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Abstract: This study addresses a two-machine job-shop scheduling problem with fixed lower and
upper bounds on the job processing times. An exact value of the job duration remains unknown until
completing the job. The objective is to minimize a schedule length (makespan). It is investigated
how to best execute a schedule, if the job processing time may be equal to any real number from
the given (closed) interval. Scheduling decisions consist of the off-line phase and the on-line phase
of scheduling. Using the fixed lower and upper bounds on the job processing times available at
the off-line phase, a scheduler may determine a minimal dominant set of schedules (minimal DS),
which is based on the proven sufficient conditions for a schedule dominance. The DS optimally
covers all possible realizations of the uncertain (interval) processing times, i.e., for each feasible
scenario, there exists at least one optimal schedule in the minimal DS. The DS enables a scheduler
to make the on-line scheduling decision, if a local information on completing some jobs becomes
known. The stability approach enables a scheduler to choose optimal schedules for most feasible
scenarios. The on-line scheduling algorithms have been developed with the asymptotic complexity
O(n?) for n given jobs. The computational experiment shows the effectiveness of these algorithms.

Keywords: scheduling; job-shop; makespan criterion; uncertain processing times

1. Introduction

Many real-world production planning and scheduling problems have various uncertainties.
Different approaches are used for solving the uncertain planning and scheduling problems.
In particular, a stability approach [1-4] for solving sequencing and scheduling problems with the
interval uncertainty is based on the stability analysis of the optimal job permutations (schedules) to
possible variations of the job processing times (durations). In this paper, this approach is applied to
the uncertain two-machine job-shop scheduling problem, where a job processing time is only known
once the job is completed. Although, the exact value of the job processing time is unknown before
scheduling, it is known that the processing time must have a value no less than the lower bound and
no greater than the upper bound available before scheduling. It should be noted that uncertainties
of the job processing times are due to some external forces in contrast to scheduling problems with
controllable processing times [5-7], where the objective is to determine optimal processing times and
then to find an optimal schedule for the jobs with the chosen processing times.
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1.1. Research Motivation

It is not realistic to assume processing times are exactly known and fixed for many scheduling
problems arising in real-world situations. For such an uncertain scheduling problem, job processing
times are random variables. Moreover, it is often hard to obtain probability distributions for all random
processing times of the jobs to be processed. In such cases, schedules constructed due to assuming
certain probability distributions are often not close to the optimal schedule. Although, the probability
distribution of the job processing time may not be known before scheduling, the upper and lower
bounds on the job processing time are easy to obtain in most practical scheduling environments.
The available information on these lower and upper bounds on the job processing times should be
utilized in finding optimal schedules for the scheduling problem with an interval uncertainty.

Since there may not exist a unique schedule that remains optimal for all possible realizations
of the job processing times (all possible scenarios), it is desirable to construct a minimal dominant
set of schedules (permutations of the jobs to be processed), which dominate all other ones. At the
off-line phase of scheduling (i.e., before starting an execution of the constructed schedule), a minimal
dominant set of schedules may be determined based on the proven dominance relations [8].

If the constructed minimal dominant set of schedules is a singleton, then a single schedule
remaining optimal for all possible scenarios exists. Otherwise, one can reduce the size of the
determined minimal dominant set of schedules at the on-line phase of scheduling based on the
additional information about completing some jobs. This additional on-line information allows a
scheduler to find new dominance relations in order to best execute a schedule. It is clear that on-line
scheduling decisions must be realized very quickly. In other words, only polynomial algorithms may
be applied at the on-line phase of scheduling.

1.2. Contributions of This Research

In this paper, it is shown how to determine a minimal dominant set of schedules that would
contain at least one optimal schedule for every scenario that is possible. The necessary and sufficient
conditions are proven for the existence of a single pair of job permutations, which is optimal for
the two-machine job-shop scheduling problem with any possible scenario. The algorithms have
been developed for testing a set of the proven sufficient conditions for a schedule dominance and
for the realization of a schedule, which is either optimal or very close to optimal one for the factual
scenario. The developed algorithms are polynomial in the number # of the given jobs. Their asymptotic
complexities do not exceed O(n?). The computational experiments on a large number of randomly
generated instances of the uncertain (interval) two-machine job-shop scheduling problem show
the efficiency and effectiveness of the developed off-line and on-line algorithms and programs.
For different distributions of the factual job processing times, the developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% provided thatn € {20, 30,..., 100}.
For all tested classes of the randomly generated instances, the average makespan errors Ay, % for all
tested numbers n € {10,20,...,100} of jobs 7 are less than 0.02%. Each tested series of 1000 randomly
generated instances was solved within no more than one second.

The paper is organized as follows. Settings of the considered scheduling problems with the
interval uncertainty and main notation are introduced in Section 2. A literature review is presented
in Section 3. The results published for the uncertain (interval) scheduling flow-shop problem are
discussed in Section 3.2. These results are used in Section 4 for finding the optimal job permutations at
the off-line phase of scheduling. In Section 4.2, the precedence digraphs are described for determining
a minimal dominant set of schedules. An illustrative example is considered in Section 4.3. The on-line
phase of scheduling is investigated in Section 5, where two theorems for the dominant sets of
schedules have been proven. Section 6 contains the algorithms developed for the on-line phase
of scheduling, illustrative examples (Section 6.2) and the discussion of the conducted computational
experiments (Section 6.3). Appendix B consists of the tables with the detailed computational results.
Some concluding remarks are made in Section 7.
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2. Settings of Scheduling Problems and Main Notations

Aset J = {]1,]2,....Jn} of the given jobs must be processed on different machines from a set
M = {M;, M;}. All jobs are available for processing from the same time ¢t = 0. Using the standard
notation «|B|y [9], this deterministic two-machine job-shop scheduling problem to minimize the
makespan is denoted as follows: J2|n; < 2|Cyax, where & = ]2 means a job-shop processing system
with two available different machines and #; a number of possible stages for processing a job J; € J.
The criterion v = Cy;4x determines the minimization of a schedule length (makespan) as follows:

Coay 1= 1316%‘1 Ciax(s) = I?el? {max{C;(s) : J; € T}}, 1)

where C;(s) denotes the completion time-point of the job J; € J in the schedule s and S denotes a set
of all semi-active schedules existing for the deterministic problem J2|n; < 2|Cpx. (A schedule s is
called a semi-active one [10-12] if the completion time-point C;(s) of any job J; € J cannot be reduced
without changing an order of the jobs on some machine.)

Let O;; denote an operation of the job J; € J processed on the machine M; € M. Each of the
available machines can process the job J; € J no more than once, a preemption of the operation O;;
being not allowed. The job J; € J has its own processing route through the available machines in set
M. The partition 7 = J1 U T2 U J12U J21 of the jobs is given and fixed, where each job J; € J1,
must be processed first on machine M; and then on machine My, i.e., all jobs from the set J; » have
the same machine route (M1, M>). Each job J; € 71 has an opposite machine route (M, M;). The set
Jj, where j € {1,2}, consists of all jobs, which must be processed only on one machine M; € M.
The following notation mj;, = |J;| will be used, where h € {1;2;1,2;2,1}.

In this research, it is investigated the uncertain (interval) two-machine job-shop scheduling
problem denoted as ]Z\Zij < pij < ujj,n; < 2|Cypax, where the duration pij of each operation Oij is
unknown before scheduling. It is only known that the inclusion p;; € [l;j, u;;] holds for any possible
realization of the chosen schedule, where ujj > ll-j > 0. It is also assumed that a probability distribution
of the random duration of a job from the set 7 is also unknown before scheduling. Let a set T of all
possible scenarios p = (p1,1, P12, - - -, Pul, Pn2) Of the job processing times be determined as follows:

T={p : Lj<pj<uwy ieJ, MjeM}.

It should be noted that the problem ]2|l,-]- < pij < ujjn; < 2|Cpax is mathematically incorrect
since one cannot calculate makespan Cpux(s) in the equality (1) before completing the jobs J; in the
set J provided that the strict inequality u;; > I;; holds. Moreover, in most cases there does not exist
a schedule, which is optimal for all possible scenarios p € T for the uncertain job-shop problem
]2|lij < pij < ujj,n; < 2|Cpax- Therefore, one cannot solve most such uncertain (interval) scheduling
problems in the generally accepted sense.

In [13], it is proven that the deterministic job-shop problem J2|n; < 2|Cpuuy is solvable in O(nlogn)
time. The optimal semi-active schedule for this deterministic problem is determined as the pair (77/, 7'")
of two job permutations (called a Jackson’s pair of permutations), where 7w/ = (7115, 711, 7121 ) is an
optimal permutation of the jobs [J1 U J1 2 U J21 processed on machine M and 7t = (7121, 712, 711 2)
is an optimal permutation of the jobs J> J J12 U J2,1 on machine M,. Such an optimal semi-active
schedule is presented in Figure 1. In what follows, it is assumed that job J; belongs to the permutation
mty, if the following inclusion holds: J; € Jj,.

In a Jackson'’s pair of permutations (77, 77”’), the optimal order for processing jobs from the set [J;
(from the set J,, respectively) may be arbitrary (due to this, we fix them in the increasing order of their
indexes). For the permutation 711 » (permutation 77y 1, respectively), the following inequality holds:

min{p;,1, pi;2} < min{piz1, pi2} ©)
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for all indexes e and f provided that 1 < e < f < mjp (1 < f < e < myg, respectively).
The permutation 771 » (permutation 715 1) is called a Johnson’s permutation; see [14].

L

A\ 4

3, S12
Figure 1. An example of the optimal semi-active schedule without idle times on both machines.

The deterministic scheduling problem J2|n; < 2|Cyqy associated with a fixed scenario p of the
job processing times is an individual deterministic problem. In what follows, this problem is denoted
as follows: J2|p,n; < 2|Cpax. For any fixed scenario p € T, there exists a Jackson’s pair (77, 7”’) of
permutations, which is optimal for the problem J2|p, n; < 2|Cpay, i-e., the equality Cmax (7, 7'7) =
Chax holds, where Ch. denotes the optimal makespan value for the problem J2|p, 1; < 2|Cpiaz-

Let Sy » denote a set of all permutations of 1 , jobs from the set 7 5, where Sy 5| = m 5!. The set
S»1 is a set of all permutations of ;1 jobs from the set J1, |S1| = mp1!.

Let the set S = < 51,521 > be a subset of the Cartesian product (512, 711, S21) X (521, 72, S12),
each element of the set S being a pair of job permutations (7', 7”’) € S, where 7/ = (715’2, m, néll)

and "’ = (né/l, Ty, nilz) with inequalities 1 < i < mj,!and 1 < j < mjy;!. It is known that the set S
determines all semi-active schedules and vice versa; see [12]. Since index i (and index j) is the same
in each permutation from the pair (7, 7”) € S and it is a fixed permutation 7r; (permutation 7,),
the equality |S| = my ! - mp 1! holds. The following definition of a J-solution is used for the uncertain
(interval) job-shop scheduling problem ]2|lij < pij < uyj,n; < 2|Cax-

Definition 1. An inclusion-minimal set of the pairs of job permutations S(T) C S is called a J-solution for the
uncertain job-shop problem J2|1;; < pj; < ujj, n; < 2|Cax with the set J of the given jobs, if for each scenario

p € T, the set S(T) contains at least one pair (1t', 7'"") € S of job permutations that is optimal for the individual
deterministic problem J2|p, n; < 2|Ciax with a fixed scenario p.

From Definition 1, it follows that for any proper subset S’ of the set S(T), S’ C S(T), there exists
a scenario p’ € T such that the set S’ does not contain an optimal pair of job permutations for the
individual deterministic problem J2|p’, n; < 2|Cpqx with a fixed scenario p’.

3. A Literature Review and Closed Results

It should be noted that the uncertain flow-shop scheduling problem denoted as
P2|lij < pij < ujjn; < 2|Cpuax is well studied [15], unlike the uncertain job-shop scheduling problem.
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3.1. Approaches to Scheduling Problems with Different Forms of Uncertainties

For the well-known stochastic approach, it is assumed that the job processing times are random
variables with certain probability distributions determined before scheduling. There are two types of
the stochastic scheduling problems [10], where one is on stochastic jobs and another is on stochastic
machines. In the stochastic job scheduling problem, each job processing time is a random variable with
a known probability distribution. With the objective of minimizing the expected makespan value, the
flow-shop problem was studied in [16-18]. In the stochastic machine scheduling problem, each job
processing time is a constant, while each completion time of the given job is a random variable due to
the machine breakdown or machine non-availability. In [19-21], the flow-shop scheduling problems to
stochastically minimize either makespan or total completion time were investigated.

If it is impossible to determine probability distributions for all random job processing times,
other approaches have to be used [11,22-25]. In the approach of seeking a robust schedule [22,26-28],
a decision-maker looks for a schedule that hedges against the worst-case possible scenario.

A fuzzy approach [29-35] allows a scheduler to find best schedules with respect to fuzzy
processing times of the jobs to be processed. The work of [35] addresses to the job-shop scheduling
problem with uncertain processing times modeled as triangle fuzzy numbers, where the criterion is
to minimize the expected makespan value. Based on the disjunctive graph model of the job-shop
problem, a definition of criticality is proposed for this job-shop problem along with neighborhood
structure for a local search. It is shown that the proposed neighborhood structure has two properties:
feasibility and connectivity, which allow a scheduler to improve the efficiency of the local search and to
ensure asymptotic convergence (in probability) to a globally optimal solution of the uncertain job-shop
problem. The conducted computational experiments supported these theoretical results.

The stability approach was developed in [1,4,36,37] for the Cyx criterion, and in [2,38—40] for
the total completion time criterion, ) C; := ¥;.c 7 C;(r). The aim of this approach is to construct a
minimal dominant set S(T) of schedules, which optimally covers all feasible scenarios T. The dominant
set S(T) is used in the multi-phase decision framework; see [41]. The set S(T') is constructed at the first
off-line phase of scheduling. Based on the set S(T), it is possible to find a schedule remaining optimal
for most feasible scenarios. The set S(T) enables a scheduler to execute best a schedule in most cases
of the uncertain flow-shop scheduling problem F2|lij <pij < u,'j|Cmux [41].

The stability radius of the optimal semi-active schedule was studied in [4], where a formula for
calculating the stability radius and corresponding algorithms were described and tested.

In [36], the sufficient conditions were proven when a transposition of the given jobs minimizes
the makespan criterion. The work of [42] addressed the objective criterion ) C; in the uncertain
two-machine flow-shop scheduling problem. The case of separate setup times with the criterion of
minimizing a total completion time or makespan was investigated in [43].

For the uncertain flow-shop problem F2]lij < pij < ui]'|cmax/ an additional criterion is often
introduced. In particular, a robust schedule minimizing the worst-case deviation from the optimal
value was proposed in [44] to hedge against the interval or discrete uncertainties. In [45], a binary
NP-hardness was proven for finding a pair (774, 77;) € S of the identical job permutations that
minimizes the worst-case absolute regret for the uncertain two-machine flow-shop problem with
the criterion Cux and only two possible scenarios. In [46], a branch and bound method was developed
for the uncertain job-shop scheduling problem to minimize makespan and optimize robustness based
on a mixed graph model and the propositions proposed in [47]. The effectiveness of the developed
algorithm was clarified by solving test uncertain job-shop scheduling problems.

The work of [48] addresses robust scheduling for a flexible job-shop scheduling problem with
a random machine breakdown. Two objectives makespan and robustness were considered. Robustness
was indicated by the expected value of the relative difference between the deterministic and factual
makespan values. Two measures for robustness have been developed. The first suggested measure
considers the probability of machine breakdowns. The second measure considers the location of
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float times and machine breakdowns. A multi-objective evolutionary algorithm is presented and
experimentally compared with several other existing measures.

A function of predictive scheduling in order to obtain a stable and robust schedule for a shop floor
was investigated in [49]. An innovative maintenance planning and production scheduling method has
been proposed. The proposed method uses a database to collect information about failure-free times,
a prediction module of failure-free times, predictive rescheduling module, a module for evaluating the
accuracy of prediction and maintenance performance. The proposed approach is based on probability
theory and applied for solving a job-shop scheduling problem. For unpredicted failures, a rescheduling
procedure was also developed. The evaluation procedure provides information about the degradation
of a performance measure and the stability of a schedule.

The simulation and experimental design methods play a useful role in solving job-shop scheduling
problems with uncertain parameters (see survey [50], where many studies about dynamic and static
job-shop scheduling problems with material handling are described and systematized).

In [51], a quality robustness and a solution robustness were investigated in order to compare the
operational efficiency of the job-shop in the events of machine failures. Two well-known proactive
approaches were compared to compute the operational efficiency of the job-shop with unpredicted
machine failures. In the computational experiments, the predictive-reactive approach (without
a prediction) and the proactive-reactive one (with a prediction) were applied for the job-shop model
with possible disruptions. The computational results of computer simulations for the above two
approaches were compared in order to select better schedules for reducing costs and waste due to
machine failures.

The paper [52] presents a methodological pattern to assess the effectiveness of Order Review
and Release (ORR) techniques in a job-shop environment. It is presented a comparison among three
ORR approaches, i.e., a time bucketing approach, a probabilistic approach and a temporal approach.
Simulation results highlighted that the performances of the ORR techniques tested depend on how
perturbed the environment, where they are implemented, is. Based on a computer simulation, it was
shown that the ORR techniques greatly differ in their robustness against environment perturbations.

The paper [53] presents an effective heuristic algorithm for the job-shop problem with uncertain
arrival times of the jobs, processing times, due dates and part priorities. A separable problem
formulation that balances modeling accuracy and solution complexity is described with the goal
to minimize expected part tardiness and earliness cost. The optimization is subject to arrival times
and operation precedence constraints (for each possible realization), and machine capacity constraints
(in the expected value sense). The solution algorithm based on a Lagrangian relaxation and stochastic
dynamic programming was developed to obtain dual solutions. The computational complexity of
the developed algorithm is only slightly higher than the one without considering uncertainties of the
numerical parameters. Numerical testing supported by a simulation demonstrated that near optimal
solutions were obtained, and uncertainties are effectively handled for problems of practical sizes.

The published results on the application of the stability approach for the uncertain two-machine
flow-shop problem are presented in Section 3.2. These results are described in detail since they are
used for the uncertain job-shop problem J2|l;; < p;; < u;j, n; < 2|Cax in Sections 4-6.

3.2. Closed Results for Uncertain (Interval) Flow-Shop Scheduling Problems

The uncertain job-shop problem ]2\11-]- < pij < ujng < 2|Cax is a generalization of the
uncertain flow-shop problem F2[l;; < p;j < u;j|Cyax, where all given jobs have the same machine
route. Two uncertain flow-shop problems are associated with an uncertain job-shop problem
I 2|lij < pij < ujj,ni < 2|Ciax- In one of these flow-shop problems, an optimal schedule for processing
the jobs 71 » must be determined, i.e., it is assumed that [/, 1 = J; = J»> = ©. In another associated
flow-shop problem, an optimal schedule for processing jobs 7> 1 must be determined, i.e., it is assumed
that 710 = J1 = J2 = @. Our approach to the solution of the uncertain job-shop scheduling problem
]2|lij < pij < ujj,ni < 2|Cyax is based on the following remark.
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Remark 1. The solution of the uncertain job-shop scheduling problem J2|l;; < pj; < u;j, n; < 2|Cyax may be
based on the solutions of the associated flow-shop scheduling problem F2|l;; < p;;j < u;j|Ciax with the job set
J = Jip, where Jo1 = Jh = Jo = @, and that with the job set J = Jp1 (i.e., J1p = J1 = Jo = D).

The sense of Remark 1 becomes clear from Figure 2, where the semi-active schedule s for the
job-shop scheduling problem ]2|lij < pij < ujj,n; < 2|Cinax is presented. Indeed, in Figure 2, the length
Cinax(s) of the schedule s is equal to the length of the corresponding semi-active schedule determined
for the associated flow-shop scheduling problem F2|l;; < p;; < u;j|Cyax with the job set 7 = J1 .
Thus, if one will solve both associated flow-shop problem F2|li]' < pij < uij|Cmux with the job set
J = J12 and associated flow-shop problem F2|li]- < pij < uij|Cm,1x with the job set J = [, 1, then the
original job-shop scheduling problem J2[l;; < p;; < ujj, n; < 2|Cpiax will be also solved.

idle time

CZ = Cmax (”1,2)

Figure 2. The optimal semi-active schedule for the job-shop scheduling problem.

We next observe in detail the results obtained for the two-machine flowshop problem
F2|lij <pij < u,']'|Cmax with the job set J = J1,. For using the above notations introduced for the
uncertain job-shop problem, we need the following remark for the uncertain flow-shop problem.

Remark 2. The considered problem F2|l;; < pjj < u;j|Cyax has the following two mandatory properties:

(i) theset S is a set of n! pairs (714, 715) of the identical permutations of n = my 5 jobs from the set J = J12
since the machine route for processing all jobs Ty 5 is the same (My, Mp);

(ii) the J-solution (see Definition 1) is a set of Johnson’s permutations of the jobs J = 71, i.e., for each scenario
p € T the set S(T) contains at least one optimal pair (1ty, 7v4) of identical Johnson’s permutations 7ty such
that the inequality (2) holds for all indexes e and f.

The following Theorems 1 and 2 have been proven in [54].
Theorem 1 ([54]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|l;; < pj;j < u;j|Cpax
with a fixed order J, — Ju of the jobs [, and [y, in all permutations 7y, (714, 715) € S(T), if and only if at least
one of the following two conditions hold:

Uy < lyp and uyy < lyy; 3)

Uy < Lyt and uyn < L. 4)
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Theorem 2 provides the necessary and sufficient conditions for existing a single-element
J-solution S(T) = {(7q, 714) } for the uncertain flow-shop scheduling problem F2|l;; < p;; < u;;|Cyax-
The partition 7 = J°U J' U J?U J* of the set J = J; 5 is given, where

TP ={ieJ : un <lpup<ln},

T ={lieT :un <lpup>la} ={ € T\I° : upg <la},

J2={hed :un>lpup<lp}={eIT\IT® : up <ln},

T =Ll €T : up>lpup>In}h

Note that for each job J; € J 0, the inequalities ug1 < lgp and ugy < lgy imply the equalities
ley = ugy = lgo = ug. Thus, the equalities pg1 = pgo =: pg hold.

