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Abstract: In this paper, we first propose the concepts of (ζ, η, λ, π)-generalized hybrid multi-valued
mappings, the set of all the common attractive points (CA f ,g) and the set of all the common
strongly attractive points (Cs A f ,g), respectively for the multi-valued mappings f and g in a CAT(0)
space. Moreover, we give some elementary properties in regard to the sets A f , Ff and CA f ,g
for the multi-valued mappings f and g in a complete CAT(0) space. Furthermore, we present
a weak convergence theorem of common attractive points for two (ζ, η, λ, π)-generalized hybrid
multi-valued mappings in the above space by virtue of Banach limits technique and Ishikawa iteration
respectively. Finally, we prove strong convergence of a new viscosity approximation method for two
(ζ, η, λ, π)-generalized hybrid multi-valued mappings in CAT(0) spaces, which also solves a kind of
variational inequality problem.
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1. Introduction

In 1975, Baillon proved the first nonlinear ergodic theorem in a Hilbert space. In 1978, Reich
obtained the almost convergence and nonlinear ergodic theorems. In 2010, Kocourek et al. [1] brought
in (ζ, η)-generalized hybrid mappings in a Hilbert space for the first time. They also proved a mean
convergence theorem for a generalized hybrid mapping that generalizes Baillon’s nonlinear ergodic
theorem. Let K be a nonempty subset of a real Hilbert space X. A mapping f : K → K is called
(ζ, η)-generalized hybrid if there exist ζ, η ∈ R, such that

ζ‖ f a− f b ‖2 +(1− ζ)‖a− f b‖2 ≤ η‖ f a− b‖2 + (1− η)‖a− b‖2

for all a, b ∈ K. f is said to be nonexpansive if f is (1, 0)-generalized hybrid; f is said to be nonspreading
if f is (2, 1)-generalized hybrid [2]; f is said to be hybrid if f is ( 3

2 , 1
2 )-generalized hybrid [3]. It can be

observed that the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings
are all included in (ζ, η)-generalized hybrid mappings.

The set of attractive points was proposed by Takahashi et al. [4] in 2011. That is,

A f = {c ∈ E : ‖ f a− c‖ ≤ ‖a− c‖, ∀a ∈ K}.
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They also obtained some fundamental properties for attractive points in a real Hilbert space.
Using these properties, they proved a mean convergence theorem without convexity for finding an
attractive point of a generalized hybrid mapping. Moreover, Takahashi et al. [5] gave the definition of
a more general class of mappings, called (ζ, η, λ, π)-normally generalized hybrid.

Definition 1 ([5]). A mapping f : K → K is called (ζ, η, λ, π)-normally generalized hybrid if there exist
ζ, η, λ, π ∈ R, such that

• ζ + η + λ + π ≥ 0;
• ζ + η ≥ 0 or ζ + λ ≥ 0;
• ζ‖ f a− f b‖2 + η‖a− f b‖2 + λ‖ f a− b‖2 + π‖a− b‖2 ≤ 0, ∀a, b ∈ K.

The theory of multi-valued mappings is widely applied in many fields, such as control theory,
convex optimization, differential equations, economics, and so on [6–13]. In recent years, there is
a growing interest in developing an approximation method for fixed points and attractive points
of multi-valued mappings. In 2017, Lili Chen et al. [14] raised the definitions of (ζ, η)-generalized
hybrid multi-valued mappings in Banach spaces. By the way, they also gave the concepts of attractive
points and strongly attractive points of (ζ, η)-generalized hybrid multi-valued mappings. In 2019,
Lili Chen et al. [15] introduced the concepts of (ζ, η)-generalized hybrid multi-valued mappings and
the corresponding definitions of common attractive points and common strongly attractive points in
Hilbert spaces.

In this work, we firstly extend the definitions of (ζ, η, λ, π)-generalized hybrid multi-valued
mappings, the set of common attractive points (CA f ,g) and the set of common strongly attractive
points (Cs A f ,g) of multi-valued mappings f and g to CAT(0) spaces. Furthermore, we present some
essential properties in relation to the sets A f , Ff and CA f ,g for the multi-valued mappings f and g in a
complete CAT(0) space. In addition, we obtain a weak convergence theorem of common attractive
points for two (ζ, η, λ, π)-generalized hybrid multi-valued mappings in the above space by means of
Banach limits technique and Ishikawa iteration respectively. Moreover, we give a strong convergence
theorem of two (ζ, η, λ, π)-generalized hybrid multi-valued mappings by the use of a new viscosity
approximation method in CAT(0) spaces, which also resolves a kind of variational inequality problem.

2. Preliminaries

Let (E, ρ) be a metric space. A geodesic path (or shortly a geodesic) joining a to b in E is a map
c : [0, l] ⊆ R→ E, such that c(0) = x, c(l) = y and ρ(c(s), c(t)) =| s− t | for all s, t ∈ [0, l]. The image
of c is called a geodesic segment joining a and b when it is unique and denoted by [a, b]. We denote
the unique point w ∈ [a, b], such that ρ(a, w) = θρ(a, b) and ρ(b, w) = (1− θ)ρ(a, b) by (1− θ)a⊕ θb,
where 0 ≤ θ ≤ 1.

