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Abstract: The administration of A/B exams usually involves the use of items. Issues arise when the
pre-establishment of a question bank is necessary and the inconsistency in the knowledge points to
be tested (in the two exams) reduces the exams ‘fairness’. These are critical for a large multi-teacher
course wherein the teachers are changed such that the course and examination content are altered
every few years. However, a fair test with randomly participating students should still be a guaranteed
subject with no item pool. Through data-driven decision-making, this study collected data related to
a term test for a compulsory general course for empirical assessments, pre-processed the data and
used item response theory to statistically estimate the difficulty, discrimination and lower asymptotic
for each item in the two exam papers. Binary goal programing was finally used to analyze and
balance the fairness of A/B exams without an item pool. As a result, pairs of associated questions in
the two exam papers were optimized in terms of their overall balance in three dimensions (as the
goals) through the paired exchanges of items. These exam papers guarantee their consistency (in the
tested knowledge points) and also ensure the fairness of the term test (a key psychological factor that
motivates continued studies). Such an application is novel as the teacher(s) did not have a pre-set
question bank and could formulate the fairest strategy for the A/B exam papers. The model can be
employed to address similar teaching practice issues.

Keywords: assessment; evaluation; data-driven decision-making; A/B exam papers setting; item
response theory; binary goal programing; item pool; question bank

1. Introduction

1.1. Background

Resource-related conflicts may occur during term tests evaluating learning results and conducted
among course participants within available classroom space. This may result in the infeasibility of
unified exams (i.e., the use of the same exam papers at the same time). A common strategy used in this
case is the random distribution of exams to students at different times. To address the disadvantages
of administering exams across sessions, different exam papers must be administered for each exam
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session. When an exam is conducted in two sessions and requires two exam papers, an ‘A/B exam
papers’ strategy is applied. Each exam paper normally has the same number of question items and
contains items that consistently test the same set of various knowledge points.

Although the ‘A/B exam papers’ strategy aims for fairness between the two sessions, it has been
observed to be not entirely fair when introduced in teaching practice. This phenomenon can be
explained by the fact that even though A and B exam papers’ items are developed according to the
same knowledge points, the items are not identical, which leads to differences among them in three
item-parametric dimensions: difficulty, discrimination and guessing. Difficulty refers to the parameter
of an item that governs how the item behaves over the ability scale, that is, the level of ability at which
50% of the respondents choose the correct response, whereas discrimination refers to the parameter
of an item determining the rate at which the likelihood of choosing a correct response changes for
differing ability levels [1]. Meanwhile, guessing refers to a parameter of an item that will be further
discussed in Section 1.2.3. Thus, fairness cannot be achieved for students randomly assigned to take
A/B exams. Such unfairness, accumulated through several pairs of items, leads to unpredictable and
even more substantial testing unfairness (motivation).

To address this issue under the premise that the teacher does not need to pre-establish a question
bank, the principle lies in the pair-wise exchange of items in A/B exam papers that test the same
knowledge point, so the item sets necessary for both exam papers could be determined to maximize the
fairness of the A and B exam papers overall in the three dimensions. Hence, the objective of this study
was to develop a feasible model to adapt to such needs, so the model can provide all students with the
opportunity to participate in a fairer (or nearly fair) exam effectively. As shown in the literature review,
such a research question (RQ) is novel (objective).

For the methods, this study followed the recent data-driven decision-making (DDDM) concept [2].
With regards to data analytics and decision supporting, this study proposed the use of a hybrid model
that combined item response theory (IRT) used in statistics and binary goal programing (BGP) used in
operational research [3]. IRT was used to estimate the item parameters (with respect to (wrt) the three
dimensions) for each question in the A and B exam papers in their original settings. Another BGP
model that could suggest ‘exchange actions’ for item pairs was established. Finally, question sets were
determined for the reproduced A’ and B’ exam papers so that examination fairness was ensured in
their similarity in these dimensions. The resulting hybrid model was novel in terms of methodology.

Regarding data collection and data pre-processing, data were collected from the term test of a
compulsory general course of multiple equally-taught classes, wherein exam participants came from
multiple institutes. The most salient feature of this course was that the term test required the use of an
‘A/B exam papers’ strategy, but no item pool was available. In addition, several techniques were also
applied during data pre-processing. Section 2 (Methods) gives a detailed description.

1.2. Literature Review

The literature study emphasized the implications of the exam fairness issue for educational
psychology and the novelty of the RQ (absence of related systematic research), the relevance of the
IRT model wrt the RQ, the relevance of the BGP model and the novelty of the combined IRT and BGP
approach. First, the importance of the RQ is addressed.

1.2.1. Importance of the RQ

Issues regarding an effective test were addressed wrt test reliability and test practicality two
decades ago [4]. However, how do we know if a test is reliable and practical? The influencing factors
can be reviewed in a broader sense.

For practicality, an effective test is practical if it has the following attributes: (P1) it is not excessively
expensive; (P2) it takes an appropriate length of time; (P3) it is easy to administer; and (P4) it utilizes a
scoring/evaluation procedure that is efficient in terms of time while also being specific.
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For reliability, a test is reliable if it is both consistent and dependable. The reliability of a given test
can best be ensured if various factors that could make the test unreliable are taken into account and
appropriately addressed. In other words, a reliable test is one that is fair to everyone, which entails
both (R1) reliability for students and (R2) reliability for test administrators.

From the summary, resolving the RQ (to test with the A/B exam papers ‘effectively’ without the
use of an item pool) is critical in practice because this exam papers setting strategy reduces the cost
(P1) to maintain any item pool and the computerized solution allows simple test administration (P3),
while the length of time and the efficiency of the evaluation procedure do not increase and the test
remains ‘being specific’ (P4).

Resolving this RQ (to test with the A/B exam papers ‘fairly’ but still keeping the tested knowledge
points consistent) is also critical because exam fairness is a psychological issue. The reliability for
students (R1), certainly can be ensured by assigning who will participate in the exams using the
reproduced A’ and B’ exam papers that are fairer randomly, while the size of the sample is usually
sufficient to have two statistically even distributions for fairness. However, ensuring the reliability for
test administrators (R2) usually involves setting two individual exam papers fairly because this can
control the unreliable factors to an extent, but this often troubles the teacher.