Theorem 2 ([54]). There exists a single-element J-solution S(T) C S, |S(T)| = 1, for the uncertain flow-shop
problem F2|L;; < pji < j|Cpax, if and only if the following two conditions hold:

(j) for any pair of jobs J; and J; from the set J L (from the set J?, respectively), either u;; < lnorupy <l
(either up < ljp or up < ljp, respectively);

(jj) inequality | T*| < 1 holds and for the job J;» € J* both inequalities l;+y > max{u;; : J; € J'},
lig > max{up :J; € T2} hold with inequality max{l; 1, ljp} > pg valid for each job J, € JO.

Theorem 2 characterizes the simplest case of the uncertain flow-shop problem
F2|lij < pij < uij|Cm,1X, i.e., there is a job permutation 77; dominating all others.

Let J x J denote a Cartesian product of the set J. If J 0 — @, then there exists the following
binary relation A C J x J over the set 7 = J 5.

Definition 2. For the jobs Jx € J and ], € J, the inclusion (]x, Jy) € A< holds if and only if at least one of
the conditions (3) and (4) holds with v = x and w = y and neither the condition (3) no the condition (4) holds
with v = y and w = x (or at least one of the conditions (3) and (4) holds both with v = x and w = y and with
v=y,w=xand x <y).

The above relation (Jy, ]y) € A~ may be represented as follows: J; < J,. The binary relation
AL is a strict order [55] that determines the precedence digraph G = (7, A< ) with the vertex set J
and the arc set A~. The permutation 77; = (Jg,, Jgos - -+, J5, ), (714, 77) € S, is a total strict order over
the set 7. The total strict order determined by the permutation 7, is a linear extension of the partial
strict order A, if the inclusion (J;,, J,) € A< implies the inequality x < y. Let IT(G) denote a set of
all permutations 77; € S, determining linear extensions of the partial strict order .A~. The equality
I1(G) = {m,} is characterized in Theorem 2, where the strict order A< over the set 7 is represented as
follows: J;; < ... < J5; < Jgiy < --- =< Jg,- The following two claims have been proven in [55].

Theorem 3 ([55]). For any scenario p € T, the set I1(G) contains a Johnson’s permutation for the deterministic
flow-shop problem F2|p|Cpqx with the jobset 7 = J10 = J*UJT U T2

Corollary 1 ([55]). There exists a J-solution S(T) for the uncertain flow-shop problem F2|l;; < pji; < u;|Cax
with the job set J = J1p = J*UJ YU J2, such that the inclusion T, € I1(G) holds for all pairs of job
permutations, where (174, 774) € S(T).

In [55], it is shown how to determine a minimal dominant set S(T) = {(7t,, 775) } with r; € TI(G).
The digraph G = (7, A~) is considered as a condense form of a J-solution for the uncertain flow-shop
problem F2|l;; < p;i < u;|Cpax. The above results are used in Sections 46 for reducing a size of the
dominant set S(T) for the uncertain job-shop problem ]2|lij < pij < ugjn; < 2|Crax-

4. The Off-Line Phase of Scheduling

The above setting of the uncertain job-shop scheduling problem ]2|lij < pij < ujjn; < 1| Cinax
implies the following remark.
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Remark 3. The factual value pl’fj of the job processing time pjj becomes known at the time-point c;(i) when the
operation Ojj is completed on the machine M; € M.

Due to Remark 3, if all jobs J are completed on the corresponding machines from the set M,
the durations of all operations O;; take on exact values pl’-‘j, where [;; < pl’-‘]- < ujj, and a unique factual
scenario p* € T is realized. A pair of job permutations selected for this realization should be optimal
for scenario p*. For constructing such an optimal pair of job permutations, we propose to implement
two phases, namely: the off-line phase of scheduling and the on-line phase of scheduling.

The off-line phase is completed before starting a realization of the selected semi-active schedule.
At the off-line phase, a scheduler knows the exact lower and upper bounds on the job processing times
and the aim is to determine a minimal dominant set of the pairs of job permutations (77, 77'’).

The on-line phase is started when the corresponding machine starts the processing of the first
job in the selected schedule. At this phase, a scheduler can use an additional information on the job
processing time, since for each operation O;;, the exact value p;*j of the processing time p;; € T becomes
known at the completion time c;(i) of this operation; see Remark 3.

We next consider the off-line phase of scheduling for the uncertain job-shop problem J2|/;; <
pij < ujj,ni < 2|Cinax and describe the sufficient conditions for existing a small dominant set of the
semi-active schedules. Along with Definition 1, the following one is also used.

Definition 3. A set of the pairs of job permutations DS(T) C S is a dominant set for the uncertain job-shop
problem ]2\117 < pij S wujjn; < 2|Cinax, if for each scenario p € T the set DS(T) contains at least one optimal
pair of job permutations for the individual deterministic job-shop problem J2|p, n; < 2|Cpax with scenario p.

Obviously, the J-solution is a dominant set for the uncertain job-shop problem
]2|li]- < pij < ujj,n; < 2|Cinax- Before processing the set 7 of given jobs, a scheduler does not know the
exact values of the job processing times. Nevertheless, it is needed to determine an optimal pair of
permutations of the jobs J for their processing on the machines M = {M;j, M, }.

In Section 4.1, the sufficient conditions are presented for existing a pair of job permutations
(!, ') such that the equality DS(T) = {(n/, ©”")} holds. Section 4.2 contains the sufficient conditions
allowing a scheduler to construct a semi-active schedule (if any), which dominates all other schedules
in the set S. If a singleton DS(T) = {(7/, 7”")} does not exist, a scheduler should construct partial
strict orders Akz and Ai’l over set J1» and set [/ 1; see Section 3.

4.1. Conditions for Existing a Single Optimal Pair of Job Permutations

The following conditions for existing an optimal pair of job permutations are proven in [8].

Theorem 4 ([8]). If one of the following conditions either (5) or (6) holds:

Youp <Y, Ipand ) 1p> Y up, %)

Ji€T1 Ji€ 1 UT2 Ji€Ji Ji€ T U
Youp< Y. lpand Y ln> Y. up, (6)
Ji€Tr1 JieJ12UT Ji€T2n Ji€ 12U

then any pair of permutations (7', 7'") € S is a singleton DS(T) = { (7, ©"")} for the uncertain job-shop
problem J2|l;; < pi; < ujj, n; < 2|Cpuay with the jobset 7 = J1 U o U J12U Jo 1.

Corollary 2 ([8]). If the following inequality holds:

Yooun < Y Ip, (7)

Ji€T2 Ji€T2 U2
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then the set <{m1,},S21>C S, where 711 5 is an arbitrary permutation in the set Sy 5, is a dominant set for the
uncertain job-shop problem J2|l;; < p;; < ujj, n; < 2|Cyay with the jobset 7 = J1 U o U J12U Jo 1.

Corollary 3 ([8]). If the following inequality holds: lee Jop Uiz < Z]je Ti2UTh lj1, then the set <
S12,{m21} >, where 1 is an arbitrary permutation in the set Sy 1, is a dominant set for the uncertain
job-shop problem ]2|lij < pij < uyj,n; < 2|Cypax with the jobset J = J1 U T U J12U To1.

In order to determine an optimal permutation for processing jobs from the set J,1 (set Ji2,
respectively), we consider the uncertain flow-shop problem F2[l;; < p;; < u;j|Ciax with the job set
J12 € J and the machine route (M7, M), and that with the job set J,1 C J and the machine route
(M, My). The following theorem has been proven in [8].

Theorem 5 ([8]). Let the set S, C Si be a set of permutations from the dominant set for the flow-shop
problem F2|l;j < pi;j < uj|Cyax with the job set J1, and the set Sé,l C Sy be a set of permutations
from the dominant set for the flow-shop problem F2|l;; < pji; < u;j|Ciax with the job set Jo1. Then the set
< 5’1,2, Sé,l > C S is a dominant set for the job-shop problem ]2|ll~]~ < pij < ujj,n; < 2|Cynax with the job set
J=0UhUTpUd;.

4.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules

Based on Remark 1, the off-line phase of scheduling for the uncertain job-shop problem J2|I;; <
pij < ujj,n; < 2|Cinax may be based on solving the uncertain flow-shop problem P2|li]- <pij < ul-]-|Cm,1x
with the job set J1 2 and that with the job set [J; ;. A criterion for the existence of a single-element
J-solution for the uncertain flow-shop problem F 2|lij < pij < uij|Cmax is determined in Theorem 2.

In what follows, it is assumed that the equality J1, = .711,2 U jﬁz U j{‘2 holds, i.e., jfz = @.
Using the results presented in Section 3, one can determine a binary relation A'? for the uncertain
flow-shop problem F2|l;; < p;; < u;i|Cinax with the job set J; 2. For the job set 1 5, the binary relation
AQZ determines the digraph G1, = (J1, Algz) with the vertex set [J; » and the arc set AEZ.

Definition 4. Two jobs |y € J1p and |, € J12, x # y, are conflict if they are not in the relation A2 e,
(e Jy) & A and (Jy, ) & AL

Due to Definition 2, for the conflict jobs Jx € J1 and J, € J1, x # y, relations (3) and (4) do not
hold for the case v = x with w = y, nor for the case v = y with w = x.

Definition 5. The inclusion-minimal set Jx C J1 2 of the jobs is called a conflict set of the jobs, if for any job
Jy € Jip \ s either relation (Jx, J;) € AL or relation (], Jx) € A% holds for each job ] € J.

There may exist several conflict sets in the set [J; . Let the strict order A2 for the flow-shop
problem F2|l;; < p;; < u;i|Cimax with the job set J1 » be represented as follows:

Ji =T =< = e = ATkt Jkw2r o Jigr } = kg1 = Jkgrg2 <o = gy 8)

Here, an optimal permutation for processing jobs from the set {J1, J2,..., Ji} (for jobs from the set
Uksr1s Jesra2, -0 Jmy o 1) is as follows: (J1, J2, - -+, Ji) (Ukgr41 Jksr42, - - -+ Jmy , ), Tespectively). All jobs
between braces in the presentation (8) constitute the conflict set of the jobs and they are in relation
A? with any job located outside the braces. Due to Theorem 3, the set I1(Gy2) of the permutations
generated by the digraph G » includes an optimal permutation for each vector p; » of the processing
times of the jobs [J1,. Due to Corollary 1, the set S1,(T) = {(712, 7T12)} with 1, € TI(Gyp) is a
J-solution for the flow-shop problem F2|l;; < p;; < u;i|Cyax with the job set 71 5. Analogously, the set
$21(T) = {(m2,1,72,1) } with 71p1 € TI(Gy,1) is a J-solution for the problem F2|l;; < p;; < u;j|Ciax
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with the job set 7, 1. Due to Theorem 5, one can determine a dominant set for the job-shop problem
]2|li]- < pij S ugjn; < 2|Cinax with the job set J as follows: <I1(Gy),I1(Gy1)> C S; see Remark 1.

The following three theorems are proven in [8], where the notation L, := Y Ji€521U5 ljp is used.
These theorems allow a scheduler to reduce the cardinality of a dominant set for the uncertain job-shop
scheduling problem ]2\11-]- < pij < ujj,n; < 2|Crax-

Theorem 6 ([8]). Let the strict order AQZ over the set J1, = jsz U «711,2 U jlz,z be determined as follows:
Ji <o =< Tk = ATkt T2+ Ty = Jkgrs1 < oo < Ty, If the following inequality holds:
k+r k

Y up <L+ ) ln, )
i=1 i=1

then the set S' = <{m1,},11(Gy1)> C S, where 1115 € I1(Gy ), is a dominant set for the job-shop problem
J2|lij < pij < uij,n; < 2|Cax with the jobset T = J1 U Jo U J12U Jo1-

Theorem 7 ([8]). Let the partial strict order Aﬁz over the set J1p = Ji' U jllz u jlz,z be determined as
follows: J1 < ... < Jx < {Jksts Jiw2r oo Jkgr} < Jkgrs1 < - = Jimy - If the inequality

k+s—1
st < Lo+ Y, (Ip —uin) (10)
i=1
holds for each s € {1,2,...,r}, then the set S' =< {mp},So1 >, where m, =

U Jk=t T Jowts Tkwr oo Jkrs Jkr st - o Jmy ) € T1(Ga,2), is a dominant set for the job-shop problem
J2|lij < pij < uij,n; < 2|Cax with the jobset J = J1 U Jo U J12U T2

Theorem 8 ([8]). Let the partial strict order Ai’z over the set J1o = Jffz U jll,z U le,z have the form
Ji = = e =< ket ks Jerr = st <o = g - If the inequality

r—s+1 r
Yo i > ) gy (11)
i=r—s+2 j=r—s+1

holds for each s € {1,2,...,r}, then the set S' = <{mp},So1>, where 15 = (J1,.--, Jee1, T Jewts
Tewos oo Jkwrs Jewrats - - "]m1,2> € TI(Gyp), is a dominant set for the job-shop problem ]2|ll-]- < pij <
Uij, 1 < 2|Cmgx with the job set J = J1 U Jo U J12U T2t

One can describe the analogs of Theorems 6-8 for reducing the cardinality of a dominant set for the
job-shop problem J2|l;; < p;; < u;j, n; < 2|Cpax provided that for the flow-shop problem F2|l;; < p;; <
ul-j|Cm,1x with the job set 75 1, there exists a partial strict order Ai’l over theset Jo1 = J,; U \721,1 U ~722,1
with the following form: J; < ... < Jo < {Jix1, kg2 Jotr ) < Jogrr < oo < Ty, -

If the set {], ..., Jx} is empty in the constructed job permutation, then it is needed to check the
conditions of Theorem 8. If the set {Jx;,11,-- -, ]mm} is empty, then one needs to check the conditions
of Theorem 7. Note that it is enough to test only one permutation for checking the conditions of
Theorem 7 and only one permutation for checking the conditions of Theorem 8; see [8].

4.3. An Illustrative Example

To illustrate the above results, we consider Example 1 of the uncertain job-shop scheduling
problem J2|l;; < p;; < wjj,n; < 2|Cpax with eightjobs {J1, J2,...,Js} = J. Let three jobs J1, ]2 and J3
have the machine route (M, M3), jobs Js, J7 and Jg have the opposite machine route (M, Mj ), job 4
and job J5 have to be processed only on machine M; and machine M, respectively. The partition J =
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T2 U Ty U T U T is given, where J1o = {1, )2, 3}, Jo1 = {Je, J7,J8}, J1 = {Ja} and T = {J5}.

The lower and upper bounds on the job processing times are determined in Table 1.

Table 1. The numerical input data for Example 1.

Ji i 2 T3 Ja J5 J6 J7 Js

i 6 87 2 - 111
up 79 9 3 - 33 3
lp 6 54 - 22 3 4
up 7 6 5 - 3 4 4 4

To solve this uncertain job-shop scheduling problem, one need to determine an optimal pair
(r/, 7'") of permutations of the eight jobs for their processing on machine M; and machine M,.
These permutations 7’ and 77" have the following forms: 77’ = (7112, 711, 7121 ), T = (72,1, 712, 1 2).

It is necessary to find four permutations 7ty 5, 712 1, 771 and 712 of the jobs from the sets J1 2, 72,1, J1
and 75, respectively. The permutations 771 and 71, are determined as follows: 711 = (J4) and 7 = (J5).

We test the sufficient conditions given in Section 4.1. The conditions (5) of Theorem 4 do not hold.
For testing the conditions (6) of Theorem 4, one can obtain the following relations:

Y up=ueptuzptugp=4+4+4=12< Y lg=hai+bi+l1+l =6+8+7+2=23
Ji€T21 Ji€J12UT

2 In=lg1+Il;1+1s1=14+1+1=3 % Z Upp = U1p+Upp +uUzp +uUsp =7+6+5+3 =21

Ji€D Ji€J12UT2

It should be noted that the case when conditions of Theorem 4 hold was considered in [8].

As the first condition in (6) holds, due to Corollary 3, one can construct permutation 7,1 =
(Je, J7, Jg) by arranging the jobs from the set J 1 in the increasing of their indexes.

For the jobs from the set 77 », the partition [J1 o = ‘711,2 U <-7122 U Jt', holds, where 7, = {]1} and
\712’2 = {J», J3}. The condition of Theorem 2 holds for these jobs. Therefore, the following optimal
permutation: 711, = (J1, J2, J3) is determined.

Thus, there exists a pair of job permutations (7, 7"), where 7w’ = (J1, |2, J3, J1, J6, J7, Js) and
7" = (Je, J7,Js, J5, J1, J2, J3), which is optimal for all possible scenarios p € T. Hence, there exists a
single-element dominant set DS(T) = {(77/, 7”")} for Example 1 of the uncertain job-shop problem
]2|lij < pij < ujj,ni < 2|Cypax with the bounds on the job processing times given in Table 1.

The optimal semi-active schedule is constructed for Example 1 at the off-line phase of scheduling,
despite of the uncertainty of the job processing times. Such an issue is called as STOP 1 in the
scheduling algorithms developed in [8] and used in Section 6 of this paper.

5. The On-line Phase of Scheduling

Due to Remark 3, if the job J; is completed on the corresponding machine M; € M, the duration
of the operation O,-]- takes on exact value p?j, where ll-j < p;-“]- < ujj. A scheduler can use this information
on the duration of the operation O;; for a selection of the next job for processing on machine M;. Since it
is on-line phase of scheduling, such a selection should be very quick.

It is first assumed that the set S’ = <II(G»), {r5,}> C S, is a dominant set for the problem
]2|li]- < pij < wjn; < 2|Cpax with the job set J. In other words, the optimal permutations for
processing all jobs from the set 7, ; are already determined at the off-line phase of scheduling.

Let the strict order AQZ over the set Jip = Jjh U 511,2 U ‘7122 be determined as
follows: J1 < ... < Je < {Jks1, Jks2r - oo Jer b < Jigr41 < - =< Jmy,- At the initial time ¢ = 0, machine
M has to start processing jobs from the set {J, ..., J} in the following optimal order: (Jy, ..., Ji)-
At the same time t = 0, machine M, has to start processing jobs from the set J,; in the order
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determined by the permutation 713 |, then jobs from the set J; in the arbitrary order, and then jobs
from the set {J1, ..., Jx} in the following optimal order: (J4, ..., J); see Figure 3.

t=c,k)

c,(1-1)
Figure 3. The initial part of the schedule execution.

At the time-point t = ¢ (k), machine M; completes the operation Oy;. Let J (i, ) denote a set
of all jobs processed on machine M; from the initial part of the schedule till the job J;, e.g., the set of
jobs {J1, ]2, ..., ]Jx} is denoted as J (k, 1); see Figure 3. Due to Remark 3, at the time-point t = ¢y (k),
the factual values p}; of the processing times p;; of all jobs J; in the set 7 (k, 1) are already known.

Let machine M, process the job J; € Jp1 U Do U{J1,J2,..., ]} at the time-point t = c;(k), i.e.,
t =c1(k) < cp(l). Let J (I —1,2) denote a set of all jobs whose processing is completed on machine
M before time-point t = ¢y (k). Figure 3 depicts this situation for the job ;1 € {J1,J2,..., Jx} C J12.

The factual values p}, of the processing times p;, of all jobs J; in the set J (I — 1,2) are known at
the time-point t = ¢y (k) > c2(I — 1), i.e., pip = p}5, while the factual values of the processing times p,
of other jobs in the set 7 remain unknown at the time-point t = c1(k) < c(!). Thus, at the time-point
t = c1(k), the following subset of possible scenarios:

T(ki=1)={peT : pn=pi rp="rp JicJIk1),]jecIT(1-12)}

may be realized instead of the initial set T of all possible scenarios; T(k,I —1) C T.

At the time-point t = ¢y (k) (it is called a decision-point), a scheduler has to make a decision about
the order for processing jobs from the conflict set {Ji11, Jk12, -, Jior}- The sufficient conditions given
in Theorems 6 and 7 can be reformulated in the following two theorems. (Note that Theorem 8 cannot
be reformulated for the use at the on-line phase of scheduling.)

Theorem 9. Let the set S = <I1(Gy2), {75, }> C S be a dominant set for the uncertain problem J2|I;; <
pij < ujj,n; < 2|Cpax with the job set J. Let the strict order A}gz over the set J17 = ,_71*2 U ~711,2 U jlz,z be
determined as follows: J1 < ... < Jo < {Jks1, Jkw2r o Jewr} = Jewr1 = - = Jmy,. If at the time-point
t = c1(k), the following inequality holds:

k+r
cr(k)+ Y up <co(I—1)+ Y lia, (12)
i=k+1 Ji€(DaURUT (K 1)\T (1-1,2)

then at the time-point t = cq(k), theset S' = <{m1,}, {751}> C S, where 115 € T1(Gy,2), is a dominant set
for the problem J2|l;; < pjij < ujj,n; < 2|Cyay with the job set J and the set T (k,1 — 1) of possible scenarios.
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Proof. Let p be an arbitrary vector from the set T(k,I — 1) of possible scenarios at the time-point
t = c1(k). Let Chax denote the optimal makespan value for the deterministic job-shop problem
J2|p, n; < 2|Cmax with the set J of the given jobs and the vector p of the job processing times.

We consider an arbitrary permutation 711, € I1(G;») and show that the pair of job permutations
(', ") = ((m12,711,7051), (734,702, 7m12)) € S is an optimal one for the deterministic job-shop
problem J2|p, n; < 2|Cmax with the set J of the jobs and with any vector p € T(k,I — 1) of the job
processing times, i.e., the equality Cpmax (77, ©) = Chax holds. Since the equality Cpax (7, 7)) =
max{cy(7"), ca(7”)} holds, one has to consider two possible cases (2) and (b).

