10 and 11–13, such errors appear more often with increasing
the maximal error δ%.

For a gamma distribution, for all values of δ%, the error ∆ave% arises only for class 1. For classes
2–4, 6, 8, 10, the error ∆ave% arises with the growth of maximal errors δ%. For classes 7, 9, 11–13, on the
contrary, the error ∆ave% is more common for small values of the maximal errors δ%.
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Table 4. Maximal errors ∆max and average errors ∆ave for all tested instances with factual processing
times randomly generated based on a uniform distribution.

Class δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 ∆max 0.031511 0.300924 0.691062 0.333292 1.110492 0.881902 2.246299 3.263145 2.729286 3.85936 5.024917

∆ave 0.000003 0.000058 0.000225 0.000057 0.000333 0.000613 0.000733 0.00135 0.001868 0.001409 0.002253

2 ∆max 0.0475 0.189872 0 0.125467 0 0.441669 0.243659 1.076096 3.127794 1.286158 1.353086

∆ave 0.000005 0.000023 0 0.000013 0 0.000064 0.000045 0.000189 0.000976 0.000221 0.000135

3 ∆max 0 0 0 0 0 0 0 0 0.8199 0 0

∆ave 0 0 0 0 0 0 0 0 0.000082 0 0

4 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

5 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

6 ∆max 0 0 0 0 0 0.411415 0.081623 0 0 0 0

∆ave 0 0 0 0 0 0.000082 0.000016 0 0 0 0

7 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

8 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

9 ∆max 0 0.068237 0.055299 0 1.31253 0 0.91223 0.893705 1.697913 2.166717 8.617851

∆ave 0 0.000007 0.000006 0 0.000244 0 0.000144 0.000167 0.000338 0.000558 0.001348

10 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

11 ∆max 0 0 0 1.47875 3.660297 5.724288 0.810014 3.316178 0.39653 4.42828 4.666154

∆ave 0 0 0 0.000148 0.000694 0.000572 0.000081 0.000332 0.000040 0.000799 0.000924

12 ∆max 0 0 0 0 0 0 0 0 0 0 7.243838

∆ave 0 0 0 0 0 0 0 0 0 0 0.000724

13 ∆max 0 0 0 0 0 0 0 0 0 0 5.036085

∆ave 0 0 0 0 0 0 0 0 0 0 0.000504

14 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

As one can see, using the uniform distribution for the generation of the factual job processing times
for classes 4, 5, 7, 10, 14, all tested instances were solved optimally using the developed algorithms and
two phases of scheduling. In other words, there are no instances, for which corresponding Algorithms
3, 4 or 5 was stopped at Step 16 (STOP 4). However, for the gamma distribution, there are only two
such classes 5 and 14. Thus, classes 5 and 14 can be considered as easy ones, while class 1 is the most
difficult one. As for class 1, Algorithms 3, 4 and 5 are stopped at Step 16 (STOP 4) for all values of the
tested maximal errors δ%. Moreover, the maximum makespan error ∆max% of more than 5% for the
uniform distribution and more than 10% for the gamma distribution is found for classes 1, 9, 11 and 12
of the tested instances (these classes are difficult for the used stability approach).



Mathematics 2020, 8, 1314 29 of 51

Table 5. Maximal errors ∆max and average errors ∆ave for all tested instances with factual processing
times randomly generated based on a gamma distribution.

Class δ% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 ∆max 0.211802 0.509319 1.995284 2.439105 4.8928 2.670648 6.613935 8.782202 10.59834 9.153295 9.50327

∆ave 0.000055 0.000131 0.00031 0.000746 0.001754 0.001746 0.00369 0.005033 0.006755 0.011687 0.01144

2 ∆max 0 0 0 0 0 4.182544 1.361694 1.070905 5.634459 7.845669 7.974282

∆ave 0 0 0 0 0 0.000595 0.000317 0.000107 0.001382 0.001737 0.001725

3 ∆max 0 0 0 0 1.32533 0 0 5.566808 0 4.026352 5.385314

∆ave 0 0 0 0 0.000133 0 0 0.000557 0 0.000511 0.001354

4 ∆max 0 0 0 0 0 0 0 0 0 6.044646 0

∆ave 0 0 0 0 0 0 0 0 0 0.000604 0

5 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

6 ∆max 0 0 0 0.061048 0 0.387884 1.081353 1.125343 0.710307 0.643768 0.67762

∆ave 0 0 0 0.000012 0 0.000078 0.000216 0.000401 0.000206 0.000343 0.000136

7 ∆max 0 0 0.143177 0 0 0 0 0 0 0 0

∆ave 0 0 0.000029 0 0 0 0 0 0 0 0

8 ∆max 0 0 0.388797 0 0.426346 0 0.289505 0.059146 2.478004 1.167724 4.748751

∆ave 0 0 0.000078 0 0.000085 0 0.000029 0.000006 0.000442 0.000234 0.000948

9 ∆max 2.64165 6.620637 5.266738 4.163808 10.56515 0 0 0 0 0 0

∆ave 0.000852 0.001946 0.001696 0.001615 0.003941 0 0 0 0 0 0

10 ∆max 0 0 0 0 0 0 0 0.714515 0 0.334513 3.232162

∆ave 0 0 0 0 0 0 0 0.000071 0 0.000033 0.000584

11 ∆max 2.988951 10.50113 2.526341 5.632594 7.258956 0 0 0 0 0 0

∆ave 0.0003 0.001289 0.000431 0.000887 0.001595 0 0 0 0 0 0

12 ∆max 0 0.095929 1.639148 17.64929 6.3913 0 0 0 0 0 0

∆ave 0 0.000010 0.000164 0.002948 0.001737 0 0 0 0 0 0

13 ∆max 0 0.967642 0.7847 0 0 0 0 0 0 0 0

∆ave 0 0.000097 0.000078 0 0 0 0 0 0 0 0

14 ∆max 0 0 0 0 0 0 0 0 0 0 0

∆ave 0 0 0 0 0 0 0 0 0 0 0

Class 13 of the tested instances is a rather strange one. For using the uniform distribution,
a maximum makespan error ∆max% of more than 5% was obtained, while when for using the gamma
distribution, the maximum makespan error ∆max% did not reach even 1%. Note that for all tested
classes of the instances, the average makespan errors ∆ave% for all tested numbers n ∈ {10, 20, . . . , 100}
of jobs J are less than 0.02%.

Maximal relative makespan errors ∆max% for each tested class and for all values of the tested
maximal errors δ are shown in Figure 7 for the instances with uniform distributions and in Figure 8 for
the instances with gamma distributions of the factual durations of the given operations.

Figures 7 and 8 also show that the maximal value of the makespan errors ∆max% for the
constructed and realized schedule for the factual scenarios are achieved for different values of the
maximal errors δ% for different classes of the tested instances.
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Figure 6. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the on-line phase of scheduling.

Figure 7. Maximal errors ∆max for the tested instances with a uniform distribution.
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Figure 8. Maximal errors ∆max for the tested instances with a gamma distribution.

7. Concluding Remarks

The uncertain job-shop scheduling problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax attract the attention of
practitioners and researchers since this problem is applicable in real-life processing systems for some
reduction of production costs due to a better utilization of the available machines and resources.

This paper is a continuation of our previous one [8], where only off-line phase of scheduling was
investigated and tested for the uncertain problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax based on the stability
approach. In [8], we tested 15 classes of the randomly generated instances J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax.
A lot of instances from nine easy classes were optimally solved at the off-line phase of scheduling.
If the maximal errors were no greater than 20%, i.e., δ ∈ {5%, 10%, 15%, 20%}, then more than 80% of
the tested instances were optimally solved at the off-line phase of scheduling. If the maximal error was
equal to 50%, i.e., δ = 50%, then 45% of the tested instances were optimally solved.

However, less than 5% of the tested instances with maximal possible error δ ≥ 20% from six hard
tested classes were optimally solved at the off-line phase of scheduling. There were no tested hard
instances with the maximal error 50% optimally solved in [8]. All these difficulties were succeeded in
Sections 4–6 of this paper, where it is shown that the on-line phase of scheduling allows a scheduler
to find either optimal schedule or very close to optimal ones. Additional information on the factual
value of the job processing times becomes available once the processing of the job on the machine is
completed. Using this information, a scheduler can determine a smaller dominant set of semi-active
schedules, which is based on sufficient conditions for schedule dominance. The smaller dominant set
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enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on processing the job becomes available.

In Section 5, it is investigated the optimal pair (π′, π′′) of job permutations (Theorems 9 and 10).
Using the proven analytical results, we derived Algorithms 3–5 for constructing optimal pairs (π′, π′′)

of job permutations for all scenarios p ∈ T or a small dominant set S(T) of schedules for the uncertain
problem J2|lij ≤ pij ≤ uij, ni ≤ 2|Cmax. At the off-line scheduling phase, Algorithms 1 and 2 [8] are
used to determine the partial strict order A1,2

≺ over the job set J1,2 and the partial strict order A2,1
≺ over

the job set J2,1. The constructed precedence digraphs (J1,2, A1,2
≺ ) and (J2,1, A2,1

≺ ) determine a minimal
dominant set S(T) of schedules.

In Sections 6, it is shown how to use Algorithms 3–5 for constructing a small dominant set
of semi-active schedules that enables a scheduler to make a fast decision whenever information
on completing some jobs become available. Based on these algorithms, the problem J2|lij ≤ pij ≤
uij, ni ≤ 2|Cmax was solved with very small errors of the obtained objective values. The computational
experiments (Section 6.3) show that pairs of job permutations constructed by Algorithms 3–5 are
very close to the optimal pairs of job permutations. We tested 14 classes of randomly generated
instances. For the tested instances, the percentage of the optimally solved instances slowly decreases
with increasing maximal errors δ of the processing times. The developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% if n ∈ {20, 30, . . . , 100}. For all tested
classes of the instances, the average makespan errors for all numbers n ∈ {10, 20, . . . , 100} of the jobs
J were less than 0.02%.

In a possible further research, one can continue the study of the uncertain job-shop scheduling
problem based on the stability approach. It is useful to improve the developed algorithms and to
extend them for other machine environments, such as a single machine or processing systems with
parallel machines. It is promising to investigate an optimality region of the semi-active schedule and
to develop algorithms for constructing a semi-active schedule with the largest optimality region.

It is also useful to apply the stability approach for solving the uncertain flow-shop and job-shop
scheduling problems with |M| ≥ 3 different machines.
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Appendix A

Algorithms 1 and 2 Developed in [8].

Algorithm 1

Input: Segments [lij, uij] for all jobs Ji ∈ J and machines Mj ∈ M,
a partial strict order A1,2

≺ on the set J1,2 = J ∗1,2 ∪ J 1
1,2 ∪ J 2

1,2 in the form
J1 ≺ . . . ≺ Jk ≺ {Jk+1, Jk+2, . . . , Jk+r} ≺ Jk+r+1 ≺ . . . ≺ Jm1,2 .

Output: EITHER an optimal job permutation for the problem
F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T, (see STOP 0).

OR there no permutation π1,2 of jobs from set J1,2, which is optimal
for all scenarios p ∈ T, (see STOP 1).

Step 1: Set δs = lk+s,2 − uk+s,1 for all s ∈ {1, 2, . . . , r}.
construct a partition of the set of conflicting jobs into two subsets X1 and X2,
where Jk+s ∈ X1 if δs ≥ 0, and Jk+s ∈ X2, otherwise.