The metric space (E, ρ) is called a geodesic space if any two points of E are joined by a geodesic,
and E is said to be uniquely geodesic if there is exactly one geodesic joining a and b for each a, b ∈ E.

A geodesic triangle Λ(r1, r2, r3) in a geodesic space (E, ρ) consists of three points in E (the vertices
of Λ) and a geodesic segment between each pair of points (the edges of Λ). A comparison triangle
for Λ(r1, r2, r3) in (E, ρ) is a triangle Λ(r1, r2, r3) := (r1, r2, r3) in the Euclidean plane R2, such that
ρR2(r̄p, r̄q) = ρ(rp, rq) for all p, q ∈ {1, 2, 3}.

A geodesic space E is called a CAT(0) space if all geodesic triangles of appropriate size satisfy the
following comparison axiom:

Let Λ be a geodesic triangle in E and Λ be a comparison triangle in R2. Subsequently, the triangle
is said to satisfy the CAT(0) inequality if

ρ(m, n) ≤ ρR2(m, n),

for all m, n ∈ Λ and all comparison points m, n ∈ Λ.
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If w, u, v are points in a CAT(0) space and if h is the midpoint of the segment [u, v], then the CAT(0)
inequality implies the so-called (CN) inequality, i.e.,

ρ2(w, h) ≤ 1
2

ρ2(w, u) +
1
2

ρ2(w, v)− 1
4

d2(u, v).

Moreover, a uniquely geodesic space is a CAT(0) space if and only if it satisfies the (CN)
inequality [16].

Now, we collect some elementary facts about CAT(0) spaces.

Lemma 1 ([16]). Let E be a CAT(0) space, m, n, g, h ∈ E and θ ∈ [0, 1]. Afterwards,

ρ(θm⊕ (1− θ)g, θn⊕ (1− θ)h) ≤ θρ(m, n) + (1− θ)ρ(g, h),

ρ(θm⊕ (1− θ)g, n) ≤ θρ(m, n) + (1− θ)ρ(g, n),

ρ2(θm⊕ (1− θ)g, n) ≤ θρ2(m, n) + (1− θ)ρ2(g, n)− θ(1− θ)ρ2(m, g).

Suppose that {ak} is a bounded sequence in a CAT(0) space E. For a ∈ E, put

r(a, {ak}) = lim sup
k→∞

ρ(a, ak).

The asymptotic radius r({ak}) of {ak} is given by

r({ak}) = inf{r(a, {ak}) : a ∈ E},

and the asymptotic center A({ak}) of {ak} is the set

A({ak}) = {a ∈ E : r(a, {ak}) = r({ak})}.

It follows from [17] that A({ak}) is made up of one point in a CAT(0) space. A sequence {ak} ⊂ E
is said to be ∆-convergent to a ∈ E if A({akj

}) = {a} for every subsequence {akj
} of {ak}.

Lemma 2 ([16]). Every bounded sequence in a complete CAT(0) space always has a ∆-convergent subsequence.

Lemma 3 ([16]). If K is a closed convex subset of a complete CAT(0) space and if {ak} is a bounded sequence in
K, then the asymptotic center of {ak} is in K.

Subsequently, the definition of ∆−convergence and corresponding primary properties are
presented below.

Let K be a nonempty closed convex subset of a complete CAT(0) space E. Afterwards, for any
e ∈ E, we know that there exists a unique nearest point κ ∈ K, such that

ρ(e, κ) = inf
k∈K

ρ(e, k).

In this case, κ is the only nearest point of e in K.

Lemma 4 ([18]). Assume PK : E→ K is a metric projection and {ak} ⊆ E. If ρ(ak+1, a) ≤ ρ(ak, a) for any
a ∈ K, then {PKak} converges strongly to some a0 ∈ K.

In 2008, Berg et al. [19] proposed the idea of quasilinearization in a metric space E. Each pair
(m, n) ∈ E × E is denoted by −→mn and called a vector. Subsequently, quasilinearization is a map
〈∗, ∗〉 : (E× E)× (E× E)→ R defined as
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2〈−→mn,−→rs 〉 = ρ2(m, s) + ρ2(n, r)− ρ2(m, r)− ρ2(n, s),

for all m, n, r, s ∈ E. It can be observed easily that 〈−→mn,−→rs 〉 = 〈−→rs ,−→mn〉, 〈−→mn,−→rs 〉 = −〈−→nm,−→rs 〉
and 〈−→mc,−→rs 〉+ 〈−→cn,−→rs 〉 = 〈−→mn,−→rs 〉, for all m, n, c, r, s ∈ E. We say that E satisfies Cauchy-Schwarz
inequality if

〈−→mn,−→rs 〉 ≤ ρ(m, n)ρ(r, s).

The necessary and sufficient condition for geodesic connected metric space to be CAT(0) space is
that geodesic connected metric space satisfies Cauchy-Schwarz inequality [20].

In 2013, Dehghan and Rooin [21] presented a characterization of a metric projection in CAT(0)
spaces by using the concept of quasilinearization.

Lemma 5 ([21]). Let K be a nonempty convex subset of a complete CAT(0) space E, p ∈ E and q ∈ K. Subsequently,

q = PK p i f and only i f 〈−→qp,
−→
lq 〉 ≥ 0,

for all l ∈ K.

