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Abstract: The influence maximization problem (IMP) in complex networks is to address finding a
set of key nodes that play vital roles in the information diffusion process, and when these nodes
are employed as ”seed nodes”, the diffusion effect is maximized. First, this paper presents a refined
network centrality measure, a refined shell (RS) index for node ranking, and then proposes an
algorithm for identifying key node sets, namely the reject neighbors algorithm (RNA), which consists
of two main sequential parts, i.e., node ranking and node selection. The RNA refuses to select
multiple-order neighbors of the seed nodes, scatters the selected nodes from each other, and results in
the maximum influence of the identified node set on the whole network. Experimental results on
real-world network datasets show that the key node set identified by the RNA exhibits significant
propagation capability.
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1. Introduction

Many systems in the real world exist in the form of complex networks, ranging from protein
interaction networks in living organisms to interstellar gravitational networks in space. Complex
networks are high-level abstractions of complex systems. People hope to reveal the information, laws,
and knowledge hidden behind data through quantitative and effective data analysis and mining of
networks. Research on the influence maximization problem (IMP) in complex networks is a hot topic
in network science, which is also known as identification of a key node set or multiple influential
nodes, which refers to selecting k initial propagation seed nodes under the premise of a given budget,
to maximize the impact on network propagation [1,2]. The IMP is essential to control and understand
a complex system’s spreading capabilities and ensure efficient information diffusion, such as in
rumor-like dynamics of viral marketing.

Research on the identification of a key nodeset originated from Domingos and Richardson’s
thinking in viral marketing [3]. It is easy to understand that the probability of customers purchasing
products not only depends on the inherent desirability of the products but also on the influence of
other customers. Therefore, under a limited marketing budget, finding a small group of customers to
provide discounts to and maximize the final total sales is the best for business. Since only a small group
of nodes is allowed to be selected as seed nodes, when the target network is vast, i.e., in the context of
big data, selecting a small group of seed nodes is much more difficult. Kempe et al. proved that the
IMP is an NP-hard problem and proposed a greedy algorithm based on the two classic information
diffusion models, the linear threshold model (LT) and independent cascade model (IC) [4]. As far
as we know, Kempe et al.’s work was the first to formalize the influence maximization as a discrete
optimization problem.
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In recent years, along with the fast development of social networks, especially online social
networks, researchers have started to give more effort to solving the challenges of the IMP in big data.
Thai, My T. et al. summarized the challenges in social big data analysis into emerged data-related
challenges and big data analysis processes [5]. A survey article by [6] summarized the types of
social influence evaluation metrics into centrality measures, link topological ranking measures,
and entropy measures. Furthermore, they classified existing IMP algorithms into greedy-based
algorithms, heuristic-based algorithms, and others such as voting-based and greedy-based, and
heuristic-based hybrid algorithms. To our understanding, the most significant challenge of the IMP in
big data is high computational complexity. Because there is no need to re-evaluate a large number of
nodes in each time step to find the node with the largest marginal effect, Leskovec et al. proposed
a CELF (cost-effective lazy forward) optimization algorithm [7]. The proposed algorithm obtained
about 700 times performance improvement and an approximate optimal result as compared with the
original greedy algorithm. To provide an efficient IMP solution, research work by [8] provided an
entropy ranking and a min-cut two-phase IMP solution. To solve the ”computationally-hard” problem
influencing calculations after deciding seed nodes, research work [9] proposed a lazy forwarding
approach on differential evolution algorithm. To balance the running time and the influence spread of
IMP solution, Wei Chen et al. proposed a scalable influence maximization solution for viral marketing
in large-scale social networks [10]. Because of IMP’s practical importance in various domains, such as
viral marketing and personalized recommendation, researchers also started to introduce more and more
rich information other than network structure to overcome the challenges of IMP in big data [11,12].