Step 2: Construct a permutation π1 = (J1, J2, . . . , Jk, π1, π2, Jk+r+1, . . . , Jm1,2), where the permutation
π1 contains jobs from the set X1 in the non-decreasing order of the values uk+i,1 and the
permutation π2 contains jobs from the set X2 in the non-increasing order of the values
lk+i,2, renumber jobs in the permutations π1 and π2 based on their orders.

Step 3: IF for the permutation π1 conditions of Theorem 7 hold THEN GOTO step 8.
Step 4: Set δs = lk+s,1 − uk+s,2 for all s ∈ {1, 2, . . . , r}.

construct a partition of the set of conflicting jobs into two subsets
Y1 and Y2, where Jk+s ∈ Y1 if δs ≥ 0, and Jk+s ∈ Y2, otherwise.

Step 5: Construct a permutation π2 = (J1, J2, . . . , Jk, π2, π1, Jk+r+1, . . . , Jm1,2), where the permutation
π1 contains jobs from the set Y1 in the non-increasing order of the values uk+i,2, and the
permutation π2 contains jobs from the set Y2 in the non-decreasing order of the
values lk+i,1, renumber jobs in the permutations π1 and π2 based on their orders.

Step 6: IF for the permutation π2 conditions of Theorem 8 hold THEN GOTO step 9.
Step 7: ELSE there is no a single dominant permutation for problem

F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 and any scenario p ∈ T STOP 1.
Step 8: RETURN permutation π1, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.
Step 9: RETURN permutation π2, which is a single dominant permutation

for the problem F2|lij ≤ pij ≤ uij|Cmax with job set J1,2 STOP 0.
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Algorithm 2

Input: Lower bounds lij and upper bounds uij, 0 < lij ≤ uij, of the durations
of all operations Oij of jobs Ji ∈ J processed on machines Mj ∈ M = {M1, M2}.

Output: EITHER pair of permutations (π′, π′′) = ((π1,2, π1, π2,1), (π2,1, π2, π1,2)),
where π′ is a permutation of jobs from set J1,2 ∪ J1 ∪ J2,1 on machine
M1, π′′ is a permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 on machine M2,
such that {(π′, π′′)} = DS(T), (see STOP 0),

OR permutation π2,1 of jobs from set J2,1 on machines M1 and M2 and
a partial strict order A1,2

≺ of jobs from set J1,2,
OR permutation π1,2 of jobs from set J1,2 on machines M1 and M2 and

a partial strict order A2,1
≺ of jobs from set J2,1,

OR a partial strict order A1,2
≺ of jobs from set J1,2 and

a partial strict order A2,1
≺ of jobs from set J2,1, (see STOP 1).

Step 1: Determine a partition J = J1 ∪ J2 ∪ J1,2 ∪ J2,1 of the job set J ,
permutation π1 of jobs from set J1 and permutation π2 of jobs from
set J2, arrange the jobs in the increasing order of their indexes.

Step 2: IF the first inequality in condition (5) of Theorem 4 holds THEN BEGIN
Construct a permutation π1,2 of jobs from set J1,2,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (5) of Theorem 4 holds

THEN construct a permutation π2,1 of jobs from set J2,1,
arrange them in the increasing order of their indexes GOTO Step 10 END

Step 3: IF the first inequality in condition (6) of Theorem 4 holds THEN BEGIN
Construct a permutation π2,1 of jobs from set J2,1,

arrange them in the increasing order of their indexes;
IF the second inequality in condition (6) of Theorem 4 holds THEN

construct a permutation π1,2 of jobs from set J1,2,
arrange the jobs in the increasing order of their indexes END

Step 4: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 5: IF permutation π1,2 is not constructed THEN fulfill Procedure 1.
Step 6: IF permutation π2,1 is not constructed THEN fulfill Procedure 2.
Step 7: IF both permutations π1,2 and π2,1 are constructed THEN GOTO Step 10.
Step 8: IF permutation π2,1 is constructed THEN GOTO Step 11.
Step 9: IF permutation π1,2 is constructed THEN GOTO Step 12 ELSE GOTO Step 13.
Step 10: RETURN pair of permutations (π′, π′′), where π′ is the permutation

of jobs from set J1,2 ∪ J1 ∪ J2,1 processed on machine M1 and π′′ is
the permutation of jobs from set J1,2 ∪ J2 ∪ J2,1 processed
on machine M2 such that {(π′, π′′)} = DS(T) STOP 0.

Step 11: RETURN the permutation π2,1 of jobs from set J2,1 processed on machines M1 and M2,
the partial strict order A1,2

≺ of jobs from set J1,2 GOTO Step 14.
Step 12: RETURN the permutation π1,2 of jobs from set J1,2 processed on machines M1 and M2,

the partial strict order A2,1
≺ of jobs from set J2,1 GOTO Step 14.

Step 13: RETURN the partial strict order A1,2
≺ of jobs from set J1,2

and the partial strict order A2,1
≺ of jobs from set J2,1

Step 14: STOP 1.
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Appendix B. Tables with Computational Results

Table A1. Computational results for the randomly generated instances with the ratio 0%:0%:10%:90%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 93.9 97.3 98.4 97.6 96.6 97.6 97.9 98.3 98 97.5 93.4 97 97.7 97.1 98.5 98.3 97.6 98.6 98.3 98.7
Stop2 0.9 1 0.6 1.1 1.6 1.3 1.2 1.1 0.9 1.4 0.8 0.8 0.9 1.1 0.5 0.5 1.3 0.8 0.9 0.6
Stop3 5.1 1.7 1 1.3 1.8 1.1 0.9 0.6 1.1 1.1 5.3 2.2 1.4 1.8 1 1.2 1.1 0.6 0.8 0.7
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

10 Stop1 85.8 91.8 91.6 93 92.2 92.2 91.9 92.6 93.6 93.8 83.1 93.5 92.8 92.7 93.1 92.3 92.4 93.3 94.2 93.6
Stop2 2.1 2.5 4.5 3.5 4.1 4 4.2 4.6 4.2 4.2 3.2 2.8 3.1 3.5 3.6 4.3 4.2 3.4 3.5 4.1
Stop3 11.7 5.7 3.9 3.5 3.7 3.8 3.9 2.8 2.2 2 12.8 3.7 4.1 3.8 3.3 3.4 3.4 3.3 2.3 2.3
Stop4 0.4 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0

20 Stop1 70.6 73.2 73.3 71.9 69.6 63.4 63.6 57.7 56.3 53.4 70.2 73.7 74.1 71.5 67.2 64.2 63.4 61.5 56.1 57.5
Stop2 4.3 6.8 9.4 8.6 8.8 11.1 9.4 10.1 9.2 9.2 4.3 8.1 8.7 10 10 11.3 9.1 9.1 8.9 7.5
Stop3 24.2 20 17.3 19.5 21.6 25.5 27 32.2 34.5 37.4 24.9 18.2 17.2 18.5 22.8 24.5 27.5 29.4 35 35
Stop4 0.9 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

30 Stop1 53 55.1 47.5 41.1 31 30.7 23.4 20.3 18.5 13.4 52 52.2 44.9 34.9 33.6 26.3 27.3 18.3 18.9 14.2
Stop2 4.8 8.8 9.1 9.7 9.8 7 6.7 5.2 4.2 4.4 6.2 8.9 10.1 10.4 11 7.9 6 4.6 5.9 4.5
Stop3 41.9 36.1 43.4 49.2 59.2 62.3 69.9 74.5 77.3 82.2 41 38.9 45 54.7 55.4 65.8 66.7 77.1 75.2 81.3
Stop4 0.3 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

40 Stop1 41.6 32.5 24.7 16.4 10.9 8.9 5.9 3.9 2.1 2.3 37.8 31.8 22.2 18.6 10.6 8.5 6.1 4.3 3 1.9
Stop2 4.9 7.6 7.7 6.6 4.2 2.9 2 1.1 0.7 0.3 5.2 8.5 9.1 4.8 2.9 3.5 2 1.6 1 0.6
Stop3 52.7 59.7 67.6 77 84.9 88.2 92.1 95 97.2 97.4 55.3 59.7 68.7 76.6 86.5 88 91.9 94.1 96 97.5
Stop4 0.8 0.2 0 0 0 0 0 0 0 0 1.7 0 0 0 0 0 0 0 0 0

50 Stop1 29 16.1 9.3 5 2.4 1.4 1.6 0.8 0.5 0 26.2 19.4 10.4 5.6 3.9 1.6 0.6 0.5 0.3 0.1
Stop2 4.7 5.4 5 2.6 1.2 0.8 0.2 0.3 0.3 0 3.7 5.6 3.8 2.2 0.7 0.7 0.7 0.1 0.2 0.1
Stop3 64.9 78.5 85.7 92.4 96.4 97.8 98.2 98.9 99.2 100 67.8 75 85.8 92.2 95.4 97.7 98.7 99.4 99.5 99.8
Stop4 1.4 0 0 0 0 0 0 0 0 0 2.3 0 0 0 0 0 0 0 0 0

60 Stop1 18.1 8.4 4.6 1.4 1 0.3 0.2 0.1 0 0 16.6 9.6 3.6 1.4 1 0.3 0 0.2 0 0
Stop2 3.8 4 1.6 0.7 0.3 0.1 0 0 0 0 3.2 3.5 2.3 0.9 0.4 0 0.3 0 0.1 0
Stop3 76.4 87.5 93.8 97.9 98.7 99.6 99.8 99.9 100 100 77.7 86.9 94.1 97.7 98.6 99.7 99.7 99.8 99.9 100
Stop4 1.7 0.1 0 0 0 0 0 0 0 0 2.5 0 0 0 0 0 0 0 0 0

70 Stop1 12.3 5.1 1.4 0.7 0.1 0 0 0 0 0 12.1 4.7 2.1 0.8 0.2 0 0.1 0 0 0
Stop2 2.8 1.5 0.7 0.2 0.1 0 0 0 0 0 2 2.1 0.4 0.2 0 0 0 0 0 0
Stop3 83.2 93.4 97.9 99.1 99.8 100 100 100 100 100 82.8 93.2 97.5 99 99.8 100 99.9 100 100 100
Stop4 1.7 0 0 0 0 0 0 0 0 0 3.1 0 0 0 0 0 0 0 0 0

80 Stop1 8.9 1.9 0.4 0.3 0.2 0 0 0 0 0 10 2.3 0.6 0.2 0 0 0 0 0 0
Stop2 1.8 0.8 0.5 0 0 0 0 0 0 0 2.2 1.1 0.2 0 0 0.1 0 0 0 0
Stop3 87.1 97.1 99.1 99.7 99.8 100 100 100 100 100 84.2 96.5 99.2 99.8 100 99.9 100 100 100 100
Stop4 2.2 0.2 0 0 0 0 0 0 0 0 3.6 0.1 0 0 0 0 0 0 0 0

90 Stop1 6.9 0.8 0.2 0.1 0 0 0 0 0 0 5.7 0.9 0.3 0 0 0 0 0 0 0
Stop2 1.2 0.7 0.1 0 0 0 0 0 0 0 1.5 0.5 0 0 0 0 0 0 0 0
Stop3 90.1 98.4 99.7 99.9 100 100 100 100 100 100 88 98.5 99.7 100 100 100 100 100 100 100
Stop4 1.8 0.1 0 0 0 0 0 0 0 0 4.8 0.1 0 0 0 0 0 0 0 0