1.2.2. Implications of Exam Fairness and Novelty of the RQ

Based on the preceding discussion, in the present study, the term ‘fairness’, although difficult
to define, is essentially used to refer to the fairness of a test (that is, as opposed to other issues of
fairness, such as fairness in scheduling [5], that is, the degree to which any differences in the three
item-parametric dimension between two different tests are eliminated. Fairness, which is an essential
aspect of a test, refers broadly to the equitable treatment, over the course of the testing process, of all the
individuals taking a test, which includes unbiased access to the measured constructs, no measurement
bias, and clear validity in the interpretation of test scores for the proposed purpose(s). That said,
a clear definition of the word fairness is difficult to produce, insofar as the primary concept of testing
fairness is, as expressed in The Standards for Educational and Psychological Testing, ‘to identify
and remove construct-irrelevant barriers to maximal performance for any examinee’ [6]. Relatedly,
in the event that test scores used for the purposes of assessment differ substantially in terms of,
for example, racial groups, there is some potential that associated decisions pertaining to members of
lower scoring groups may be unfair. As such, fairness can be defined as the removal of any systematic
variation resulting from racial or cultural socialization experiences from test scores, and it is therefore
distinct from cultural bias and test-score validity [7]. Relatedly, the various meanings of ‘fairness’
in assessment were also extensively discussed in a study by Camilli [8]. The fairness of a test is an
extremely important ethical issue, from educational and psychological perspectives, for both teachers
and students. This issue was once defined by Shohamy [9], who stated that tests are essentially a
form of social technology that plays a central role in education, business, and government, with tests
frequently being the sole factors in deciding the futures of test-takers. As such the people who design
testes should feel an obligation to meet and uphold the specific standards set by the educational
institutions that they serve.

Relatedly, the ethics of testing are a form of what educators term critical pedagogy, but standardized
testing on a large scale is not a process without bias. Rather, it is affected by various aspects of society,
culture, and politics, as well as by specific ideological and educational agendas, that mold the lives
of all those who take part in the process, including students, teachers, and others [10]. Therefore,
the design and administration of a large-scale standardized test [11,12] involve the issue of fairness for
the different groups of participants [13].

As A/B exam papers are an important means of ensuring fairness, setting (and ‘aligning’) them
consistently and fairly takes care of group interests of both students (e.g., positive course experience
for continued learning) and teachers (e.g., reducing negative feedbacks, mitigate the effects that
any member in the teaching roster is lack of personal understanding about educational assessment,
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etc.) [14–18]. However, the question of exactly how best to achieve fairness remains for setting the
A/B exam papers without an item pool. In the literature, studies addressing such a RQ would be few
(see further discussions in Section 1.2.3).

1.2.3. Relevance of the IRT wrt the Analysis of the RQ

Lord proposed a two parameters normal ogive model, which is considered to be the origin of
IRT (or latent trait theory) [19]. In later years, psychologists developed an IRT model with three
parameters [20], the generalized form of which will be presented in the methods section. It has long
been known by psychometricians that guessing constitutes a substantial threat to test score validity
and that it can, relatedly, be a cause of construct irrelevant variance. There are a several ways in
which guessing behaviors are typically investigated, but almost all of these methods of investigation
entail the administration of a test to an appropriate sample and then analyzing the resulting response
patterns and scores for any indications that guessing may have taken place. To that end, we chose to
create a test consisting of items actually relevant to medical school courses and then to administer that
test to university staff members of a medical education administrative office. Because none of these
administrative staff members actually had any formal experiences or education in the fields of medicine
or health sciences, we theorized that they would be forced to rely almost completely on guessing
strategies when taking the exam. In other words, by intentionally having an inappropriate sample
take the exam, we were able to investigate guessing in a more deliberate manner, better determine
the ways in which guessing might affect the test scores of our medical students, and better identify
the specific exam items that appeared to be vulnerable to test wise-ness. With respect to fairness,
the key questions in this regard are whether or not the social consequences of an exam and/or the
associated examination practices can contribute to societal equity and whether or not a particular exam
or examination program has any pernicious effects. Relatedly, it has been suggested by Griffore [21]
that avoiding the use of valid tests that have been called unfair due to culturally or racially based
construct-irrelevant variance is itself unfair if those tests can, in fact, assist individuals in making
decisions that ultimately result in successful outcomes.

Since its proposition, IRT has been widely applied. Both social and education sciences give
high consideration to the issue of civic scientific literacy (CSL). In the 1990s, Miller estimated the
item question parameters of a CSL questionnaire and applied IRT to calculate individual and group
‘CSL latent levels’ for the understanding of scientific concepts, thus replacing the correct answering
rate (CAR) measure used to calculate total scores directly based on answers. As a result, a so-called
‘3D measure’ was established [22], which was later followed in CSL studies conducted in different
countries, including Europe, Japan, South Asia and Central and South America [23–27]. Starting from
this century, because of the implementation of IRT in that field, cross-country comparisons have been
based on an objective foundation rather than subjective scoring [28,29]. These observations have
strengthened our confidence in using IRT.

With regard to the question setting issue in Education, Lord [30] proposed the following four
steps for the compilation of an exam paper using test information function:

1. Decide on the desirable curve and target for the information function, based on the testing objective.
2. Select a set of items from a question bank and calculate the test information amount for each item.
3. Add and delete items and recalculate the sum of information amounts for all included items.
4. Repeat steps 2–3 until the aggregated information amount approaches the target for the test and

becomes satisfactory.

This IRT-based method is supported by a statistical foundation. However, empirical studies
have discovered that the compiled paper often lacks content validity (see Appendix A). Therefore,
Yen [31] proposed computerized item choice and paper compilation as means to address issues related
to the manual compilation and complex processing used in the case of a large number of available
items; the scholar integrated linear programing (LP) modelling. Later studies by Theunissen [32],
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Boekkooi-Timminga [33], Boekkooi-Timminga and van der Linden [34] also used binary programing
(BP) modelling to compile papers for different exams. Adema [35] and Swanson and Stocking [36]
used BP modelling to compile questions for parallel tests. However, these subsequent studies were
initially aimed at automating the test compilation process following the estimation of item parameters
using IRT.