In addition to the computational complexity challenge, the suitable design of influence evaluation
metrics has always been one of the most widely discussed topics with respect to the IMP. Holme et al. [13]
proposed recalculating the network centrality after each round of node selection. On the basis of a
similar idea, Chen et al. proposed the degree discount algorithm [14], which achieved prominent
experimental efficiency and approximated experimental results with the greedy algorithm. According
to the point coloring theory in graph theory, Zhao et al. selected the nodes that wered scattered
with each other, and propose a coloring algorithm to combine the key node sets [15]. Zhang et al.
proposed a vote rank algorithm [16] by using adaptive recalculation. Each node obtained votes from
its neighbor nodes in each round, and the voting ability of neighbor nodes of the selected node was
weakened to select the node with the highest number of votes per round. He et al. [17] employed a
community discovery algorithm to divide the network into several communities and extracted key
nodes in each community according to a certain centrality index, which ensured that the selected nodes
were sufficiently dispersed in the whole network. Bao et al. proposed the HC (heuristic clustering)
algorithm [18] based on LP (local path) similarity index, in which nodes were divided into several
clusters through clustering, and the central nodes in each cluster were extracted to form a key node set.

In fact, due to budget constraints and considering influence diffusion, when selecting a seed node
set for the IMP, the influence and scattering degree of selected nodes are all essential factors that need to
be considered. We have proposed a solution for the influence maximization problem in big data, which
we have called the reject neighbors algorithm. The nodes of the target network are sorted according to
their centrality, and then are filtered in terms of the proposed rules to make the filtered nodes more
dispersed, and thereby maximum influence is achieved. Through propagation simulations on a large
number of real network datasets, we verify that the reject neighbors algorithm performance is superior
to comparison algorithms. The fundamental contributions of this study can be summarized as follows:

• Proposed a refined k-shell centrality indicator for IMP;
• Proposed a node ranking and a reject neighbors-based node selection two-phase IMP algorithm;
• Achieved superior IMP results as compared with other state-of-the-art methods.

The main contents of the paper are as follows: First, the process of the reject neighbors algorithm
is introduced in detail; in Section 2, and a simple verification is also performed on the dolphin social
network [19]; subsequently, in Section 3, the relevant contents of the simulation experiment are



Mathematics 2020, 8, 1313 3 of 17

introduced, including network dataset, evaluation index, comparison algorithm, and experimental
results, and so on; finally, Section 4 concludes the whole paper.

2. Algorithm Design

The reject neighbors algorithm (RNA) is a solution for the influence maximization problem in
a complex network. The RNA selects initial propagation seed nodes in a simple graph to maximize
the impact on network propagation, which can be used for rumor-like dynamics of a viral marketing
scenario. Moreover, the influence maximization problem in the field of recommendation systems [20–22]
also provides a more practical application scenario for the application of the refined shell index.
RNA includes two parts, i.e., node ranking and node selection. A node importance index named
refined shell is put forward to facilitate the process of influence maximization.

2.1. Refined Shell Index

The k-shell decomposition is a well-established method for analyzing the structure of large
networks [23], which assigns nodes of a target network to k different shells by iterative pruning the
target network. The decomposition process is described as follows: In the first iteration, the edges of
all nodes with a degree of 1 are removed first, after this, some nodes are left with one edge, therefore,
the edges of these nodes with a degree of 1 are continually removed until there are no nodes with a
degree of 1 left. Those removed edges are assigned a 1-shell value. Similarly, the edges of the nodes
with a degree of 2 are removed and assigned a 2-shell value, in the second iteration. The iteration
continues until all nodes have been assigned, and the shell value (k-shell value) of a node belonging to
the i-shell is i. The larger the shell value of the nodes, the more critical these nodes are.

The k-shell decomposition divides nodes into different subgroups with different shell values from
a global view, exploring the inner core of the network, which is efficient spreaders. On the contrary,
taking degree centrality as an example, as the most straightforward measure of network centrality,
degree centrality plays a vital role in network-related application research. However, degree centrality
focuses on the local structural information of the network, while the network propagation behavior
is a global view-oriented approach. Therefore, the effectiveness of using nodes with a high degree
centrality for the IMP is usually not satisfactory [24]. Research on classic epidemic-propagation models
and real-world networks has indicated that compared to highly connected or most central nodes,
nodes from the core of the network identified by the k-shell decomposition were much more efficient
spreaders [25].