Case (a): It is assumed that ¢1(77') > ca(71”). Then, one can obtain the following equalities:

Crax(, 1) =ci(m) =max{ T pa, Con(m)}, (13)
Ji€T2UT21 U

where Cmax (775 1) is the value of makespan for the deterministic flow-shop problem F2|p; 1|Cmax with
the job set J; 1 and the vector p, 1 whose components are equal to the corresponding components of
the vector p. Due to the conditions of Theorem 9, the permutation 775 ; is optimal for the deterministic
flow-shop problem F2|p; 1|Cmax With the set 7,1 of the given jobs and with vector p; of the job
processing times. Therefore, Cmax(773 1) is an optimal makespan value for the deterministic flow-shop
problem F2|p; 1|Cmax and Cmax(n;l) is a minimal completion time for processing all jobs from the set
Jo,1 on both machines. From the equalities (13), one can obtain the equality Cmax (77, 77"") = Chax
Case (b): It is assumed that ¢ (7") < ca(71”). Then, one can obtain the following equalities:

Crmax (77, ") = c2(77"") = max Y Pi2, Cmax(ﬂl,z)}, (14)
Ji€ T2 1UHUI 2

where Cmax (711,2) is an optimal value of the makespan criterion for the deterministic flow-shop problem
F2|p1,2|Cmax with the job set 77 » and with the vector p; , of the job processing times (the components
of this vector are equal to the corresponding components of the vector p). Since 71, € I1(Gy2),
the initial part of the permutation 777 » has the following form: (Jy, J2,.. ., Jx). For every pair of jobs
from the set {J1, J2, ..., Jx}, at least one of the conditions, either (3) or (4), holds, see Theorem 1.

Therefore, for the job processing times determined by the vector p for the jobs {J1, J2,..., Jx},
the inequalities (2) hold. Thus, in the permutation 711 2 := (J1,J2,---, Jx), all the jobs are arranged in
the Johnson's order. One can conclude that the following value

Cmax(niJZg) = max {Z pi1 + Z pzZ} (15)

1<m<k i—m
determines an optimal makespan value for the determmlstlc flow-shop problem F 2|p1 |Cmax with the

jobset {J1, ]2, ..., Jx} and the corresponding vector Pl,z of the job processing times (the components of

the vector pzljef are equal to the corresponding components of the vector p). Therefore, Cmax(nfef )isa
minimal makespan value for processing jobs of the set {J1, J2, ..., Jx} on both machines. Then, for the
time-point c; (k) when machine M, completes the operation Oy,, one can obtain the following equality:

CZ(k) = max{ Z Pi2, Cmax(nlfgg)}' (16)
Ji€ T 1UDHUT 2 (k1)

Due to the inequality (12) and the equality (16), one can obtain the following inequalities for the
jobs from the conflict set {Ji 11, Jk12, -+, Jkor

k+r k+r
a®)+ Y pn<ak+ Y ug<c(l-1)+ ) In < (17)
i=k+1 i=k+1 Ji€(Jo1URUT (K1)N\T (1-1,2)
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<co(l—1)+ ) pi2 < max{ ) Pi2s Cmax(nll]/eég)} = co (k).
Ji€(J2 U RUT (K1)\JT (1-1,2) Ji€T 1 UUT12(k1)

From the inequalities (17), one can obtain the following inequality:

k+r

ci(k)+ Y pia <ca(k). (18)
i=k+1

Thus, machine M, processes all jobs from the conflict set {Ji 11, Jk12, - -, Jxrr} without idle times
and without an idle before processing the first job from this conflict set for any order of these conflict
jobs. Using the inequality (18), one can conclude that the time-point when machine M, completes
the processing of the last job from the conflict set {Ji11, Jk12, ..., Jksr} in the permutation 71y 5 is

determined as follows:
k+r

ca=ck)+ Y, po (19)
i=k+1
where ¢, is an optimal makespan value for processing jobs from the set {1, ]2, ..., Jk, Jii1,
Jk42s+ - -+ Jk4r }- Next, we consider jobs from the set {Jiyr11,- -+, Jmy, }-
Let nﬁf’zd := (Jk4r41,---,Jmy,) denote the permutation of the jobs {Jijr41,---,Jm;,} in the
permutation 711 5. Analogously as for the job set {J1, J», ..., Jx}, one can obtain that the value of

m mi2
C ey = max { a1+ j } 20
max( 1,2 ) krH1<m<m i:k§+1 pi i:Zm Pi2 ( )
is an optimal makespan value for the deterministic flow-shop problem F2|p¢4|Cmax with the job
set {Jkqsrats s ]ml,z} and with the vector p%d whose components are equal to the components of

the vector p. Thus, Cmax(ninzd) is a minimal makespan value for processing all jobs from the set

{Jewrstr-- o, ]7111,2} on both machines. The time-point when machine M, completes the processing of
the last job from the permutation 77"’ can be calculated as follows:

k+r mip

eo(m") = max{ Y pn + Coan (), 2+ Y. pi) =
i=1 i=k+r+1
k+r J k+r my o
= max{ Z pi1 + Cmax(n—flz )/ CZ(k) —+ Z Pi2 + Z piZ} =
i=1 i=k+1 i=k+r+1
k+r p be "2
= max{ pi1 + Cmax (713 ), max{ ) pi2, Cmax(nl/zg)} + ) Piz} =
i=1 Ji€Tp1UTUT1 2 (k1) i=k+1
k+r y myp be myp
= max{ Y pit + Comax(7{5), Y o+ L po Coax(m3)+ Y po}=
i=1 Ji€P1UTUT (k1) i=k+1 i=k+1
be my k+r i
= max{CmaX(nl,ﬁg) + Z Pi2, Z pin + Cmax(n?jz ) Z Piz}/ (21)
i=k+1 i=1 Ji€T1UTUT12

where relations (16) and (19) are used.

Due to Theorem 3, the set II(G;,) contains a Johnson’s permutation for the deterministic
flow-shop problem F2|p; 2|Cmax with the job set J; » and with the vector p;, of the job durations.
We denote this Johnson’s permutation as nflz. Since nf,z € I1(Gy»), the permutation nf,z has the
following form: niz =1, Tk ][k+1]/ ][k+2], e, ][k+,], Jerats - ]mm)/ where the set of indexes is
determined as follows: {[k+1],[k+2],..., [k+7r]} ={k+1,k+2,...,k+r}.
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The optimal makespan value Cmax(niz) can be calculated as follows:

min min

Cmax(ﬂ'lz = maX {2 pin + 2 pzZ} = max{ max {2 pin+ Z pio + 2 p12}

1<m<m12 i=k+1

myp k+r myp

max {Zpll—lrz;?zz} max {ZPzH‘ Z PzH‘ZPzz}}

[k+1]<m< k+r] k+r+1<m<m12 i=kt+r+1

myp k+r

— beg , , d
= maX{Cmax(nllz )+ i:kz.;_l Pi2, k1] I?n?)é[kw {Z pi1 + Z plZ} 1:21 pi1 + Cmax(ﬂinz )} (22)

where relations (15) and (20) are used. From relations (21) and (22), one can obtain the relations

myp k+r

b
(") = max{cmax(n1€§ )+ Y pa, Y i+ Crax(75%), ) Piz} <
i=k+1 i=1 Ji€Tr1UTUT12

< maX{ Crnax ( 7-[16,2 ) ’ Z Pi2 } ' >
Ji€T1UHUT 2

Therefore, relations (14) and (23) imply the equality Cimax (77, 77") = Chiax-

Thus, in both cases (a) and (b), the equality Cmax(77/,77") = Chax holds and the pair of
permutations (7', ") = (71,2, 71,73 ), (7731, 72, 71,2)) is optimal for the deterministic job-shop
problem J2[p, n; < 2|Cmax with the scenario p € T(k,! — 1). Therefore, the set S’ =<{m1 2}, {73, }>
contains an optimal pair of job permutations for the job-shop problem J2|p, n; < 2|Cmax with vector
p € T(k,1 —1) of the job processing times. Since the vector p is arbitrarily chosen in the set T(k, — 1),
the set S’ contains an optimal pair of job permutations for each scenario in the set T(k, ! —1).

Due to Definition 3, the set §" is a dominant set for the uncertain job-shop problem J2|l;; < p;; <
ujj, ni < 2|Cmax with the job set J and with the set T(k,I — 1) of possible scenarios. [

Theorem 10. Let the set S = <T1(Gi2), {713} > C S be a dominant set for the uncertain job-shop problem
]2|ll~j < pij < ujjn; < 2|Cpax with the job set J. Let the partial strict order Aiz over the set J1o =

T U *711,2 U ‘712’2 be determined as follows: J1 < ... < Jx =< {Jkg1, Jkq2r - oo Jor ) < Thart1 <+ < Ty,
If at the time-point t = ¢y (k), the following inequalities hold:

k+s k+s—1
ak)+ Y, un <co(l-1)+ ) ln+ Y, In (24)
i=k+1 Jie( T UBHUT (k-1,1)\T (1-12) =

for all indexes s € {1,2,...,r}, then at the time-point t = c1(k), the set §' = < {12}, {m3,} >, where

M2 = (]1/ sy ]k*l/ ]k/ ]k+l/ ]k+2/ sy ]k+r/ ]k+r+1/ ceey ]mlrz) S H(G1,2>/ is a dominant SethT’ the uncertain
problem J2|l;j < pij < ujj, n; < 2|Cax with the job set J and the set T (k,1 — 1) of possible scenarios.

Proof. The proof of this theorem is similar to the above proof of Theorem 9 with the exception of the
inequalities (17) and (18). From the condition (24) with s = 1, one can obtain the following inequality:

c1(k) +ugp11 < (I —1) + Y Lip + Ly. (25)
Ji€ (T2 U RUT (k=1 1)\T (1-1,2)

Based on the inequality (25), one can obtain the following relations:

c1(k) + pry11 < (k) +uppn < (I —1) + )3 lip+ ko <
Ji€ (o URUT (k—=1,1)\J (1-1,2)
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<co(l-1)+ Y. pi2 = c2(k). (26)
Ji€(JonUHUT (K1)\T (1-1,2)

Due to relations (26), the following inequality holds:

c1(k) + pry1a < ca(k). (27)

Thus, machine M, processes the job Ji.1 in permutation 711 » without an idle time between the
jobs Jx and Ji41. Analogously, using s € {2,3,...,r}, one can show that the following inequalities hold:

c1(k) + prsag + prgon < c2(k+1);

c1(k) + Prs11 + Preoa + Prgsn < ca(k+2);

k+r
c(k) + 2 pin < c(k+r—1).
i=k+1
Therefore, machine M, processes jobs from the conflict set {Ji11, Jk12,---, Jxir} In permutation
11,2 without idle times between the jobs [ 1 and Ji, between the jobs Ji;» and Ji;3 and so on,
between the jobs Ji;,_1 and Ji,. Then, the following relations hold:

k+r
co=cok+71)=co(k+7—=1) 4 pryyp = c2(k+7=2) + pryy—12 + Prgrp = ... = c2(k) + Z P2
i=k+1

leading to the equality (19). The rest of the proof is the same as the rest of the proof of Theorem 9.

It is shown that the pair of job permutations (7', 7) = (7112, 711, 705 1), (703 1, 702, 7T12)) € S is
optimal for the deterministic job-shop problem J2|p, n; < 2|Cyuqx with any vector p € T(k,I — 1) of the
job processing times. Due to Definition 3, the set S’ is a dominant set for the uncertain job-shop problem
J2|lij < pij < uij,n; < 2|Cyay with the job set J and the set T(k, ! — 1) of possible scenarios. [

It is easy to be convinced that the sufficient conditions given in Theorems 9 and 10 may be tested
in polynomial time O(r?) of the number r of the conflict jobs.

Similarly, one can prove analogs of Theorems 9 and 10 if the set S’ = <{m},},II(Gy1)> C S
provided that a dominant set for the uncertain job-shop problem ]2\11-]- < pij < ul-]f, 1; < 2|Cppax with
the job set J and the partial strict order A% over the set Jog =Ty U \721,1 U j22/1 has the following
form: ]1 <...< ]k =< {]k+1r]k+2/' ..,]k+,} =< Ik+r+1 <...=< ]mz,l‘

6. Scheduling Algorithms and Computational Results

The experimental study was performed on a large number of randomly generated instances of the
uncertain job-shop scheduling problem J2|l;; < p;;j < u;j, n; < 2|Cax. The off-line phase of scheduling
was based on Algorithms 1 and 2 developed in [8]. Algorithms 1 and 2 are presented in Appendix A.

Algorithms 3-5 are developed for the on-line phase of scheduling. The input for each of these three
algorithms includes the output of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling.

Let outputs of Algorithms 1 and 2 [8] applied at the off-line phase of scheduling consist of the
optimal permutation 777 5 of the jobs J7 » and the optimal permutation 715 1 of the jobs J; 1. Insuch a
case, the single-element dominant set DS(T) = { (712, 11, 7021), (72,1, 72, 711 2) } is already constructed
for the considered instance of the uncertain problem ]2|ll-]- < pij < ujn; < 2|Ciax- Therefore, the
pair { (7112, 711, 7T2,1), (72,1, 72, 711 2) } Of the job permutations is optimal for the deterministic instance
J2|p, n; < 2|Ciax with any scenario p € T. Thus, such an instance of the uncertain problem ]2|lij <
pij < ujj,n; < 2|Cpax is optimally solved by Algorithms 1 and 2 at the off-line phase of scheduling.
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Hence, there is no need to use the on-line phase of scheduling for such an instance of the uncertain
job-shop scheduling problem J2|l;; < p;j < u;j,n; < 2[Cax-

In Section 6.1, it shown how to solve instances of the uncertain job-shop problem J2|l;; < p;; <
ujj, n; < 2|Cinax, which cannot be optimally solved at the off-line phase of scheduling.

6.1. Algorithms 3-5 for the On-Line Phase of Scheduling

Let the considered instance of the uncertain job-shop problem ]2\117 < pij < wyj,n; < 2|Crax
cannot be optimally solved by Algorithms 1 and 2 [8] applied at the off-line phase of scheduling. Thus,
due to an application of Algorithm 1 or Algorithm 2, one can obtain one of the following three possible
outputs:

(a) the permutation 771 of the jobs from set 7, 1 and the partial strict order Aﬁz of the jobs J; »;
(b) the permutation 771 » of the jobs from set J; » and the partial strict order Ai’l of the jobs J51;
(c) the partial strict order Akz of the jobs J; » and the partial strict order Ail of the jobs 7> 1.

Let B denote a number of the conflict sets in a partial strict order (in both partial strict orders)
for the obtained output (a), (b) or (c). In other words, B denotes a maximal number of time-points in
the decision-making at the on-line phase of scheduling. Let integer b, where b < B, denote a number
of time-points in the decision-making, where optimal orders of the conflict jobs were found using
Theorem 9 or Theorem 10. Using these notations, we next describe Algorithm 3 provided that there is
no factual processing times of the jobs 7 in the input of Algorithm 3; see Remark 3.

Let Algorithm 3 terminate at Step 16, i.e., it has not been constructed an optimal pair of job
permutations for the factual scenario p* € T randomly determined after completing the on-line
phase of scheduling. Therefore, there is a strictly positive error A(s) of the objective function Cpax (s)
calculated for the constructed and realized schedule s. In such a case, the proven sufficient conditions
for the optimality of the schedule s do not hold in some decision-points (or in a single decision-point)
at the on-line phase of scheduling. If Algorithm 3 terminates at Step 17, then an optimal pair of
job permutations has been constructed for the factual scenario p* € T randomly generated after
completing the on-line phase of scheduling. The optimality of this pair of the job permutations was
established only after the schedule execution, since the tested sufficient conditions for the optimality
of the schedule s do not hold in some decision-points (or in a single decision-point).

If Algorithm 3 terminates at Step 18, then the tested sufficient conditions hold for all
decision-points considered at the on-line phase of scheduling. Therefore, the constructed pair of
job permutations is optimal for all factual scenarios p* € T which were possible during the on-line
phase of scheduling. In this case, the optimal pair of job permutations was established before the end
of the schedule execution (after the last decision-point). The described Algorithm 3 must be used if the
input (a) is obtained due to the application of Algorithms 1 and 2 [8] at the off-line phase of scheduling.
Similarly, one can describe Algorithm 4 with the sufficient conditions from the analogs of Theorems 9
and 10 for their use in the case, when the input (b) is obtained due to the application of Algorithms 1
and 2 at the off-line phase of scheduling.

Similar Algorithm 5 must be used in the case, when the input (c) is obtained due to the application
of Algorithms 1 and 2 at the off-line phase of scheduling. In Algorithm 3, a decision-point may occur
on machine M; and on machine M; simultaneously. Therefore, one has to check the conditions of
Theorems 9 and 10 or their analogs alternately for the corresponding conflict sets of the jobs from the
set J1 » and those from the set 75 ;.
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Algorithm 3 for the on-line phase of scheduling

Input:

Output:

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:
Step 11:
Step 12:

Step 13:
Step 14:

Step 15:
Step 16:

Step 17:

Step 18:

Lower bounds /;; and upper bounds u;; on the durations p;;

of all operations O;; € J processed on machines M; € M;

a permutation 771 of the jobs J; and a permutation 71, of the jobs J»;
an optimal permutation 715 ; of the jobs from the set /5 1;

a partial strict order A of the jobs from the set J12;

a number B of the conflict sets in the partial strict order Akz.
Permutation 711 5 of the jobs from the set J7 5.

Setb = 0.
UNTIL the completion time-point of the last job in the set 7,
process the whole linear part of the jobs in the partial strict order Al?
on the machine M till a conflict set of the jobs is met;

let t denote a time-point of the completion of the linearly ordered set of jobs.

Process jobs of the permutation (7151, 712) and then process the linear part
in the partial strict order AL’Z on the machine M, up to time-point t.
Check the conditions of Theorem 9 for the conflict set of the jobs.
IF the sufficient conditions of Theorem 9 hold
THEN set b := b + 1 and choose an arbitrary order 77, of the conflict jobs
GOTO step 11.
ELSE set d, = I, — u, for all conflict jobs |,
and partition the conflict jobs |, into two subsets X; and Xj,
where [, € Xjifd; > 0,and |, € X, otherwise.
Construct the following order 77, of the conflict jobs:
First, arrange the jobs from the set X; in the non-decreasing order
of the values of u;1, then arrange the jobs from the set X»
in the non-increasing order of the values of [;5.
Check the conditions of Theorem 10 for the constructed
permutation of the conflict jobs.
IF the sufficient conditions of Theorem 10 hold THEN
set b :=b+1GOTO step 11.
Construct a Johnson’s permutation 77, of the conflict jobs
based on the inequalities (2) provided that p;; = (u;; +1;;) /2.
Include the permutation 77, of the conflict jobs in the strict order
A}gz instead of the conflict set of these jobs.
RETURN
IF b = B THEN GOTO step 18.
Calculate makespan Cmax(s) for the schedule s constructed at steps 1 —12;
calculate makespan Cmax(s*) for the optimal schedule s* polynomially
calculated for the corresponding deterministic problem J2|p*, n; < 2|Cpax,

where the factual processing times p* are randomly generated for all jobs J.

IF Cmax(s) = Cmax(s*) THEN GOTO step 17.

STOP 4: The constructed schedule s is not optimal for the factual
processing times p* of the jobs J.

STOP 3: The optimality of the constructed schedule s for the factual
processing times p* of the jobs J was established only after
the execution of the schedule s.

STOP 2: The optimality of the constructed schedule s for the factual
processing times p* of the jobs J was proven before the end
of the execution of this schedule.




Mathematics 2020, 8, 1314 20 of 51

6.2. The Modified Example with Different Factual Scenarios

To demonstrate the on-line phase of scheduling based on Algorithm 3, it is considered Example 2
of the problem J2|I;; < p;; < ujj, n; < 2|Cpiax with the numerical input data given in Table 1 similarly
as for Example 1 with the only one exception. It is assumed that u3, = 6.

The first part of the off-line phase of scheduling for solving Example 2 is similar to that for
Example 1 till checking the conditions of Theorem 2. Indeed, the conditions of Theorem 2 do not hold
for the jobs from the set 71 » since the following strict inequalities hold: 125 > I35 and uzp > Iy 5.

Due to checking the inequalities (3) and (4), one can determine the binary relation Aiz over
the set 77 7 in the following form: J; < {], J3}. Thus, the set {]», J3} is a conflict set with two jobs;
see Definition 5. Then, one can consecutively check the conditions of Theorems 6-8 for the jobs from
the set J7 5. After letting k = 1, r = 2, one can calculate L, = ZI,-EJMUJZ lip=lgp+172 4180+ 157 =
2+ 3 +4+2 = 11 and then obtain the following relations:

k+r k
Zuil:u1,1+u2,1+u3,1:7+9+9:25gL2+Zli2:L2+l1,2:11+6:17.
i=1 i=1

Thus, the condition of Theorem 6 does not hold for Example 2. Next, one can check the conditions
of Theorem 7. Similarly as in the previous case, one can obtain that L, = 11, k = 1, and r = 2. Due to
the condition (10), one can obtain two inequalities as follows: s = 1 and s = 2. Then, one can check
both permutations of the jobs from the set /1 », which satisfy the partial strict order A2, as follows:
1(G12) = {mi, 77, }, where 7} , = {J1, )2, 3} and 717, = {J1, J3, )2}

Thus, the permutation ”%,2 must be tested. One can obtain the following relations:

up1 =9 < Lo+ (11,2 — u1,1) =11+ (6— 7) = 10;

2

uzg =9 £ Lo+ Y (lp—up) =Lo+ (g —u11) + (bp— 1) =11+ (6—7)+ (5—9) =6.
i=1

Hence, the condition of Theorem 7 does not hold for the permutation 71%,2.

Analogously, for the permutation 7'[%,2, the following relations hold:

uz1 =9 <L+ (11,2 — u1,1) =11+ (6— 7) =10;

2
up1 =9 £ Lo+ ) (lp—up) = Lo+ (hp —u11) + (g —uz1) =11+ (6—7) + (4—9) =5.
i-1

Hence, the condition of Theorem 7 does not hold for the permutation 72 , as well.