Lemma 6 ([22]). Let E be a CAT(0) space and a, b ∈ E. For any ξ ∈ [0, 1], we set aξ = ξa + (1− ξ)b.
Afterwards, for each g, h ∈ E, we have

(1) 〈−→aξ g,
−→
aξ h〉 ≤ ξ〈−→ag,

−→
aξ h〉+ (1− ξ)〈

−→
bg,
−→
aξ h〉;

(2) 〈−→aξ g,
−→
ah〉 ≤ ξ〈−→ag,

−→
ah〉+ (1− ξ)〈

−→
bg,
−→
ah〉 and 〈−→aξ g,

−→
bh〉 ≤ ξ〈−→ag,

−→
bh〉+ (1− ξ)〈

−→
bg,
−→
bh〉.

In 2012, Kakavandi [23] proposed the following results in a complete CAT(0) space.

Lemma 7 ([23]). A sequence {ek} in a complete CAT(0) space (E, ρ) ∆-converges to e ∈ E if and only if
lim supk→∞〈

−→eek,
−→
et 〉 ≤ 0 for all t ∈ E, and w-converges to e ∈ E if lim

k→∞
〈−→eek,
−→
et 〉 = 0 for all t ∈ E.

Definition 2 ([23]). We say that a complete CAT(0) space (E, ρ) satisfies the (S) property if for any (x, y) ∈
E× E there exists a point yx ∈ E, such that [−→xy] = [−→yxx].

Obviously in metric spaces the strong convergence implies w-convergence, and w-convergence
implies ∆-convergence, the Example 4.7 of [23] shows that the converse is not valid.

Let l∞ be the Banach space of bounded sequences with supremum norm [14,24,25]. Let µ be
an element of (l∞)∗ (the dual space of l∞). Subsequently, we denote by µ(x) the value of µ at
x = (t1, t2, t3, ...) ∈ l∞. Sometimes, we denote by µk(tk) the value µ(x). A linear functional µ on l∞ is
said to be a mean if ‖µ‖ = µ(ε) = 1, where ε = (1, 1, 1, ...). If µk(tk+1) = µk(tk), a mean µ is said to be
a Banach limit on l∞. We know that there exists a Banach limit on l∞. If µ is a Banach limit on l∞, then
for x = (t1, t2, t3, ...) ∈ l∞,

lim inf
k→∞

tk ≤ µk(tk) ≤ lim sup
k→∞

tk.

In particular, if x = (t1, t2, t3, ...) ∈ l∞ and tk → t ∈ R, then we obtain µ(x) = µk(tk) = t. A useful
lemma would be given.

Lemma 8 ([24]). Let F be a Hilbert space, let {ak} be a bounded sequence in F and let µ be a mean on l∞.
Afterwards, there exists a unique point a0 ∈ co{ak|k ∈ N}, such that

µk〈ak, e〉 = 〈a0, e〉

for any e ∈ F.
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3. Main Results

In this section, we shall prove a weak convergence theorem of common strongly attractive points
for two (ζ, η, λ, π)-generalized hybrid multi-valued mappings in a complete CAT(0) space. Now, we
present the following notions and lemmas in CAT(0) spaces which will be used in the sequel. Suppose
E is a CAT(0) space and K is a nonempty subset of E, and let f : K → 2K\{∅} be a multi-valued
mapping. Let Ff be the set of all fixed points of the mapping f .

Let H be the Hausdorff distance, as defined by

H(P, Q) = max{sup
p∈P

ρ(p, Q), sup
q∈Q

ρ(q, P)},

where ρ(p, Q) = inf{ρ(p, q̂) : q̂ ∈ Q} and ρ(q, P) = inf{ρ(q, p̂) : p̂ ∈ P}.

Definition 3. A mapping f defined on a CAT(0) space E is called (ζ, η, λ, π)-generalized hybrid multi-valued
if there exist ζ, η, λ, π ∈ R, such that

ζH2( f m, f n) + ηH2(m, f n) + λH2(n, f m) + πρ2(m, n) ≤ 0, ∀m, n ∈ E. (1)

Example 1. Let E = R, and define ρ(a, b) = |a− b| for all a, b ∈ E and let H be the Hausdorff distance. It is
not difficult to see that (E, ρ) is also a complete CAT(0) space. Let K = [−1, 0], which is a closed convex subset

of E, and let f be a multi-valued mapping on K defined by f (x) = {1− x
2

, 0} for each x ∈ K. Let ζ = 2,

η = λ = −1, π = 0, we will show that f is (ζ, η, λ, π)-generalized hybrid multi-valued, which is,

2H2( f a, f b)− H2(a, f b)− H2(b, f a) ≤ 0, ∀a, b ∈ K.

Indeed, we have

2H2( f a, f b) = 2H2({1− a
2

, 0}, {1− b
2

, 0}) = 2
{

max
{

inf{ |b− a|
2

,
|1− a|

2
}, inf{ |b− a|

2
,
|1− b|

2
}
}}2

=
(b− a)2

2
,

and

H2(a, f b) + H2(b, f a) =
{

max
{
|a− 1− b

2
|, |a|

}}2
+

{
max

{
|b− 1− a

2
|, |b|

}}2

= (a− 1− b
2

)2 + (b− 1− a
2

)2.