100 Stop1 4.4 0.3 0.1 0.1 0 0 0 0 0 0 4.1 0.3 0 0 0 0 0 0 0 0
Stop2 1.1 0.2 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0
Stop3 92.1 99.4 99.9 99.9 100 100 100 100 100 100 90.2 99.4 100 100 100 100 100 100 100 100
Stop4 2.4 0.1 0 0 0 0 0 0 0 0 4.9 0.3 0 0 0 0 0 0 0 0
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Table A2. Computational results for randomly generated instances with the ratio 0%:0%:20%:80% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 96.7 98.9 98.6 99.5 99.7 99.7 99.9 99.9 99.9 99.9 96.7 98.9 99 99.3 99.6 99.4 99.7 99.8 99.9 99.8
Stop2 0.8 0.3 0.7 0.1 0 0.2 0.1 0.1 0.1 0.1 0.3 0.4 0.1 0.3 0.1 0.4 0.2 0.1 0.1 0.2
Stop3 2.4 0.8 0.7 0.4 0.3 0.1 0 0 0 0 3 0.7 0.9 0.4 0.3 0.2 0.1 0.1 0 0
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 93.4 96.2 97.6 97.7 98 98.4 98.4 98.7 98.5 99.6 93.5 96.1 97.5 97.6 97.8 98.1 98.4 98.2 99 98.7
Stop2 1 1.4 1.4 1.4 1.4 1.3 1.1 1.2 1 0.4 1 1.8 1.1 1.3 1.5 1.6 1.3 1.5 0.9 1.1
Stop3 5.4 2.4 1 0.9 0.6 0.3 0.5 0.1 0.5 0 5.5 2.1 1.4 1.1 0.7 0.3 0.3 0.3 0.1 0.2
Stop4 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 85.4 86.9 89.5 90.2 90.8 90.5 89.1 90 90.3 90.1 83.5 87.5 88.8 88.4 90.6 89.9 91 89.4 90.9 90.1
Stop2 2.6 4.8 5.3 5 5.8 5.8 5.7 5 5 5.4 3.1 5.7 5.8 7.4 4.7 5.8 4.9 6.5 6.2 4
Stop3 12 8.3 5.2 4.8 3.4 3.7 5.2 5 4.7 4.5 13.4 6.8 5.4 4.2 4.7 4.3 4.1 4.1 2.9 5.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 70.2 76.4 70.1 69.6 69.2 65.7 64.1 60.4 58 56 71.6 73.3 72.9 69 66 63.1 60.4 62.3 62.2 58.1
Stop2 5.1 6.8 9.7 9.5 8.4 10.5 9.7 9.1 10.8 8.1 3.6 8.7 8.4 9.6 9.8 11.3 8.4 8.3 7.1 8.9
Stop3 24.6 16.8 20.2 20.9 22.4 23.8 26.2 30.5 31.2 35.9 24.8 18 18.7 21.4 24.2 25.6 31.2 29.4 30.7 33
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 56.7 55.3 48.8 41.5 39.6 31.2 31.1 26.5 23.5 21.5 55.1 53.9 46.5 41.5 37.5 31.6 33.2 27.4 26.2 21
Stop2 5.1 8.2 10.5 10.6 9.6 8.2 7.6 6.9 7.5 5 5.6 9.2 11.5 7.7 8.9 8.7 7.3 7.2 6 5.7
Stop3 38.2 36.5 40.7 47.9 50.8 60.6 61.3 66.6 69 73.5 39.3 36.9 42 50.8 53.6 59.7 59.5 65.4 67.8 73.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 42.6 35.2 27.2 22.9 14.3 11.4 9.9 6.9 6.6 5.9 43.9 37.3 29.2 22 16.3 13.2 10.8 10.5 5.5 5.7
Stop2 4.4 9.5 9.8 6.5 6 5.2 3.8 3.4 2.2 2.4 6 10 7.3 6.9 6.5 4.8 4.7 2.8 1.9 2.5
Stop3 52.8 55.3 63 70.6 79.7 83.4 86.3 89.7 91.2 91.7 49.9 52.7 63.5 71.1 77.2 82 84.5 86.7 92.6 91.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 32.9 20.7 14.4 10.7 6.3 3.3 3.3 2.2 1.4 0.8 31.7 23.1 15.7 10.4 7.2 3.9 2.9 1.4 0.9 0.6
Stop2 5.4 5.5 4.2 2.6 2.3 1.7 0.8 0.6 0.3 0.4 5.6 6 6.4 3.6 2.4 1.5 1.5 0.8 0.3 0.7
Stop3 61.7 73.8 81.4 86.7 91.4 95 95.9 97.2 98.3 98.8 62.3 70.9 77.9 86 90.4 94.6 95.6 97.8 98.8 98.7
Stop4 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

70 Stop1 22.1 13.7 7.6 2.9 1.6 1.1 0.6 0.2 0.3 0.1 23.9 13.1 6.7 3.4 1.6 0.7 0.9 0.3 0.2 0.1
Stop2 4.9 3.7 2.9 1.7 0.9 0.6 0.4 0.1 0 0.1 4.4 4.5 2 1.5 1.2 0.4 0 0.4 0.1 0.1
Stop3 72.8 82.6 89.5 95.4 97.5 98.3 99 99.7 99.7 99.8 71.6 82.4 91.3 95.1 97.2 98.9 99.1 99.3 99.7 99.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 17.3 8.3 3.5 1.3 0.5 0.3 0.2 0 0 0 16.4 7.9 3.1 1.9 0.9 0.2 0 0 0 0
Stop2 2.8 1.7 1.8 0.8 0.6 0 0 0 0 0 3.4 2.4 0.8 0.9 0.1 0.2 0.1 0 0 0
Stop3 79.4 90 94.7 97.9 98.9 99.7 99.8 100 100 100 79.6 89.7 96.1 97.2 99 99.6 99.9 100 100 100
Stop4 0.5 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

90 Stop1 12.1 4.5 1.4 0.7 0 0.1 0 0 0 0 12.6 5 2.9 0.4 0.1 0.1 0 0 0 0
Stop2 2.5 2.3 1.3 0.3 0 0.1 0 0 0 0 3.2 1.8 0.2 0.2 0 0 0 0 0 0
Stop3 85.2 93.2 97.3 99 100 99.8 100 100 100 100 83.7 93.2 96.9 99.4 99.9 99.9 100 100 100 100
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

100 Stop1 10.6 2.7 0.5 0.3 0 0 0 0 0 0 9.1 2.8 0.5 0.1 0 0 0 0 0 0
Stop2 1.9 1.2 0.3 0 0.2 0 0 0 0 0 2 0.6 0.2 0 0 0 0 0 0 0
Stop3 87.4 96.1 99.2 99.7 99.8 100 100 100 100 100 88.2 96.6 99.3 99.9 100 100 100 100 100 100
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0



Mathematics 2020, 8, 1314 37 of 51

Table A3. Computational results for randomly generated instances with the ratio 0%:0%:30%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.2 99.6 99.9 99.9 100 100 100 100 100 100 98.6 99.9 99.9 99.9 99.9 100 100 100 100 100
Stop2 0.2 0.1 0.1 0.1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
Stop3 0.6 0.3 0 0 0 0 0 0 0 0 1.4 0.1 0.1 0.1 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.3 99 99.4 99.9 99.9 100 99.9 99.9 100 100 97.4 98.6 99.1 99.9 99.9 100 99.9 100 99.8 100
Stop2 0.8 0.4 0.3 0.1 0.1 0 0.1 0.1 0 0 0.5 0.8 0.6 0.1 0.1 0 0.1 0 0.2 0
Stop3 1.9 0.6 0.3 0 0 0 0 0 0 0 2.1 0.6 0.3 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 91.7 95.7 97.1 97.5 98.2 98.6 98.7 98.7 99.7 98.9 91.5 97 97.8 97.2 98.5 98.8 99.1 99.6 99.5 99.4
Stop2 1.9 2.6 2 2.1 1.4 1.2 1.2 1.1 0.3 0.8 2.3 1.7 1.6 2.1 1.2 1 0.7 0.4 0.5 0.4
Stop3 6.4 1.7 0.9 0.4 0.4 0.2 0.1 0.2 0 0.3 6.2 1.3 0.6 0.7 0.3 0.2 0.2 0 0 0.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 81.9 87.1 89.1 91.9 91.7 92.2 92.2 93.8 93.7 93.9 83 87.2 91.7 91.7 92.4 91.6 92.2 92.8 92.9 93.4
Stop2 4.6 6.2 5.9 4.5 5.5 4.3 4.3 3.9 2.8 2.5 3.1 5.1 4.1 4.4 3.7 4.4 4.8 4.2 3.5 3.5
Stop3 13.5 6.7 5 3.6 2.8 3.5 3.5 2.3 3.5 3.6 13.9 7.7 4.2 3.9 3.9 4 3 3 3.6 3.1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 74.1 74.7 75.9 76 75.1 75.9 73.4 75.8 71.6 72.5 69.1 74.2 76.4 75.6 76.5 76.4 75 74 75.3 72.7
Stop2 4.4 7.9 7.5 8.2 6.5 6.3 6.9 5.5 6.9 7 6 9.2 7.5 8 7.7 6.4 6.4 7.1 4.6 6.4
Stop3 21.5 17.4 16.6 15.8 18.4 17.8 19.7 18.7 21.5 20.5 24.8 16.6 16.1 16.4 15.8 17.2 18.6 18.9 20.1 20.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

50 Stop1 61.4 60.7 56.9 53.7 50.4 49.7 47.3 47.3 44.7 39.1 58.2 60.6 57.7 51.7 49.1 50.9 48.3 48.2 43.9 44.3
Stop2 5.3 9.2 9.7 10.4 10.2 7.7 8.4 7.1 6.7 6.3 5.8 8.7 8.5 12.4 10.2 9.1 7.8 7.1 6.6 5.3
Stop3 33.3 30.1 33.4 35.9 39.4 42.6 44.3 45.6 48.6 54.6 36 30.7 33.8 35.9 40.7 40 43.9 44.7 49.5 50.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 46.7 46.3 39.6 32.9 30.5 29.5 23.9 22.1 18.8 17.8 50.9 42.8 41.7 35.9 30.6 28 24 22.9 19 13.5
Stop2 6.2 8.1 7.7 7.9 6.2 5.3 4.6 4.1 4.2 2.8 5 9.1 7.5 7.5 7.1 5.1 5.2 4.6 3.7 3.6
Stop3 47.1 45.6 52.7 59.2 63.3 65.2 71.5 73.8 77 79.4 44.1 48.1 50.8 56.6 62.3 66.9 70.8 72.5 77.3 82.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 39.9 34.5 24.5 20.2 17.6 12.2 8.7 8.6 7.6 5.5 38 34.8 23.5 19.1 15.7 13.7 9.5 9 6 4.7
Stop2 5.7 7.4 6.7 5.5 4.1 2.8 2.7 1.9 1.4 0.9 6 6.8 6.3 5.6 3.9 4.8 3.4 1.4 1.4 1.3
Stop3 54.4 58.1 68.8 74.3 78.3 85 88.6 89.5 91 93.6 55.9 58.4 70.2 75.3 80.4 81.5 87.1 89.6 92.6 94
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 27.9 21.6 14.3 8.3 7.2 4.9 4.2 2.7 0.9 0.8 28.5 21.6 14 9.5 9.3 4.2 3.9 2.2 1.2 1.5
Stop2 4.8 5 3.6 3 2.6 1.6 0.7 1 0.2 0.3 5.6 5.6 5.2 3.1 1.9 2.3 1.7 0.6 0.7 0.3
Stop3 67.2 73.4 82.1 88.7 90.2 93.5 95.1 96.3 98.9 98.9 65.9 72.8 80.8 87.4 88.8 93.5 94.4 97.2 98.1 98.2
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 22.7 13.2 9.8 4.1 2.1 1.5 1.4 0.7 0.2 0 23 14.4 7.4 3.6 3.4 1.9 1.2 0.7 0.3 0.9
Stop2 3.4 4.7 3.1 1.9 1.4 0.9 0.5 0.3 0.3 0.2 3.4 5.1 2.9 2 1 0.6 0.7 0.2 0.2 0.3
Stop3 73.9 82.1 87.1 94 96.5 97.6 98.1 99 99.5 99.8 73.4 80.5 89.7 94.4 95.6 97.5 98.1 99.1 99.5 98.8
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