Thus, according to this review, first, IRT was proposed as a theory for psychological statistics
but, in addition to use in other fields (e.g., CSL), has been widely used in exam paper compilation in
Education. This describes the relevance of the IRT model for this study.

Next, the related studies discussed above involved the pre-establishment of a large question bank.
The questions selected from which were used to compile one single (or several single ones individually)
exam paper to meet the target and maintain balance in each dimension. Nevertheless, under different
circumstances (e.g., the studied case), teachers often cannot pre-establish any such question bank in
teaching practice. They design test items based on the knowledge points they want to test according
to the teaching content for a certain period of time, in particular, in the cases of ‘course dynamics’
(i.e., a new teacher every semester), large numbers of teaching participants and the joint design of
test items. In fact, the authors have found no study that discussed the balance and fairness of A/B
exam papers in the absence of a question bank. This is the greatest difference between this study and
other studies.

Finally, as many relevant studies used mathematical programing (MP) (e.g., LP or BP) after the
use of IRT, they confirmed the feasibility of this study’s model integration (i.e., using BGP after IRT).
However, the use of BGP is a must in this study because of the abovementioned ‘great difference’.

1.2.4. Relevance of BGP and the Novelty of the IRT–BGP Approach

Goal programing (GP) was proposed by Charnes and Cooper [37]. GP modelling is also another MP
approach that deals with multiple explicit goals in the decision context and allows the decision-maker
to consider these goals simultaneously [38]. Thus, it is now a key approach in the multi-objective
programing (MOP) field [39–43]. In addition, it is also a flexible decision analysis tool when the problem
involves conflicting goals subject to a number of complex decision constraints [44–46]. Therefore, there
are also a great number of studies that use GP to support the various decision-analysis demands in actual
practice, e.g., healthcare, agriculture, economics, engineering, transportation and marketing [47–53].

GP also supports the decision of discrete optimization. In the field of GP, the mixed-integer GP
(MIGP) modelling approach is a special case of GP where any solution vector in the feasible solution
set contains only integer elements, whilst the BGP modelling approach is a special case of the MIGP
where the vector contains only 0–1 binary variables.

Using BGP is appropriate because it meets the purpose of this study, as the problem to be solved
is: how the paired questions produced to test the same knowledge, one per version of the exam
paper, should be exchanged so as to achieve the fairness objectives in the three dimensions. Therefore,
the matter to be decided is ‘whether each pair of two such questions should be exchanged or not’,
which can be connoted by a 0–1 variable. The 0–1 variables for all pairs determine an ‘exchange plan’
over two exam papers, rather than any suitable ‘organization’ of each exam paper. It is, intrinsically,
a discrete optimization problem which is only solvable by BGP.

Therefore, unlike the studies wherein hybrid test compilation methods such as IRT–LP or
IRT–BP are used, the IRT–BGP model is developed. Despite the different purposes of these models,
the application of IRT–BGP on test compilation, however, is novel.

1.3. Results: A Brief

The topic of interest is the item exchange between A/B exam papers to achieve exam fairness.
The research results have certain implications from the perspective of educational psychology research.
The content of A/B exam papers after item exchange (i.e., A’ and B’ exam papers) is fair from the
students’ perspective (for example, classmates assigned to take different exam papers are less likely to
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argue about the exam results). This is also beneficial for teachers in teaching practice, the main benefits
being that fairer exam papers can be obtained for actual large-scale testing and a pre-set question bank
is not needed when many teachers participate in the teaching and development of a large course and
are changed each year, thus leading to changes in course and examination content.

Section 2 introduces the methods. Section 3 presents the main results. A descriptive analysis is
presented to carry out observations of the extent of unfairness in the original A/B papers, followed
by estimating the item parameters using IRT and achieving the fairness of the two papers using BGP.
Section 4 conducts several extensive analyses in order to explore the relevant implications. A process
for future application of the approach is also suggested. The last section provides the conclusion.

2. Methods

2.1. Experimental Flow

Figure 1 shows the flowchart for this study. It is designed in accordance with the standard process
for DDDM; Appendix B offers extensive discussions.
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Figure 1. The flow of this study in terms of data-driven decision-making.

For data collection, the researchers collected data concerning detailed answers and the performance
scores (based on the traditional CAR justification) of students who were allocated randomly to take
the A and B exam papers in a term test. The exams were administered for a compulsory general
course teaching basic computer programing techniques. In total, 298 first-year university students
from 11 colleges took this course during the fall semester studied. Because of the lack of classroom
resources in the school, the course was taught equally in 6 classes (i.e., the same topic was taught
by the same teacher in each class). Students needed to be divided not only for studies but also for
tests. As the university had no auditorium that could hold them, the ‘A/B exam papers’ strategy is
necessary to use for the term test. The exams were conducted in two sessions which used the A exam
paper (149 students) and B exam paper (149 students), respectively. The course teacher group designed
20 multi-choice question items for each exam paper based on the course content taught. The items
paired under the same item number were associated in terms of the terminology.

After the exam, the researchers applied to the exam paper storage center (the committee on
general core courses in the university) and were authorized to “borrow and record exam paper answers
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under the prerequisite of de-identification.” The center also provided the ‘standard answers,’ that is,
the correct answers for the 20 items in each exam paper. As such, raw data were collected.

For data pre-processing, together with the CAR scores available for each student, an item-by-item
inspection for each exam paper returned was conducted to code the students’ correct and incorrect
answers as 1 and 0, respectively. These were registered in an Excel file. Pivot analysis was performed
to test for abnormal values and data irrationalities. The scores of the only one student who did not
answer any question in the B exam paper were eliminated according to the complete case study method
commonly used in medicine to keep the data faithful. All results were saved into a data warehouse for
the latter data analysis and decision-making/supporting phases.

2.2. IRT Modelling

The data analysis phase uses IRT. The general ‘IRT 3PL model’ can be used to introduce general
IRT principles because in this study, all items are multiple-choice questions as the testing items in the
CSL survey. Miller (1998) presented the 3PL IRT model, as:

T(θr; Ψ j) = c j +
1− c j

1 + e−a j(θr−b j)
(1)

where Ψ j =
{
a j, b j, c j

}
is a parameter set for the j-th test question item; aj, bj and cj are, respectively,

the discrimination, difficulty and lower asymptotic parameter (or guessing, that is, the CAR baseline)
of the question; θr is the latent variable connoting the r-th respondent’s level of ability.