It is impossible to check the condition of Theorem 8, since the conflict set of the jobs {], J3} is
located at the end of the partial strict order AQZ . Thus, the off-line phase of scheduling is completed,
and the constructed partial strict order A is not a linear order. Therefore, there does not exist a pair of
permutations of the jobs, which is optimal for any scenario p € T. In this case, Algorithms 1 and 2 [8]
do not terminate with STOP 1. A scheduler needs to use the on-line phase of scheduling for solving
Example 2 further.

The output of the off-line phase of scheduling for Example 2 contains the permutation 71y =
(Je, J7,J3) of the jobs [ 1 processed on both machines M; and M,. The partial strict order AQZ =1 <
{J2,J3}) of the jobs 7 5 is constructed. The obtained output (a) of the off-line phase of scheduling
shows that Algorithm 3 must be used at the on-line phase of scheduling for solving Example 2.

We next show that Algorithm 3 can be stopped either with STOP 2 (Step 18) or with STOP 3 (Step
17) or with STOP 4 (Step 16) depending on the factual values of the job processing times. Note that
B = 1; see Algorithm 3.

Case (j): Algorithm 3 is stopped at step 18 (STOP 2).
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Consider Step 2 and Step 3 of Algorithm 3. The schedule execution begins as follows: at the initial
time-point ¢t = 0, machine M; starts to process operation O; 1, while machine M, starts to process
operation Og». This process is continued until the time-point t = 4 when machine M, completes
operation Og . At this time-point, an exact value of the processing time py , becomes known, namely:
Pgo = 4. Then, machine Mj starts to process operation Oy, and machine M; continues the processing
of operation Oy ;. At the time-point t = 6, machine M; completes operation Oy ;. Therefore, an exact
value of the duration of operation O;,; becomes known as follows: pj; = 6. At this time-point, a
scheduler needs to choose either job |, orjob J3 to be processed next on machine M;. Note that machine
M, continues to process the operation Oy, for two time units, wherein I7, = 3.

Consider Step 4 of Algorithm 3, where the condition (12) of Theorem 9 is checked for the conflict
set of jobs {5, J3}. Due to equalities k = 1,7 = 2, ¢1(1) = 6, c2(6) = 4, one can obtain the following
relations: ¢1(1) +upy +us; =6+9+9=23L2(6) +1lyo+1lgo+1lsp+lho=4+3+4+2+6=19.

At Steps 6 and 7 of Algorithm 3, one can obtain d, = —4, d3 = —5 and permutation 77; having
the following form: 77; = (J, J3). At Steps 8 and 9 of Algorithm 3, the conditions of Theorem 10 are
checked as follows: ¢1(1) +up1 =6+9=15<2(6) +lyo+Ilgp+ 150+ 110 =4+3+4+2+6=19;

(1) 4+up1+uz; =64+94+9=24<cp(6)+1l7o+1lgo+lsp+lio+hp=4+3+4+2+6+5=24.

At Step 11 of Algorithm 3, one can obtain the following strict order A%? = (J; < J, < J3) along
with the permutation 711, = (J1, J2, J3). Since b = 1 = B (see Step 13), Algorithm 3 is stopped at Step
18; see STOP 2. The optimal order of the conflict jobs ], and J3 is found at the time-point t = 6 and the
pair of job permutations 77’ = (J1, J2, J3, Ja, J6, J7, J3) and 7" = (Js, J7, Js, J5, 1, J2, J3) is optimal for any
scenario from the remaining set of possible scenarios T(1,6) = {p € T : pi, =6,p;, = 4}.

Thus, an additional information on the exact values of the processing times pg , and pj ; allows a
scheduler to find an optimal order of all conflict jobs. It schould be noted that the optimality of the
constructed schedule is proven at the time-point t = 6, i.e., before the end of the schedule execution.

At the time-point t = 6, machine M; begins to process operation O, ;. Note that all the above
checks are performed at the time-point ¢ = 6.

Case (jj): Algorithm 3 is stopped at Step 17 (STOP 3).

It is considered another possible realization of the semi-active schedule since another factual
processing times are randomly generated at the on-line phase of scheduling for Example 2.

At the time-point t = 0, machine M; begins to process operation Oy 1, while machine M, begins
to process operation Og . Let machine M, complete operation Og; at the time-point ¢ = 2.8. Thus,
the exact processing time pg , = 2.8 becomes known. Then, machine M, begins to process operation
Oy, and completes this process at the time-point t = 6 (i.e., pé/z = 3.2), while machine M; continues
processing operation O; ;. Let at the time-point t = 6.9, machine M; completes operation O
(i.e., p1; = 6.9). One needs to choose either job ], or job 3 to be processed next on machine M;. At this
time, machine M, continues to process the operation Og since t = 6 and (6.9 —6) = 0.9 < 4 = Ig».

Based on the checking of the condition (12) of Theorem 9 for the conflict set of the jobs, one can
obtain the following relations: k = 1,7 =2, ¢1(1) = 6.9, c2(7) = 6;

01(1)+u2,1+u3,1 =69+94+9=239 L Cz(7)+lg,2+l5,2—|—11,2 =6+4+2+6=18.

Similarly as in the previous case (j), one can obtain d, = —4, d3 = —5, and the permutation 71,
having the following form: 77, = (]2, J3). The conditions of Theorem 10 are checked as follows:

c1(1) +up; =69+9=159< c(7) +lgo+lsp+lip=6+4+2+6=18;

c1(1)+u2,1+u3,1 =694+9+9=249 L C2(7)+18,2+l5,2+11,2+1212I6+4+2+6+5=23.

Thus, the conditions of Theorem 10 do not hold. At Step 10 of Algorithm 3, one can construct
a Johnson’s permutation 77, of the conflict jobs based on the inequalities (2) for the processing times
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of all conflict jobs determined as follows: p;; = (u;j + I;;) /2. For the jobs ], and J3, one can calculate
P21 = 8.5, p22 = 5.5, p31 = 8, p32 = 5 and the Johnson’s permutation 77, of the conflict jobs in the
following form: 7w, = (]2, J3).

At the time-point t = 6.9, one can obtain the pair of permutations 7’ = (J1, ]2, J3, J4, J6, 7, J8)
and 7t = (Jo,J7,Js,J5,J1, J2, J3) of the jobs for their processing on machines M. Therefore, at the
time-point t = 6, machine M; begins to process operation O, ;. Then, at the time-point ¢ = 10, machine
M, completes operation Og (the exact processing time pg, = 4 becomes known), and then begins
to process operation Os till the time-point t = 12.4 (thus, p5, = 2.4), and then begins to process
operation O;,. At the time-point t = 15.5, machine M; completes operation O;; (i.e., the exact
processing time p; ; = 8.6 becomes known), and then begins to process operation O 1.

Then, at the time-point ¢ = 18.7, machine M; completes operation O  (the exact processing time
pi, = 6.3 becomes known), and then begins to process operation O till the time-point t = 23.7
(thus, P§,2 = 5). At this time-point, machine M; still processes operation O3 ;. As a result, machine M,
has an idle time in the realized schedule.

At the time-point f = 24.5, machine M; completes operation O3 (i.e., p;l =9), and then begins
to process operation Oy4 1. Machine M, begins to process operation O3, immediately.

At the time-point { = 26.5, machine M; completes operation Oy (i.e., py; = 2), and then begins
to process operation O till the time-point t = 27.5 (i.e., ps; = 1). Then, machine M; processes
operation Oy, till the time-point t = 28.5 (i,e., p;; = 1), and then begins to process operation Og ;.

At the time-point t = 30.5, machine M, completes operation O35 (i.e., the exact processing time
p3, = 6 becomes known). Thus, machine M; completes to process all jobs in the realized permutation
7"’ at the time-point ¢;(3) = 30.5. At the time-point t = 31.5, machine M; completes operation Og
(and the exact processing time pg ; = 3 becomes known). Thus, machine M; completes to process all
jobs in the realized permutation 71" at the time-point ¢1(8) = 31.5.

All uncertain processing times p € T took their factual values p?‘j as follows:

p* = (pi1, Pios Paar---/ P72, Ps1s Psa) = (69, 63,86,5,9,6,2,0,0,24,1,28, 1,32, 3, 4).

It should be remind that these factual processing times p* were randomly generated at the
time-points of the completions of the corresponding operations; see Remark 3.

For the constructed and realized schedule (7/,71"), the equalities Cyax(7t,7”) =
max{c1(8),c2(3)} = max{31.5,30.5} = 31.5 hold; see Step 14 of Algorithm 3.

Now, one can check whether the constructed and realized schedule (7, 1'’) is optimal for the
factual vector p* of the job processing times. To this end, one can construct the pair of Jackson’s
permutations (77, 7t) for the deterministic problem J2|p*, n; < 2|Cpqy with the factual vector p* of
the job processing times. Then, one can find the optimal makespan value for the deterministic problem
J2|p*, n; < 2|Cpax as follows: Cpax (7, /) = 31.5; see Step 15 of Algorithm 3.

The obtained equalities Cyax (77}, 1)) = 31.5 = Cpax(77, 7”") mean that Algorithm 3 has
constructed the optimal schedule for the deterministic problem J2|p*,n; < 2|Cyax with the factual
vector p* of the job processing times. However, the optimality of this constructed and realized schedule
(!, ") was established after the execution of the whole schedule (7, 7). Indeed, Algorithm 3 is
stopped at Step 17; see STOP 3. The constructed and realized schedule (77, r'’) is presented in Figure 4
for case (jj) of the randomly generated factual processing times p* of the jobs 7.

Case (jjj): Algorithm 3 is stopped at Step 16 (STOP 4).

It is considered the same process as in the previous case (jj) up to the time-point t = 28.5 when
machine M; begins to process operation Og; (machine M, processes operation O3, at this time-point).

Let the equality pg’ = 1 hold for the factual processing time pg’ of the operation Og; and
machine M; complete operation Og ;. Thus, machine M; completes all operations of the jobs J in the
permutation 7t’ at the time-point 29.5. Therefore, the equality ¢1(8) = 29.5 holds. Similarly as in the
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previous case, machine M, completes operation O3, at the time-point { = 30.5. Thus, p;, = 6 and
c2(3) = 30.5. The factual vector of the job processing times is randomly generated as follows:

P = (pi1, Pio P21,---/ P72, P81, Psp) = (6.9, 63,86,5,9,6,2,0,0,24,1,28,1,32,1, 4).

The makespan value for the constructed and realized schedule (77, 7”") is determined as follows:
Comax (77, ©"") = max{c1(8),c2(3)} = max{29.5,30.5} = 30.5. However, the optimal makespan value
for the deterministic problem J2|p**, n; < 2|Cyax with the factual vector p** of the job processing times
is equal t0 29.7 < 30.5 = Cyax (7, '"), since the optimal order of the jobs ], and J3 is determined as
follows: (J3, J2). Hence, the constructed and realized schedule (77/, 77'7) is not optimal for the factual
vector p** € T of the job processing times. In this case, Algorithm 3 is stopped at Step 16; see STOP 4.

idle time

072 : 032 052

60 6.9 10.0 237 245 265275285 305315

Figure 4. The optimal semi-active schedule for the Example 2 in case (jj).
6.3. Computational Experiments

We describe the computational experiments and computational results obtained for the tested
randomly generated instances of the uncertain problem ]2|Zij < pij < Ujj, nj < ZICmax. Each tested
series consisted of 1000 randomly generated instances with fixed numbers n € {10,20,...,100} of the
jobs J and the maximum possible errors € {5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% }
of the random durations of the operations O;;. The lower bounds /;; and upper bounds u;; on the
possible values of the durations p;; of operations Oy, p;; € [lij, uij], were randomly generated as follows.
The lower bound l,-]- was randomly chosen from the segment [10, 100000] using a uniform distribution.
The upper bound u;; was determined using the equality u;; = I;; (1 + %). The bounds /;; and u;;
are decimal fractions with the maximum numbers of digits after the decimal points. The inequality
lij < u;j holds for each job J; € J and each machine M; € M.

Algorithms 1 and 2 developed in [8] were used at the off-line phase of scheduling. If the tested
instance was not optimally solved using Algorithms 1 and 2, then corresponding Algorithms 3, 4 or 5
was used at the on-line phase of scheduling for solving further the instance of the uncertain problem
]2|ll~j < pij < ujj,n; < 2|Cpax- All developed algorithms were coded in C# and tested on a PC with
Intel Core i7-7700 (TM) 4 Quad, 3.6 GHz, 32.00 GB RAM.

In the computational experiments, two procedures were used to generate factual durations of the
operations Oj; (a factual duration of the job J; remained unknown until completing this job). In the
first part of the computational experiments, the factual duration pl’fj of the operation O;; was randomly
generated using a uniform distribution in the range [I;;, u;;]. In the second part of the computational
experiments, two distribution laws were used in the experiments to determine the factual scenarios.
Namely, we used the gamma distribution with parameters (0.5;1) (we call it as the distribution law
with number 1) and the gamma distribution with parameters (7.5;1) (we call it as the distribution law
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with number 2). For generating factual processing times for each tested instance, the number of the
used distribution was randomly chosen from the possible set {1,2}.

The sufficient conditions proven in Section 5 are verified in polynomial time O(1?) of the number
n of the jobs J. Therefore, all series of the tested instances in our computational experiments were
solved very quickly (less than one second per a series with 1000 instances).

The experiments include testing of 14 classes of the instances of the uncertain problem
]2|li]' < pij < g n; < 2|Cyax with different ratios of the numbers mj, my, my, and mpq (Where
n = my + my + my + my 1) of the jobs in the subsets 71, J2, J12 and J, 1 of the set J, respectively.
Every class of the tested instances of the problem | 2|ll-j < pij < ujj,n; < 2|Ciuax is characterized by the
following ratio:

" 100% : 72 . 100% : ™2 . 100% : 2L . 100% (28)
n n n n
of the percentages of the numbers of jobs in the subsets J;, J2, J12 and J, 1 of the set J, respectively.

Tables A1-A14 present the computational results obtained for the tested classes of instances with
the following ratios (28):

0% : 0% : 10% : 90% (class 1, Table A1); 0% : 0% : 20% : 80% (class 2, Table A2);

0% : 0% : 30% : 70% (class 3, Table A3); 0% : 0% : 40% : 60% (class 4, Table A4);

0% : 0% : 50% : 50% (class 5, Table A5); 5% : 5% : 5% : 85% (class 6, Table A6);

5% : 15% : 5% : 75% (class 7, Table A7); 5% : 20% : 5% : 70% (class 8, Table AS);

10% : 10% : 10% : 70% (class 9, Table A9); 10% : 10% : 40% : 40% (class 10, Table A10);

10% : 20% : 10% : 60% (class 11, Table A11); 10% : 30% : 10% : 50% (class 12, Table A12);

10% : 40% : 10% : 40% (class 13, Table A13); 10% : 60% : 10% : 20% (class 14, Table A14).

All Tables A1-A14 are organized as follows. The procedure for generating factual processing
times (the uniform distribution or the gamma distribution) is indicated in the first row of each table.
Numbers 7 of the given jobs J in the tested instances of the problem ]2|ll~j < pij < ujj,ni < 2|Cpayx are
presented in the second row. The maximum possible errors é of the randomly generated processing
times (in percentages) are presented in the first column. For the fixed maximum possible error é, the
obtained computational results are presented in four rows called Stop1, Stop2, Stop3 and Stop4.

The row Stop1 determines the percentage of instances from the tested series, which were optimally
solved at the off-line phase of scheduling using either Algorithms 1 or 2 developed in [8]. For such
an instance, an optimal pair (77, 7”7) of the job permutations was constructed before the time-point
of starting the first job of the realized schedule, i.e., the equality Cyax (77, 7"") = Cpax (77*, 7**) holds,
where (77%, T**) € S is an optimal pair of job permutations for the deterministic problem J2|p*, n; <
2|Cinax with the factual scenario p* € T that is unknown before completing the whole jobs J.

The row Stop2 determines the percentage of instances, which were optimally solved at the on-line
phase of scheduling using corresponding Algorithms 3, 4 or 5. For each such an instance, an optimal
pair (7, 7'’ of job permutations for the deterministic problem J2|p*, n; < 2|Cpqx associated with the
factual scenario p* € T was constructed by checking sufficient conditions in Theorem 9 or Theorem 10.
Remind that the factual scenario p* € T for the uncertain problem ]2|li]- < pij < Ujj, 1nj < 2|Cax
remains unknown until completing the jobs J.

The row Stop3 determines the percentage of instances, which were optimally solved at the on-line
phase of scheduling using Algorithms 3, 4 or 5. In such a case, an optimal pair of job permutations
has been constructed for the factual scenario p* € T. However, the optimality of this pair of job
permutations was established only after the execution of the constructed schedule.

The row Stop4 determines the percentage of instances, for which the constructed and realized
schedule is not optimal for the deterministic instance J2|p*, n; < 2|Cyqx with the factual scenario p*.

6.4. Computational Results

First of all, it is important to determine a total number of the tested instances, for which 3
(or Algorithms 4 and 5) were completed at Step 18 (STOP 2) or at Step 17 (STOP 3). This number shows
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how many tested instances of the uncertain job-shop scheduling problem have been optimally solved
either with the proofs of their optimality before the completion of processing all jobs [J (STOP 2) or the
optimality of the obtained schedule was established after the realization of the constructed schedule
(STOP 3). For the numbers of jobs from n = 10 to n = 100 and for each value of the tested errors ¢ of
the processing times, average percentages of the instances optimally solved by Algorithms 1,2, 3,4 or 5
(these average percentages summarize the values given in rows Stop1l and Stop2 in all Tables A1-A14)
are presented in Table 2 and Figure 5.

Table 2. Average percentages of the instances whose optimality of the constructed permutations was
proven at the off-line and on-line phases of scheduling.

0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0% : 0% :10% : 90%  98.38 95.66 7432 40.09 1856 8.65 44 248 158 095 0.57
0% :0% :20% :80%  99.48 98.81 9437 7452 4533 2420 1232 655 387 259 1.65
0% :0% :30% :70%  99.87 99.71 9899 95.09 8133 5933 36.65 21.67 1193 728 439
0% : 0% :40% : 60%  99.97 9994 99.73 99.02 97.09 9086 785 59.76 40.85 2593 152

0% : 0% : 50% : 50% 100 9999 9993 99.73 9913 9755 9421 86.65 7235 5141 2945

5% : 5% : 5% : 85% 99.67 9845 7897 4319 1926 9.11 431 2.02 1.1 058 027

5% :15% : 5% : 75%  99.64 98.86 84.44 51.06 2465 11.88 643 334 195 1.02 0.68

5% :20% : 5% :70%  99.57 9897 8692 5579 2959 1498 797 442 259 145 101
10% : 10% : 10% : 70% 99.84 9948 97.46 8355 57.09 3411 1895 11.14 6.81 429 2.8
10% : 10% : 40% : 40% 99.99 100 9996 99.89 99.69 9935 9841 9655 92.84 85.66 73.22
10% : 20% : 10% : 60% 99.87 99.68 9837 90.56 71.05 4826 30.28 1822 1136 721 479
10% : 30% : 10% : 50%  99.9 99.72 99.11 95.33 83.85 66.15 4934 3435 2413 16.64 11.44
10% : 40% : 10% : 40% 99.92 99.75 9933 9797 9252 8269 70.01 58.6 4852 4036 32.76
10% : 60% : 10% : 20%  99.98 9998 99.93 99.83 9959 99.01 9796 96.16 93.01 89.46 85.75

Table 2 shows the total percentages of the optimally solved instances for all classes of the tested
instances, for which the optimal schedules were constructed either at the off-line phase of scheduling
(STOP 1) or at the on-line phase of scheduling (STOP 2). One can see that for three small values of
the maximal errors 6 € {5%, 10%,20%} for most classes, more than 90% (up to 100%) of the tested
instances were optimally solved. For all tested classes with a maximal error 6 < 20%, more than 70%
tested instances were optimally solved at the off-line or on-line phases of scheduling.

With a further increasing of the maximal error §, the percentage of solved instances drops rapidly.
For most tested classes with the maximal error J greater than 70%, the percentage of solved instances
is less than 10%. However, these indicators differ for different tested classes. For classes 4, 5, 10, 13
and 14 with maximal errors § < 70%, more than 60% of the tested instances were optimally solved
with the proof of the optimality before completing all the jobs. The best computational results are
obtained for classes 5, 10 and 14 of the tested instances. More than 80% of the instances from these
three classes were optimally solved at the off-line phase of scheduling or at the on-line phases of
scheduling provided that the maximal error ¢ of the given job processing times was no greater than
70%, i.e., for § € {5%,10%,15%, 20%, 30%, 40%,50%, 60%, 70%}. For both classes 10 and 14 of the
tested instances even with an error § = 100%, more than 70% of the instances were optimally solved.

On the other hand, for both classes 1 and 6 with a maximal error § = 40%, only less than 20%
of the tested instances were optimally solved at both off-line phase and on-line phase of scheduling.
For classes 1 and 6 with § = 50%, less than 10% of the tested instances were optimally solved.
Furthermore, these two classes of instances are most difficult ones to find an optimal schedule with
the proof of its optimality before completing all the jobs using the on-line phase and off-line phase
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of scheduling. It should be noted that all tested classes of instances demonstrate a monotonic decrease
in the percentages of the optimally solved problems with an increase of the values of the maximal
error ¢ of the job processing times; see Figure 5.
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Figure 5. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the off-line phase and on-line phase of scheduling.

Let us consider the percentages of the tested instances, for which the optimality of the constructed
schedules was proven at the on-line phase of scheduling and the proofs of their optimality being
obtained before completing all the jobs. Note that it is novelty of this paper; see rows Stop2 in
Tables A1-A14. For all tested numbers of the jobs, n € {10,20,...,100}, and for all maximal values of
the errors 6 € {5%,10%,20%, ...,100%} of the job processing times, the average percentages of the
instances, which were optimally solved by Algorithms 3, 4 or 5 at the on-line phase of scheduling are
presented in Table 3, where only Stop2 is indicated.