100 Stop1 17.1 8.9 3.8 2.1 1.2 0.6 0.2 0.2 0 0 14.7 8 4.7 2.5 1.4 0.3 0.3 0.2 0.1 0.1
Stop2 2.6 4.3 1.6 1.5 0.4 0.2 0.2 0 0 0 4.6 2.4 1.7 0.6 0.5 0.3 0.3 0.1 0.1 0
Stop3 80.3 86.8 94.6 96.4 98.4 99.2 99.6 99.8 100 100 80.4 89.6 93.6 96.9 98.1 99.4 99.4 99.7 99.8 99.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0
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Table A4. Computational results for randomly generated instances with the ratio 0%:0%:40%:60% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.8 100 100 100 100 100 100 100 100 100 99.5 99.8 99.9 100 99.9 100 100 100 100 100
Stop2 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0.1 0 0.1 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0.4 0.2 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 99.2 99.7 99.9 100 100 100 100 100 100 100 98.9 100 99.9 100 100 100 100 100 100 100
Stop2 0.4 0.3 0.1 0 0 0 0 0 0 0 0.2 0 0.1 0 0 0 0 0 0 0
Stop3 0.4 0 0 0 0 0 0 0 0 0 0.9 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 96.8 98.9 99.4 99.5 99.9 99.8 100 100 100 99.9 96.4 98.6 99.6 99.7 99.9 100 100 100 100 100
Stop2 1.1 0.6 0.4 0.5 0.1 0.2 0 0 0 0.1 1.6 0.8 0.4 0.3 0 0 0 0 0 0
Stop3 2.1 0.5 0.2 0 0 0 0 0 0 0 2 0.6 0 0 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 91 95.7 97.8 98.7 99.2 99.5 99.4 99.8 99.9 100 91.8 94.9 97.3 98.6 99.1 99.6 99.9 99.9 99.7 100
Stop2 3.5 1.7 1.2 0.9 0.7 0.2 0.4 0.1 0.1 0 2.3 3 1.8 1.1 0.7 0.3 0.1 0.1 0.3 0
Stop3 5.5 2.6 1 0.4 0.1 0.3 0.2 0.1 0 0 5.9 2.1 0.9 0.3 0.2 0.1 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 85.8 90.4 93.7 95.1 96.4 97.6 97.2 98.2 98.3 98.5 85.4 91.2 93 94.8 96.5 97.4 97.3 98 98.2 98
Stop2 2.7 4.5 3.5 1.6 1.9 1.3 2.1 0.6 1 1 3.7 3.7 3.2 2.9 1.8 1.6 0.8 1.2 0.7 1.1
Stop3 11.5 5.1 2.8 3.3 1.7 1.1 0.7 1.2 0.7 0.5 10.9 5.1 3.8 2.3 1.7 1 1.9 0.8 1.1 0.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 75.3 82.5 84.8 87.4 87 88.2 89.7 90.7 90.5 92.3 76.3 82.5 82.4 85.4 87.5 89.7 89.6 90.4 90.7 91.3
Stop2 5.1 5.5 6 4.4 5.1 3.8 3.7 3.3 3 3 4.1 5.9 6 5.9 3.9 3.5 3.3 2.4 2.7 2.4
Stop3 19.6 12 9.2 8.2 7.9 8 6.6 6 6.5 4.7 19.6 11.6 11.6 8.7 8.6 6.8 7.1 7.2 6.6 6.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 63.4 70.1 72.3 74.7 75.8 73.9 72.5 75.4 75.4 76.6 66.3 71 73.7 75.2 72.9 73.2 73.7 71.9 75.5 75.2
Stop2 6.6 7 7.8 6.6 5.8 4.3 6.6 4.2 3.9 4.5 4.7 7.4 7 5.9 5.8 5.4 4.2 5.2 5.3 3.1
Stop3 30 22.9 19.9 18.7 18.4 21.8 20.9 20.4 20.7 18.9 29 21.6 19.3 18.9 21.3 21.4 22.1 22.9 19.2 21.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 51.6 60 57.2 55.7 56.5 52.9 50.5 50.9 50.8 50 49.5 57 54.6 55.1 54.8 53.2 52.8 49.9 50 51.5
Stop2 6.3 7.5 8.3 7.3 6.1 5.8 7.2 6.2 5.7 4.2 6.3 8.6 8 7.2 6.5 5.6 7 5.9 5.2 5.7
Stop3 42.1 32.5 34.5 37 37.4 41.3 42.3 42.9 43.5 45.8 44.2 34.4 37.4 37.7 38.7 41.2 40.2 44.2 44.8 42.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 39.8 43.9 39.4 39 37.8 34.8 31.7 31.1 30 28.1 39 43.7 40.1 40.3 41.1 31.3 31.5 28.1 26 28.2
Stop2 6.3 7.3 8.5 7.4 6.1 4.9 3.7 4.4 4.2 3.3 5.9 8.1 7.8 5.9 6.6 5.7 4.7 3.6 4.6 3
Stop3 53.9 48.8 52.1 53.6 56.1 60.3 64.6 64.5 65.8 68.6 55.1 48.2 52.1 53.8 52.3 63 63.8 68.3 69.4 68.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 33.7 28.9 27.6 24.1 20.7 18.2 16.8 13.5 14.1 12.4 31.7 32.1 28.8 23.8 23.8 20.1 17.1 15.9 14.2 12.3
Stop2 6 7.7 6.9 5.3 4.5 3.3 3.6 2.8 2.6 1.7 5.7 7.1 5.9 6 4.7 3.5 3.8 3 3.1 1.6
Stop3 60.3 63.4 65.5 70.6 74.8 78.5 79.6 83.7 83.3 85.9 62.5 60.8 65.3 70.2 71.5 76.4 79.1 81.1 82.7 86.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

100 Stop1 26.1 21.4 15.6 13.1 11.1 7.9 7.3 6 4.4 4.6 24.1 21.2 16.7 16.2 11 8.2 8.3 6.7 5.7 3.8
Stop2 3.9 6.4 5.4 4.6 3.2 2.9 1.8 1.6 0.7 1.3 5 6.2 5 2.9 3.4 3.4 2.5 1.5 1.9 1
Stop3 70 72.2 79 82.3 85.7 89.2 90.9 92.4 94.9 94.1 70.9 72.6 78.3 80.9 85.6 88.4 89.2 91.8 92.4 95.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A5. Computational results for randomly generated instances with the ratio 0%:0%:50%:50% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100 100
Stop2 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 99.1 99.6 100 100 100 100 100 100 100 100 98.9 99.9 100 100 100 100 100 100 100 100
Stop2 0.3 0.2 0 0 0 0 0 0 0 0 0.5 0.1 0 0 0 0 0 0 0 0
Stop3 0.6 0.2 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 96.2 99.5 99.6 99.8 99.9 100 100 100 100 100 96.1 98.7 99.8 100 100 100 100 100 100 100
Stop2 1.5 0.5 0.4 0.2 0.1 0 0 0 0 0 1.1 1.1 0.1 0 0 0 0 0 0 0
Stop3 2.3 0 0 0 0 0 0 0 0 0 2.8 0.2 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 91.3 97.4 99.2 99.2 99.6 99.9 100 100 100 100 91.4 96.7 98.9 99.1 99.7 99.6 99.9 100 100 100
Stop2 3 1 0.2 0.5 0.1 0.1 0 0 0 0 2.1 1.7 0.6 0.7 0.3 0.2 0.1 0 0 0
Stop3 5.7 1.6 0.6 0.3 0.3 0 0 0 0 0 6.5 1.6 0.5 0.2 0 0.2 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 83.4 92.3 95.3 97.9 98.2 98.8 99.3 99.9 99.8 100 81.7 90 95.5 97.5 98.7 98.9 99.4 99.8 99.9 99.9
Stop2 3.5 3.3 1.9 1.1 0.9 0.6 0.1 0.1 0.1 0 3.8 4.6 2.1 1.3 0.5 0.5 0.4 0 0 0
Stop3 13.1 4.4 2.8 1 0.9 0.6 0.6 0 0.1 0 14.5 5.4 2.4 1.2 0.8 0.6 0.2 0.2 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 69.4 83.1 87.1 93.8 94.5 96.1 96.4 97.8 98.6 98.3 71.2 81.5 89.2 92.6 93.5 95.1 98 98.2 98.5 98.9
Stop2 5.7 6.7 5 2.5 2.2 1.3 0.8 0.7 0.4 0.6 6.5 6.8 3.3 3.3 2.3 2.1 0.5 0.8 0.7 0.1
Stop3 24.9 10.2 7.9 3.7 3.3 2.6 2.8 1.5 1 1.1 22.3 11.7 7.5 4.1 4.2 2.8 1.5 1 0.8 1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 59.2 70.2 75.5 81.1 81.6 88.1 87.9 92.4 92.8 93.6 58.4 72.7 74.8 81.5 85.8 87.8 88 91 90.3 93.7
Stop2 5.8 7.4 6.6 6 5.2 4.1 3.7 1.7 1.1 2.4 4.3 8.3 7.6 4.4 3.6 3.2 4.1 2.4 2.6 2
Stop3 35 22.4 17.9 12.9 13.2 7.8 8.4 5.9 6.1 4 37.3 19 17.6 14.1 10.6 9 7.9 6.6 7.1 4.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 45 57.2 61.8 62.7 67.8 68.7 71 74.9 75.5 77 46.8 54.8 61.1 64.1 69.4 71 71.4 73.8 75.8 76
Stop2 7 8.5 7.2 7.4 7.5 6 6 5.2 4.2 3.9 5.5 7.5 7 7.7 6.4 5.3 6.4 4.5 4.4 3.5
Stop3 48 34.3 31 29.9 24.7 25.3 23 19.9 20.3 19.1 47.7 37.7 31.9 28.2 24.2 23.7 22.2 21.7 19.8 20.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 35.2 41.2 38.7 44.2 42.5 45.6 46.2 45.2 50.3 50 37.2 37.3 41.3 43.8 43.3 46.5 48 46.7 47.5 49.4
Stop2 6 8.3 9.8 7.7 7.8 7.4 6.4 6.2 6.4 5.5 5.4 8.7 9.8 8.9 9.3 9.2 6.4 6.9 6.2 5.7
Stop3 58.8 50.5 51.5 48.1 49.7 47 47.4 48.6 43.3 44.5 57.4 54 48.9 47.3 47.4 44.3 45.6 46.4 46.3 44.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 25.7 28.8 25.2 22.6 21.4 21.4 20.2 20.5 19 22.1 26.5 26 25.2 25.5 25.1 22.1 22.8 19.9 23.8 20.7
Stop2 4.1 8.6 8.1 6.9 7.9 5.9 6.6 5.4 5.5 4.3 3.7 9.2 7.8 6 7.2 7.1 5.4 5.1 4.8 4.9
Stop3 70.2 62.6 66.7 70.5 70.7 72.7 73.2 74.1 75.5 73.6 69.8 64.8 67 68.5 67.7 70.8 71.8 75 71.4 74.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A6. Computational results for randomly generated instances with the ratio 5%:5%:5%:85% of the
numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 99 99.5 99.7 99.3 99.4 98.1 99.7 99.8 99.2 99.7
Stop2 0.3 0.3 0.2 0.4 0.6 0.4 0.2 0 0.6 0.3
Stop3 0.7 0.2 0.1 0.3 0 1.5 0.1 0.2 0.2 0
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 96.4 97.4 98.4 97.8 97.1 95.4 97.6 97.7 98 98.6
Stop2 0.9 1.1 0.7 1.2 0.7 1.5 1.4 1 1.3 0.3
Stop3 2.7 1.5 0.9 1 2.2 3.1 1 1.3 0.7 1.1
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 84.3 81.4 76.5 71.7 67.9 86.5 80.5 73.8 71 66.5
Stop2 3.1 3.5 3.7 2.5 2.1 2.9 3.5 2.9 3.7 1.7
Stop3 12.6 15.1 19.8 25.8 30 10.6 16 23.3 25.3 31.8
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 61.8 52.9 38.4 27.1 20.9 65.1 53 40 29.3 20.3
Stop2 5.7 2.9 2.1 2.1 0.3 3.4 2.6 1.4 1.4 1.2
Stop3 32.5 44.2 59.5 70.8 78.8 31.4 44.4 58.6 69.3 78.5
Stop4 0 0 0 0 0 0.1 0 0 0 0