This formula was to measure a set of parameters Ψ j for each question item j in an exam paper
based on statistical estimations, as well as the latent ability of each respondent r. The values in Ψ j were
the basis for the pairwise exchange of items in the later phase using the BGP model. Theoretically,
for each aj, bj and cj in Ψ j, −∞ < aj < +∞, −∞ < bj < +∞ and 0 ≤ cj ≤ 1 [54].

2.3. BGP Modelling

Following from Section 1.2, there is no existing model which can be referenced for the studied
problem. So, this study uses BGP as the approach to make an ‘exchange plan’ for how the paired
testing items in the two exam papers should be exchanged subject to the fairness requirements.

In order to balance the exam papers to pursue fairness, a model for exchanging the testing items
in the A and B exam papers wrt the three criteria (in three dimensions) is constructed according to the
standard form of a BGP model in Appendix C, as the following:

(BGP-IEP (item exchange planning))

Min
∑
i∈PL

wi(di) (2)

s.t.
SA′

i =
∑

j∈{1,...,N}

(
pA

ji y j + pB
ji(1− y j)

)
, ∀i ∈ PL (3)

SB′
i =

∑
j∈{1,...,N}

(
pA

ji(1− y j) + pB
jiy j

)
, ∀i ∈ PL (4)

∣∣∣SA′
i − SB′

i

∣∣∣− di = 0, ∀i ∈ PL (5)

y j ∈ {0, 1}, j = {1, . . . , J} (6)

di ≥ 0, ∀i ∈ PL (7)

where PL is the set of question parameters considered as the criteria to balance the exam papers; yj
is the binary decision variable controlling whether the j-th pair of associated questions should be



Mathematics 2020, 8, 1290 8 of 29

exchanged; define E ε {A, B} (A and B are the original exam papers), pE
ji is the i-th item parameter

as estimated from the analysis of IRT for the j-th question in an original exam paper E; define E’ ε
{A’, B’} (A’ and B’ are the new exam papers), SE′

i ∈ R is the gap that remains between the two new
exam papers in E’ for the i-th item parameter, after the exchanges; and N is the number of questions in
each exam paper; di and wi are, respectively, the surplus (or positive) deviational variable and the test
administrator’s preferential weight toward the i-th goal criterion (parameter), relative to other criteria.

In this model, PL = {discrimination, difficulty, guessing} means that it is able to suggest
the exchanges by balancing every item parameter that are assessed by the 3PL model of IRT.
However, if PL = {discrimination, difficulty}, then only the discriminative power and the difficulty
of the two exam papers are balanced. Thus, this flexible model can be generalized as per the test
administrator’s wish.

For this model, the solution, the one-dimensional binary vector, Y*, determines an ‘exchange plan’.
It details which pairs of associated questions in the two original exam papers should be exchanged
(i.e., the individual yj* values 1 indicates that the j-th pair should be exchanged) and which pairs should
not (i.e., yj* = 0) to constitute the new A’ and B’ exam papers. In other words, it is not used to determine
whether a question in the existing item pool should be included or not, as in previous IRT–BP studies.

In the above (BGP–item exchange planning) model, the goals are to minimize the unidirectional
absolute distance between two exam papers in each goal criterion (see Equation (5)). Thus, it is
straightforward to formulate only a surplus variable, di, for each item-parametric dimension that is
considered, i.e., i ε PL. However, the test administrator(s) would sometimes like to gain information
‘with directions’ about how each of the goals are optimized, i.e., whether a positive deviation or a
negative deviation between the new exam papers A’ and B’ still exists? In this case, Equation (5) is
further linearized, and both surplus and slack variables can be introduced (see also (Martel and Aouni,
1990)). This gives Equations (9), with a new Equation (10) and a new objective function, which is
Equation (8):

Min
∑
i∈PL

wi(d+i + d−i ) (8)

(
SA′

i − SB′
i

)
− d+i + d−i = 0, ∀i ∈ PL (9)

d+i ≥ 0, d−i ≥ 0, ∀i ∈ PL (10)

Substituting the above Equation (5) in the (BGP–item exchange planning) model with Equation (9)
and using Equation (8) and Equation (10) as the replacements for Equation (2) and Equation (7) yields
another new model, which can be called the (BGP–IEP II) model. The fully linearized model can
be written and solved by almost all LP packages without extension functional supports for absolute
values (e.g., in LINGO).

Moreover, in either Equation (2) or Equation (8), the weight-additive GP variant is applied [55,56].
This adheres to the principle of simplicity in proposing a scientific concept (i.e., the problem-model
fitting for this study) [57]. As the incommensurability of the various objectives may create problems [58],
the gaps measured by these models between two exam papers (i.e.,

∣∣∣SA′
i − SB′

i

∣∣∣ or
(
SA′

i − SB′
i

)
) can be

further aggregated to be commensurable. Although the distance from one exam paper to another
(i.e., di or the term (−d+i + d−i )) in each dimension is purely numerical without any unit (because
the parameters in Equations (3) and (4) are all numerical), which is unlike the objectives possessing
incommensurable measurement units, similar rules can be applied. In this sense, additional intervals
can be introduced to normalize the distance or deviation for each objective. Suppose that ∆i connotes
the ‘suitable range’ for the i-th item parametric dimension in the studied problem, the normalized
expression to aggregate the objectives becomes:

Min
∑
i∈PL

wi(
di
∆i

) for (BGP–IEP), or Min
∑
i∈PL

wi
(d+i + d−i )

∆i
for (BGP–IEP II) alternatively. (11)
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Note that although the bounds and some ‘usually seen ranges’ of the parameters assessed by IRT
are suggested (see also Section 2.2), they are often contextually dependent, so that the ‘suitable range’
(∆i) should vary on a case-by-case basis.

Lastly, another model enhancement relates to the use of the min-max concept or the max-min
concept [59,60]. For example, the objective function of (BGP–IEP II) (Equation (8)) could also be
re-written semantically as the following, whilst one may refer to Romero [42] for the linearization
process of the function in the GP context:

Min Max

∑
i∈PL

wid+i ,
∑
i∈PL

wid−i

 (12)

2.4. Short Summary

The method used in previous studies of IRT-based exam paper compilation is detailed in
Appendix D. Method-wise, regardless of whether any MP model was used for automating the process,
an exam paper that could meet the information targets (required in the dimensions) to the greatest
extent possible was designed. In the case, designing two fair A/B exam papers involved two rounds of
the process with identical targets set. However, this required a question bank.