Despite the described advantages, using the k-shell value for selection of the influential nodes
suffers from a resolution limit. Figure 1 shows the dolphin social network as an example [19].
The dolphin social network has 62 nodes and 159 edges, and 36 nodes hold the maximal k-shell value
of four, which accounts for more than half of the total number of nodes. For the single-source influence
maximization problem (select only one node as initial propagation seed to maximize influence), we can
sort nodes by k-shell values and choose the node having the highest k-shell value as the information
source. However, if the application scenario requires a multiple source influence maximization solution,
extra node selection steps are needed, which means the k-shell measure is too “coarse” to be used to
select the initial seed set. Moreover, this kind of coarse node importance division brings too much
randomness to the extra steps, which is not conducive to further node selection. Therefore, this paper
improves the k-shell index and proposes a refined shell (RS) index. This index inherits the advantages
of k-shell centrality measurement and employs the local information of nodes to precisely differentiate
the importance of nodes.
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On the basis of the k-shell decomposition, the RS index further divides all nodes in each shell
according to the degree, and the calculation method is formulated as:

RS(i) = Shell(i) + [coe f f iK ×Degree(i) + coe f f iB]
coe f f iK = 1

(maxD−minD)

coe f f iB = −minD
(maxD−minD)

(1)

where Shell (i) denotes the k-shell value of node I; coeffiK and coeffiB are parameters used to normalize
the degree of each layer of nodes; maxD and mind, respectively correspond to the maximum degree
value and minimum degree value of all nodes in the shell layer where the node is located.

The RS index is optimized on the basis of k-shell, so the whole calculation process includes k-shell
decomposition and normalization of node degree centrality in shell layer. The calculation process is
as follows:

1. Set the number of shell layers s = 1;
2. Iteratively removing nodes with degree value of s in the network and removing their connected

edges, these nodes constitute the s-shell layer of the network;
3. Calculate the maximum node degree, maxD, and the minimum node degree, mind, in this

shell layer;
4. Calculate coeffiK and coeffiB according to Equation (1), thereby calculating RS (i) of nodes in the

shell layer;
5. Increase the number of shell layers s, repeat steps 2, 3, and 4 until all nodes are removed.

The pseudocode of the RS index calculation is shown below.

Centrality: RS index

Input: The network G = n nodes, m edges
Output: RS (i) represents the RS value of the network node
1: s=1 // s represents the s-shell layer of the network
2: while num (G) > 0 do // num (G) represents the number of nodes in the network
3: while exists node (s) in G do //node (s) represents a node with degree s
4: remove node (s) from G
5: node (s) append to s-shell
6: end while
7: calculate maxD and minD in s-shell
8: calculate coeffiK and coeffiB in s-shell
9: calculate RS (i) in s-shell
10: s++

11: end while
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Further partition of the nodes in each shell is conducted by employing the RS index, which makes
the importance of nodes more precisely distinguished. Apart from keeping the advantages of the
k-shell index in the spread of network information, the RS index avoids bringing too much randomness
to the selection of downstream nodes. The next section describes the selection of nodes based on the
RS index.

2.2. Node Selection

The simplest and most direct node selection strategy is the top-k method, that is, according to a
network centrality measure to select the top k nodes as the key node set. In real-world networks, the
characteristics of the rich man’s club phenomenon [26] are common, where key nodes are gathered
together, which cause the influence of nodes to overlap with each other, and then degrade the diffusion
of information. Therefore, the top-k method may not be very effective.

Selecting a group of key nodes scattered in the network is the essence of the identification of a key
node set. Before introducing the specific algorithm, several variables need to be defined. The “seeds”
collection is used to save seed nodes, that is, nodes that have been identified as key nodes. The “refuses”
set is used to save nonseed nodes, that is, nodes that cannot be seed nodes. The order σ of the rejection
domain is used to determine the order of the neighbor of the seed node and σ = 0 means the node
itself. The procedures of RNA are as follows:

1. Sorting nodes in the network according to the RS index;
2. Select the rejection domain order σ;
3. Seeds store the seed nodes, and refuses store the neighbors of the seed nodes with the order from

0 to σ;
4. Traverse the sorted nodes. If the node is not in refuses, the node is added to seeds, and the node’s

neighbors with the order of 0 to σ are added to refuses;
5. If the number of nodes is satisfied, the iteration is stopped, and the seeds set is the final key

node set;
6. If the number of nodes is still not satisfied at the end of the traversal, then relax the limit conditions,

that is, decrease the order of the rejection domain.

Repeat the above-mentioned steps (3) to (5) until the number of nodes is met.
The corresponding pseudocode of RNA (Algorithm 1) is as follows:

Algorithm 1: RNA.