40 Stop1 38.6 25.5 14.1 7.3 3.1 40 24.4 13.6 6.5 3.2
Stop2 5.4 1.2 1.2 0.4 0.3 4.5 2.4 0.4 0.4 0.1
Stop3 56 73.3 84.7 92.3 96.6 55.5 73.2 86 93.1 96.7
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 27.4 8.4 3.2 1.7 0.3 25.9 10.9 3.3 0.9 0.3
Stop2 2.3 1.4 0.3 0 0 3.7 1.1 0 0 0
Stop3 70.2 90.2 96.5 98.3 99.7 70.4 88 96.7 99.1 99.7
Stop4 0.1 0 0 0 0 0 0 0 0 0

60 Stop1 14.3 3.4 0.5 0.2 0 15.7 3.2 0.6 0.3 0
Stop2 2.3 0.4 0 0 0 1.8 0.1 0.3 0 0
Stop3 83.4 96.2 99.5 99.8 100 82.4 96.7 99.1 99.7 100
Stop4 0 0 0 0 0 0.1 0 0 0 0

70 Stop1 8 1.1 0.3 0 0 6.5 1.7 0.1 0 0
Stop2 0.9 0 0 0 0 1.5 0 0.1 0 0
Stop3 91.1 98.9 99.7 100 100 91.8 98.3 99.8 100 100
Stop4 0 0 0 0 0 0.2 0 0 0 0

80 Stop1 4 0.1 0 0.1 0 5.1 0.2 0 0 0
Stop2 0.5 0.1 0 0 0 0.9 0 0 0 0
Stop3 95.5 99.8 100 99.9 100 93.8 99.8 100 100 100
Stop4 0 0 0 0 0 0.2 0 0 0 0

90 Stop1 2.6 0.3 0 0 0 2.2 0 0 0 0
Stop2 0.3 0 0 0 0 0.4 0 0 0 0
Stop3 97.1 99.7 100 100 100 97 100 100 100 100
Stop4 0 0 0 0 0 0.4 0 0 0 0

100 Stop1 0.9 0 0 0 0 1.5 0 0 0 0
Stop2 0.3 0 0 0 0 0 0 0 0 0
Stop3 98.8 100 100 100 100 98.4 100 100 100 100
Stop4 0 0 0 0 0 0.1 0 0 0 0
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Table A7. Computational results for randomly generated instances with the ratio 5%:15%:5%:75% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 98.9 99.4 99.3 99.7 99.5 98.4 99.7 99.4 99.7 99.7
Stop2 0.2 0.3 0.4 0.3 0.3 0.4 0.2 0.2 0.2 0.2
Stop3 0.9 0.3 0.3 0 0.2 1.2 0.1 0.4 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 97 98.2 97.7 98.6 99.3 95.5 98.6 98.6 98.4 98.3
Stop2 1 0.8 1.1 0.7 0.3 1.3 0.8 0.8 0.7 0.9
Stop3 2 1 1.2 0.7 0.4 3.2 0.6 0.6 0.9 0.8
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 86 86.7 83.3 76.9 75.4 88.3 86.1 83.3 77.4 74.6
Stop2 2.6 2.8 2.5 3.1 2.5 2.5 2.3 3.1 2.7 2.3
Stop3 11.4 10.5 14.2 20 22.1 9.2 11.6 13.6 19.9 23.1
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 67.1 58.1 47.1 36.1 29.3 69 64.5 48.2 38.6 28.7
Stop2 3.1 3.2 2.8 2.6 1.5 3.2 2.1 2.2 2 1.2
Stop3 29.8 38.7 50.1 61.3 69.2 27.8 33.4 49.6 59.4 70.1
Stop4 0 0 0 0 0 0 0 0 0 0

40 Stop1 48.2 30.1 18.9 11.1 8.3 45.6 31.8 17.6 10.5 6.6
Stop2 2.7 3.7 1.2 0.3 0.1 4.3 2.6 1.9 0.7 0.3
Stop3 49.1 66.2 79.9 88.6 91.6 50.1 65.6 80.5 88.8 93.1
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 30.1 15.1 7.4 3 1.2 29.1 13.2 6 2.7 1.7
Stop2 2.8 1.3 0.7 0.3 0 2.6 1.1 0.3 0.2 0
Stop3 67.1 83.6 91.9 96.7 98.8 68.3 85.7 93.7 97.1 98.3
Stop4 0 0 0 0 0 0 0 0 0 0

60 Stop1 19.2 7.6 1.9 0.5 0 21.1 5.9 2.6 0.5 0.3
Stop2 1.5 0.4 0 0 0.1 2 0.5 0.2 0 0
Stop3 79.3 92 98.1 99.5 99.9 76.9 93.6 97.2 99.5 99.7
Stop4 0 0 0 0 0 0 0 0 0 0

70 Stop1 11.4 2.6 0.9 0 0 12 3.1 0.3 0 0.1
Stop2 1.9 0.1 0 0 0 0.8 0.2 0 0 0
Stop3 86.7 97.3 99.1 100 100 87.2 96.7 99.7 100 99.9
Stop4 0 0 0 0 0 0 0 0 0 0

80 Stop1 7.6 1.2 0.1 0 0 7.9 0.6 0.2 0 0
Stop2 0.7 0.1 0 0 0 1 0.1 0 0 0
Stop3 91.7 98.7 99.9 100 100 91.1 99.3 99.8 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

90 Stop1 3.4 0.6 0.1 0 0 4.6 0.5 0.1 0 0
Stop2 0.4 0 0 0 0 0.5 0 0 0 0
Stop3 96.2 99.4 99.9 100 100 94.9 99.5 99.9 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

100 Stop1 2.7 0.2 0 0 0 2.9 0.2 0 0 0
Stop2 0.5 0 0 0 0 0.3 0 0 0 0
Stop3 96.8 99.8 100 100 100 96.8 99.8 100 100 100
Stop4 0 0 0 0 0 0 0 0 0 0
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Table A8. Computational results for randomly generated instances with the ratio 5%:20%:5%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 20 40 60 80 100 20 40 60 80 100

5 Stop1 98.6 99.2 99.6 99.4 99.5 98.3 99.2 99.7 99.8 99.6
Stop2 0.1 0.4 0.3 0.4 0.5 0.5 0.1 0.1 0.1 0.3
Stop3 1.3 0.4 0.1 0.2 0 1.2 0.7 0.2 0.1 0.1
Stop4 0 0 0 0 0 0 0 0 0 0

10 Stop1 96.1 98.5 99.7 99.1 99.1 96.6 98.2 98.2 98.9 98.4
Stop2 1.1 0.6 0.2 0.7 0.4 0.3 0.9 1.2 0.6 0.9
Stop3 2.8 0.9 0.1 0.2 0.5 3.1 0.9 0.6 0.5 0.7
Stop4 0 0 0 0 0 0 0 0 0 0

20 Stop1 88.8 87.6 84.6 80.1 77.6 89.5 89.8 84.6 83.5 79.3
Stop2 1.9 2.4 2.6 2.2 2.8 3 1.9 2.7 1.9 2.4
Stop3 9.3 10 12.8 17.7 19.6 7.5 8.3 12.7 14.6 18.3
Stop4 0 0 0 0 0 0 0 0 0 0

30 Stop1 72 62.3 52.3 43.2 33.5 70.6 63.1 53 42.4 36.9
Stop2 3.4 2.2 3.9 3 1.8 3.9 3.4 3.9 2.5 0.6
Stop3 24.6 35.5 43.8 53.8 64.7 25.5 33.5 43.1 55.1 62.5
Stop4 0 0 0 0 0 0 0 0 0 0

40 Stop1 50.6 37.1 25.9 15 9.9 50.7 36.4 25.9 16.5 10.3
Stop2 3.7 2.1 1.8 0.7 0.4 3.5 2.7 1.3 1 0.4
Stop3 45.7 60.8 72.3 84.3 89.7 45.8 60.9 72.8 82.5 89.3
Stop4 0 0 0 0 0 0 0 0 0 0

50 Stop1 36.2 19.5 9.4 4.5 1.7 33.2 17.9 9.6 4.3 2.8
Stop2 3.1 1.6 0 0.1 0.2 3.9 0.9 0.6 0.3 0
Stop3 60.7 78.9 90.6 95.4 98.1 62.9 81.2 89.8 95.4 97.2
Stop4 0 0 0 0 0 0 0 0 0 0

60 Stop1 25.2 7.7 3.1 1.2 0.3 24 7.6 3.5 0.6 0.5
Stop2 2 0.7 0.3 0 0 1.6 1.2 0.2 0 0
Stop3 72.8 91.6 96.6 98.8 99.7 74.4 91.2 96.3 99.4 99.5
Stop4 0 0 0 0 0 0 0 0 0 0

70 Stop1 12 3.3 0.8 0.2 0.4 16.6 4.1 1.6 0.5 0.1
Stop2 2.3 0.4 0.1 0 0 1.1 0.7 0 0 0
Stop3 85.7 96.3 99.1 99.8 99.6 82.3 95.2 98.4 99.5 99.9
Stop4 0 0 0 0 0 0 0 0 0 0