In contrast, this study is based on another common case when no question bank is available.
While there is nothing to do with the innate parameters of the items in the given A/B exam papers,
but the pursuit of a fair A/B test is still the concern, the fairness of two exam papers is sought for by
carrying out pair-wise exchanges of items so as to achieve a balance in the three dimensions. The only
commensurable property of these two approaches is the use of IRT.

Therefore, a systematized IRT–BGP approach is proposed. To the best of the authors’ knowledge,
it has no analogues in current research, in terms of either model integration or modelling purpose. It is
a different approach compared to those in previous studies that have also used the IRT. This makes it a
novel and niche one.

3. Results

3.1. The Unfair A/B Test

The unfairness of the original A/B test is shown by a descriptive statistical analysis using students’
answers. As they were randomly assigned, it could be assumed that students with different abilities
were evenly distributed to two participant groups. Under this premise, any difference in CAR would
indicate the unfairness. Table 1 demonstrates the CAR for each item for these two test-participant
groups. As seen from the table, the difference in CAR exceeded 20% for seven item pairs (Q3, Q4, Q7,
Q9, Q10, Q11 and Q15) using the two papers.

Table 1. The correct answering rate (CAR) to each question in A/B exam papers and the gaps.

Item Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A 87.2% 87.9% 45.6% 100% 94.6% 62.4% 82.6% 98.0% 96.6% 22.8%
B 98.0% 93.9% 98.6% 54.7% 80.4% 76.4% 52.7% 95.9% 37.2% 97.3%

|A–B| 10.80% 6.00% 53.00% 45.30% 14.20% 14.00% 29.90% 2.10% 59.40% 74.50%

Item Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

A 55.0% 94.0% 99.3% 91.9% 75.2% 98.0% 98.0% 81.9% 38.3% 93.3%
B 92.6% 98.6% 85.1% 87.2% 51.4% 100% 96.6% 77.0% 29.1% 87.2%

|A–B| 37.60% 4.60% 14.20% 4.70% 23.80% 2.00% 1.40% 4.90% 9.20% 6.10%

The distribution of CAR in Figure 2 also indicates substantial differences in students’ performance
between the exam papers. All this indicated that the original A/B exam papers did not allow the two
groups of students to be examined fairly, and thereby violated their rights severely.
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3.2. Estimating the Item Parameters Using IRT

The IRT 3PL model was used to analyze the pre-processed data and estimate the three parameters
for each item. These are summarized in Table 2.

Table 2. The estimated item response theory (IRT) model parameters for all question items in the two
exam papers.

A Exam Paper B Exam Paper

Qj Pj
A

guessing Pj
A

Difficulty Pj
A

Discrimination Pj
B

guessing Pj
B

Difficulty Pj
B

Discrimination

Q1 0.062693 −5.28596 0.35833 0.371513 −4.67323 0.788151
Q2 0.733727 −0.11029 4.477341 0.010156 −5.40925 0.525375
Q3 0.073052 0.524729 0.757966 0.036918 −4.31039 1.127738
Q4 0.999148 −16.0528 0.182542 1.8 × 10−14 −0.32322 0.616322
Q5 0.082952 105.6133 −0.0263 0.000153 −2.33305 0.655196
Q6 0.265127 0.05209 1.432473 1.1 × 10−17 −0.68727 31.1551
Q7 0.052179 −2.63839 0.605141 0.491215 −3.0337 −0.97887
Q8 0.057648 −2.40507 3.092044 0.908461 −0.14645 3.522721
Q9 0.07932 −5.7558 0.597789 0.000115 3.946901 0.134206

Q10 0.151572 2.907607 0.900514 0.067808 −42.2536 0.083154
Q11 0.343063 1.018947 0.886161 0.006117 4.488719 −0.59619
Q12 0.009758 −2.09139 1.962636 7.98 × 10−8 2.201958 −31.5338
Q13 0.06416 −4.66897 1.220194 2.52 × 10−6 4.233981 −0.4289
Q14 0.018908 −2.44744 1.211052 0.000189 −3.02158 0.687387
Q15 0.002061 −0.72737 3.737409 1.46 × 10−11 −0.12289 0.416349
Q16 0.052894 −4.75631 0.885629 1 18.33097 −0.4557
Q17 0.017352 −2.26877 4.149376 0.018236 3.143843 −1.31879
Q18 0.022078 −2.16509 0.759793 0.013546 −9.85322 0.121235
Q19 0.28291 1.288772 2.668051 0.261825 −1.85502 −6.41667
Q20 0.061449 −3.56639 0.791395 0.004878 13.74994 −0.13957
Total 3.43205 56.46538 30.64953 3.191133 −27.9266 −2.03558

The comparison of the estimated parameters also showed severe unfairness. All pairs of the
associated items in the two original exam papers considerably differed in terms of their difficulty and
discrimination, which corresponded to the differences in CAR discussed earlier. These illustrated that
failure to apply a mechanism in the planning of A/B exam paper questions had violated the students’
rights severely and, consequently, damaged the school’s reputation.

Supporting evidence was also found in the item distribution: some unsuitable items were found
and their appearance was also unbalanced. The left-hand figures in Figure 3a,b demonstrate the
distribution of the difficulties and discriminations of the A/B exam paper questions. However, because
of a number of outliers, using a normal scale cannot demonstrate the relations between the difficulty
and discrimination of each item easily. The rank-rescaled distributions are therefore visualized in order
to identify the attributes of any item (in Table 2) easily.
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If an ‘absolute measure’ is used, then, in the figures, none of the items in the A paper but four
items in the B paper (Q11, Q13, Q16, Q17) are characterized by high difficulty (difficulty > 2.5) and low
discrimination (discrimination < −0.4) (see the lower right part). In contrast, the B paper contained four
items (Q1, Q2, Q3, Q14) with low difficulty (difficulty < −2.5) and high discrimination (discrimination
> 0.4), while the A paper contained more such questions (Q7, Q9, Q13, Q16, Q20). These are usually
the ‘unsuitable questions’.