It should be noted that the monotonous increase of the percentages of the optimally solved
instances takes place only for classes 10 and 14 of the tested instances. For other tested classes of
instances, there is a maximum, and for the different classes of the tested instances, these maximal vales
being achieved for different maximal values of the errors §. Then the percentages of the optimally
solved instances decrease again with the increasing of the maximal values J. The values of the maximal
numbers of instances, which optimal solutions have been proven at the on-line phase of scheduling
(STOP 2), vary from 0.59% to 8.69% for different classes of instances.

Classes 1-5 are distinguished from the above classes since their maximal numbers of the instances
optimally solved at the on-line phase of scheduling vary from 6% to 9%. Average percentages of the
instances from these five classes, which were optimally solved by Algorithms 3, 4 or 5 at the on-line
phase of scheduling (only Stop2) are shown in Figure 6.

Note that for the difficult classes 1 and 6, the percentages of instances, which were optimally
solved at the on-line phase of scheduling with the proofs of their optimality, behave identically with
the reaching of the maximum for the maximal error § = 20%. However their maximal values differ,
namely: from 2.96% for class 6 up to 8.69% for class 1.
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Table 3. Average percentages of the instances whose optimality of the constructed permutations was
proven at the on-line phase of scheduling.

5% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0% :0% :10%:90% 097 3.68 869 726 38 192 106 05 034 02 0.11
0% :0%:20%:80% 024 124 523 859 785 533 263 149 078 059 032
0% :0% :30% :70%  0.03 022 133 427 682 813 578 4 249 166 1.07
0% :0% :40%:60%  0.02 0.06 031 093 205 415 557 653 56 444 3.23
0% : 0% : 50% : 50% 0 001 0.06 025 053 124 262 433 606 74 6.23
5% : 5% : 5% : 85% 033 101 29 231 163 088 049 025 015 0.07 0.03
5% :15% : 5% :75% 027 084 264 239 178 093 047 03 019 0.09 0.08
5% :20% :5%:70% 028 0.69 238 28 176 107 06 046 026 012 0.04
10% :10% : 10% : 70% 0.06 0.165 0.83 1.87 195 156 1.08 0.69 043 032 0.24
10% : 10% : 40% : 40% 0 0 002 004 005 014 021 03 045 068 077
10% : 20% : 10% : 60%  0.05  0.13 06 129 177 16 122 082 057 041 025
10% :30% :10% : 50% 0.01 007 036 091 149 132 148 1.03 07 048 0.36
10% : 40% : 10% : 40% 0 003 016 041 078 117 129 101 09 062 046
10% : 60% : 10% : 20% 0 0 001 005 008 017 028 038 045 051 059

For the instances, for which the optimality of the constructed schedules was not proven before
completing all the jobs J, the relative errors A% of the achieved objective function vales for the
realized schedules were calculated. Note that the positive errors A% may occur only if Algorithm
3 (or Algorithms 4 and 5) have been stopped at Step 16; see STOP 4. For all tested numbers of jobs
n € {10,20,...,100} and for all maximal values of the errors § € {5%,10%,20%,...,100%} of the
job processing times, the maximal values of Ay;;x% and the average values of A% were calculated
separately for instances with uniform distributions (see Table 4) and gamma distributions (see Table 5).

It can be seen that the values of maximal errors Az, % significantly differ when applying different
distribution laws. With using a uniform distribution, the maximal error A,y does not exceed 9%,
while when using a gamma distribution, the maximal error Ay, could reach a value more than 17%.

It can be seen that for using various distribution laws, Algorithm 3 (Algorithms 4 and 5 as well)
terminates at STOP 4 with various combinations of the tested classes and maximal errors 6%. If a
uniform distribution is used, then for classes 1-2, strictly positive errors A% arise for all values of the
tested maximal errors §%. For classes 9-10 and 11-13, such errors appear more often with increasing
the maximal error 6%.

For a gamma distribution, for all values of 6%, the error A% arises only for class 1. For classes
2-4, 6, 8, 10, the error Ay, % arises with the growth of maximal errors §%. For classes 7, 9, 11-13, on the
contrary, the error A% is more common for small values of the maximal errors 6%.
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Table 4. Maximal errors Ay, and average errors Agy, for all tested instances with factual processing

times randomly generated based on a uniform distribution.

Class 0% 5% 10% 20% 30% 40% 50% 60%

70%

80%

90%

100%

1

Apayx 0.031511 0.300924 0.691062 0.333292 1.110492 0.881902 2.246299

3.263145 2.729286 3.85936 5.024917

Agpe 0.000003 0.000058 0.000225 0.000057 0.000333 0.000613 0.000733

0.00135 0.001868 0.001409 0.002253

2 Apax 0.0475 0.189872 0 0.125467 0 0.441669 0.243659 1.076096 3.127794 1.286158 1.353086
Agye 0.000005 0.000023 0 0.000013 0 0.000064 0.000045 0.000189 0.000976 0.000221 0.000135

3 Amax 0 0 0 0 0 0 0 0 0.8199 0 0
Agve 0 0 0 0 0 0 0 0 0.000082 0 0

4 Apax 0 0 0 0 0 0 0 0 0 0 0
Agve 0 0 0 0 0 0 0 0 0 0 0

5  Amax 0 0 0 0 0 0 0 0 0 0 0
Agoe 0 0 0 0 0 0 0 0 0 0 0

6 Apax 0 0 0 0 0 0.411415 0.081623 0 0 0 0
Agve 0 0 0 0 0 0.000082 0.000016 0 0 0 0

7 Apmax 0 0 0 0 0 0 0 0 0 0 0
Agve 0 0 0 0 0 0 0 0 0 0 0

8  Amax 0 0 0 0 0 0 0 0 0 0 0
Agoe 0 0 0 0 0 0 0 0 0 0 0

9 Apax 0 0.068237 0.055299 0 1.31253 0 0.91223 0.893705 1.697913 2.166717 8.617851
Agve 0 0.000007 0.000006 0 0.000244 0 0.000144 0.000167 0.000338 0.000558 0.001348

10 Apax 0 0 0 0 0 0 0 0 0 0 0
Agve 0 0 0 0 0 0 0 0 0 0 0

11 Apax 0 0 0 1.47875 3.660297 5.724288 0.810014 3.316178 0.39653 4.42828 4.666154
Agve 0 0 0 0.000148 0.000694 0.000572 0.000081 0.000332 0.000040 0.000799 0.000924

12 Apax 0 0 0 0 0 0 0 0 0 0 7.243838
Agoe 0 0 0 0 0 0 0 0 0 0 0.000724

13 Apax 0 0 0 0 0 0 0 0 0 0 5.036085
Agve 0 0 0 0 0 0 0 0 0 0 0.000504

14 Apax 0 0 0 0 0 0 0 0 0 0 0
Agve 0 0 0 0 0 0 0 0 0 0 0

As one can see, using the uniform distribution for the generation of the factual job processing times
for classes 4, 5, 7, 10, 14, all tested instances were solved optimally using the developed algorithms and

two phases of scheduling. In other words, there are no instances, for which corresponding Algorithms
3,4 or 5 was stopped at Step 16 (STOP 4). However, for the gamma distribution, there are only two
such classes 5 and 14. Thus, classes 5 and 14 can be considered as easy ones, while class 1 is the most
difficult one. As for class 1, Algorithms 3, 4 and 5 are stopped at Step 16 (STOP 4) for all values of the
tested maximal errors 6%. Moreover, the maximum makespan error A% of more than 5% for the
uniform distribution and more than 10% for the gamma distribution is found for classes 1, 9, 11 and 12
of the tested instances (these classes are difficult for the used stability approach).
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Table 5. Maximal errors Ay, and average errors Agy, for all tested instances with factual processing
times randomly generated based on a gamma distribution.

Class 0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 Awmax 0211802 0.509319 1.995284 2.439105 4.8928 2.670648 6.613935 8.782202 10.59834 9.153295 9.50327
Agge  0.000055 0.000131 0.00031 0.000746 0.001754 0.001746 0.00369 0.005033 0.006755 0.011687 0.01144

2 Apax 0 0 0 0 0 4182544 1.361694 1.070905 5.634459 7.845669 7.974282
Agoe 0 0 0 0 0 0.000595 0.000317 0.000107 0.001382 0.001737 0.001725
3 Apax 0 0 0 0 1.32533 0 0 5.566808 0 4.026352 5.385314
Agoe 0 0 0 0 0.000133 0 0 0.000557 0 0.000511 0.001354
4 Apax 0 0 0 0 0 0 0 0 0 6.044646 0
Agve 0 0 0 0 0 0 0 0 0 0.000604 0
5  Apax 0 0 0 0 0 0 0 0 0 0 0
Agoe 0 0 0 0 0 0 0 0 0 0 0
6 Apax 0 0 0 0.061048 0 0.387884 1.081353 1.125343 0.710307 0.643768 0.67762
Agve 0 0 0 0.000012 0 0.000078 0.000216 0.000401 0.000206 0.000343 0.000136
7 Dpax 0 0 0.143177 0 0 0 0 0 0 0 0
Agve 0 0 0.000029 0 0 0 0 0 0 0 0
8  Apax 0 0 0.388797 0 0.426346 0 0.289505 0.059146 2.478004 1.167724 4.748751
Agoe 0 0 0.000078 0 0.000085 0 0.000029 0.000006 0.000442 0.000234 0.000948
9 Apmax 2.64165 6.620637 5.266738 4.163808 10.56515 0 0 0 0 0 0
Agve 0.000852 0.001946 0.001696 0.001615 0.003941 0 0 0 0 0 0
10 Apax 0 0 0 0 0 0 0 0.714515 0 0.334513 3.232162
Agve 0 0 0 0 0 0 0 0.000071 0 0.000033 0.000584
11 Apar 2988951 10.50113 2.526341 5.632594 7.258956 0 0 0 0 0 0
Agye  0.0003 0.001289 0.000431 0.000887 0.001595 0 0 0 0 0 0
12 Apax 0 0.095929 1.639148 17.64929 6.3913 0 0 0 0 0 0
Agoe 0 0.000010 0.000164 0.002948 0.001737 0 0 0 0 0 0
13 Apax 0 0.967642 0.7847 0 0 0 0 0 0 0 0
Agpe 0 0.000097 0.000078 0 0 0 0 0 0 0 0
14 Apax 0 0 0 0 0 0 0 0 0 0 0
Agve 0 0 0 0 0 0 0 0 0 0 0

Class 13 of the tested instances is a rather strange one. For using the uniform distribution,
a maximum makespan error A% of more than 5% was obtained, while when for using the gamma
distribution, the maximum makespan error A;;;x% did not reach even 1%. Note that for all tested
classes of the instances, the average makespan errors Agy. % for all tested numbers n € {10, 20, ...,100}
of jobs J are less than 0.02%.

Maximal relative makespan errors A,y % for each tested class and for all values of the tested
maximal errors ¢ are shown in Figure 7 for the instances with uniform distributions and in Figure 8 for
the instances with gamma distributions of the factual durations of the given operations.

Figures 7 and 8 also show that the maximal value of the makespan errors A;;;x% for the
constructed and realized schedule for the factual scenarios are achieved for different values of the
maximal errors 6% for different classes of the tested instances.
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Figure 6. Average percentages of the instances whose optimality of the constructed pair of job
permutations was proven at the on-line phase of scheduling.
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Figure 7. Maximal errors Amax for the tested instances with a uniform distribution.
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Figure 8. Maximal errors Amax for the tested instances with a gamma distribution.

7. Concluding Remarks

The uncertain job-shop scheduling problem J2|l;; < p;;j < u;j,n; < 2|Ciay attract the attention of
practitioners and researchers since this problem is applicable in real-life processing systems for some
reduction of production costs due to a better utilization of the available machines and resources.

This paper is a continuation of our previous one [8], where only off-line phase of scheduling was
investigated and tested for the uncertain problem ]2|lij < pij < ujj,n; < 2|Cinax based on the stability
approach. In [8], we tested 15 classes of the randomly generated instances ]2]lij < pij < Ujj, 1 < 2|Cmax.
A lot of instances from nine easy classes were optimally solved at the off-line phase of scheduling.
If the maximal errors were no greater than 20%, i.e., 6 € {5%, 10%, 15%, 20%}, then more than 80% of
the tested instances were optimally solved at the off-line phase of scheduling. If the maximal error was
equal to 50%, i.e., § = 50%, then 45% of the tested instances were optimally solved.

However, less than 5% of the tested instances with maximal possible error § > 20% from six hard
tested classes were optimally solved at the off-line phase of scheduling. There were no tested hard
instances with the maximal error 50% optimally solved in [8]. All these difficulties were succeeded in
Sections 4-6 of this paper, where it is shown that the on-line phase of scheduling allows a scheduler
to find either optimal schedule or very close to optimal ones. Additional information on the factual
value of the job processing times becomes available once the processing of the job on the machine is
completed. Using this information, a scheduler can determine a smaller dominant set of semi-active
schedules, which is based on sufficient conditions for schedule dominance. The smaller dominant set
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enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on processing the job becomes available.

In Section 5, it is investigated the optimal pair (77, 7”") of job permutations (Theorems 9 and 10).
Using the proven analytical results, we derived Algorithms 3-5 for constructing optimal pairs (7t/, 77”)
of job permutations for all scenarios p € T or a small dominant set S(T') of schedules for the uncertain
problem J2|l;; < pi; < ujj, n; < 2|Cax. At the off-line scheduling phase, Algorithms 1 and 2 [8] are
used to determine the partial strict order A2 over the job set J1 » and the partial strict order Ail over
the job set 75 1. The constructed precedence digraphs (71 2, A%?) and (75,1, A%!) determine a minimal
dominant set S(T) of schedules.

In Sections 6, it is shown how to use Algorithms 3-5 for constructing a small dominant set
of semi-active schedules that enables a scheduler to make a fast decision whenever information
on completing some jobs become available. Based on these algorithms, the problem J2|l;; < p;; <
ujj, n; < 2|Cinax was solved with very small errors of the obtained objective values. The computational
experiments (Section 6.3) show that pairs of job permutations constructed by Algorithms 3-5 are
very close to the optimal pairs of job permutations. We tested 14 classes of randomly generated
instances. For the tested instances, the percentage of the optimally solved instances slowly decreases
with increasing maximal errors J of the processing times. The developed on-line algorithms perform
with the maximal errors of the achieved makespan less than 1% if n € {20,30,...,100}. For all tested
classes of the instances, the average makespan errors for all numbers n € {10, 20,..., 100} of the jobs
J were less than 0.02%.

In a possible further research, one can continue the study of the uncertain job-shop scheduling
problem based on the stability approach. It is useful to improve the developed algorithms and to
extend them for other machine environments, such as a single machine or processing systems with
parallel machines. It is promising to investigate an optimality region of the semi-active schedule and
to develop algorithms for constructing a semi-active schedule with the largest optimality region.

It is also useful to apply the stability approach for solving the uncertain flow-shop and job-shop
scheduling problems with |M| > 3 different machines.
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manuscript.
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Appendix A

Algorithms 1 and 2 Developed in [8].

Algorithm 1

Input:

Output:

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Step 6:
Step 7:

Step 8:

Step 9:

Segments [I;;, u;;] for all jobs J; € J and machines M; € M,
a partial strict order Azz on the set 1 = jffz U .7112 U ‘7122 in the form
Ji = <o = Tz Tt =< Jeren < -oo < gy
EITHER an optimal job permutation for the problem
F2[l;; < pij < uj|Cimax with job set J; » and any scenario p € T, (see STOP 0).
OR there no permutation 771 5 of jobs from set 71 », which is optimal
for all scenarios p € T, (see STOP 1).

Set s = lysp — Ugysq foralls € {1,2,...,r}.
construct a partition of the set of conflicting jobs into two subsets X; and X,
where [, € Xpif 65 > 0, and Ji.s € Xp, otherwise.

Construct a permutation ml = (1, J2, -, Je, 11, 00, Jetr+1s-- 5 ]m1,z)f where the permutation
1 contains jobs from the set X; in the non-decreasing order of the values u;;; and the
permutation 71, contains jobs from the set X; in the non-increasing order of the values
lk+i2, renumber jobs in the permutations 771 and 71, based on their orders.

IF for the permutation 7t! conditions of Theorem 7 hold THEN GOTO step 8.

Set s = lys1 — Ugssp foralls € {1,2,...,r}.
construct a partition of the set of conflicting jobs into two subsets
Y7 and Y, where [, € Y7 if s > 0, and Ji. s € Y>, otherwise.

Construct a permutation = (1, J2, -, i, 102, 111, | ]ml/z), where the permutation
71 contains jobs from the set Y7 in the non-increasing order of the values u;,,, and the
permutation 7, contains jobs from the set Y5 in the non-decreasing order of the
values I, 1, renumber jobs in the permutations 711 and 71, based on their orders.

IF for the permutation 77> conditions of Theorem 8 hold THEN GOTO step 9.

ELSE there is no a single dominant permutation for problem
F2[l;; < pij < uij|Ciax with job set J1, and any scenario p € T STOP 1.

RETURN permutation 7t!, which is a single dominant permutation
for the problem F2|Z,»j <p; < ui]»|C,m,x with job set 73 , STOP 0.

RETURN permutation 7r%, which is a single dominant permutation
for the problem F2|l;; < p;; < u;j|Cinax with job set 712 STOP 0.
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Algorithm 2

Input:  Lower bounds /;; and upper bounds u;;, 0 < I;; < u;j, of the durations
of all operations O;; of jobs J; € J processed on machines M; € M = {My, Mp}.
Output: EITHER pair of permutations (77, 7") = ((7112, m1, 702,1), (7121, 702, 711 2)),
where 77’ is a permutation of jobs from set 71, U J; U J21 on machine
M;, " is a permutation of jobs from set 71, U J> U J21 on machine My,
such that {(7/, 7”")} = DS(T), (see STOP 0),
OR permutation 71, 1 of jobs from set /5 1 on machines M; and M, and
a partial strict order A2 of jobs from set 77 »,
OR permutation 711 5 of jobs from set 71 » on machines M; and M, and
a partial strict order A% of jobs from set 75 1,
OR a partial strict order AEZ of jobs from set 7 » and
a partial strict order A% of jobs from set 75 1, (see STOP 1).
Step 1: Determine a partition 7 = J1 U J> U J12 U J»1 of the job set 7,
permutation 771 of jobs from set J; and permutation 7 of jobs from
set J, arrange the jobs in the increasing order of their indexes.
Step 2: IF the first inequality in condition (5) of Theorem 4 holds THEN BEGIN
Construct a permutation 771 5 of jobs from set 77 »,
arrange them in the increasing order of their indexes;
IF the second inequality in condition (5) of Theorem 4 holds
THEN construct a permutation 715 ; of jobs from set J5 1,
arrange them in the increasing order of their indexes GOTO Step 10 END
Step 3: IF the first inequality in condition (6) of Theorem 4 holds THEN BEGIN
Construct a permutation 77 1 of jobs from set 7, 1,
arrange them in the increasing order of their indexes;
IF the second inequality in condition (6) of Theorem 4 holds THEN
construct a permutation 71 , of jobs from set 7 5,
arrange the jobs in the increasing order of their indexes END
Step 4: IF both permutations 711 » and 715 1 are constructed THEN GOTO Step 10.
Step 5: IF permutation 771 5 is not constructed THEN fulfill Procedure 1.
Step 6: IF permutation 71y 1 is not constructed THEN fulfill Procedure 2.
Step 7: IF both permutations 711 » and 715 1 are constructed THEN GOTO Step 10.
Step 8: IF permutation 773 1 is constructed THEN GOTO Step 11.
Step 9: IF permutation 77y 5 is constructed THEN GOTO Step 12 ELSE GOTO Step 13.
Step 10: RETURN pair of permutations (77, 1'7), where 7’ is the permutation
of jobs from set 73 , U J1 U J51 processed on machine M; and 7t is
the permutation of jobs from set [J; , U J» U J»1 processed
on machine M such that {(7/, 7”")} = DS(T) STOP 0.
Step 11: RETURN the permutation 715 1 of jobs from set [/, ; processed on machines M; and Mj,
the partial strict order AL’Z of jobs from set J; » GOTO Step 14.
Step 12: RETURN the permutation 771 » of jobs from set 77 ; processed on machines M; and Mp,
the partial strict order Ai’l of jobs from set [/, 1 GOTO Step 14.
Step 13: RETURN the partial strict order AL’z of jobs from set 71 »
and the partial strict order Ail of jobs from set [/, 1
Step 14: STOP 1.
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Appendix B. Tables with Computational Results

35 of 51

Table A1l. Computational results for the randomly generated instances with the ratio 0%:0%:10%:90%
of the numbers of jobs in the subsets 71, J2, J12 and [J 1 of the job set J.