80 Stop1 9.4 1.8 0.3 0 0 9.9 1.8 0.1 0 0
Stop2 1.4 0.1 0 0 0 1 0.1 0 0 0
Stop3 89.2 98.1 99.7 100 100 89 98.1 99.9 100 100
Stop4 0 0 0 0 0 0.1 0 0 0 0

90 Stop1 5.6 0.3 0.1 0.1 0 6.5 0.6 0.1 0 0
Stop2 0.7 0.1 0 0 0 0.3 0.1 0 0 0
Stop3 93.7 99.6 99.9 99.9 100 93.2 99.3 99.9 100 100
Stop4 0 0 0 0 0 0 0 0 0 0

100 Stop1 4.5 0.5 0 0 0 4.5 0.2 0 0 0
Stop2 0.2 0 0 0 0 0.2 0 0 0 0
Stop3 95.3 99.5 100 100 100 95.3 99.8 100 100 100
Stop4 0 0 0 0 0 0 0 0 0 0
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Table A9. Computational results for randomly generated instances with the ratio 10%:10%:10%:70% of
the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.9 99.5 100 99.8 100 99.9 100 100 100 99.9 98.4 99.4 99.9 100 99.9 99.9 100 100 100 100
Stop2 0.4 0 0 0.2 0 0 0 0 0 0.1 0 0.3 0.1 0 0 0.1 0 0 0 0
Stop3 0.7 0.5 0 0 0 0.1 0 0 0 0 1.6 0.3 0 0 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 95.9 98.9 98.9 100 99.8 100 100 100 99.9 99.9 96.2 98.4 99.5 99.7 99.8 99.9 99.9 99.8 99.8 99.9
Stop2 0.2 0.5 0.6 0 0.2 0 0 0 0.1 0 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1
Stop3 3.8 0.6 0.5 0 0 0 0 0 0 0.1 3.4 1.3 0.3 0.2 0.1 0 0 0 0 0
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

20 Stop1 88.8 97 97.1 97.8 97.8 97.5 98.2 98.7 97.5 97.9 88.5 95.3 96.5 97.2 97.6 97.3 97.9 98.3 98.2 97.5
Stop2 1.6 1.2 1.1 0.5 0.6 1 0.6 0.4 0.2 0.2 1.6 1.6 1 1.3 0.5 0.7 0.8 0.7 0.6 0.4
Stop3 9.5 1.8 1.8 1.7 1.6 1.5 1.2 0.9 2.3 1.9 9.8 3.1 2.5 1.5 1.9 2 1.3 1 1.2 2.1
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

30 Stop1 79.3 85.8 86.6 85.1 81.4 83.3 82.6 79.2 77.4 75.9 80.4 86.3 86.5 85.1 81.2 81.6 80.8 80 79 76.1
Stop2 3.7 2.2 2.5 1.7 2.9 1.8 1.5 1.2 1.5 1 2.4 2.8 2.8 1.7 1.9 1.4 1.4 1.3 1 0.6
Stop3 17 12 10.9 13.2 15.7 14.9 15.9 19.6 21.1 23.1 16.9 10.9 10.7 13.2 16.9 17 17.8 18.7 20 23.3
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

40 Stop1 66.6 71.7 65.8 62.2 58.2 53.1 48.4 44 42 38.3 65.8 70.1 65.8 60.9 57.4 52.7 53.9 46.8 40.6 38.5
Stop2 3 2.6 2.4 2.8 2.2 2.4 1.7 2 1.1 0.9 2.6 2.7 2.6 1.8 1.6 1.5 2.1 1 0.9 1.1
Stop3 30.2 25.7 31.8 35 39.6 44.5 49.9 54 56.9 60.8 31.1 27.2 31.6 37.3 41 45.8 44 52.2 58.5 60.4
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0

50 Stop1 55.8 55.3 46.9 38.9 30.9 25.5 22.2 19.9 15.1 13.2 56 52.9 44.3 39.4 34.1 27.4 22.6 18.2 17.5 14.9
Stop2 2.6 2.9 2.4 2.5 1.7 1 0.8 0.3 0.7 0.6 3.3 3.5 2.4 1.4 1.7 1.1 0.7 0.5 0.4 0.7
Stop3 41.6 41.8 50.7 58.6 67.4 73.5 77 79.8 84.2 86.2 40.5 43.6 53.3 59.2 64.2 71.5 76.7 81.3 82.1 84.4
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 44.4 35.9 27.8 20.1 15.6 12.7 8.6 7.1 7.8 3.3 43.6 36.5 26.2 20.7 14.6 9.9 8.8 6.4 4.2 3.2
Stop2 3.2 2.7 1.6 0.9 0.8 0.7 0.2 0.1 0.2 0.1 3.3 2 1.4 1.8 1.7 0.2 0.2 0.3 0.1 0
Stop3 52.2 61.4 70.6 79 83.6 86.6 91.2 92.8 92 96.6 52.5 61.5 72.4 77.5 83.7 89.9 91 93.3 95.7 96.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0

70 Stop1 33.5 25.4 17 11.2 6.6 2.8 2 1.2 1.1 0.7 36.7 24 17.3 11.6 5.7 5.2 3.5 1.5 0.7 1.1
Stop2 2.5 2 1.5 0.4 0.5 0.1 0.3 0.2 0.1 0 2.4 1.9 1 0.5 0.2 0.2 0 0.1 0 0
Stop3 63.8 72.6 81.5 88.4 92.9 97.1 97.7 98.6 98.8 99.3 60.5 74.1 81.7 87.9 94.1 94.6 96.5 98.4 99.3 98.9
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

80 Stop1 29.8 13.5 10 5.1 2.9 1.2 0.3 0.4 0 0.1 27.9 18.6 8.4 4 2.5 1.4 0.9 0.4 0.2 0.1
Stop2 1.9 1.4 0.3 0.4 0.1 0 0 0.1 0 0 2.5 0.8 0.5 0.2 0.1 0.2 0 0 0 0
Stop3 68.1 85.1 89.7 94.5 97 98.8 99.7 99.5 100 99.9 68.8 80.6 91.1 95.8 97.4 98.4 99.1 99.6 99.8 99.9
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

90 Stop1 22.4 10.5 3.9 1.7 0.7 0.1 0.3 0.2 0 0 20.8 10.2 4.5 3.1 0.7 0.2 0.3 0 0 0
Stop2 1.9 0.6 0.6 0.1 0 0 0 0 0 0 1.6 0.9 0.5 0 0 0.1 0 0 0 0
Stop3 75.3 88.9 95.5 98.2 99.3 99.9 99.7 99.8 100 100 76.8 88.9 95 96.9 99.3 99.7 99.7 100 100 100
Stop4 0.4 0 0 0 0 0 0 0 0 0 0.8 0 0 0 0 0 0 0 0 0

100 Stop1 15.6 5.9 1.5 0.9 0.6 0.1 0.1 0 0 0 15.9 6.7 2.6 0.9 0.2 0.1 0.2 0 0 0
Stop2 1.6 0.7 0.2 0 0 0 0 0 0 0 1.7 0.2 0.2 0.1 0 0 0 0 0 0
Stop3 82.3 93.4 98.3 99.1 99.4 99.9 99.9 100 100 100 81.4 93.1 97.2 99 99.8 99.9 99.8 100 100 100
Stop4 0.5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
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Table A10. Computational results for randomly generated instances with the ratio 10%:10%:40%:40%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 99.3 100 100 100 100 100 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100
Stop2 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 0.5 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 98.4 99.9 100 100 100 100 100 100 100 100 99 99.9 100 100 100 100 100 100 100 100
Stop2 0.5 0.1 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0
Stop3 1.1 0 0 0 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 97 99.8 99.9 100 100 100 100 100 100 100 96.4 99.8 100 100 100 100 100 100 100 100
Stop2 0.1 0 0.1 0 0 0 0 0 0 0 0.5 0.2 0 0 0 0 0 0 0 0
Stop3 2.9 0.2 0 0 0 0 0 0 0 0 3.1 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 93 99 99.9 99.9 100 100 100 100 100 100 92.8 99.6 99.9 100 100 100 100 100 100 100
Stop2 1.2 0.5 0.1 0 0 0 0 0 0 0 0.9 0.1 0 0 0 0 0 0 0 0
Stop3 5.8 0.5 0 0.1 0 0 0 0 0 0 6.3 0.3 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 86.6 97.9 99.6 99.5 99.8 99.8 99.8 99.9 100 100 85.8 97.1 99.3 99.6 99.8 99.7 99.9 100 100 100
Stop2 1.4 0.5 0 0.2 0 0.1 0 0 0 0 1.5 0.4 0 0 0 0 0 0 0 0
Stop3 12 1.6 0.4 0.3 0.2 0.1 0.2 0.1 0 0 12.7 2.5 0.7 0.4 0.2 0.3 0.1 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 82.3 92.5 96.7 97.2 98.6 98.1 99 99.2 99.5 99.7 80 92.7 96.5 97.5 97.9 99.2 99.5 99.5 99.8 99.5
Stop2 1.8 1.1 0.2 0.2 0 0 0.1 0 0 0.1 1.7 0.5 0 0.2 0.1 0 0 0 0 0
Stop3 15.9 6.4 3.1 2.6 1.4 1.9 0.9 0.8 0.5 0.2 18.3 6.8 3.5 2.3 2 0.8 0.5 0.5 0.2 0.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 71.8 85.9 91.5 93.8 94.4 95.3 95.6 97.7 97.3 98.1 73.1 87.2 91 93.1 95.1 95.9 96.7 97.3 98.1 98.8
Stop2 1.9 1.2 0.6 0.2 0.5 0 0 0.1 0 0.1 2 0.9 0.2 0.7 0.1 0.2 0 0.3 0 0
Stop3 26.3 12.9 7.9 6 5.1 4.7 4.4 2.2 2.7 1.8 24.9 11.9 8.8 6.2 4.8 3.9 3.3 2.4 1.9 1.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 63.2 77.8 81.6 84.2 85 88.7 89.9 91.5 93.6 93.6 61.7 77.2 83.3 85 86.4 88 90.4 91.4 92.7 94.4
Stop2 2.6 1 0.8 1.1 0.2 0.2 0.6 0.2 0.1 0.2 2.6 1.9 0.9 0.2 0.5 0.2 0.1 0.1 0 0.1
Stop3 34.2 21.2 17.6 14.7 14.8 11.1 9.5 8.3 6.3 6.2 35.7 20.9 15.8 14.8 13.1 11.8 9.5 8.5 7.3 5.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 53.1 66.7 68.3 70.3 74.1 74.1 75.6 78.3 81 84.1 51.8 67 69.8 71 72.5 75.9 75.7 79.6 79.8 80.3
Stop2 2.1 1.7 0.6 0.8 0.3 0.7 0.3 0.2 0.1 0.3 2.4 0.9 1 0.7 1.1 0.5 0.3 0.6 0.3 0.5
Stop3 44.8 31.6 31.1 28.9 25.6 25.2 24.1 21.5 18.9 15.6 45.8 32.1 29.2 28.3 26.4 23.6 24 19.8 19.9 19.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A11. Computational results for randomly generated instances with the ratio 10%:20%:10%:60%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 99.2 99.6 99.8 100 99.9 100 100 100 100 100 98.5 99.8 99.9 99.9 100 100 100 100 100 100
Stop2 0 0.1 0.2 0 0.1 0 0 0 0 0 0.2 0.1 0.1 0.1 0 0 0 0 0 0
Stop3 0.8 0.3 0 0 0 0 0 0 0 0 1.3 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 98.1 99.2 99.4 99.9 99.9 99.8 100 100 100 100 96.4 99.2 99.8 99.7 99.8 99.9 99.9 100 100 100
Stop2 0.1 0.5 0.4 0.1 0.1 0 0 0 0 0 0.6 0.3 0.2 0.1 0 0.1 0.1 0 0 0
Stop3 1.8 0.3 0.2 0 0 0.2 0 0 0 0 3 0.5 0 0.2 0.2 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 91.3 97.7 97.7 97.8 99.1 98.7 98.8 98.7 99.1 99.6 90.3 96.5 97.6 98 98.4 99.1 99.4 99.4 99.2 99
Stop2 1.4 0.8 0.8 0.7 0.4 0.7 0.4 0.4 0.1 0.1 0.3 1.3 1.4 0.9 0.7 0.6 0.1 0 0.6 0.3
Stop3 7.3 1.5 1.5 1.5 0.5 0.6 0.8 0.9 0.8 0.3 9.4 2.2 1 1.1 0.9 0.3 0.5 0.6 0.2 0.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 83.4 90.5 92 91.4 89.7 90.8 90.4 88.7 88.8 87 82.8 92.2 91.8 92.1 90.5 90.5 88.7 89.8 87.6 86.9
Stop2 1.7 1.7 1.7 1.1 1.2 1.6 0.6 1.4 1.1 1 1.6 1.2 1.5 0.8 1.5 1.8 0.6 1.2 1.3 1.1
Stop3 14.8 7.8 6.3 7.5 9.1 7.6 9 9.9 10.1 12 15.6 6.6 6.7 7.1 8 7.7 10.7 9 11.1 12
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 75.8 78.3 76.6 74 72 69.2 65.5 62.7 57.6 59.2 74.3 78.2 78.1 76.3 70.5 68.3 64 65.5 61.2 58.2
Stop2 1.9 3 3 1.9 1.6 1.4 1.8 1 0.9 1.2 1.6 2.7 2.3 1.3 2.5 1.8 1.7 0.9 1.4 1.5
Stop3 22 18.7 20.4 24.1 26.4 29.4 32.7 36.3 41.5 39.6 24 19.1 19.6 22.4 27 29.9 34.3 33.6 37.4 40.3
Stop4 0.3 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