Hence, we conclude

2H2( f a, f b)− H2(a, f b)− H2(b, f a) =
(b− a)2

2
− (a− 1− b

2
)2 − (b− 1− a

2
)2

= −1
2
− 3

4
a2 − 3

4
b2 − 3ab +

3
2
(a + b) < 0.

Therefore, f is (2,−1,−1, 0)-generalized hybrid multi-valued.

Definition 4. The set of all attractive points of the mapping f is defined as

A f = {e ∈ E : ρ(e, f u) ≤ ρ(e, u), ∀u ∈ K}.
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Definition 5. The set of all common attractive points of the multi-valued mappings f and g is defined as

CA f ,g = {e ∈ E : max{ρ(e, f u), ρ(e, gu)} ≤ ρ(e, u), ∀u ∈ K}.

Definition 6. The set of all strongly attractive points of the mapping f is denoted by

SA f = {e ∈ E : H(e, f u) ≤ ρ(e, u), ∀u ∈ K}.

Definition 7. The set of all common strongly attractive points of the multi-valued mappings f and g is
defined as

Cs A f ,g = {e ∈ E : max{H(e, f u), H(e, gu)} ≤ ρ(e, u), ∀u ∈ K}.

Ishikawa iterative process for two mappings f and g in CAT(0) spaces is as follows:{
bk = ζkak + (1− ζk)dk,
ak+1 = ηkak + (1− ηk)ck,

(2)

where ck ∈ f bk and dk ∈ gak, ζk, ηk ∈ (0, 1).
We use F (E) to denote the family of all the closed convex subsets of E. We can observe the

following results.

Proposition 1. Let E be a complete CAT(0) space and K be a nonempty closed convex subset of E. Let f , g :
K → F (K) be two mappings. If CA f ,g 6= ∅, then Ff ∩ Fg 6= ∅. In particular, if w ∈ CA f ,g, then
PKw ∈ Ff ∩ Fg.

Proof. Let w ∈ CA f ,g, then w ∈ A f and w ∈ Ag. Thus, by the definition of metric projection there
exists a unique element PKw ∈ K, such that

ρ(w, PKw) = ρ(w, K) ≤ ρ(w, g(PKw)). (3)

Similarly, since g(PKw) is a closed and convex subset of K, there exists Pg(PKw)w ∈ g(PKw) such that

ρ(w, Pg(PKw)w) = ρ(w, g(PKw)). (4)

On the other hand, w ∈ Ag implies that ρ(w, gu) ≤ ρ(w, u) for all u ∈ K, especially,

ρ(w, g(PKw)) ≤ ρ(w, PKw). (5)

Combining with Equations (3)–(5), we deduce that

ρ(w, PKw) = ρ(w, Pg(PKw)w) = ρ(w, g(PKw)) = ρ(w, K).

Because of the uniqueness, we get PKw = Pg(PKw)w ∈ g(PKw), which implies that PKw ∈ Fg.
Similarly, we can claim PKw ∈ Ff . Hence, PKw ∈ Ff ∩ Fg and Ff ∩ Fg 6= ∅.

Proposition 2. Let E be a complete CAT(0) space and let K be a nonempty subset of E. Let f : K → F (K) be
a quasi-nonexpansive mapping(i.e. for each p ∈ Ff , H(p, f u) ≤ d(p, u) holds for all u ∈ K). Subsequently,
A f = Ff .

Proof. First of all, it is not hard to see that Ff ⊆ A f . Now, we will show that A f ⊆ Ff . Let w ∈ A f ,
then, for any v ∈ E, we have

ρ(w, f v) ≤ H(w, f v) ≤ ρ(w, v),



Mathematics 2020, 8, 1307 7 of 15

which implies that
ρ(w, f w) ≤ ρ(w, w) = 0.

Because f w is closed, we obtain w ∈ Ff .

Proposition 3. Let E be a complete CAT(0) space and let K be a nonempty subset of E. Suppose {ak} ⊆ K is a
bounded sequence and f : K → 2E\{∅} is a multi-valued mapping, such that ρ(ak, bk)→ 0, bk ∈ f ak. Then

(1) the sequences {ρ(ak, c)}, {ρ(bk, c)} and {ρ(c, f ak)} are bounded for all c ∈ K;
(2) µkρ(ak, c) = µkρ(bk, c) for any Banach limit µ on l∞.

Proof. Suppose k ∈ N , c ∈ K. We deduce that the sequence {ρ(ak, c)} is bounded, since {ak} is
bounded. Combined with ρ(ak, bk)→ 0 and bk ∈ f ak, it follows that {ρ(bk, c)} is bounded. Moreover,
the sequence {ρ(c, f ak)} is bounded, since ρ(c, f ak) = inf

d∈ f ak
ρ(c, d) ≤ ρ(bk, c). Subsequently, we have

ρ(ak, c) ≤ ρ(ak, bk) + ρ(bk, c), (6)

and

ρ(bk, c) ≤ ρ(bk, ak) + ρ(ak, c). (7)

Both sides of formulas (6) and (7) are applied to the Banach limit µ, combined with ρ(ak, bk)→ 0,
we can get

µkρ(ak, c) = µkρ(bk, c).