Inout: The network G = n nodes, m edges
Output: The key node-set Seeds
1: sort nodes into array by RS index // array is the sorted sequence of nodes
2: for i = 1 to n step 1:
3: if num not meets do // The number of nodes set in advance is satisfied
4: if node not in Refuses do
5: array[i] is added to Seeds
6: [0, σ] neighbors of array [i] are added to Refuses
7: end if
8: else do
11: return Seeds
12: end if
13: if i = n do
14: σ–
15: go to step 2 // return step 2
16: end if
17: end for
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The order of the rejection domain turns into a parameter to be measured. When the order of the
rejection domain is too low, the selected nodes are not scattered enough, and result in ineffectively
spreading information; when the order of the rejection domain is too high, most nodes in the network
are placed in the refuses set. There may be fewer nodes that meet the requirements after one round of
the algorithm, therefore, we have to reduce the restriction conditions and run it multiple times. In the
next section, we use the RNA to identify multiple influential nodes in a real small network dataset.

For the RS index calculation, k-shell decomposition is performed by traversing all nodes in the
network, therefore, the time complexity of calculation of this index is O(n). The RNA algorithm is
executed based on the RS index. It traverses all nodes in the network and uses the arranged node set
to identify the rejected neighbors. Therefore, the time complexity of this part is O(n). In conclusion,
the time complexity of the RNA is O(n). In addition, the adjacency matrix of the network storage takes
up n2 space. Computing the RS index needs n storage units, then, the nodes in the process of sorting
need n × logn storage units. In the process of iterative node filtering, the seeds set and refuses set need
n storage units in total. To sum up, the space complexity of the RNA is O

(
n2

)
.

3. Experimental Analysis

In this paper, the RNA is used to carry out sufficient experiments on different types of public real
network datasets with different data scale. Comparisons with existing algorithms prove that the RNA
is effective in terms of network propagation influence range and network propagation speed.

3.1. Evaluation Index

The key node set affects the propagation of the whole network information, therefore, it is necessary
to evaluate the merit of the selected node set from the perspective of transmission. Kempe et al.
proposed a general framework for maximizing influence, which considered the basic propagation
model, in which each node could be active or not, and the trend of each node becoming active increased
monotonously when its neighbors became active. If the propagation process started with a group of
initially active nodes, then the influence of this group of nodes was the number of active nodes after
the propagation process ended. Although such numerical results cannot be obtained by analysis, they
can be accurately estimated by extensive simulation of the propagation process. Therefore, given the
number of initial active nodes, the problem of influence maximization falls into maximizing the number
of final active nodes.

In this paper, the classic epidemic propagation model, susceptible-infectious-recovered (SIR)
model [27], is employed to verify the influence of key node set. It sets the node set identified by
the key node set identification algorithm as infected state (I-state) and all other nodes as susceptible
state (S-state). In the process of simulation propagation, the I-state nodes infect the S-state nodes
with an infection probability of β every round. Meanwhile, the I-state nodes transform into removed
state (R-state) nodes with a probability of γ. When there are no I-state nodes in the network, that is,
all I-state nodes are transformed into R-state nodes, there is no infection behavior in the network,
and the propagation process ends. At this time, the number of R-state nodes in the network indicate the
network scope affected by the key node-set. In the actual process of network propagation, there are two
specific implementations of single-point contact SIR and full-contact SIR. Their difference is whether
I-state nodes of each round try to infect a single neighbor or all their neighbors. Full-contact SIR is
more conducive to information transmission, while single-point contact SIR is more conducive to the
analysis of transmission process. In this paper, both of the two SIR propagation models are analyzed
in detail.

For the comparison algorithms, we selected the following two strategies: top-k and coloring.
There are four different kinds of network centrality based on degree centrality, -shell, betweenness
centrality, and closeness centrality. Top-k corresponds to the four algorithms of degree
centrality (DC) [28], K-shell (KS) [25], betweenness centrality (BC) [29], and closeness centrality
(CC) [30], respectively, and coloring corresponds to degree centrality coloring (DCC), K-shell
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coloring (KSC), betweenness centrality coloring (BCC), and closeness centrality coloring (CCC)
algorithms [15], respectively.

In order to uniformly measure the difference of influence range of various algorithms on different
datasets, the relative proportion of the influence range index marked as ∆ is given as:

∆ =
Ri −RDC

RDC
(2)

where Ri represents the number of final R state nodes in the network after the propagation simulation
of a certain key node set recognition algorithm through the SIR model, that is, the network range
affected by this key node set; RDC represents the network range ultimately affected by the top-k method
based on degree centrality. The larger the ∆, the wider the propagation range of the node set identified
by the algorithm.