Uniform Distributions

Gamma Distributions

6%

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

90

100

Stop1l
Stop2
Stop3
Stop4

93.9
0.9
51
0.1

97.3
1
1.7
0

98.4 97.6 96.6
06 11 16

1
0

1.3
0

1.8
0

97.6
1.3
1.1

0

97.9
1.2
0.9

0

98.3
1.1
0.6

0

98
0.9
1.1

97.5
1.4
1.1

0

93.4
0.8
53
0.5

97

0.8

22
0

97.7 97.1 98.5 98.3 97.6
09 11 05 05 13

1.4
0

1.8
0

1
0

1.2
0

1.1
0

98.6 98.3 98.7

0.8
0.6
0

0.9
0.8
0

0.6
0.7
0

10

Stop1
Stop2
Stop3
Stop4

85.8
21
11.7
0.4

91.8
25
57

0

91.6
45
39

0

93

3.5

35
0

922
41
37

0

922

3.8

91.9
4.2
3.9

0

92.6
4.6
2.8

0

93.6
42
22

93.8
42
2
0

83.1
32
12.8
0.9

93.5
2.8
3.7

0

92.8
3.1
4.1

0

92.7
3.5
3.8

0

93.1
3.6
3.3

0

92.3
43
34

0

92.4
4.2
3.4

0

93.3
34
3.3

0

94.2
3.5
2.3

0

93.6
41
2.3

0

20

Stopl
Stop2
Stop3
Stop4

70.6
43
242
0.9

732
6.8
20

0

73.3
94
17.3
0

719
8.6
19.5
0

69.6
8.8
21.6
0

63.4
11.1
255

63.6
9.4
27

0

57.7

10.1

322
0

56.3
9.2
34.5

53.4
9.2
37.4
0

70.2
43
249
0.6

73.7
8.1
18.2
0

74.1
8.7
17.2
0

71.5
10
18.5
0

67.2
10
22.8
0

64.2

11.3

245
0

63.4
9.1
27.5
0

61.5
9.1
294
0

56.1
8.9
35

0

57.5
7.5
35

0

30

Stopl
Stop2
Stop3
Stop4

53
4.8
419
0.3

55.1
8.8
36.1
0

47.5
9.1
434
0

41.1
9.7
49.2
0

31
9.8
59.2
0

30.7

62.3

234
6.7
69.9
0

20.3
52
74.5
0

18.5
42
77.3

13.4
44
82.2
0

52
6.2
41
0.8

522
8.9
38.9
0

449
10.1
45
0

34.9

10.4

54.7
0

33.6
11
55.4
0

26.3
79
65.8
0

27.3
6
66.7
0

18.3
4.6
77.1
0

18.9
59
75.2
0

14.2
45
81.3
0

40

Stop1
Stop2
Stop3
Stop4

41.6
49
52.7
0.8

325
7.6
59.7
0.2

247
7.7
67.6
0

16.4
6.6
77

0

10.9
42
84.9
0

8.9
29
88.2

59
2
92.1
0

3.9

11

95
0

2.1
0.7
97.2

37.8
52
55.3
1.7

31.8
8.5
59.7
0

222
9.1
68.7
0

18.6
4.8
76.6
0

10.6
29
86.5
0

8.5

3.5

88
0

6.1
2
91.9
0

43
1.6
94.1
0

3

1
96

0

1.9
0.6
97.5
0

50

Stopl
Stop2
Stop3
Stop4

29
4.7
64.9
1.4

16.1
54
78.5
0

9.3
5
85.7
0

5
2.6
92.4
0

24
1.2
96.4
0

1.4
0.8
97.8

1.6
0.2
98.2
0

0.8
0.3
98.9
0

26.2
3.7
67.8
23

19.4
5.6
75

0

10.4
3.8
85.8
0

5.6
2.2
922
0

3.9
0.7
95.4
0

1.6
0.7
97.7
0

0.6
0.7
98.7
0

0.5
0.1
99.4
0

60

Stopl
Stop2
Stop3
Stop4

18.1
3.8
76.4
1.7

8.4
4
87.5
0.1

4.6
1.6
93.8
0

14
0.7
97.9
0

1
0.3
98.7
0

0.2
0

0.1
0
99.9
0

16.6
32
77.7
2.5

9.6
35
86.9
0

3.6
23
94.1
0

14
0.9
97.7
0

1
0.4
98.6
0

0.3
0

0
0.3
99.7
0

0.2
0

70

Stop1
Stop2
Stop3
Stop4

12.3
2.8
83.2
1.7

51
1.5
93.4
0

1.4
0.7
97.9
0

0.7
0.2
99.1
0

0.1
0.1
99.8
0

0
0
100
0

12.1
2
82.8
3.1

47
21
93.2
0

21
0.4
97.5
0

0.8

0.2

99
0

0.2
0
99.8
0

0.1
0
99.9

80

Stopl
Stop2
Stop3
Stop4

8.9
1.8
87.1
22

1.9
0.8
97.1
0.2

0.4
0.5
99.1
0

0.3
0
99.7
0

0.2
0
99.8

0
0
100
0

10
2.2
84.2
3.6

2.3

1.1
96.5

0.1

0.6
0.2
99.2
0

0.2
0
99.8
0

0
0
100
0

90

Stopl
Stop2
Stop3
Stop4

6.9
1.2
90.1
1.8

0.8
0.7
98.4
0.1

0.2
0.1
99.7
0

0.1
0
99.9
0

0
0
100
0

57
1.5
88
4.8

0.9
0.5
98.5
0.1

0.3
0
99.7

0
0
100

0
0
100
0

100

Stop1
Stop2
Stop3
Stop4

44
1.1
92.1
24

0.3
0.2
99.4
0.1

0.1
0
99.9
0

0.1
0
99.9
0

0
0
100

4.1
0.8
90.2
49

0.3
0
99.4
0.3

0
0
100
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Table A2. Computational results for randomly generated instances with the ratio 0%:0%:20%:80% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions Gamma Distributions
0% n 10 20 30 40 50 60 70 80 9 100 10 20 30 40 50 60 70 80 90 100

5 Stopl 96.7 98.9 98.6 99.5 99.7 99.7 99.9 99.9 99.9 99.9 96.7 98.9 99 99.3 99.6 99.4 99.7 99.8 99.9 99.8
Stop2 08 03 07 01 0 02 01 01 01 01 03 04 01 03 01 04 02 01 01 02
Stop3 24 08 07 04 03 01 0 O O O 3 07 09 04 03 02 01 01 0 O
Stop4 01 0 0 O O O O o o o o o o o o o0 o0 o0 0 O

10 Stopl 93.4 96.2 97.6 97.7 98 98.4 98.4 98.7 98.5 99.6 93.5 96.1 97.5 97.6 97.8 98.1 98.4 982 99 98.7
Stop2 1 14 14 14 14 13 11 12 1 04 1 18 11 13 15 16 13 15 09 11
Stop3 54 24 1 09 06 03 05 01 05 0 55 21 14 11 07 03 03 03 01 02
Stop4 02 0 0 O O O O o o o o o o o o o0 o0 o0 0 O

20 Stopl 85.4 86.9 89.5 90.2 90.8 90.5 89.1 90 90.3 90.1 83.5 87.5 88.8 88.4 90.6 89.9 91 89.4 90.9 90.1
Stop2 26 48 53 5 58 58 57 5 5 54 31 57 58 74 47 58 49 65 62 4
Stop3 12 83 52 48 34 37 52 5 47 45 134 68 54 42 47 43 41 41 29 59
Stop4 0 o0 0 O O O O O o o o o 0 O O o o0 o0 o0 O

30 Stopl 70.2 76.4 70.1 69.6 69.2 65.7 64.1 60.4 58 56 71.6 733 729 69 66 63.1 604 62.3 62.2 58.1
Stop2 51 6.8 97 95 84 105 97 91 108 81 3.6 87 84 96 98 113 84 83 7.1 89
Stop3 24.6 16.8 20.2 20.9 22.4 23.8 26.2 30.5 31.2 359 24.8 18 18.7 21.4 24.2 25.6 31.2 294 30.7 33
Stop4 01 0 0 O O O O o o o o o o o o0 o0 o0 o0 0 O

40 Stopl 56.7 55.3 48.8 41.5 39.6 31.2 31.1 26.5 23.5 21.5 55.1 53.9 46.5 41.5 37.5 31.6 33.2 27.4 26.2 21
Stop2 51 82 105 106 96 82 76 69 75 5 56 92 115 77 89 87 73 72 6 57
Stop3 38.2 36.5 40.7 47.9 50.8 60.6 61.3 66.6 69 73.5 39.3 369 42 50.8 53.6 59.7 59.5 65.4 67.8 73.3
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O

50 Stopl 42.6 352 272 229 143 114 99 69 6.6 59 439 373 292 22 163 13.2 10.8 105 55 57
Stop2 44 95 98 65 6 52 38 34 22 24 6 10 73 69 65 48 47 28 19 25
Stop3 52.8 55.3 63 70.6 79.7 83.4 86.3 89.7 91.2 91.7 49.9 52.7 63.5 71.1 772 82 845 86.7 92.6 91.8
Stop4 02 0 0 0 O O O O O O 02 O O O O o o0 o0 o0 O

60 Stopl 329 20.7 144 10.7 63 33 33 22 14 08 317 231 157 104 72 39 29 14 09 06
Stop2 54 55 42 26 23 17 08 06 03 04 56 6 64 36 24 15 15 08 03 07
Stop3 61.7 73.8 81.4 86.7 914 95 959 972 983 98.8 623 709 779 86 90.4 94.6 95.6 97.8 98.8 98.7
Stop4 0 0 O O O O o o o O 04 O O O O 0 o0 o0 0 O

70 Stopl 22.1 137 76 29 16 11 06 02 03 01 239 131 67 34 16 07 09 03 02 01
Stop2 49 37 29 17 09 06 04 01 0 01 44 45 2 15 12 04 0 04 01 01
Stop3 72.8 82.6 89.5 95.4 97.5 983 99 99.7 99.7 99.8 71.6 82.4 91.3 95.1 97.2 989 99.1 99.3 99.7 99.8
Stop4 02 0 0 O O O O o o o 01 O O OoO o0 o0 o0 o0 0 O

80 Stopl 173 83 35 13 05 03 02 0 0 O 164 79 31 19 09 02 0 0 0 O
Stop2 28 17 18 08 06 0 O O O O 34 24 08 09 01 02 01 0 O O
Stop3 79.4 90 94.7 97.9 989 99.7 99.8 100 100 100 79.6 89.7 96.1 972 99 99.6 99.9 100 100 100
Stop4 05 0 0 O O O O O o o 06 O O O O O 0 0 0 O

90 Stopl 121 45 14 07 0 01 O O O O 126 5 29 04 01 01 O O O O
Stop2 25 23 13 03 0 01 O O O O 32 18 02 02 0 O O O O O
Stop3 85.2 932 97.3 99 100 99.8 100 100 100 100 83.7 93.2 96.9 99.4 99.9 99.9 100 100 100 100
Stop4 02 0 0 O O O O o o o 05 0 0o o0 o0 0 0 o0 0 O

100 Stopl 106 27 05 03 0 O O O O O 91 28 05 01 0 O O O O O
Stop2 19 12 03 0 02 0 O O O O 2 06 02 0 O O 0 0 0 O
Stop3 87.4 96.1 99.2 99.7 99.8 100 100 100 100 100 88.2 96.6 99.3 99.9 100 100 100 100 100 100
Stop4 01 0 0 O O O O o o o 07 O O O o0 o0 o0 o0 0 O
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Table A3. Computational results for randomly generated instances with the ratio 0%:0%:30%:70% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100

Stopl 99.2 99.6 99.9 99.9 100 100 100 100 100 100 98.6 99.9 99.9 99.9 99.9 100 100 100 100 100
Stop2 02 01 01 01 0 O O O O o o0 o o o0 01 O O 0 0 O
Stop3 06 03 0 0O O O O O O O 14 01 01 01 O O O O 0 O
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

10

Stopl 97.3 99 99.4 99.9 99.9 100 99.9 99.9 100 100 97.4 98.6 99.1 99.9 99.9 100 99.9 100 99.8 100
Stop2 08 04 03 01 01 O 01 01 O O 05 08 06 01 01 O 01 0 02 O
Stop3 19 06 03 0 O O O O O O 21 06 03 0O O O O O 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 0 0 O

20

Stopl 91.7 95.7 97.1 97.5 98.2 98.6 98.7 98.7 99.7 989 91.5 97 97.8 972 98.5 98.8 99.1 99.6 99.5 99.4
Stop2 19 26 2 21 14 12 12 11 03 08 23 17 16 21 12 1 07 04 05 04
Stop3 64 17 09 04 04 02 01 02 0 03 62 13 06 07 03 02 02 0 0 02
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O

30

Stopl 81.9 87.1 89.1 91.9 91.7 92.2 922 93.8 93.7 939 83 872 91.7 91.7 92.4 91.6 92.2 92.8 929 93.4
Stop2 46 62 59 45 55 43 43 39 28 25 31 51 41 44 37 44 48 42 35 35
Stop3 135 67 5 36 28 35 35 23 35 36 139 77 42 39 39 4 3 3 36 31
Stop4 0 o0 o0 O O O O O o o o o o0 O O o o0 o0 o0 O

40

Stopl 74.1 747 759 76 75.1 759 73.4 758 71.6 72.5 69.1 742 76.4 75.6 76.5 76.4 75 74 753 72.7
Stop2 44 79 75 82 65 63 69 55 69 7 6 92 75 8 77 64 64 71 46 64
Stop3 21.5 17.4 16.6 15.8 18.4 17.8 19.7 18.7 21.5 20.5 24.8 16.6 16.1 16.4 15.8 17.2 18.6 18.9 20.1 20.9
Stop4 0 0 o0 O O O o o o o 01 O O o o0 o0 o0 o0 0 O

50

Stopl 61.4 60.7 56.9 53.7 50.4 49.7 47.3 47.3 44.7 39.1 58.2 60.6 57.7 51.7 49.1 50.9 483 48.2 439 44.3
Stop2 53 92 9.7 104 102 77 84 71 67 63 58 87 85 124 102 91 78 71 66 53
Stop3 33.3 30.1 33.4 35.9 39.4 42.6 443 45.6 48.6 54.6 36 30.7 33.8 359 40.7 40 439 44.7 49.5 50.4
Stop4 0 0 0O O O O o o o o o o o o o o0 o0 o0 0 O

60

Stopl 46.7 46.3 39.6 32.9 30.5 29.5 239 22.1 18.8 17.8 50.9 42.8 41.7 359 30.6 28 24 229 19 135
Stop2 62 81 77 79 62 53 46 41 42 28 5 91 75 75 71 51 52 46 37 36
Stop3 47.1 45.6 52.7 59.2 63.3 65.2 71.5 73.8 77 79.4 44.1 48.1 50.8 56.6 62.3 66.9 70.8 72.5 77.3 82.9
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

70

Stopl 39.9 345 245 202 176 122 87 86 7.6 55 38 348 235 191 157 137 95 9 6 47
Stop2 57 74 67 55 41 28 27 19 14 09 6 68 63 56 39 48 34 14 14 13
Stop3 54.4 58.1 68.8 74.3 783 85 88.6 89.5 91 93.6 559 58.4 70.2 75.3 80.4 81.5 87.1 89.6 92.6 94
Stop4 0 0 0 O O O o o o o 01 O O o o o0 o0 0 0 O

80

Stopl 279 216 143 83 72 49 42 27 09 08 285216 14 95 93 42 39 22 12 15
Stop2 48 5 36 3 26 16 07 1 02 03 56 56 52 31 19 23 17 06 07 03
Stop3 67.2 73.4 82.1 88.7 90.2 93.5 95.1 96.3 98.9 989 659 72.8 80.8 87.4 88.8 93.5 94.4 972 98.1 98.2
Stop4 01 0 0 O O O O o o o o o o o o o0 o0 o0 0 O

90

Stopl 227 132 98 41 21 15 14 07 02 0 23 144 74 36 34 19 12 07 03 09
Stop2 34 47 31 19 14 09 05 03 03 02 34 51 29 2 1 06 07 02 02 03
Stop3 73.9 82.1 87.1 94 965 97.6 98.1 99 99.5 99.8 73.4 80.5 89.7 94.4 95.6 97.5 98.1 99.1 99.5 98.8
Stop4 0 o0 0 O O O O O o o0 02 O O O O o o0 o0 0 O

100

Stopl 17.1 89 38 21 12 06 02 02 0 0 147 8 47 25 14 03 03 02 01 01
Stop2 26 43 16 15 04 02 02 0 0O O 46 24 17 06 05 03 03 01 01 O
Stop3 80.3 86.8 94.6 96.4 98.4 99.2 99.6 99.8 100 100 80.4 89.6 93.6 96.9 98.1 99.4 99.4 99.7 99.8 99.9
Stop4 0 0 O O O O o o o o 03 O O o0 o0 0 o0 0 0 O
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Table A4. Computational results for randomly generated instances with the ratio 0%:0%:40%:60% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100

Stopl 99.8 100 100 100 100 100 100 100 100 100 99.5 99.8 99.9 100 99.9 100 100 100 100 100
Stop2 01 0 0 O O O O o o o 01 O 01 O O1 O O O 0 O
Stop3 01 0 0 O O O O o o O 04 02 O O O O O 0 0 O
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

10

Stopl 99.2 99.7 99.9 100 100 100 100 100 100 100 98.9 100 99.9 100 100 100 100 100 100 100
Stop2 04 03 010 0 o0 O O O O O 02 O 01 O O O 0 0 0 O
Stop3 04 0 O O O O O O O O 09 0O 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 0 0 O

o
o
o
o
o
o

20

Stopl 96.8 98.9 99.4 99.5 99.9 99.8 100 100 100 99.9 96.4 98.6 99.6 99.7 99.9 100 100 100 100 100
Stop2 11 06 04 05 01 02 0O O O 01 16 08 04 03 0 O O O 0 O
Stop3 21 05 02 0 O O O O O O 2 06 O O 01 O O O O
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O

o

30

Stopl 91 95.7 97.8 98.7 99.2 99.5 99.4 99.8 99.9 100 91.8 94.9 97.3 98.6 99.1 99.6 99.9 99.9 99.7 100
Stop2 35 1.7 12 09 07 02 04 01 01 0 23 3 18 11 07 03 01 01 03 O
Stop3 55 26 1 04 01 03 02 01 O O 59 21 09 03 02 01 0 O O
Stop4 0 o0 o0 O O O O O o o o o o0 O O o o0 o0 o0 O

o

40

Stopl 85.8 90.4 93.7 95.1 96.4 97.6 97.2 98.2 98.3 98.5 85.4 91.2 93 94.8 96.5 97.4 97.3 98 982 98
Stop2 2.7 45 35 16 19 13 21 06 1 1 37 37 32 29 18 16 08 12 07 11
Stop3 115 51 28 33 17 11 07 12 07 05 109 51 38 23 17 1 19 08 11 09
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O

50

Stopl 75.3 82.5 84.8 87.4 87 882 89.7 90.7 90.5 92.3 76.3 82.5 82.4 85.4 87.5 89.7 89.6 90.4 90.7 91.3
Stop2 51 55 6 44 51 38 37 33 3 3 41 59 6 59 39 35 33 24 27 24
Stop3 196 12 92 82 79 8 66 6 65 47 196 116 116 87 86 68 71 72 66 63
Stop4 0 0 0O O O O o o o o o o o o o o0 o0 o0 0 O

60

Stopl 63.4 70.1 72.3 74.7 75.8 73.9 72.5 754 754 76.6 66.3 71 73.7 752 729 732 73.7 71.9 755 75.2
Stop2 66 7 78 66 58 43 66 42 39 45 47 74 7 59 58 54 42 52 53 31
Stop3 30 229 199 18.7 18.4 21.8 209 20.4 20.7 189 29 21.6 19.3 189 21.3 21.4 22.1 229 19.2 21.7
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

70

Stopl 51.6 60 57.2 55.7 56.5 52.9 50.5 50.9 50.8 50 49.5 57 54.6 55.1 54.8 532 52.8 499 50 51.5
Stop2 63 75 83 73 61 58 72 62 57 42 63 86 8 72 65 56 7 59 52 57
Stop3 42.1 32.5 345 37 37.4 41.3 423 429 435 45.8 44.2 344 374 37.7 387 41.2 40.2 44.2 448 428
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O

80

Stopl 39.8 439 394 39 37.8 348 31.7 31.1 30 28.1 39 43.7 40.1 403 41.1 31.3 31.5 28.1 26 28.2
Stop2 63 73 85 74 61 49 37 44 42 33 59 81 78 59 66 57 47 36 46 3
Stop3 53.9 48.8 52.1 53.6 56.1 60.3 64.6 64.5 65.8 68.6 55.1 48.2 52.1 53.8 52.3 63 63.8 68.3 69.4 68.8
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O

90

Stopl 33.7 289 27.6 24.1 20.7 18.2 16.8 13.5 14.1 12.4 31.7 32.1 28.8 23.8 23.8 20.1 17.1 159 142 12.3
Stop2 6 77 69 53 45 33 36 28 26 17 57 71 59 6 47 35 38 3 31 16
Stop3 60.3 63.4 65.5 70.6 74.8 78.5 79.6 83.7 83.3 85.9 62.5 60.8 653 70.2 71.5 76.4 79.1 81.1 82.7 86.1
Stop4 0 o0 o0 O O O O O o o0 01 O O O O O o0 o0 0 O

100

Stopl 26.1 214 156 13.1 11.1 79 73 6 44 46 241 212 167 162 11 82 83 6.7 57 38
Stop2 39 64 54 46 32 29 18 16 07 13 5 62 5 29 34 34 25 15 19 1
Stop3 70 722 79 823 857 89.2 909 92.4 949 94.1 709 72.6 78.3 80.9 85.6 88.4 89.2 91.8 92.4 95.2
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O
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Table A5. Computational results for randomly generated instances with the ratio 0%:0%:50%:50% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100

Stopl 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O
Stood 0 0 0 o0 O O O o o o o0 o o o o o0 o0 o0 0 O
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

10 Stopl 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100 100
Stop2 01 0 0 O O O o o o o 01 O O O0o o0 o0 o0 0 0 O
Stop3 01 0 0 0 O O O O O O0O o o o0 O O o o0 o0 o0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 0 0 O

20 Stopl 99.1 99.6 100 100 100 100 100 100 100 100 98.9 99.9 100 100 100 100 100 100 100 100
Stop2 03 02 0 O O O O O O O 0501 0 O O O O O 0 O
Stop3 06 02 0 O O O O O O o 06 O O O O O o0 0 0 O
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O

30 Stopl 96.2 99.5 99.6 99.8 99.9 100 100 100 100 100 96.1 98.7 99.8 100 100 100 100 100 100 100
Stop2 15 05 04 02 01 0 o0 O O 0 11 11 01 O O O O O 0 O
Stop3 23 0 0O O O O O O O O 28 0201 O O O O O 0 O
Stop4 0 o0 o0 O O O O O o o o o o0 O O o o0 o0 o0 O

40 Stopl 91.3 97.4 99.2 99.2 99.6 99.9 100 100 100 100 91.4 96.7 98.9 99.1 99.7 99.6 99.9 100 100 100
Stop2 3 1 02 05 01 01 0 O O O 21 17 06 07 03 02 01 0 0 O
Stop3 57 16 06 03 03 0 O O O O 65 16 05 02 0 02 0 0 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O

50 Stopl 83.4 92.3 95.3 97.9 98.2 98.8 99.3 99.9 99.8 100 81.7 90 95.5 97.5 98.7 98.9 99.4 99.8 99.9 99.9
Stop2 35 33 19 11 09 06 01 01 01 O 38 46 21 13 05 05 04 0 0 O
Stop3 13.1 44 28 1 09 06 06 0 01 0 145 54 24 12 08 06 02 02 01 01
Stop4 0 0 0O O O O o o o o o o o o o o0 o0 o0 0 O

60 Stopl 69.4 83.1 87.1 93.8 94.5 96.1 96.4 97.8 98.6 98.3 71.2 81.5 89.2 92.6 93.5 951 98 98.2 98.5 98.9
Stop2 57 67 5 25 22 13 08 07 04 06 65 68 33 33 23 21 05 08 07 01
Stop3 249 102 79 37 33 26 28 15 1 11 223117 75 41 42 28 15 1 08 1
Stop4 0 0 o0 0 O O O O o o o O 0 o O o o0 o0 o0

70 Stopl 59.2 70.2 75.5 81.1 81.6 88.1 87.9 924 92.8 93.6 58.4 72.7 74.8 81.5 85.8 87.8 88 91 90.3 93.7
Stop2 58 74 66 6 52 41 37 17 11 24 43 83 76 44 36 32 41 24 26 2
Stop3 35 224 179 129 132 78 84 59 61 4 373 19 176 141 106 9 79 66 71 43
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O

80 Stopl 45 57.2 61.8 62.7 67.8 68.7 71 749 755 77 46.8 54.8 61.1 641 694 71 714 73.8 758 76
Stop2 7 85 72 74 75 6 6 52 42 39 55 75 7 77 64 53 64 45 44 35
Stop3 48 343 31 299 247 253 23 19.9 203 19.1 47.7 37.7 31.9 282 242 23.7 222 21.7 19.8 20.5
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O

90 Stopl 35.2 412 38.7 44.2 42.5 45.6 46.2 452 50.3 50 37.2 37.3 41.3 43.8 43.3 46.5 48 46.7 475 494
Stop2 6 83 98 77 78 74 64 62 64 55 54 87 98 89 93 92 64 69 62 57
Stop3 58.8 50.5 51.5 48.1 49.7 47 47.4 48.6 433 445 574 54 489 473 474 443 456 464 463 449
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O

100 Stopl 25.7 28.8 25.2 22.6 21.4 21.4 202 205 19 22.1 265 26 252 255 25.1 22.1 22.8 199 23.8 20.7

Stop2 41 86 81 69 79 59 66 54 55 43 37 92 78 6 72 71 54 51 48 49
Stop3 70.2 62.6 66.7 70.5 70.7 72.7 732 741 755 73.6 69.8 64.8 67 685 67.7 70.8 71.8 75 71.4 744
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O
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Table A6. Computational results for randomly generated instances with the ratio 5%:5%:5%:85% of the

numbers of jobs in the subsets 71, J>, J1,2 and J1 of the job set J.