Theorem 1. Let E be a complete CAT(0) space and K be a nonempty subset of E. Let f , g : K → 2E\{∅} be
two multi-valued mappings. Suppose that Cs A f ,g 6= ∅. If the sequence {ak} is defined by (2), where {ζk},
{ηk} are sequences in (0,1) with lim

k→∞
(1− ηk)(1− ζk)ηk > 0, then the following conclusions hold:

(1) the sequence {ak} is bounded;
(2) limk→∞ ρ(ak, w) exists for each w ∈ Cs A f ,g;
(3) limk→∞ ρ(ak, gak) = 0.

Proof. Let w ∈ Cs A f ,g. Then by (2), we get

ρ2(bk, w) = ρ2(ζkak + (1− ζk)dk, w)

≤ ζkρ2(ak, w) + (1− ζk)ρ
2(dk, w)

≤ ζkρ2(ak, w) + (1− ζk)H2(gak, w)

≤ ζkρ2(ak, w) + (1− ζk)ρ
2(ak, w)

= ρ2(ak, w),

and

ρ2(ak+1, w) = ρ2(ηkak + (1− ηk)ck, w)

≤ ηkρ2(ak, w) + (1− ηk)ρ
2(ck, w)

≤ ηkρ2(ak, w) + (1− ηk)H2( f bk, w)

≤ ηkρ2(ak, w) + (1− ηk)ρ
2(bk, w)

≤ ρ2(ak, w).
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It follows that the limit lim
k→∞

ρ(ak, w) exists and the sequence {ak} is bounded. Now we show the

last conclusion holds. Because E is a complete CAT(0) space, then

ρ2(ak+1, w) = ρ2(ηkak + (1− ηk)ck, w)

≤ ηkρ2(ak, w) + (1− ηk)ρ
2(bk, w),

among

ρ2(bk, w) ≤ ζkρ2(ak, w) + (1− ζk)ρ
2(dk, w)− (1− ζk)ζkρ2(ak, dk).

Thus we have

ρ2(ak+1, w) = ρ2(ηkak + (1− ηk)ck, w)

≤ ηkρ2(ak, w) + (1− ηk)ζkρ2(ak, w) + (1− ηk)(1− ζk)ρ
2(dk, w)

− (1− ηk)(1− ζk)ζkρ2(ak, dk)

≤ ρ2(ak, w)− (1− ηk)(1− ζk)ζkρ2(ak, dk).

Therefore, we get

(1− ηk)(1− ζk)ζkρ2(ak, dk) ≤ ρ2(ak, w)− ρ2(ak+1, w).

Since lim
k→∞

(1− ηk)(1− ζk)ζk > 0, we obtain that lim
k→∞

ρ(ak, dk) = 0. Noticing that dk ∈ gak, we get

ρ(ak, dk) ≥ ρ(ak, gak)→ 0, k→ ∞ (8)

which completes the proof.

Now, we show the existence of common attractive points for two (ζ, η, λ, π)-generalized hybrid
multi-valued mappings by Ishikawa iterative process in a CAT(0) space.

Theorem 2. Let E be a complete CAT(0) space satisfying the (S) property and K be a nonempty closed convex
subset of E. Let f , g : K → F (K) be two (ζ, η, λ, π)-generalized hybrid multi-valued mappings satisfying
ζ + η + λ + π ≥ 0, either ζ + η > 0 or ζ + λ > 0. Suppose Cs A f ,g 6= ∅. If {ak} is a sequence generated
by (2) satisfying ρ(ak, f ak) → 0, where {ζk}, {ηk} are sequences in (0,1) with lim

k→∞
(1− ηk)(1− ζk)ηk > 0,

then there is a subsequence {ank} of {ak}, such that {ank} w−converges to q ∈ CA f ,g.

Proof. Because g is a (ζ, η, λ, π)-generalized hybrid multi-valued mapping, for any a, b ∈ K, we have

ζH2(ga, gb) + ηρ2(a, gb) + λρ2(b, ga) + πρ2(a, b) ≤ ζH2(ga, gb) + ηH2(a, gb) + λH2(b, ga) + πρ2(a, b)

≤ 0.

Now, we consider the following two cases.
Case I. If ζ + η > 0, then

ζH2(gak, gb) + ηρ2(ak, gb) + λρ2(b, gak) + πρ2(ak, b) ≤ 0,

where
H(gak, gb) = max{ sup

x∈gak

ρ(x, gb), sup
y∈gb

ρ(y, gak)}.

Subsequently, for any x ∈ gak, we get
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ζρ2(x, gb) + ηρ2(ak, gb) + λρ2(b, gak) + πρ2(ak, b) ≤ 0.

By the conclusion (3) of Theorem 1, there exists zk ∈ gak, such that

lim
k→∞

ρ(ak, zk) = 0.

Meanwhile, we notice that

ζρ2(zk, gb) + ηρ2(ak, gb) + λρ2(b, gak) + πρ2(ak, b) ≤ 0.

On the other hand, we choose yk ∈ gak, such that ρ(b, yk) = ρ(b, gak). We can obtain that

ρ(b, gak) = ρ(b, yk) ≥ ρ(b, ak)− ρ(ak, yk).