In this paper, we measure the advantages and disadvantages of the key node set identification
algorithms in influencing the network scope and also consider the differences in the propagation
speed of different algorithms. The network propagation speed is defined as the ratio of the network
range finally affected by a certain identification algorithm to the total number of rounds of network
propagation, i.e., the average number of network nodes affected by each round of propagation, as shown
in Equation (3):

vi = Ri/t (3)

To uniformly measure the difference of the propagation speed of various algorithms on different
datasets, the relative proportional index of propagation speed δ is employed, as shown in Equation (4):

δ =
vi − vDC

vDC
(4)

The propagation speed of different algorithms is compared with the Top-k method based on
degree centrality. The larger the δ, the faster the influence propagation of the node set identified by
the algorithm.

The above are the indicators that need to be compared in the key node set recognition task, where
∆ and δ are used to measure the performance of key node sets identified by different algorithms in
terms of network propagation range and speed, respectively.

3.2. Network Datasets

Considering the different attributes of actual networks in different application scenarios, in
this paper, we selected different types of datasets of networks, including mail networks, blog
networks, aviation networks, protein interaction networks, and Web networks. The dataset size
was also considered and datasets of various scales were selected. At the same time, considering the
possible impact of data sparsity on propagation, the selected datasets also have different data sparsity.
Finally, we carry out a series of preprocessing on the determined dataset, including transforming the
network into an undirected and unweighted network, taking the largest branch of the network as
the experimental object, removing duplicated edges and self-edges, and deleting isolated nodes in
the network.

The following datasets are employed for experiments:

Email-Eu-Core Network [7] The dataset is generated using e-mail data from a large European research
institution. If there is at least one e-mail exchange between the members of the two institutions, there
is an edge in the network connecting the members of the two institutions. It merely contains the
communication between the members of the organization and does not contain the communication
information between the outside and the inside of the organization.

Political Blogs [31] The dataset is a hyperlink-oriented network between U.S. political blogs recorded
by Adamic and Glance, in 2005.
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OpenFlights [32] This dataset is extracted from the data of OpenFlights.org and corresponds to the
network 14c in Tore Opsahl’s homepage dataset list. The network includes flights between airports
around the world, and edges in the network indicate flights from one airport to another.

Protein–Protein Interaction [33] The network is a sub-network of human protein interaction network.
The protein interaction network is a network of protein complexes formed by biochemical events or
electrostatic forces, which can play unique biological functions as complexes. Nodes in the network
represent proteins, whereas edges represent interactions between proteins.

Web-EPA [34] The dataset provides network data linked to www.epa.gov from a scientific
network data warehouse called Network Repository, where nodes represent web pages and edges
represent hyperlinks.

Human Protein (Vidal) [35] The network represents the initial version of the proteome scale map of
human binary protein–protein interactions. Compared with the Protein–Protein Interactions network,
the Human Protein (Vidal) network is sparser.

The topological properties of the network obtained after a series of pretreatments of the original
network are shown in Table 1, which records the number of nodes, the number of edges, and the
average degree of the network for each dataset.

Table 1. Datasets for verifying propagation influence.

Datasets Nodes Edges 〈k〉

Email-Eu-Core Network 986 16,064 32.5842
Political Blogs 1222 16,714 27.3552
OpenFlights 2905 15,645 10.7711

Protein–Protein
Interactions 3852 37,841 19.6475

Web-EPA 4253 8897 4.1839
Human Protein (Vidal) 2783 6607 4.3169

3.3. Experimental Results and Analysis

On the basis of the SIR propagation model, the nodes identified by a key node set identification
algorithm are set to I-state for propagation simulation, and the differences in propagation range and
propagation speed between RNA and eight strategies such as DC, KS, BC, CC, DCC, KSC, BCC,
and CCC are compared in turn. At the same time, considering the influence of the order of the rejection
neighbor domain σ of RNA on node set selection, we assign the order of the rejection domain σ = 1, 2,
and 3, corresponding to RNA1, RNA2, and RNA3, respectively.