Uniform Distributions

Gamma Distributions

0%

20

40

60

80

100

20

40

60

80

100

Stop1
Stop2
Stop3
Stop4

99

0.3

0.7
0

99.5 99.7 99.3 99.4
03 02 04 06

0.2
0

0.1
0

0.3
0

0
0

98.1
0.4
1.5

0

99.7 99.8 99.2

0.2
0.1
0

0
0.2
0

0.6
0.2
0

99.7
0.3
0
0

10

Stop1l
Stop2
Stop3
Stop4

96.4
0.9
27

0

97 .4
1.1
1.5

0

98.4
0.7
0.9

0

97.8
1.2
1
0

97.1
0.7
22

0

95.4
1.5
3.1

0

97.6
1.4
1
0

97.7

1.3

98

1.3

0.7
0

98.6
0.3
1.1

0

20

Stop1
Stop2
Stop3
Stop4

84.3
3.1
12.6
0

81.4
3.5
15.1
0

76.5
37
19.8
0

71.7
2.5
25.8
0

67.9
2.1
30

0

86.5

29

10.6
0

80.5
3.5
16

0

73.8
29
23.3

71
3.7
25.3
0

66.5
1.7
31.8
0

30

Stopl
Stop2
Stop3
Stop4

61.8
5.7
32.5
0

529
29
442
0

38.4
21
59.5
0

27.1
2.1
70.8
0

20.9
0.3
78.8
0

65.1
34
314
0.1

53
2.6
444
0

40
14
58.6

29.3
1.4
69.3
0

20.3
1.2
78.5
0

40

Stop1
Stop2
Stop3
Stop4

38.6
5.4
56

0

255
1.2
73.3
0

14.1
1.2
84.7
0

7.3
0.4
92.3
0

3.1
0.3
96.6
0

40
4.5
55.5
0

244
24
73.2
0

13.6
0.4
86

6.5

0.4

93.1
0

32
0.1
96.7
0

50

Stopl
Stop2
Stop3
Stop4

27.4
23
70.2
0.1

8.4
1.4
90.2
0

3.2
0.3
96.5
0

1.7
0
98.3
0

0.3
0
99.7
0

259
3.7
70.4
0

10.9
1.1
88

0

3.3

96.7

0.9
0
99.1
0

0.3
0
99.7
0

60

Stopl1
Stop2
Stop3
Stop4

14.3
2.3
83.4
0

34
0.4
96.2
0

0.5
0
99.5
0

0.2
0
99.8

0
0
100
0

15.7
1.8

82.4
0.1

3.2
0.1
96.7
0

0.6
0.3
99.1

0.3
0
99.7
0

0
0
100
0

70

Stopl
Stop2
Stop3
Stop4

8
0.9
91.1
0

1.1
0
98.9
0

0.3
0
99.7

0
0
100
0

6.5
1.5
91.8
0.2

1.7
0
98.3
0

0
0
100
0

0
0
100
0

80

Stop1
Stop2
Stop3
Stop4

4
0.5
95.5
0

0.1
0.1
99.8
0

0
0
100

5.1
0.9
93.8
0.2

0.2
0
99.8

0
0
100
0

0
0
100
0

90

Stopl
Stop2
Stop3
Stop4

2.6
0.3
97.1
0

0.3
0
99.7
0

2.2
0.4
97
0.4

0
0
100
0

0
0
100
0

100

Stopl
Stop2
Stop3
Stop4

0.9
0.3
98.8
0

0
0
100
0

1.5
0
98.4
0.1

0
0
100
0

0
0
100
0
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Table A7. Computational results for randomly generated instances with the ratio 5%:15%:5%:75% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions

Gamma Distributions

5%

20

40

60

80

100

20

40

60

80

100

Stopl
Stop2
Stop3
Stop4

989 99.4 99.3 99.7 99.5
02 03 04 03 03
09 03 03

0

0

0

0
0

0.2
0

98.4
0.4
1.2

0

99.7 99.4 99.7

0.2
0.1
0

0.2
0.4
0

0.2
0.1
0

99.7
0.2
0.1

0

10

Stop1
Stop2
Stop3
Stop4

97
1

98.2
0.8
1
0

97.7
1.1
1.2

0

98.6
0.7
0.7

0

99.3
0.3
0.4

0

95.5
1.3
3.2

0

98.6
0.8
0.6

0

98.6
0.8
0.6

0

98.4
0.7
0.9

0

98.3
0.9
0.8

0

20

Stopl
Stop2
Stop3
Stop4

86
2.6
114

86.7
2.8
10.5

83.3
25
14.2
0

76.9
3.1
20

0

754
25
221
0

88.3
25
9.2

0

86.1
23
11.6

83.3
3.1
13.6
0

774
2.7
19.9
0

74.6
2.3
23.1

30

Stop1l
Stop2
Stop3
Stop4

67.1
3.1
29.8

58.1
32
38.7

47.1
2.8
50.1
0

36.1
2.6
61.3

29.3
1.5
69.2
0

69
32
27.8

64.5
21
33.4

48.2
22
49.6
0

38.6
2
59.4
0

28.7
1.2
70.1

40

Stopl
Stop2
Stop3
Stop4

48.2
27
49.1

30.1
3.7
66.2

18.9

1.2

79.9
0

11.1
0.3
88.6

8.3
0.1
91.6

45.6
43
50.1

31.8
2.6
65.6

17.6
1.9
80.5
0

10.5
0.7
88.8
0

6.6
0.3
93.1

50

Stop1
Stop2
Stop3
Stop4

30.1
2.8
67.1

15.1
1.3
83.6

7.4
0.7
91.9

0.3
96.7

29.1
2.6
68.3

13.2
1.1
85.7

6
0.3
93.7

2.7
0.2
97.1

60

Stopl
Stop2
Stop3
Stop4

19.2
1.5
79.3

7.6
0.4
92

211

76.9

59
0.5
93.6

2.6
0.2
97.2

70

Stop1l
Stop2
Stop3
Stop4

114
1.9
86.7

2.6
0.1
97.3

12
0.8
87.2

3.1
0.2
96.7

80

Stopl
Stop2
Stop3
Stop4

7.6
0.7
91.7

1.2
0.1
98.7

0.6
0.1
99.3

90

Stop1
Stop2
Stop3
Stop4

3.4
0.4
96.2

0.6

99.4

94.9

0.5

99.5

100

Stopl
Stop2
Stop3
Stop4

2.7
0.5
96.8

0.2

99.8

29
0.3
96.8

0.2

99.8




Mathematics 2020, 8, 1314

42 of 51

Table A8. Computational results for randomly generated instances with the ratio 5%:20%:5%:70% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions

Gamma Distributions

5%

20

40

60

80

100

20

40

60

80

100

Stopl
Stop2
Stop3
Stop4

98.6 99.2 99.6

0.1

0.4

0.3

1.3 04 0.1

0

0

0

99.4
04
0.2

0

99.5
0.5
0
0

98.3
0.5
1.2

0

99.2 99.7 99.8

0.1
0.7
0

0.1
0.2
0

0.1
0.1
0

99.6
0.3
0.1

0

10

Stop1
Stop2
Stop3
Stop4

96.1
1.1
2.8

0

98.5
0.6
0.9

0

99.7
0.2
0.1

0

99.1
0.7
0.2

0

99.1
0.4
0.5

0

96.6
0.3
3.1

0

98.2
0.9
0.9

0

98.2
1.2
0.6

0

98.9
0.6
0.5

0

98.4
0.9
0.7

0

20

Stopl
Stop2
Stop3
Stop4

88.8
1.9
9.3

0

87.6

24
10
0

84.6
2.6
12.8
0

80.1
22
17.7
0

77.6
2.8
19.6

89.5

7.5

89.8
1.9
8.3

0

84.6
27
12.7
0

83.5
1.9
14.6
0

79.3
24
18.3

30

Stop1l
Stop2
Stop3
Stop4

72
34
24.6

62.3
22
355

52.3
39
43.8
0

43.2
3
53.8
0

33.5
1.8
64.7

70.6
39
255

63.1
34
33.5

53
3.9
43.1

424
25
55.1
0

36.9
0.6
62.5

40

Stopl
Stop2
Stop3
Stop4

50.6
3.7
45.7

37.1
2.1
60.8

259

1.8

72.3
0

15
0.7
84.3

9.9
0.4
89.7

50.7
3.5
45.8

36.4
27
60.9

259
1.3
72.8

16.5
1
82.5
0

10.3
0.4
89.3

50

Stop1
Stop2
Stop3
Stop4

36.2
3.1
60.7

19.5
1.6
78.9

9.4
0
90.6
0

45
0.1
95.4

1.7
0.2
98.1

33.2
3.9
62.9

17.9
0.9
81.2
0

9.6
0.6
89.8

43
0.3
95.4

60

Stopl
Stop2
Stop3
Stop4

25.2

72.8

7.7
0.7
91.6

3.1
0.3
96.6

1.2

98.8

24
1.6
744

7.6
1.2
91.2
0

3.5
0.2
96.3

70

Stop1l
Stop2
Stop3
Stop4

12
23
85.7

3.3
0.4
96.3

0.8
0.1
99.1

0.2

99.8

16.6
1.1
82.3
0

4.1
0.7
95.2
0

1.6

98.4

80

Stopl
Stop2
Stop3
Stop4

9.4
14
89.2

1.8
0.1
98.1

100

9.9
1
89
0.1

1.8
0.1
98.1
0

0.1

99.9

90

Stop1
Stop2
Stop3
Stop4

5.6
0.7
93.7

0.3
0.1
99.6

6.5
0.3
93.2
0

0.6
0.1
99.3
0

0.1

99.9

100

Stopl
Stop2
Stop3
Stop4

45
0.2
95.3

0.5

99.5

45
0.2
95.3
0

0.2
0
99.8
0

100
0
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Table A9. Computational results for randomly generated instances with the ratio 10%:10%:10%:70% of
the numbers of jobs in the subsets 71, J», J12 and J, 1 of the job set 7.

Uniform Distributions Gamma Distributions

6%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100

Stopl 98.9 99.5 100 99.8 100 99.9 100 100 100 99.9 98.4 99.4 99.9 100 99.9 99.9 100 100 100 100
Stop2 04 0 O 02 0O O O O O 01 O 03 01 O O 01 O O 0 O
Stop3 07 05 0 O O 01 O O O O 16 03 O O 01 O O O 0 O
Stop4 0 o0 o0 O O O O O o o o o o0 O O o o0 o0 o0 O

10

Stopl 95.9 98.9 989 100 99.8 100 100 100 99.9 99.9 96.2 98.4 99.5 99.7 99.8 99.9 99.9 99.8 99.8 99.9
Stop2 02 05 06 O 02 O O O 01 O 03 03 02 01 01 01 01 02 02 01
Stop3 38 06 05 0 O O O O O 01 34 13 03 02 01 0O O O O O
Stop4 00 0 0 O O O O o o o 01 O O O o0 o0 o0 o0 0 O

20

Stopl 88.8 97 97.1 97.8 97.8 97.5 98.2 98.7 97.5 97.9 88.5 953 96.5 97.2 97.6 97.3 979 983 98.2 97.5
Stop2 16 12 11 05 06 1 06 04 02 02 16 16 1 13 05 07 08 07 06 04
Stop3 95 18 18 17 16 15 12 09 23 19 98 31 25 15 19 2 13 1 12 21
Stop4 01 0 0 O O O O o o o 01 O O O0oO o0 o0 o0 0 0 O

30

Stopl 79.3 85.8 86.6 85.1 81.4 83.3 82.6 79.2 77.4 759 80.4 86.3 86.5 85.1 81.2 81.6 80.8 80 79 76.1
Stop2 37 22 25 17 29 18 15 12 15 1 24 28 28 17 19 14 14 13 1 06
Stop3 17 12 109 132 15.7 149 159 19.6 21.1 23.1 169 109 10.7 132 169 17 17.8 18.7 20 23.3
Stop4 0 o0 o0 O O O O O O O 03 O O O 0 o o0 o0 o0 O

40

Stopl 66.6 71.7 65.8 62.2 58.2 53.1 48.4 44 42 383 65.8 70.1 65.8 60.9 57.4 52.7 539 46.8 40.6 38.5
Stop2 3 26 24 28 22 24 17 2 11 09 26 27 26 18 16 15 21 1 09 11
Stop3 30.2 25.7 31.8 35 39.6 445 499 54 569 60.8 31.1 272 31.6 37.3 41 458 44 522 585 60.4
Stop4 02 0 0 O O O O o o o 05 0 o0 o0 o0 O 0 0 0 O

50

Stopl 55.8 55.3 46.9 38.9 30.9 255 222 199 15.1 13.2 56 529 44.3 39.4 34.1 274 22.6 18.2 17.5 14.9
Stop2 26 29 24 25 17 1 08 03 07 06 33 35 24 14 17 11 07 05 04 07
Stop3 41.6 41.8 50.7 58.6 67.4 73.5 77 79.8 842 86.2 40.5 43.6 53.3 59.2 64.2 71.5 76.7 81.3 82.1 84.4
Stop4 0 0 o0 O O O o o o o0 02 O O O 0o 0 0 o0 0 O

60

Stopl 44.4 359 27.8 20.1 156 127 86 7.1 7.8 33 43.6 365 262 20.7 146 99 88 64 42 32
Stop2 32 27 16 09 08 07 02 01 02 01 33 2 14 18 17 02 02 03 01 O
Stop3 52.2 614 70.6 79 83.6 86.6 91.2 92.8 92 96.6 52.5 61.5 72.4 77.5 83.7 899 91 933 95.7 96.8
Stop4 02 0 0 O O O O O O O 06 O O O O O O0O o0 o0 O

70

Stopl 335 254 17 112 66 28 2 12 11 0.7 367 24 173 11.6 57 52 35 15 07 11
Stop2 25 2 15 04 05 01 03 02 01 0 24 19 1 05 02 02 0 01 0 O
Stop3 63.8 72.6 81.5 88.4 929 97.1 97.7 98.6 98.8 99.3 60.5 74.1 81.7 87.9 94.1 94.6 96.5 98.4 99.3 98.9
Stop4 02 0 0 O O O O o o o 04 O O O O O 0 0 0 O

80

Stopl 298 135 10 51 29 12 03 04 0 01 279186 84 4 25 14 09 04 02 01
Stop2 19 14 03 04 01 0 O 01 O O 25 08 05 02 01 02 0 0 0 O
Stop3 68.1 85.1 89.7 945 97 98.8 99.7 99.5 100 99.9 68.8 80.6 91.1 95.8 97.4 98.4 99.1 99.6 99.8 99.9
Stop4 02 0 0 O O O O o o o 08 O O O O O 0 0 0 O

90

Stopl 224 105 39 17 07 01 03 02 0 O 208 102 45 31 07 02 03 0 0 O
Stop2 19 06 06 01 0O O O O O O 16 09 05 0 0 01 0 0 0 O
Stop3 75.3 88.9 95.5 98.2 99.3 99.9 99.7 99.8 100 100 76.8 889 95 96.9 99.3 99.7 99.7 100 100 100
Stop4 04 0 0 O O O O O O O 08 O O O O O O o0 o0 O

100

Stopl 156 59 15 09 06 01 01 O O 0 159 67 26 09 02 01 02 0 0 O
Stop2 16 07 02 0 o0 O O O O O 17 02 02 01 0 O O 0 0 O
Stop3 82.3 93.4 98.3 99.1 99.4 99.9 999 100 100 100 81.4 93.1 972 99 99.8 99.9 99.8 100 100 100
Stop4 05 0 O O O O O O 0 0 1 o o o0 o o0 o o0 0 o0
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Table A10. Computational results for randomly generated instances with the ratio 10%:10%:40%:40%

of the numbers of jobs in the subsets 71, J>, J1,2 and J 1 of the job set J.

44 of 51

Uniform Distributions

Gamma Distributions

% n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100
5 Stopl 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O
Stop3d 01 0 0 o0 O O O o o o o o o o o o0 o0 o0 0 O
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O
10 Stopl 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Stop2 0 0 o0 O O o0 o o o o o o o o o0 o0 o0 o0 0 O
Stop3 0 0 0 O O O O O o o o o o0 O O o o0 o0 o0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 0 0 O
20 Stopl 99.3 100 100 100 100 100 100 100 100 100 99.5 100 100 100 100 100 100 100 100 100
Stop2 02 0 0 0 O O O O O O0 01 O O O O O O0o o0 o0 O
Stop3d 05 0 0 o0 O O O O o o 04 O O O O O o0 0 0 O
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O
30 Stopl 98.4 99.9 100 100 100 100 100 100 100 100 99 99.9 100 100 100 100 100 100 100 100
Stop2 05 01 0 0 O O O o o o 01 O O O O0oO O o0 o0 0 O
Stopd 11 0 0 O O O O o o o0 09 01 0 O O O 0 0 0 O
Stop4 0 o0 o0 O O O O O o o o o o0 O O o o0 o0 o0 O
40 Stopl 97 99.8 99.9 100 100 100 100 100 100 100 96.4 99.8 100 100 100 100 100 100 100 100
Stop2 01 0 01 0O O O O O O o 0502 O O O O 0 0 0 O
Stop3 29 02 0 0 O O O O O O 31 0 O O O O 0o 0 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O
50 Stopl 93 99 999 99.9 100 100 100 100 100 100 92.8 99.6 99.9 100 100 100 100 100 100 100
Stop2 12 05 01 0 O O O O O O 09 01 0 O O O O O 0 O
Stop3 58 05 0 01 O O O O O O 63 03 01 0 O O O O 0 O
Stop4 0 0 0O O O O o o o o o o o o o o0 o0 o0 0 O
60 Stopl 86.6 97.9 99.6 99.5 99.8 99.8 99.8 99.9 100 100 85.8 97.1 99.3 99.6 99.8 99.7 99.9 100 100 100
Stop2 14 05 0 02 0 01 O O O O 15 04 O O O O O O 0 O
Stopd 12 16 04 03 02 01 02 01 0 0 127 25 07 04 02 03 01 0 0 O
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O
70 Stopl 82.3 92.5 96.7 97.2 98.6 98.1 99 99.2 99.5 99.7 80 92.7 96.5 97.5 97.9 99.2 99.5 99.5 99.8 99.5
Stop2 1.8 11 02 02 0 O 01 O O 01 17 05 0 02 01 O O O O O
Stop3 159 64 31 26 14 19 09 08 05 02 183 68 35 23 2 08 05 05 02 05
Stop4 0 0 0 O O O o o o o o o o o o o0 o0 o0 0 O
80 Stopl 71.8 85.9 91.5 93.8 94.4 953 95.6 97.7 973 98.1 73.1 87.2 91 93.1 95.1 95.9 96.7 97.3 98.1 98.8
Stop2 19 12 06 02 05 0 O 01 O 01 2 09 02 07 01 02 0 03 0 O
Stop3 263 129 79 6 51 47 44 22 27 18 249 119 88 62 48 39 33 24 19 12
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O
90 Stopl 63.2 77.8 81.6 842 85 88.7 89.9 91.5 93.6 93.6 61.7 77.2 833 85 86.4 83 90.4 91.4 92.7 944
Stop2 26 1 08 11 02 02 06 02 01 02 26 19 09 02 05 02 01 01 0 01
Stop3 342 212 17.6 147 148 11.1 95 83 63 6.2 357 209 158 14.8 131 11.8 95 85 73 55
Stop4 0 o0 0 O O O O O o o o o o0 O O o o0 o0 o0 O
100 Stopl 53.1 66.7 68.3 70.3 74.1 74.1 75.6 783 81 84.1 51.8 67 69.8 71 725 759 757 79.6 79.8 80.3
Stop2 21 17 06 08 03 07 03 02 01 03 24 09 1 07 11 05 03 06 03 05
Stop3 44.8 31.6 31.1 28.9 25.6 25.2 24.1 21.5 189 15.6 45.8 32.1 29.2 283 264 23.6 24 19.8 199 19.2
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 0 O
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Table A11. Computational results for randomly generated instances with the ratio 10%:20%:10%:60%
of the numbers of jobs in the subsets 71, J>, J1,2 and J 1 of the job set J.