If another ‘relative measure’ is used, then, in the right-hand figures, two items in the A paper
(Q3, Q5) but five items in B (Q11, Q12, Q13, Q16, Q17) are characterized by high difficulty (the rank in
difficulty is ≥14, i.e., between 15 and 20) and low discrimination (the rank in discrimination is ≤7).
In addition, the A paper contained no item with low difficulty (the rank in difficulty is ≤7) and high
discrimination (the rank in discrimination is ≥14), but the B paper contained three such items (Q1, Q3,
Q14). Both analyses have shown the imbalance in these unsuitable questions in the two exam papers.

3.3. Modelling the Problem Using the BGP Model

As establishing a question bank was infeasible for the A/B test of the course, using any previous
item-pool-based model to compile two individual papers was infeasible. A model is constructed based
on (BGP–item exchange planning) in 2.3 using real data. Let I = 3, PL be the set of {discrimination,
difficulty, guessing} and J = 20 for the case studied. Let the values of the model parameters, pA

ji and pB
ji,

where j = 1 . . . 20 and i = 1 . . . 3, be the corresponding item parametric elements in Table 2. By limiting
yj (j = 1 . . . 20) as binary variables and manifesting that wi = 1 (i = 1 . . . 3), the model is solved. Because
of non-linearity, the optimal binary vector, Y*, is obtained after 9863 solver iterations with 1 extended
solver step:

Y∗ =
[
y∗1, y∗2, y∗3, y∗4, y∗5, y∗6, y∗7, y∗8, y∗9, y∗10, y∗11, y∗12, y∗13, y∗14, y∗15, y∗16, y∗17, y∗18, y∗19, y∗20

]
= [1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0]
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This vector suggests an ‘exchange plan’ for the paired questions in two original exam papers,
which is shown in Table 3.

Table 3. The exchanging plan according to the optimal decision vector obtained.

Question Items
in Exam Paper A Planned Exchanges Question Items

in Exam Paper B Remark (yi)

Q1 � Q1 1
Q2 � Q2 1
Q3 � Q3 1
Q4 Q4 0
Q5 Q5 0
Q6 Q6 0
Q7 Q7 0
Q8 � Q8 1
Q9 Q9 0
Q10 � Q10 1
Q11 � Q11 1
Q12 Q12 0
Q13 � Q13 1
Q14 � Q14 1
Q15 � Q15 1
Q16 Q16 0
Q17 � Q17 1
Q18 � Q18 1
Q19 Q19 0
Q20 Q20 0

Summary 11

According to Table 3, to form the new A’ and B’ exam papers, a total number of 11 item pairs in A
and B should be exchanged, i.e., that the following set of questions in both exam papers A and B be
exchanged while keeping the rest unchanged: {Q1, Q2, Q3, Q8, Q10, Q11, Q13, Q14, Q15, Q17, Q18}.

The model’s objective based on this ‘exchange plan’ reveals its effectiveness, which is as small as:∑
i∈PL={discrimination,difficulty,guessing}

wi(di) = 0.7738291.

Furthermore, this can be decomposed as:
d+discrimination = 0.5587864, d+difficulty = 0.2008591 and d+guessing = 0.01418366.
These are the gaps in the three dimensions that still exist between the new A’ and B’ papers

and refer to the nearly ideal status after minimising the differences in total discriminative power,
total difficulty and total guessing probability between the two tests. Note that in this model the
absolute distance of the gap remaining in each dimension (i.e., on the LHS of Equation (5)) is always
≥0. Also see Appendix E for the tools used to implement the entire IRT–BGP model.

The above solution set is obtained using the (BGP–item exchange planning) model. Appendix F
provides an extensive analysis using the (BGP–IEP II) model and some comparisons based on the two
solution sets.

4. Discussion and Implications

4.1. Analysis of the Exchange Plan

At first, after the exchanges, the total discriminative power, the total difficulty, and the total
guessing of each new exam paper (that is, those behind the minimized differences but which are
used to determine the magnitude of them), SE′

i , E′ ∈ {A′, B′}, i ∈ PL, can be further analyzed. The item
parameters in these new papers are detailed in Table 4. A digest is presented in Table 5, where these
values are also compared to a digest regarding the corresponding values of the original exam papers A
and B. Note that if the exchanging actions are not guided by the optimal solution set Y*, but rather by
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another set which is the 2′s complement of it, Y*’, so that a total number of 9 questions are exchanged
and the set of exchanged question pairs in exam papers A and B is {Q4, Q5, Q6, Q7, Q9, Q12, Q16, Q19,
Q20}, the content of Table 4 is flipped, i.e., the values on the right side are exchanged with those on the
left side. However, this should not affect the post-decision actions because the two determined exam
papers can be used interchangeably for the two defined testing time slots, as long as their settings
are fair.

Table 4. The detailed parameter values of the A’ and B’ exam papers after exchanging.

Exam Paper A’ Exam Paper B’

Qj pj(guessing) pj(difficulty) pj(discrimination) pj(guessing) pj(difficulty) pj(discrimination)

Q1 0.371513 −4.67323 0.788151 0.062693 −5.28596 0.35833
Q2 0.010156 −5.40925 0.525375 0.733727 −0.11029 4.477341
Q3 0.036918 −4.31039 1.127738 0.073052 0.524729 0.757966
Q4 0.999148 −16.0528 0.182542 1.80 × 10−14 −0.32322 0.616322
Q5 0.082952 105.6133 −0.0263 0.000153 −2.33305 0.655196
Q6 0.265127 0.05209 1.432473 1.10 × 10−17 −0.68727 31.1551
Q7 0.052179 −2.63839 0.605141 0.491215 −3.0337 −0.97887
Q8 0.908461 −0.14645 3.522721 0.057648 −2.40507 3.092044
Q9 0.07932 −5.7558 0.597789 0.000115 3.946901 0.134206

Q10 0.067808 −42.2536 0.083154 0.151572 2.907607 0.900514
Q11 0.006117 4.488719 −0.59619 0.343063 1.018947 0.886161
Q12 0.009758 −2.09139 1.962636 7.98 × 10−8 2.201958 −31.5338
Q13 2.52 × 10−6 4.233981 −0.4289 0.06416 −4.66897 1.220194
Q14 0.000189 −3.02158 0.687387 0.018908 −2.44744 1.211052
Q15 1.46 × 10−11 −0.12289 0.416349 0.002061 −0.72737 3.737409
Q16 0.052894 −4.75631 0.885629 1 18.33097 −0.4557
Q17 0.018236 3.143843 −1.31879 0.017352 −2.26877 4.149376
Q18 0.013546 −9.85322 0.121235 0.022078 −2.16509 0.759793
Q19 0.28291 1.288772 2.668051 0.261825 −1.85502 −6.41667
Q20 0.061449 −3.56639 0.791395 0.004878 13.74994 −0.13957
Total 3.318683 14.16897 14.02758 3.3045 14.36983 14.58637

Table 5. Effectiveness of the solution in comparison with that of the original exam paper settings.