Making use of Banach limit µk and due to Proposition 3, we observe that

ζµkρ2(ak, gb) + ηµkρ2(ak, gb) + λµkρ2(ak, b) + πµkρ2(ak, b) ≤ 0,

which implies

(ζ + η)µkρ2(ak, gb) ≤ −(λ + π)µkρ2(ak, b),

for all b ∈ K. Since ζ + η + λ + π ≥ 0 and ζ + η > 0, we obtain

µkρ2(ak, gb) ≤ −λ + π

ζ + η
µkρ2(ak, b).

≤ µkρ2(ak, b).

Case II. If ζ + λ > 0, then

ζH2(gb, gak) + ηρ2(b, gak) + λρ2(ak, gb) + πρ2(b, ak) ≤ 0.

By a similar argument, for zk ∈ gak, we have

ζρ2(zk, gb) + ηρ2(b, gak) + λρ2(ak, gb) + πρ2(b, ak) ≤ 0.

Making use of Banach limit µk, we can get

ζµkρ2(ak, gb) + ηµkρ2(b, ak) + λµkρ2(ak, gb) + πµkρ2(b, ak) ≤ 0,

which implies that

(ζ + λ)µkρ2(ak, gb) ≤ −(η + π)µkρ2(ak, b)

holds for all b ∈ K. Since ζ + η + λ + π ≥ 0 and ζ + λ > 0, we get

µkρ2(ak, gb) ≤ −η + π

ζ + λ
µkρ2(ak, b)

≤ µkρ2(ak, b).

Therefore, we deduce

µkρ2(ak, gb) ≤ µkρ2(ak, b) (9)
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for any b ∈ K.
From Theorem 1, it follows that the sequence {ak} is bounded. Subsequently, there exists a

subsequence {ank} of {ak}, such that {ank} ∆−converges to q ∈ K. Because E satisfies the (S) property,
we deduce that {ank} w−converges to q.

By Lemma 7, for any b ∈ K, we have lim
k→∞
〈−−→qank ,

−→
qb〉 = 0, that is

2 lim
k→∞
〈−−→qank ,

−→
qb〉 = lim

k→∞
[ρ2(q, b) + ρ2(ank , q)− ρ2(ank , b)] = 0. (10)

From (9), it follows that
−µnk ρ2(ank , b) ≤ −µnk ρ2(ank , gb).

By adding µnk (ρ
2(ank , q) + ρ2(q, b) + ρ2(q, gb)) to both sides of the above inequality, we can

conclude that

− µnk ρ2(ank , b) + µnk (ρ
2(ank , q) + ρ2(q, b) + ρ2(q, gb))

≤ −µnk ρ2(ank , gb) + µnk (ρ
2(ank , q) + ρ2(q, b) + ρ2(q, gb)),

which yields

ρ2(q, gb) + µnk (ρ
2(ank , q) + ρ2(q, b)− ρ2(ank , b)) (11)

≤ ρ2(q, b) + µnk (ρ
2(ank , q) + ρ2(q, gb)− ρ2(ank , gb)).

Noticing that gb is closed and convex, we can take mnk ∈ gb, such that

ρ(ank , mnk ) = ρ(ank , gb).

From (10), it follows that

µnk (ρ
2(ank , q) + ρ2(q, gb)− ρ2(ank , gb)) ≤ µnk (ρ

2(ank , q) + ρ2(q, mnk )− ρ2(ank , mnk )) = 0. (12)

From (10), (11) and (12), we get ρ2(q, gb) ≤ ρ2(q, b). Similarly, we can deduce that

ρ2(q, f b) ≤ ρ2(q, b),

which yields q ∈ CA f ,g.

By a similar method, we can obtain the following result on account of Theorem 2.

Corollary 1. Let E be a complete CAT(0) space and K be a nonempty closed convex subset of E. Let f , g :
K → F (K) be two (ζ, η, λ, π)-generalized hybrid multi-valued mappings satisfying ζ + η + λ + π ≥ 0, either
ζ + η > 0 or ζ + λ > 0. Suppose that Cs A f ,g 6= ∅. If {ak} is a sequence generated by (2) such that {ak}
w−converges to q, ρ(ak, f ak)→ 0 and ρ(ak, dk)→ 0 in which dk ∈ gak, then q ∈ CA f ,g.

Here, we omit the proof of Corollary 1, since it is essentially similar to the proof of Theorem 2.

4. Application

In 2000, Moudafi [26] gave a viscosity approximation method for finding fixed points of
nonexpansive mappings. Exactly, suppose that X is a Hilbert space and C is a nonempty closed
convex subset of X. Let T : C → C be a nonexpansive mapping with a nonempty fixed point set FT .
Staring with an arbitrary initial point a0 ∈ H, define a sequence {ak}, by

ak+1 = ζk f (ak) + (1− ζk)Tak,
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where f : C → C is a contraction and {ζk} is a sequence in (0,1). In [26], under certain appropriate
conditions imposed on {ζk}, the author proved that {ak} converges strongly to a fixed point a∗ of T,
which satisfies the following variational inequality:

〈(I − f )a∗, a− a∗〉 ≥ 0, a ∈ FT .