45 of 51

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90

100

Stopl 99.2 99.6 99.8 100 99.9 100 100 100 100 100 98.5 99.8 99.9 99.9 100 100 100 100 100
Stop2 0 01 02 0 01 O O O O O 02 01 01 01 0 O O 0 O
Stop3 08 3 0 0 O O O O O O 13 01 O O 0O O 0 0 O
Stop4 0 o0 o0 0 O O O O o o o O o0 o O o o0 o0 O

100

10

Stopl 98.1 99.2 99.4 99.9 99.9 99.8 100 100 100 100 96.4 99.2 99.8 99.7 99.8 99.9 99.9 100 100
Stop2 01 05 04 01 01 0O O O O O 06 03 02 01 0 01 01 O O
Stop3 18 03 02 0 O 02 O O O O 3 05 0 02 02 0 0 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O

20

Stopl 91.3 97.7 97.7 97.8 99.1 98.7 98.8 98.7 99.1 99.6 90.3 96.5 97.6 98 98.4 99.1 99.4 99.4 99.2
Stop2 14 08 08 07 04 07 04 04 01 01 03 13 14 09 07 06 01 O 06
Stop3 73 15 15 15 05 06 08 09 08 03 94 22 1 11 09 03 05 06 02
Stop4 0 0 O O O O o o o o o o o o o o0 o0 0 O

30

Stopl 83.4 90.5 92 91.4 89.7 90.8 90.4 88.7 88.8 87 82.8 92.2 91.8 92.1 90.5 90.5 88.7 89.8 87.6
Stop2 1.7 17 17 11 12 16 06 14 11 1 16 12 15 08 15 18 06 12 13
Stop3 148 78 63 75 91 76 9 99 101 12 156 66 67 71 8 77 107 9 111
Stop4 01 0 0 0 O O O O O O0O o O o0 o O o o0 o0 o0

86.9
1.1
12

40

Stopl 75.8 783 76.6 74 72 69.2 65.5 62.7 57.6 59.2 74.3 78.2 78.1 76.3 70.5 68.3 64 655 61.2
Stop2 19 3 3 19 16 14 18 1 09 12 16 27 23 13 25 18 17 09 14
Stop3 22 18.7 20.4 24.1 26.4 29.4 32.7 36.3 41.5 39.6 24 19.1 19.6 22.4 27 299 34.3 33.6 37.4
Stop4 03 0 0 O O O O O O o 01 O O O o0 0 o0 0 O

58.2
1.5
40.3

50

Stopl 644 65 59.6 53.1 46.9 40.6 40.1 35 31.4 30.4 64.6 63.3 57.6 539 49.4 42.6 38.3 36.6 32.4
Stop2 19 28 19 21 17 15 08 11 15 07 16 38 24 15 13 11 08 11 13
Stop3 33.7 32.2 38.5 44.8 51.4 57.9 59.1 63.9 67.1 68.9 33.6 329 40 44.6 49.3 56.3 60.9 62.3 66.3
Stop4 0 0 O O O O o o o o 02 O O O o0 0 0 o0 O

28
1.1
70.9

60

Stopl 54.4 52.2 423 33 28.1 21.7 199 15.8 13.7 11.3 54.4 49.2 43.4 33.6 26.7 222 20.2 149 13
Stop2 14 29 18 16 14 07 04 03 02 03 24 24 23 28 09 09 07 04 03
Stop3 44.1 449 559 65.4 70.5 77.6 79.7 839 86.1 88.4 43 484 543 63.6 72.4 769 79.1 84.7 86.7
Stop4 01 0 0 0 O O O O O O 02 O O O O O0O o0 o0 O

11.1
0.3
88.6

70

Stopl 47 379 253 21 141 11 75 6 44 31 442 341 285 194 14 113 75 44 41
Stop2 15 14 13 15 07 05 03 02 01 0 21 29 14 07 09 04 01 02 01
Stop3 51.5 60.7 73.4 77.5 85.2 88.5 922 93.8 955 969 53.4 63 70.1 79.9 85.1 88.3 92.4 954 95.8
Stop4 0 0 O O O O o o O o 03 O O o0 o0 0 0 o0 O

3.1
0.1
96.8

80

Stopl 38 267 16 105 64 49 25 19 08 07 35 261 176 104 81 42 22 21 13
Stop2 13 17 13 1 09 01 0 01 O O 16 13 07 07 03 04 0 0 O
Stop3 60.6 71.6 82.7 885 92.7 95 975 98 99.2 99.3 63.1 72.6 81.7 889 91.6 954 97.8 979 98.7
Stop4 01 0 0O O O O O o o o 03 O O o0 o0 o0 0 o0 O

90

Stopl 29 157 92 47 38 17 16 0 02 03 295 167 102 59 32 21 11 07 03
Stop2 15 14 07 04 01 02 01 O O 01 17 12 04 03 0 0 O 0 O
Stop3 69.3 82.9 90.1 949 96.1 98.1 98.3 100 99.8 99.6 68.6 82.1 89.4 93.8 96.8 97.9 98.9 99.3 99.7
Stop4 02 0 0 O O O O O O O 02 O O O O O 0 o0 O

100

Stopl 216 122 67 24 16 06 02 01 01 0 23 11 58 3 17 05 02 03 O
Stop2 1.2 08 01 01 01 0 O O 01 O 11 06 05 02 01 0 O O O
Stop3 77 87 932 97.5 98.3 99.4 99.8 99.9 99.8 100 75.3 88.4 93.7 96.8 98.2 99.5 99.8 99.7 100
Stop4 02 0 0 O O O O O O O 06 O O O O o0 0 o0 O
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Table A12. Computational results for randomly generated instances with the ratio 10%:30%:10%:50%
of the numbers of jobs in the subsets 71, J>, J1,2 and J 1 of the job set J.

46 of 51

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90

100

Stopl 98.6 99.9 100 100 100 100 100 100 100 100 99.3 100 100 100 100 100 100 100 100
Stop2 02 0 0 O O O O o o o o o o o o0 o0 o0 o0 O
Stopd 1.2 01 0 0 O O O O O o 07 O O O O 0 0 0 O
Stop4 0 o0 o0 0 O O O O o o o O o0 o O o o0 o0 O

100

10

Stopl 97.8 99.4 99.8 99.8 100 99.8 100 100 100 100 97.3 99.7 99.7 100 100 99.9 100 100 99.9
Stop2 02 01 01 02 0 02 O O O O 02 01 01 0 O O O O 01
Stop3 2 05 01 0 O O O O O O 25 02 02 01 0 0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O

o
o

20

Stopl 93.5 98.1 98.1 99.4 99.1 99.7 99.6 99.9 99.7 99.4 95 97.5 98.8 99 99.5 99.5 99.8 99.7 99.6
Stop2 04 08 06 02 04 02 02 01 03 02 06 07 06 05 05 03 01 02 03
Stop3 61 11 13 04 05 01 02 0O O 04 44 18 06 05 0 02 01 01 01
Stop4 0 0 O O O O o o o o o o o o o o0 o0 0 O

30

Stopl 85.9 94.2 96.1 95.2 94.3 95.3 96.1 95.8 95.8 95.2 89.9 942 94.2 953 954 959 95.2 952 92.8
Stop2 06 14 11 11 12 05 07 11 03 04 09 08 14 1 15 1 12 06 11
Stop3 135 44 28 37 45 42 32 31 39 44 92 5 44 37 31 31 36 42 61
Stop4 0 o0 o0 0 O O O O o o o O o0 o O o o0 o0 o0

40

Stopl 80.5 85.7 85.5 83.4 85.4 819 823 77.7 77.8 77.5 81.7 859 883 85.6 82.1 84.3 81.6 79.1 80.9
Stop2 1.3 22 19 19 13 14 16 17 07 12 14 22 15 23 2 13 04 16 1
Stop3 18.2 12.1 12.6 14.7 13.3 16.7 16.1 20.6 21.5 21.3 169 11.9 10.2 12.1 159 144 18 19.3 18.1
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O

80.1
0.9
19

50

Stopl 74.1 748 726 70 67 62 59.2 585 549 52.7 73 759 73.6 69.7 67.6 60.9 62.6 59.1 56.6
Stop2 1.2 26 25 18 13 15 15 09 09 06 09 21 21 13 12 11 08 1 06
Stop3 24.7 22.6 249 282 31.7 36.5 39.3 40.6 442 46.7 26.1 22 243 29 312 38 36.6 399 42.8
Stop4 0 0 O O O O o o o o o o o o o o0 o0 0 O

52
0.4
47.6

60

Stopl 66.9 64.3 60.9 523 45 46.7 40 37.4 34.6 322 63.8 642 584 559 48.2 42.8 40.1 359 36.3
Stop2 1.3 32 16 25 15 09 18 09 08 09 08 2 19 16 18 14 12 13 09
Stop3 31.8 32.5 37.5 45.2 53.5 52.4 582 61.7 64.6 66.9 35.4 33.8 39.7 425 50 55.8 58.7 62.8 62.8
Stop4 0 0 o0 0 O O O O o o o O 0 o O o o0 o0 o0

31.2
1.3
67.5

70

Stopl 58.4 52.6 42.7 38.7 34.6 29.4 21.1 215 17.6 16.3 57.7 50.8 45 379 31 27.6 26.2 21.6 20.5
Stop2 14 22 1 23 08 07 05 03 02 01 09 35 24 11 13 06 06 04 03
Stop3 40.2 452 56.3 59 64.6 69.9 784 78.2 82.2 83.6 41.3 45.7 52.6 61 677 71.8 732 78 792
Stop4 0 0 o0 O O O o o O o 01 O O O o0 o0 o0 o0 O

15.1

84.9

80

Stopl 51.9 40.7 34.1 283 21.4 142 139 99 98 8 49.7 41.7 333 27.1 241 174 141 12.6 88
Stop2 09 17 14 14 02 01 02 03 01 O 08 25 16 09 05 03 06 05
Stop3 47.2 57.6 64.5 70.3 78.4 85.7 859 89.8 90.1 92 49.4 558 65.1 72 754 823 853 86.9 91.2
Stop4 0 0 O O O O o o o o 01 O O O 0 o0 o0 O

7.5

92.5

90

Stopl 44.2 31.3 246 173 123 11 71 47 3.6 42 44 327 248 163 127 10 79 65 42
Stop2 13 13 04 08 02 01 01 01 01 O 1 14 12 1 03 0 01 0 01
Stop3 545 67.4 75 819 87.5 889 92.8 952 96.3 95.8 54.6 659 74 827 87 90 92 93.5 95.7
Stop4 0 0 o0 O O O O O O O 04 0O O O O O O o0 O

3.8
0.1
96.1

100

Stopl 36.1 243 178 124 75 62 3 29 23 11 355 259 153 106 69 51 31 2 18
Stop2 08 16 08 06 02 01 0O 0 01 O 1 11 03 03 02 0 01 0 O
Stop3 63.1 741 81.4 87 923 93.7 97 97.1 97.6 989 629 73 844 89.1 929 949 96.8 98 982
Stop4 0 0 O O O O O o O O 06 O O O O o0 o0 o0 O

1.7

98.3
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Table A13. Computational results for randomly generated instances with the ratio 10%:40%:10%:40%
of the numbers of jobs in the subsets 71, J>, J1,2 and J 1 of the job set J.

47 of 51

Uniform Distributions Gamma Distributions

5%

n 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90

100

Stopl 98.9 100 100 100 100 100 100 100 100 100 99.6 99.9 100 100 100 100 100 100 100
Stop2 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O
Stop3d 11 0 0 O O O O o O O 04 01 O O O O O 0 O
Stop4 0 o0 o0 0 O O O O o o o O o0 o O o o0 o0 O

100
0
0
0

10

Stopl 97.6 99.6 99.9 99.9 100 100 100 100 100 100 98.2 99.5 99.9 99.9 100 100 100 99.9 100
Stop2 0 0 01 01 0 OO O O O o O O 01 01 O O 0 01 O
Stop3 24 04 0 0 O O O O O O 18 05 0 O O O O o0 O
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O

100

o

20

Stopl 95.8 98.6 99 99.7 99.7 99.9 99.7 100 100 99.9 95.5 97.6 99.7 99.3 99.5 99.8 100 99.8 99.9
Stop2 0 04 04 01 03 01 02 0 O 01 01 04 0 05 02 02 0 01 01
Stop3 42 1 06 02 0O O 01 O O O 44 2 03 02 03 0 0 01 O
Stop4 0 0 O O O O o o o o o o o o o o0 o0 0 O

100

30

Stopl 93.2 94.8 97.1 97.8 98.1 98.9 99 99 985 99.3 93.4 949 96.8 98.3 98.5 97.4 98.8 99.4 99.1
Stop2 0 08 05 09 02 01 O 04 05 01 05 1 07 03 04 09 02 01 05
Stop3 6.8 44 24 13 17 1 1 06 1 06 61 41 25 14 11 17 1 05 04
Stop4 0 o0 o0 0 O O O O o o o O o0 o O o o0 o0 o0

40

Stopl 88.6 91.1 91 919 945 91.2 91.7 92 933 93 877 90.5 91.6 92 925 93 93.1 926 92
Stop2 03 14 11 07 02 08 09 07 09 05 02 17 1 13 08 04 09 06 04
Stop3 11.1 75 79 74 53 8 74 73 58 65 121 78 74 67 67 66 6 68 76
Stop4 0 0 o0 O O O o o o o o o o o o o0 o0 o0 O

91.5
0.7
7.8

50

Stopl 84.6 869 84.6 848 81 82 793 79.7 77.8 77.8 85 849 82 81.6 82 831 772 79.7 78.5
Stop2 06 09 12 16 16 11 1 08 11 09 0 22 18 2 1 12 13 09 11
Stop3 14.8 12.2 142 13.6 17.4 169 19.7 195 21.1 21.3 15 129 16.2 164 17 157 21.5 19.4 20.4
Stop4 0 0 O O O O o o o o o o o o o o0 o0 0 O

78.1

20.9

60

Stopl 79.7 77.8 754 71.5 71.1 69.2 63.5 61.3 59 58.8 77.5 75.1 75.4 71.8 70.7 66.4 66.3 63.5 60.1
Stop2 02 19 2 19 19 12 08 11 09 06 08 17 21 15 14 18 05 08 17
Stop3 20.1 20.3 22.6 26.6 27 29.6 35.7 37.6 40.1 40.6 21.7 23.2 22.5 26.7 27.9 31.8 33.2 35.7 38.2
Stop4 0 0 o0 0 O O O O o o o O 0 o O o o0 o0 o0

60.3

38.7

70

Stopl 73.5 68.5 65.8 65.9 57.7 542 49.6 479 44.8 453 754 714 65.7 62.8 59.4 559 50.7 49.5 44.6
Stop2 06 17 16 14 15 07 09 07 07 08 02 15 12 12 14 07 1 07 1
Stop3 25.9 29.8 32.6 32.7 40.8 45.1 49.5 51.4 54.5 539 24.3 27.1 33.1 36 39.2 434 48.3 49.8 544
Stop4 0 0 o0 O O O o o O o 01 O O O o0 o0 o0 o0 O

43.2
0.7
56.1

80

Stopl 67.6 60.5 58.7 52.8 46.1 43.5 40.1 36.7 35.4 34.2 66.6 62.4 53.4 50.8 49 43 414 37.8 38.7
Stop2 03 27 12 11 09 06 08 04 02 06 04 21 2 11 14 1 04 03 03
Stop3 32.1 36.8 40.1 46.1 53 559 59.1 629 64.4 652 329 355 44.6 48.1 49.6 56 582 619 61
Stop4 0 0 O O O O o o O o 01 O O o0 o0 o0 0 0 O

33.7
0.2
66.1

90

Stopl 63.3 50.9 49.5 42.8 36.3 36.2 33.7 28.7 28.2 28.9 582 54.1 51.9 44.1 37.3 33.8 31.6 30.8 27
Stop2 08 15 1.7 09 05 01 03 02 02 03 03 14 12 1 07 05 04 01 03
Stop3 35.9 47.6 48.8 56.3 63.2 63.7 66 71.1 71.6 70.8 41.5 44.5 469 549 62 657 68 69.1 72.7
Stop4 0 o0 o0 0 O O O O o o o o o0 o O o o0 o0 O

27.5

72.5

100

Stopl 58.1 48.4 41.1 32.5 309 27.2 242 21.2 23.1 20.4 555 44.4 382 322 323 27.7 241 21.8 22.4
Stop2 02 1 06 08 03 04 02 04 0 O 07 15 07 08 06 05 02 01 02
Stop3 41.6 50.6 58.3 66.7 68.8 72.4 75.6 78.4 769 79.6 43.8 54.1 61.1 67 67.1 71.8 75.7 78.1 77.4
Stop4 01 0 0 O O O O o o o o o o o o o0 o0 o0 O

20.3

79.7
0
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Table A14. Computational results for randomly generated instances with the ratio 10%:60%:10%:20%
of the numbers of jobs in the subsets 71, J>, J1,2 and J 1 of the job set J.

48 of 51

Uniform Distributions Gamma Distributions
0% n 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
5 Stopl 100 99.8 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 02 0 0 0 0 0 0 0 0 0 01 O 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 Stopl 100 99.9 100 100 100 100 100 100 100 100 100 99.8 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop3 0 01 0 0 0 0 0 0 0 0 0 02 01 O 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 Stopl 100 99.4 999 100 100 100 100 100 100 100 100 99.3 99.9 100 100 100 100 100 100 100
Stop2 0 0 0 0 0 0 0 0 0 0 0 0 01 O 0 0 0 0 0 0
Stop3 0 06 01 O 0 0 0 0 0 0 0 07 O 0 0 0 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 Stopl 99.9 98.7 99.7 99.9 100 100 100 100 100 100 100 98.6 99.5 99.5 99.9 100 100 100 100 100
Stop2 0 03 0 0 0 0 0 0 0 0 0 02 01 03 O 0 0 0 0 0
Stop3 01 1 03 01 O 0 0 0 0 0 0 12 04 02 01 O 0 0 0 0
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 Stopl 100 97.3 99.5 99.7 99.7 100 99.8 100 99.9 99.9 100 97.2 98.6 99.1 99.8 100 100 100 99.9 100
Stop2 0 03 03 0 0 0 01 O 0 0 0 01 05 02 o0 0 0 0 0 0
Stop3 0 24 02 03 03 0 01 O 01 01 0 27 09 07 02 O 0 0 01 O
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50 Stopl 99.9 96.1 97 98.3 99.2 99 99.3 99.5 99.8 100 100 95.8 96.9 98.4 99.2 99.2 99.7 99.9 99.6 100
Stop2 0 02 05 02 03 05 02 0 02 0 0 02 05 04 O 0 01 O 0 0
Stop3 0.1 37 25 15 05 05 05 05 0 0 0 4 26 12 08 08 02 01 04 O
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 Stopl 99.7 94.6 96.1 96.8 97.8 982 979 983 98.7 99 99.8 949 953 97.6 97.9 98.3 96.9 98.8 98.4 98.6
Stop2 0 04 11 01 03 02 07 O 01 01 O 01 02 03 02 03 06 03 04 02
Stop3 03 5 28 31 19 16 14 17 12 09 02 5 45 21 19 14 25 09 12 12
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 Stopl 99.6 94.4 94.2 94.8 95.9 94.6 95.6 95.8 96.5 96.7 99.6 94 949 934 945 96 97 962 96 96
Stop2 0 04 06 05 06 06 03 04 04 0 0 02 07 05 04 08 02 02 04 03
Stop3 04 52 52 47 35 48 41 38 31 33 04 58 44 61 51 32 28 36 36 37
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 Stopl 99.8 909 92 912 91.2 92 92 923 919 92 99.1 89.5 92 91.6 90.8 92.6 92.4 93.4 92.6 92.1
Stop2 0 02 06 08 07 02 05 06 04 03 0 04 06 07 11 06 05 02 04 01
Stop3 02 89 74 8 81 78 75 71 77 77 09 101 74 77 81 68 71 64 7 78
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 Stopl 98.9 88.3 89.5 883 87.6 89 86.1 87.8 869 86.2 98.6 89.9 87.3 88.8 88.5 88.7 87.8 85.1 88.5 87.2
Stop2 0 02 1 09 12 05 08 06 02 03 0 01 05 03 04 05 07 04 06 09
Stop3 1.1 11.5 9.5 10.8 11.2 105 13.1 11.6 129 135 14 10 122 109 11.1 10.8 11.5 14.5 109 11.9
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 Stopl 97.8 88.4 86.6 83.1 85.7 83.4 82.8 81.3 82.1 82.4 97.6 90.2 844 85 84.2 81.7 80.2 82.2 80.7 83.2
Stop2 0 04 11 1 1 06 07 05 08 02 0 02 07 09 12 06 06 05 04 05
Stop3 22 112 123 159 133 16 165 182 171 174 24 9.6 149 14.1 14.6 17.7 19.2 17.3 189 16.3
Stop4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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