Attributes of A′ Value Gap Attributes of B′ Value

S
A′

Discrimination 14.58637 0.5587864 S
B′

Discrimination 14.02758

S
A′

Difficulty 14.36983 0.2008591 S
B′

Difficulty 14.16897

S
A′

Guessing 3.304500 0.01418366 S
B′

Guessing 3.318683

Subtotal 0.7738291

Attributes of A Value Gap Attributes of B Value

S
A′

Discrimination 30.64953 32.68511 S
B′

Discrimination −2.03558

S
A′

Difficulty 56.46538 84.39198 S
B′

Difficulty −27.9266

S
A′

Guessing 3.43205 0.240917 S
B′

Guessing 3.191133

Subtotal 117.318007

From Table 5, it is obvious that the accumulated gap in terms of the differences between A’s
and B’s item parameters was 117.318007. The two original papers differed in discrimination power
and guessing probability, but these are not as critical as the large difference present in the difficulty
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dimension, i.e., paper A was much harder. This reflects the fact that some students who participated in
the test that used the A exam paper expressed doubts regarding the fairness of the test.

It is also obvious that the proposed model is effective because now the total gap between the new
A’ and B’ papers is as small as 0.7738291, and the gap in every dimension has been reduced to less than
1. For the studied case, it is fortunate to have such an outcome because the maximum fairness of the
exams (i.e., as measured by the extent to which the gap approaches 0) after one such homogenization
process is highly dependent on the initial battery of questions (i.e., in A and B), which means that for
another case the minimized gap would be greater. However, the degree to which the gap between
two exam papers is reduced greatly shows not only the improvements, but also the proposed model’s
ability to obtain such an exchange plan.

4.2. Distributions of Question Items in New Exam Papers

The discrimination and difficulty of the question items in each new exam paper are shown in
Figure 4 without rescaling. The proposed model suggests that more moderately difficult questions
should be moved to exam paper A’ (as most of the points in Figure 4a are distributed vertically around
the Y axis) but more moderately discriminative questions should be moved to B’ (as most of the points
in Figure 4b are distributed horizontally around the X axis).Mathematics 2020, 8, x  15 of 29 
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A more interesting observation is that because the hardest question (i.e., Q5 whose difficulty
index > 100) is included in A’, the model determines that three much easier questions should also be
included (−50 < difficulty < −10; i.e., Q4, Q10 and Q18). This is not observed in B’, wherein two harder
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questions are included (10 < difficulty < 20; i.e., Q16 and Q20) but no question that is very easy is
included (i.e., the easiest question in B’, Q1, has a difficulty value below −10).

It can be concluded that the model chooses to make a different setting strategy for each exam
paper. However, this does not matter because these observations do not erode the fairness brought by
the two new exam papers, as their overall difficulty and discriminative power indices are almost on
par. As long as the pursued average difficulty and discrimination (see the red crosses in both figures)
are fair, the distribution of the question items is not as important as the overall fairness provided by the
new exam papers. Note that the analysis uses the per-question average difficulty and discrimination
for illustration clarity. This is tantamount to using their total values because the score received for
correctly answering each question is 5 points, out of 100.

4.3. The Role of Weights: A Further Analysis

The exchange plan mentioned above assumes no priority for the gaps to be minimised between
two exam papers. In the model, ‘w1 = w2 = w3 = 1’ can be viewed as a weight vector, W =[

w1 w2 w3
]
=

[
1/3 1/3 1/3

]
, which implies an equal weighting of the considerations of

difficulty, discrimination and guessing under the weight postulation.
However, as the model is capable of taking into account the different preferences for these

dimensions in teachers’ mind, the teacher group leader was interviewed to learn the opinion regarding
the real preferential weights. With the stated preference of W′ =

[
w1 w2 w3

]
=

[
0.5 0.4 0.1

]
,

another (BGP–item exchange planning) model is reconstructed using this setting. As a result, as shown
in Table 6, another ‘exchange plan’ that produces another two new exam papers, A” and B”, emerged.

Table 6. The exchanging plan suggested by the weighted binary goal programing (BGP) model
(compared to the unweighted one).

Qj in
Exam Paper A Planned Exchanges Qj in

Exam Paper B
Remark (yj)

Exchanges
(Unweighted)

yj
(Unweighted)

Q1 � Q1 1 � 1
Q2 � Q2 1 � 1
Q3 Q3 0 � 1
Q4 � Q4 1 0
Q5 � Q5 1 0
Q6 � Q6 1 0
Q7 � Q7 1 0
Q8 � Q8 1 � 1
Q9 Q9 0 0

Q10 Q10 0 � 1
Q11 � Q11 1 � 1
Q12 � Q12 1 0
Q13 Q13 0 � 1
Q14 Q14 0 � 1
Q15 Q15 0 � 1
Q16 � Q16 1 0
Q17 � Q17 1 � 1
Q18 Q18 0 � 1
Q19 Q19 0 0
Q20 � Q20 1 0

Summary 12 11

It is obvious that the exchanging patterns the two plans suggest are quite diversified. In addition,
a total of 11 question pairs should be exchanged with the dimensions being equally weighted (using W),
while a total of 12 should be exchanged with those being weighted by human (using W’).

As is further compared in Table 7, the weighted total gap between A” and B” is 0.2558935 with
the human-weighted setting. This differs slightly from the averaged gap between A’ and B’, which
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is 0.257943 (0.7738291 × 1/3), but the achievement is slightly better. Compared to the plan with
the equally-weighted setting, the gap in difficulty between the two exam papers is greatly reduced
(0.007420312 between A” and B” but 0.2008591 between A’ and B’). Their gap in discrimination has
also been reduced (0.5587864 compared to 0.4285717).