In 2012, Shi and Chen [27] used the property P to generalize the result of Moudafi to CAT(0)
space and Wangkeeree and Preechasilp [22] omitted the property P from Shi and Chen’s result
by the concept of quasi-linearization introduced by Berg and Nikolaev [19]. Immediately after,
Panyanak and Suantai [28] extended the results of [22] to multivalued nonexpansive mappings
with the endpoint condition. Next, we prove strong convergence of a new viscosity approximation
method for a finite family of (ζ, η, λ, π)-generalized hybrid multi-valued mappings in CAT(0) spaces.

Proposition 4. Let K be a nonempty convex subset of a CAT(0) space E, and f be a ((ζ, η, λ, π))-generalized
hybrid multi-valued mapping defined on K with Ff 6= ∅, which satisfies ζ + η + λ + π ≥ 0 and, either
ζ + η > 0 or ζ + λ > 0. Subsequently, f is quasi-nonexpansive.

Proof. Because of Definition 3, for any a, b ∈ K, we get

ζH2( f a, f b) + ηH2(a, f b) + λH2(b, f a) + πρ2(a, b) ≤ 0.

Let b ∈ K be a fixed point of f , then we have

ζH2( f a, b) + ηH2(a, b) + λH2(b, f a) + πρ2(a, b) ≤ 0,

and, hence,

(ζ + λ)H2( f a, b) ≤ −(η + π)ρ2(a, b).

Since ζ + η + λ + π ≥ 0 and ζ + λ > 0, we deduce that

H2( f a, b) ≤ −η + π

ζ + λ
ρ2(a, b),

which implies that f is quasi-nonexpansive. Similarly, we get the desired result in the case of ζ + η > 0.

Theorem 3. Let K be a closed convex subset of a complete CAT(0) space E, which satisfies the (S) property,
and let f , g : K → F (K) be (ζ, η, λ, π)-generalized hybrid multi-valued mappings satisfying ζ + η + λ + π ≥
0 and, either ζ + η > 0 or ζ + λ > 0. Let CA f ,g 6= ∅ and f ′ be a contraction on K with coefficient 0 < θ < 1.
Let {ak} be a sequence that is generated by{

bk = ζkak + (1− ζk)dk,

ak = ηk f ′(ak) + (1− ηk)ck,

where {ζk}, {ηk} ⊂ (0, 1) satisfy lim
k→∞

ζk(1 − ζk) > 0 and lim
k→∞

ηk = 0, ck ∈ f bk, and dk ∈ gak.

If ρ(ak, f ak)→ 0 as k→ ∞, then there is a subsequence of {ak} converges strongly to ã, such that ã = PF f ′(ã),
which is equivalent to the following variational inequality:

〈
−−−→
ã f ′(ã),

−→
aã〉 ≥ 0, a ∈ F . (13)
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Proof. Because CA f ,g 6= ∅, from Proposition 1, then F = Ff
⋂

Fg 6= ∅. Moreover, from Proposition 4,
it follows that f and g are quasi-nonexpansive. It follows from Lemma 2 that Ff = A f and Fg = Ag.
Now, we show that {ak} is bounded. Indeed, for any p ∈ F , we have

ρ(ak, p) = ρ(ηk f ′(ak) + (1− ηk)ck, p)

≤ ηkρ( f ′(ak), p) + (1− ηk)ρ(ck, p)

≤ ηkρ( f ′(ak), p) + (1− ηk)H( f bk, p)

≤ ηkρ( f ′(ak), p) + (1− ηk)ρ(bk, p),

among which

ρ(bk, p) = ρ(ζkak + (1− ζk)dk, p)

≤ ζkρ(ak, p) + (1− ζk)ρ(dk, p)

≤ ζkρ(ak, p) + (1− ζk)H(gak, p)

≤ ζkρ(ak, p) + (1− ζk)ρ(ak, p) = ρ(ak, p).

Subsequently,

ρ(ak, p) ≤ ηkρ( f ′(ak), p) + (1− ηk)ρ(bk, p)

≤ ηkρ( f ′(ak), p) + (1− ηk)ρ(ak, p)

≤ ηk(ρ( f ′(ak), f ′(p)) + ρ( f ′(p), p)) + (1− ηk)ρ(ak, p)

≤ (θηk + 1− ηk)ρ(ak, p) + ηkρ( f ′(p), p),

which implies

ρ(ak, p) ≤ 1
1− θ

ρ( f ′(p), p).

We can obtain that {ak} is bounded, which implies that {bk}, {ck}, {dk} and { f ′(ak)} are bounded.
Next, we show that lim

k→∞
ρ(ak, gak) = 0 and lim

k→∞
ρ(ak, ck) = 0. Indeed, for any p ∈ F , we have

ρ2(ak, p) = ρ2(ηk f ′(ak) + (1− ηk)ck, p)

≤ ηkρ2( f ′(ak), p) + (1− ηk)ρ
2(ck, p)

≤ ηkρ2( f ′(ak), p) + (1− ηk)ρ
2(bk, p),

among which

ρ2(bk, p) = ρ2(ζkak + (1− ζk)dk, p)

≤ ζkρ2(ak, p) + (1− ζk)ρ
2(dk, p)− ζk(1− ζk)ρ

2(ak, dk).