50 Stop1 64.4 65 59.6 53.1 46.9 40.6 40.1 35 31.4 30.4 64.6 63.3 57.6 53.9 49.4 42.6 38.3 36.6 32.4 28
Stop2 1.9 2.8 1.9 2.1 1.7 1.5 0.8 1.1 1.5 0.7 1.6 3.8 2.4 1.5 1.3 1.1 0.8 1.1 1.3 1.1
Stop3 33.7 32.2 38.5 44.8 51.4 57.9 59.1 63.9 67.1 68.9 33.6 32.9 40 44.6 49.3 56.3 60.9 62.3 66.3 70.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

60 Stop1 54.4 52.2 42.3 33 28.1 21.7 19.9 15.8 13.7 11.3 54.4 49.2 43.4 33.6 26.7 22.2 20.2 14.9 13 11.1
Stop2 1.4 2.9 1.8 1.6 1.4 0.7 0.4 0.3 0.2 0.3 2.4 2.4 2.3 2.8 0.9 0.9 0.7 0.4 0.3 0.3
Stop3 44.1 44.9 55.9 65.4 70.5 77.6 79.7 83.9 86.1 88.4 43 48.4 54.3 63.6 72.4 76.9 79.1 84.7 86.7 88.6
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

70 Stop1 47 37.9 25.3 21 14.1 11 7.5 6 4.4 3.1 44.2 34.1 28.5 19.4 14 11.3 7.5 4.4 4.1 3.1
Stop2 1.5 1.4 1.3 1.5 0.7 0.5 0.3 0.2 0.1 0 2.1 2.9 1.4 0.7 0.9 0.4 0.1 0.2 0.1 0.1
Stop3 51.5 60.7 73.4 77.5 85.2 88.5 92.2 93.8 95.5 96.9 53.4 63 70.1 79.9 85.1 88.3 92.4 95.4 95.8 96.8
Stop4 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

80 Stop1 38 26.7 16 10.5 6.4 4.9 2.5 1.9 0.8 0.7 35 26.1 17.6 10.4 8.1 4.2 2.2 2.1 1.3 0.5
Stop2 1.3 1.7 1.3 1 0.9 0.1 0 0.1 0 0 1.6 1.3 0.7 0.7 0.3 0.4 0 0 0 0
Stop3 60.6 71.6 82.7 88.5 92.7 95 97.5 98 99.2 99.3 63.1 72.6 81.7 88.9 91.6 95.4 97.8 97.9 98.7 99.5
Stop4 0.1 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0

90 Stop1 29 15.7 9.2 4.7 3.8 1.7 1.6 0 0.2 0.3 29.5 16.7 10.2 5.9 3.2 2.1 1.1 0.7 0.3 0.2
Stop2 1.5 1.4 0.7 0.4 0.1 0.2 0.1 0 0 0.1 1.7 1.2 0.4 0.3 0 0 0 0 0 0
Stop3 69.3 82.9 90.1 94.9 96.1 98.1 98.3 100 99.8 99.6 68.6 82.1 89.4 93.8 96.8 97.9 98.9 99.3 99.7 99.8
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0

100 Stop1 21.6 12.2 6.7 2.4 1.6 0.6 0.2 0.1 0.1 0 23 11 5.8 3 1.7 0.5 0.2 0.3 0 0
Stop2 1.2 0.8 0.1 0.1 0.1 0 0 0 0.1 0 1.1 0.6 0.5 0.2 0.1 0 0 0 0 0
Stop3 77 87 93.2 97.5 98.3 99.4 99.8 99.9 99.8 100 75.3 88.4 93.7 96.8 98.2 99.5 99.8 99.7 100 100
Stop4 0.2 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
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Table A12. Computational results for randomly generated instances with the ratio 10%:30%:10%:50%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.6 99.9 100 100 100 100 100 100 100 100 99.3 100 100 100 100 100 100 100 100 100
Stop2 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 1.2 0.1 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.8 99.4 99.8 99.8 100 99.8 100 100 100 100 97.3 99.7 99.7 100 100 99.9 100 100 99.9 100
Stop2 0.2 0.1 0.1 0.2 0 0.2 0 0 0 0 0.2 0.1 0.1 0 0 0 0 0 0.1 0
Stop3 2 0.5 0.1 0 0 0 0 0 0 0 2.5 0.2 0.2 0 0 0.1 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 93.5 98.1 98.1 99.4 99.1 99.7 99.6 99.9 99.7 99.4 95 97.5 98.8 99 99.5 99.5 99.8 99.7 99.6 100
Stop2 0.4 0.8 0.6 0.2 0.4 0.2 0.2 0.1 0.3 0.2 0.6 0.7 0.6 0.5 0.5 0.3 0.1 0.2 0.3 0
Stop3 6.1 1.1 1.3 0.4 0.5 0.1 0.2 0 0 0.4 4.4 1.8 0.6 0.5 0 0.2 0.1 0.1 0.1 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 85.9 94.2 96.1 95.2 94.3 95.3 96.1 95.8 95.8 95.2 89.9 94.2 94.2 95.3 95.4 95.9 95.2 95.2 92.8 96.3
Stop2 0.6 1.4 1.1 1.1 1.2 0.5 0.7 1.1 0.3 0.4 0.9 0.8 1.4 1 1.5 1 1.2 0.6 1.1 0.3
Stop3 13.5 4.4 2.8 3.7 4.5 4.2 3.2 3.1 3.9 4.4 9.2 5 4.4 3.7 3.1 3.1 3.6 4.2 6.1 3.4
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 80.5 85.7 85.5 83.4 85.4 81.9 82.3 77.7 77.8 77.5 81.7 85.9 88.3 85.6 82.1 84.3 81.6 79.1 80.9 80.1
Stop2 1.3 2.2 1.9 1.9 1.3 1.4 1.6 1.7 0.7 1.2 1.4 2.2 1.5 2.3 2 1.3 0.4 1.6 1 0.9
Stop3 18.2 12.1 12.6 14.7 13.3 16.7 16.1 20.6 21.5 21.3 16.9 11.9 10.2 12.1 15.9 14.4 18 19.3 18.1 19
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 74.1 74.8 72.6 70 67 62 59.2 58.5 54.9 52.7 73 75.9 73.6 69.7 67.6 60.9 62.6 59.1 56.6 52
Stop2 1.2 2.6 2.5 1.8 1.3 1.5 1.5 0.9 0.9 0.6 0.9 2.1 2.1 1.3 1.2 1.1 0.8 1 0.6 0.4
Stop3 24.7 22.6 24.9 28.2 31.7 36.5 39.3 40.6 44.2 46.7 26.1 22 24.3 29 31.2 38 36.6 39.9 42.8 47.6
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 66.9 64.3 60.9 52.3 45 46.7 40 37.4 34.6 32.2 63.8 64.2 58.4 55.9 48.2 42.8 40.1 35.9 36.3 31.2
Stop2 1.3 3.2 1.6 2.5 1.5 0.9 1.8 0.9 0.8 0.9 0.8 2 1.9 1.6 1.8 1.4 1.2 1.3 0.9 1.3
Stop3 31.8 32.5 37.5 45.2 53.5 52.4 58.2 61.7 64.6 66.9 35.4 33.8 39.7 42.5 50 55.8 58.7 62.8 62.8 67.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 58.4 52.6 42.7 38.7 34.6 29.4 21.1 21.5 17.6 16.3 57.7 50.8 45 37.9 31 27.6 26.2 21.6 20.5 15.1
Stop2 1.4 2.2 1 2.3 0.8 0.7 0.5 0.3 0.2 0.1 0.9 3.5 2.4 1.1 1.3 0.6 0.6 0.4 0.3 0
Stop3 40.2 45.2 56.3 59 64.6 69.9 78.4 78.2 82.2 83.6 41.3 45.7 52.6 61 67.7 71.8 73.2 78 79.2 84.9
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 51.9 40.7 34.1 28.3 21.4 14.2 13.9 9.9 9.8 8 49.7 41.7 33.3 27.1 24.1 17.4 14.1 12.6 8.8 7.5
Stop2 0.9 1.7 1.4 1.4 0.2 0.1 0.2 0.3 0.1 0 0.8 2.5 1.6 0.9 0.5 0.3 0.6 0.5 0 0
Stop3 47.2 57.6 64.5 70.3 78.4 85.7 85.9 89.8 90.1 92 49.4 55.8 65.1 72 75.4 82.3 85.3 86.9 91.2 92.5
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

90 Stop1 44.2 31.3 24.6 17.3 12.3 11 7.1 4.7 3.6 4.2 44 32.7 24.8 16.3 12.7 10 7.9 6.5 4.2 3.8
Stop2 1.3 1.3 0.4 0.8 0.2 0.1 0.1 0.1 0.1 0 1 1.4 1.2 1 0.3 0 0.1 0 0.1 0.1
Stop3 54.5 67.4 75 81.9 87.5 88.9 92.8 95.2 96.3 95.8 54.6 65.9 74 82.7 87 90 92 93.5 95.7 96.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0