The magnitude of the propagation influence is determined by many factors, including the
implementation of the SIR model, infection probability β, removal probability γ, the initial number
of nodes with I-state, etc. Therefore, in order to comprehensively consider various factors, we use
the method of fixed parameters to carry out multiple groups of cross experiments. Simultaneously,
each group of experiments was repeated 500 times independently to obtain the mean value to guarantee
the reliability of the experimental results.

(1) The first group of experiments: The first group of experiments involved fixing the number of
nodes in the key node set and comparing the relative proportion of transmission range of different
algorithms with different infection probabilities.

There are two kinds of implementations for SIR, i.e., single-point contact SIR and full-contact SIR.
Full-contact SIR tries to infect all its neighbors during each round of infection, and single-point contact
SIR randomly infects one of its neighbors during each round of infection. Therefore, the full-contact
SIR model is more conducive to the transmission of information, while a single-point contact SIR
model is helpful to analyze the transmission process.

www.epa.gov
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For the implementation of the single-point contact SIR model, the removal probability is specified
as γ = 0.1. We respectively select 1%, 3%, and 5% of the total number of network nodes as key node
sets and take these nodes as I-state nodes in the SIR model. We observe the changes of the relative
proportion that affect the network transmission range (∆) under different infection probabilities (β).
The experimental results are shown in Figures 2–4.

As shown in Figures 2–4, the RNA2 and RNA3 algorithms are superior to other compared
algorithms, on the whole, under the single-point contact SIR model. There exist such cases when
the probability of infection is low and the number of nodes is small (for example, the number of
nodes in the node set is 1% and the infection probability is 0.1 in Figure 3), here, the RNA exhibits
a slightly poor effect. This situation is caused by the fact that the single-point contact SIR model is
not conducive to the rapid propagation of the network. At this time, if the number of nodes with
I-state is small and relatively scattered, it leads to the end of the propagation behavior before it has
spread, resulting in a small network propagation range and poor algorithm effect. With an increase of
infection probability, we see that the RNA gets better and better than other algorithms. From these
three groups of experiments, we found that if given more nodes in the key node-set, the RNA exhibits
more obvious experimental effect. Therefore, considering different infection probabilities, the RNA
presents good experimental results in terms of network propagation range based on the single-point
contact SIR model.

For the implementation of the full-contact SIR model, the removal probability is specified as γ = 1.
We respectively select 1%, 3%, and 5% of the total number of network nodes as key node sets and take
these nodes as I-state nodes in the SIR model. We observe the changes in the relative proportion that
affect the network transmission range ∆ under different infection probabilities β. The experimental
results are shown in Figures 5–7.Mathematics 2020, 8, x FOR PEER REVIEW 10 of 18 
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Figure 2. In the single-point contact susceptible-infectious-recovered (SIR) model, the relationship
between ∆ and βwith 1% nodes in the key node set.
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Figure 3. In the single-point contact SIR model, the relationship between ∆ and β with 3% nodes in the
key node set.
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Figure 4. In the single-point contact SIR model, the relationship between ∆ and β with 5% nodes in the
key node set.
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Figure 5. In full-contact SIR model, the relationship between ∆ and β. with 1% nodes in key node set.
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Figure 6. In full-contact SIR model, the relationship between ∆ and β. with 3% nodes in key node-set.
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Figure 7. In full-contact SIR model, the relationship between ∆ and β with 5% nodes in key node set.

As can be seen from Figures 5–7, based on the full-contact SIR model, the RNA2 and RNA3
algorithms are better than other algorithms in the experimental results on the four network datasets
of Email-Eu-Core Network, Political Blogs, OpenFlights, and Protein–Protein Interactions. However,
when the probability of infection is low, the experimental results of RNA on Web-EPA and Human
Protein (Vidal) datasets are not satisfactory, because the two datasets are too sparse. As can be seen
from Table 1, the average degree of the network is about 4, and the properties of this network are not
conducive to propagation. Compared with other algorithms, it can be seen that the experimental results
of most algorithms are not as good as DC when the infection probability is low. We conclude that, when
the infection probability is low, the degree-based top-k algorithm in the sparse network is simple, but its
effect on network propagation may be more obvious, and the simple algorithm may sometimes bring
better experimental results. With an increase of infection probability, the RNA gradually shows its
good transmission ability. Therefore, under full-contact SIR model and considering different infection
probabilities, RNA shows good experimental results in terms of network propagation range.