Afterwards,

ρ2(ak, p) ≤ ηkρ2( f ′(ak), p) + (1− ηk)[ζkρ2(ak, p) + (1− ζk)ρ
2(dk, p)− ζk(1− ζk)ρ

2(ak, dk)]

≤ ηk[ρ( f ′(ak), f ′(p)) + ρ( f ′(p), p)]2 + (1− ηk)[ζkρ2(ak, p) + (1− ζk)ρ
2(ak, p)

− ζk(1− ζk)ρ
2(ak, dk)]

≤ ηk[θρ(ak, p) + ρ( f ′(p), p)]2 + (1− ηk)[ρ
2(ak, p)− ζk(1− ζk)ρ

2(ak, dk)],
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which implies

(1− ηk)ζk(1− ζk)ρ
2(ak, dk) ≤ ηk[(θρ2(ak, p) + ρ( f ′(p), p))2 − ρ2(ak, p)].

Noticing that lim
k→∞

ζk(1− ζk) > 0, lim
k→∞

ηk = 0 and {ak} is bounded, we get

lim
k→∞

ρ(ak, dk) = 0.

Let k→ ∞, then
ρ(ak, gak) ≤ ρ(ak, dk)→ 0

yields ρ(ak, gak)→ 0. On the other hand, we notice that

ρ(ak, ck) = ρ(ηk f ′(ak) + (1− ηk)ck, ck) ≤ ηkρ( f ′(ak), ck),

which implies ρ(ak, ck)→ 0 as k→ ∞.
Now, we show that {ak} contains a subsequence converging strongly to ã, such that ã = PF ( f ′ ã),

which is equivalent to the following variational inequality:

〈
−−−→
ã f ′(ã),

−→
aã〉 ≥ 0, a ∈ F .

Because {ak} is bounded, there exists a subsequence {ank} of {ak} such that {ank} ∆−converges
to some ã ∈ K. Since E satisfies the (S) property, we deduce that {ank} w−converges to ã.
Because lim

k→∞
ρ(ak, gak) = 0 and lim

k→∞
ρ(ak, f ak) = 0, similar to the proof of Theorem 2, we can

get ã ∈ CA f ,g = F .
It follows from (1) of Lemma 6 that

ρ2(ank , ã) = 〈−−→ank , ã,
−−→
ank , ã〉

≤ ηnk 〈
−−−−→
f ′(ank )ã,−−→ank a〉+ (1− ηnk )〈

−−→
cnk ã,

−−→
ank ã〉

≤ ηnk 〈
−−−−→
f ′(ank )ã,

−−→
ank ã〉+ (1− ηnk )ρ(cnk , ã)ρ(ank , ã)

≤ ηnk 〈
−−−−→
f ′(ank )ã,

−−→
ank ã〉+ (1− ηnk )H( f bnk , ã)ρ(ank , ã)

≤ ηnk 〈
−−−−→
f ′(ank )ã,

−−→
ank ã〉+ (1− ηnk )ρ(ank , ã)ρ(ank , ã),

which implies ρ2(ank , ã) ≤ 〈
−−−−→
f ′(ank )ã,

−−→
ank ã〉. Because {ank} converges weakly to ã, it follows from

Lemma 7 that ρ(ank , ã)→ 0 as k→ ∞.
Finally, we show that ã = PF( f ′(ã)) which solves the variational inequality (13). For any q ∈ F ,

we deduce

ρ2(ank , q) = ρ2(ηnk f ′(ank ) + (1− ηnk )cnk , q)

≤ ηnk ρ2( f ′(ank ), q) + (1− ηnk )ρ
2(cnk , q)− ηnk (1− ηnk )ρ

2( f ′(ank ), cnk )

≤ ηnk ρ2( f ′(ank ), q) + (1− ηnk )H2( f bnk , q)− ηnk (1− ηnk )ρ
2( f ′(ank ), cnk )

≤ ηnk ρ2( f ′(ank ), q) + (1− ηnk )ρ
2(ank , q)− ηnk (1− ηnk )ρ

2( f ′(ank ), cnk ),

which implies that

ρ2(ank , q) ≤ ρ2( f ′(ank ), q)− (1− ηnk )ρ
2( f ′(ank ), cnk ).

Noticing that lim
k→∞

ρ(ak, ck) = 0 and lim
k→∞

ηk = 0, taking k→ ∞, we obtain
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ρ2(ã, q) ≤ ρ2( f ′(ã), q)− ρ2( f ′(ã), ã).

Therefore, we claim

2〈
−−−→
ã f ′(ã),

−→
qã〉 = ρ2(ã, ã) + ρ2( f ′(ã), q)− ρ2(ã, q)− ρ2( f ′(ã), ã) ≥ 0.

It means that ã solves the variational inequality (13) and ã = PF( f (ã)) by Lemma 5.

5. Conclusions

In this paper, we mainly obtain a weak convergence theorem of common attractive points for
two (ζ, η, λ, π)-generalized hybrid multi-valued mappings in the complete CAT(0) space by virtue
of Banach limits technique and Ishikawa iteration, respectively. However, we do not know whether
the common attractive points must be the common strongly attractive points. We will continue to
study this problem. Furthermore, we prove the strong convergence of a new viscosity approximation
method for a finite family of (ζ, η, λ, π)-generalized hybrid multi-valued mappings in CAT(0) spaces,
which also solves a kind of variational inequality problem.
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