100 Stop1 36.1 24.3 17.8 12.4 7.5 6.2 3 2.9 2.3 1.1 35.5 25.9 15.3 10.6 6.9 5.1 3.1 2 1.8 1.7
Stop2 0.8 1.6 0.8 0.6 0.2 0.1 0 0 0.1 0 1 1.1 0.3 0.3 0.2 0 0.1 0 0 0
Stop3 63.1 74.1 81.4 87 92.3 93.7 97 97.1 97.6 98.9 62.9 73 84.4 89.1 92.9 94.9 96.8 98 98.2 98.3
Stop4 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0
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Table A13. Computational results for randomly generated instances with the ratio 10%:40%:10%:40%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 98.9 100 100 100 100 100 100 100 100 100 99.6 99.9 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 1.1 0 0 0 0 0 0 0 0 0 0.4 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 97.6 99.6 99.9 99.9 100 100 100 100 100 100 98.2 99.5 99.9 99.9 100 100 100 99.9 100 100
Stop2 0 0 0.1 0.1 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0 0.1 0 0
Stop3 2.4 0.4 0 0 0 0 0 0 0 0 1.8 0.5 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 95.8 98.6 99 99.7 99.7 99.9 99.7 100 100 99.9 95.5 97.6 99.7 99.3 99.5 99.8 100 99.8 99.9 100
Stop2 0 0.4 0.4 0.1 0.3 0.1 0.2 0 0 0.1 0.1 0.4 0 0.5 0.2 0.2 0 0.1 0.1 0
Stop3 4.2 1 0.6 0.2 0 0 0.1 0 0 0 4.4 2 0.3 0.2 0.3 0 0 0.1 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 93.2 94.8 97.1 97.8 98.1 98.9 99 99 98.5 99.3 93.4 94.9 96.8 98.3 98.5 97.4 98.8 99.4 99.1 99
Stop2 0 0.8 0.5 0.9 0.2 0.1 0 0.4 0.5 0.1 0.5 1 0.7 0.3 0.4 0.9 0.2 0.1 0.5 0
Stop3 6.8 4.4 2.4 1.3 1.7 1 1 0.6 1 0.6 6.1 4.1 2.5 1.4 1.1 1.7 1 0.5 0.4 1
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 88.6 91.1 91 91.9 94.5 91.2 91.7 92 93.3 93 87.7 90.5 91.6 92 92.5 93 93.1 92.6 92 91.5
Stop2 0.3 1.4 1.1 0.7 0.2 0.8 0.9 0.7 0.9 0.5 0.2 1.7 1 1.3 0.8 0.4 0.9 0.6 0.4 0.7
Stop3 11.1 7.5 7.9 7.4 5.3 8 7.4 7.3 5.8 6.5 12.1 7.8 7.4 6.7 6.7 6.6 6 6.8 7.6 7.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 84.6 86.9 84.6 84.8 81 82 79.3 79.7 77.8 77.8 85 84.9 82 81.6 82 83.1 77.2 79.7 78.5 78.1
Stop2 0.6 0.9 1.2 1.6 1.6 1.1 1 0.8 1.1 0.9 0 2.2 1.8 2 1 1.2 1.3 0.9 1.1 1
Stop3 14.8 12.2 14.2 13.6 17.4 16.9 19.7 19.5 21.1 21.3 15 12.9 16.2 16.4 17 15.7 21.5 19.4 20.4 20.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 79.7 77.8 75.4 71.5 71.1 69.2 63.5 61.3 59 58.8 77.5 75.1 75.4 71.8 70.7 66.4 66.3 63.5 60.1 60.3
Stop2 0.2 1.9 2 1.9 1.9 1.2 0.8 1.1 0.9 0.6 0.8 1.7 2.1 1.5 1.4 1.8 0.5 0.8 1.7 1
Stop3 20.1 20.3 22.6 26.6 27 29.6 35.7 37.6 40.1 40.6 21.7 23.2 22.5 26.7 27.9 31.8 33.2 35.7 38.2 38.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 73.5 68.5 65.8 65.9 57.7 54.2 49.6 47.9 44.8 45.3 75.4 71.4 65.7 62.8 59.4 55.9 50.7 49.5 44.6 43.2
Stop2 0.6 1.7 1.6 1.4 1.5 0.7 0.9 0.7 0.7 0.8 0.2 1.5 1.2 1.2 1.4 0.7 1 0.7 1 0.7
Stop3 25.9 29.8 32.6 32.7 40.8 45.1 49.5 51.4 54.5 53.9 24.3 27.1 33.1 36 39.2 43.4 48.3 49.8 54.4 56.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

80 Stop1 67.6 60.5 58.7 52.8 46.1 43.5 40.1 36.7 35.4 34.2 66.6 62.4 53.4 50.8 49 43 41.4 37.8 38.7 33.7
Stop2 0.3 2.7 1.2 1.1 0.9 0.6 0.8 0.4 0.2 0.6 0.4 2.1 2 1.1 1.4 1 0.4 0.3 0.3 0.2
Stop3 32.1 36.8 40.1 46.1 53 55.9 59.1 62.9 64.4 65.2 32.9 35.5 44.6 48.1 49.6 56 58.2 61.9 61 66.1
Stop4 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0

90 Stop1 63.3 50.9 49.5 42.8 36.3 36.2 33.7 28.7 28.2 28.9 58.2 54.1 51.9 44.1 37.3 33.8 31.6 30.8 27 27.5
Stop2 0.8 1.5 1.7 0.9 0.5 0.1 0.3 0.2 0.2 0.3 0.3 1.4 1.2 1 0.7 0.5 0.4 0.1 0.3 0
Stop3 35.9 47.6 48.8 56.3 63.2 63.7 66 71.1 71.6 70.8 41.5 44.5 46.9 54.9 62 65.7 68 69.1 72.7 72.5
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 58.1 48.4 41.1 32.5 30.9 27.2 24.2 21.2 23.1 20.4 55.5 44.4 38.2 32.2 32.3 27.7 24.1 21.8 22.4 20.3
Stop2 0.2 1 0.6 0.8 0.3 0.4 0.2 0.4 0 0 0.7 1.5 0.7 0.8 0.6 0.5 0.2 0.1 0.2 0
Stop3 41.6 50.6 58.3 66.7 68.8 72.4 75.6 78.4 76.9 79.6 43.8 54.1 61.1 67 67.1 71.8 75.7 78.1 77.4 79.7
Stop4 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A14. Computational results for randomly generated instances with the ratio 10%:60%:10%:20%
of the numbers of jobs in the subsets J1, J2, J1,2 and J2,1 of the job set J .

Uniform Distributions Gamma Distributions

δ% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

5 Stop1 100 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0.2 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 Stop1 100 99.9 100 100 100 100 100 100 100 100 100 99.8 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 0.1 0 0 0 0 0 0 0 0 0 0.2 0.1 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 Stop1 100 99.4 99.9 100 100 100 100 100 100 100 100 99.3 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0
Stop3 0 0.6 0.1 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 Stop1 99.9 98.7 99.7 99.9 100 100 100 100 100 100 100 98.6 99.5 99.5 99.9 100 100 100 100 100
Stop2 0 0.3 0 0 0 0 0 0 0 0 0 0.2 0.1 0.3 0 0 0 0 0 0
Stop3 0.1 1 0.3 0.1 0 0 0 0 0 0 0 1.2 0.4 0.2 0.1 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 Stop1 100 97.3 99.5 99.7 99.7 100 99.8 100 99.9 99.9 100 97.2 98.6 99.1 99.8 100 100 100 99.9 100
Stop2 0 0.3 0.3 0 0 0 0.1 0 0 0 0 0.1 0.5 0.2 0 0 0 0 0 0
Stop3 0 2.4 0.2 0.3 0.3 0 0.1 0 0.1 0.1 0 2.7 0.9 0.7 0.2 0 0 0 0.1 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

50 Stop1 99.9 96.1 97 98.3 99.2 99 99.3 99.5 99.8 100 100 95.8 96.9 98.4 99.2 99.2 99.7 99.9 99.6 100
Stop2 0 0.2 0.5 0.2 0.3 0.5 0.2 0 0.2 0 0 0.2 0.5 0.4 0 0 0.1 0 0 0
Stop3 0.1 3.7 2.5 1.5 0.5 0.5 0.5 0.5 0 0 0 4 2.6 1.2 0.8 0.8 0.2 0.1 0.4 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 Stop1 99.7 94.6 96.1 96.8 97.8 98.2 97.9 98.3 98.7 99 99.8 94.9 95.3 97.6 97.9 98.3 96.9 98.8 98.4 98.6
Stop2 0 0.4 1.1 0.1 0.3 0.2 0.7 0 0.1 0.1 0 0.1 0.2 0.3 0.2 0.3 0.6 0.3 0.4 0.2
Stop3 0.3 5 2.8 3.1 1.9 1.6 1.4 1.7 1.2 0.9 0.2 5 4.5 2.1 1.9 1.4 2.5 0.9 1.2 1.2
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

70 Stop1 99.6 94.4 94.2 94.8 95.9 94.6 95.6 95.8 96.5 96.7 99.6 94 94.9 93.4 94.5 96 97 96.2 96 96
Stop2 0 0.4 0.6 0.5 0.6 0.6 0.3 0.4 0.4 0 0 0.2 0.7 0.5 0.4 0.8 0.2 0.2 0.4 0.3
Stop3 0.4 5.2 5.2 4.7 3.5 4.8 4.1 3.8 3.1 3.3 0.4 5.8 4.4 6.1 5.1 3.2 2.8 3.6 3.6 3.7
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

80 Stop1 99.8 90.9 92 91.2 91.2 92 92 92.3 91.9 92 99.1 89.5 92 91.6 90.8 92.6 92.4 93.4 92.6 92.1
Stop2 0 0.2 0.6 0.8 0.7 0.2 0.5 0.6 0.4 0.3 0 0.4 0.6 0.7 1.1 0.6 0.5 0.2 0.4 0.1
Stop3 0.2 8.9 7.4 8 8.1 7.8 7.5 7.1 7.7 7.7 0.9 10.1 7.4 7.7 8.1 6.8 7.1 6.4 7 7.8
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

90 Stop1 98.9 88.3 89.5 88.3 87.6 89 86.1 87.8 86.9 86.2 98.6 89.9 87.3 88.8 88.5 88.7 87.8 85.1 88.5 87.2
Stop2 0 0.2 1 0.9 1.2 0.5 0.8 0.6 0.2 0.3 0 0.1 0.5 0.3 0.4 0.5 0.7 0.4 0.6 0.9
Stop3 1.1 11.5 9.5 10.8 11.2 10.5 13.1 11.6 12.9 13.5 1.4 10 12.2 10.9 11.1 10.8 11.5 14.5 10.9 11.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 Stop1 97.8 88.4 86.6 83.1 85.7 83.4 82.8 81.3 82.1 82.4 97.6 90.2 84.4 85 84.2 81.7 80.2 82.2 80.7 83.2
Stop2 0 0.4 1.1 1 1 0.6 0.7 0.5 0.8 0.2 0 0.2 0.7 0.9 1.2 0.6 0.6 0.5 0.4 0.5
Stop3 2.2 11.2 12.3 15.9 13.3 16 16.5 18.2 17.1 17.4 2.4 9.6 14.9 14.1 14.6 17.7 19.2 17.3 18.9 16.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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