(2) The second group of experiments: The second group of experiments involved fixing the
infection probability and comparing the changes of the relative proportions of the propagation range
of different algorithms recognizing different numbers of key nodes.

In the implementation of the single-point contact SIR model, we set infection probability β = 0.2
and removal probability γ = 0.1, and in the implementation of the full-contact SIR model, β = 0.2 and
γ = 1 are assigned. We take k = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5% of the total number of network
nodes as key node sets. In this experiment, we compare the changes in the relative proportion of
node set propagation range ∆ when different algorithms identify different numbers of key nodes.
The experimental results are shown in Figures 8 and 9.
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Figure 9. In the full-contact SIR model, the relationship between Δ and k with 𝛽 = 0.2. 
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Figure 8. In the single-point contact SIR model, the relationship between ∆ and k with β = 0.2.
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As can be seen from Figures 8 and 9, for both single-point contact SIR model and full-contact
SIR model, when the infection probability β = 0.2, the experimental results of the RNA2 and RNA3
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algorithms for different numbers of key node sets identified on six real network datasets are far better
than those of other algorithms, and the relative proportion of the propagation range presents an
increasing trend. This shows that the RNA can identify more influential node sets that meet the
requirements of node number when identifying key node sets with different node numbers. Therefore,
the RNA achieves good experimental results in terms of network propagation range, whether under a
single-contact SIR model or full-contact SIR model, after considering the identification of node-sets
with different node numbers.

(3) The third group of experiments We employ different algorithms to identify key nodes of
different number to compare the variations of the relative proportion in the propagation speed.

The information propagation under a full-contact SIR model converges rapidly, which is not
conducive to analyze the propagation speed of key node sets. Therefore, in measuring the performance
of different key node set identification algorithms in terms of propagation speed, simulation with a
single-contact SIR model is under consideration. On the basis of the experiment in Figure 8, the number
of rounds of the propagation process at the end of the propagation behavior is additionally counted.
The propagation speed of each algorithm is calculated by using the propagation speed Equation in
Section 3.1, and the relative proportion of network propagation speed δ is calculated accordingly.
The experimental results are shown in Figure 10.

As can be seen from Figure 10, the experimental results of the RNA2 and RNA3 algorithms are
pretty good with upper-middle level, especially when the rejection neighbor domain is 2 (namely
RNA2), the advantages of RNA are particularly strong. Propagation speed reflects the number of
S-state nodes infected by a node set in a unit infection round. Therefore, the RNA is competitive in
propagation speed.

In summary, after considering the implementation of different SIR models, different infection
probabilities, and the different initial number of nodes with I-state, the experiments prove that the RNA
obtains an outstanding effect on the propagation influence range, as well as comparatively preferable
propagation speed. Simultaneously, the comprehensive experiments based on the above network
datasets also inspired us to consider that better experimental results could be attained when the order
of rejection neighbor domain is set to 2 or 3.
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4. Conclusions

Research on the influence maximization problem (IMP) in complex networks is an essential
technique for supporting many kinds of practical applications. Because of budget constraints
and the requirement for influence diffusion maximization, the process for selecting seed nodes for
the IMP solution usually requires taking both influence and scattering degree of selected nodes
into consideration.

In this paper, we proposed a two-step IMP solution called the RNA algorithm to fulfill these
requirements. In the first step, we designed a refined network centrality measure called refined shell
(RS) index to do node importance ranking. The RS indicator avoided the resolution limit of the k-shell
decomposition. In the second step, we proposed a node selection approach called the reject neighbors
algorithm (RNA) to filter out seed nodes from ranked nodes, which utilized the concept of reject
neighbors to achieve the goal of decentralized node selection. We carried out a simulation experiment
on six benchmark datasets and compared our algorithm’s performance with multiple commonly used
IMP solutions. Experimental results and theoretical analysis showed that the RNA exhibited significant
propagation capability and performed faster than compared approaches.

Because of the big social data boom, we have found that research on the IMP is still in its infancy
and facing some essential challenges. The diversity of social networks, the incomplete knowledge of
big data, and the network dynamics all raise new challenges for research on the IMP. In the context of
big data, we believe that many more problems and challenges will show up from both theoretical and
practical perspectives. For future research, in addition to network structure information, we believe
that the precious information attached to nodes should be well used in the IMP solution.
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