Table 7. Effectiveness of the human-weighted setting in comparison with that of the equally-weighted settings.

Attributes of A” Value Gap Attributes of B” Value

S
A′

Discrimination 14.52126 0.4285717 S
B′

Discrimination 14.09269

S
A′

Difficulty 14.27311 0.007420312 S
B′

Difficulty 14.26569

S
A′

Guessing 3.118394 0.3863955 S
B′

Guessing 3.504789

Objective Val. 0.2558935

Attributes of A’ Value Gap Attributes of B’ Value

S
A′

Discrimination 14.58637 0.5587864 S
B′

Discrimination 14.02758

S
A′

Difficulty 14.36983 0.2008591 S
B′

Difficulty 14.16897

S
A′

Guessing 3.304500 0.01418366 S
B′

Guessing 3.318683

Objective Val. 0.257943

Nevertheless, the gap in guessing has increased due to a leverage. With the human-weighted
setting, the weight assigned to minimize the difficulty gap is the greatest (0.5), and that assigned
to minimize the discrimination gap is also great (0.4). Thus, in comparison to the gaps between
A’ and B’, the difficulty and discrimination gaps between A” and B” are reduced, i.e., the model
emphasizes these two dimensions by following the order indicated by W’. Therefore, after a trade-off,
the human-weighted model sacrificed the gap-minimization goal for the guessing dimension, as it has
the lowest priority (0.1).

In the analysis above, considering human preferences obtains another exchange plan that could
be more satisfactory. As the plan is altered by the way the test administrator prioritizes the dimensions,
this confirms that the reconstructed model is effective, which further encourages the use of factual
weights when the application of (BGP–item exchange planning) is required in any context. Another
empirical insight gained from this analysis is that, similar to other studies about test compilation,
test administrators usually place more emphasis on the question items’ difficulty and discriminative
power, rather than the probability of guessing a right answer.

A Sensitivity Analysis

Given the encouraging results shown above, a question arose as to how the suggested exchange
plan (and the model solution) would change, subject to a change in the weight vector. That is, what if the
weights were neither assumed to be equal nor assigned by the head teacher through an investigation?
A sensitivity analysis could serve the purpose of gaining further insights in this regard.

As less emphasis is usually placed on the parametric dimension of guessing, several sets of
probable weights are supposed for the difficulty and discrimination dimensions. Every round in the
experiment, the weight of difficulty is increased by 10% and the weight of discrimination is decreased
by 10%, and vice versa (to determine the used weight portfolio). The experiment halts when any one
of them receives an importance that is equal to the importance of guessing (or is less important than
guessing). The direct results are shown in Table 8. These results are further visualized and compared
in Figure 5, with the number of questions exchanged and the detailed exchange plan given under each
weight portfolio setting shown in Table 9.
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Table 8. Effectiveness of the human-weighted setting in comparison with that of the equally-weighted
settings: Gaps in each dimension and the total objective value under the different weight portfolios.

Weight Portfolios Investigated

Discr.(w1) 10% 20% 30% 40% 50% 60% 70% 80%
Diffi.(w2) 80% 70% 60% 50% 40% 30% 20% 10%

Guess.(w3) 10% 10% 10% 10% 10% 10% 10% 10%

A’ Discr. 14.58637 14.58637 14.09269 14.31098 14.31098 14.30297 14.31098 14.31098
A’ Diffi. 14.36983 14.36983 14.26569 13.68014 13.68014 14.85866 13.68014 13.68014

A’ Guess. 3.30450 3.30450 3.50479 3.26494 3.26494 3.35825 3.26494 3.26494
B’ Discr. 14.02758 14.02758 14.52126 14.30297 14.30297 14.31098 14.30297 14.30297
B’ Diffi. 14.16897 14.16897 14.27311 14.85866 14.85866 13.68014 14.85866 14.85866

B’ Guess. 3.31868 3.31868 3.11839 3.35825 3.35825 3.26494 3.35825 3.35825
D. Discr. 0.55879 0.55879 0.42857 0.00801 0.00801 0.00801 0.00801 0.00801
D. Diffi. 0.20086 0.20086 0.00742 1.17852 1.17852 1.17852 1.17852 1.17852

D. Guess. 0.01418 0.01418 0.38640 0.09331 0.09331 0.09331 0.09331 0.09331
Obj. (Agg.) 0.05614 0.08073 0.10367 0.10914 0.08990 0.07066 0.05142 0.03218
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Table 9. Effectiveness of the human-weighted setting in comparison with that of the equally-weighted
settings: The detailed exchange plan given under each weight portfolio setting and the total number of
questions exchanged.

Weight Portfolios Investigated (w3 = 10%)

Discr.(w1) 10% 20% 30% 40% 50% 60% 70% 80%
Diffi.(w2) 80% 70% 60% 50% 40% 30% 20% 10%

Exchanged Qs Exchanging Details

Q1 X X X
Q2 X X X
Q3 X X X X X X X
Q4 X X X X
Q5 X X X X
Q6 X X X X
Q7 X
Q8 X X X X X X
Q9 X X

Q10 X X X X
Q11 X X X X X X
Q12 X X X X
Q13 X X X X X X X
Q14 X X X X
Q15 X X X X
Q16 X X X X
Q17 X X X
Q18 X X X X
Q19 X X X X X
Q20 X X X X

#Qs Exchanged 11 11 8 11 11 9 11 11

The experiment mentioned above uses the extension model of the gap-minimization (BGP–IEP)
model in Section 2.3, wherein the deviations connoting the goals in the objective are normalized
according to Equation (2”). Referring to the study by Chang [54], in that paper, except for the bounds
of the values of those item parameters, the ‘suitable ranges’ (see also Section 2.2) of these parameters
were also induced, as: 0 ≤ aj ≤ 2, −3 ≤ bj ≤ 3 and 0 ≤ cj ≤ 1. This implies a ratio of 2:6:1 of ‘suitable
violation intervals’ for discrimination, difficulty and the guessing parameters. Therefore, specifically
for the analytical purpose here, in Equation (2”), the normalization constants are set as ∆1 = 2, ∆2 = 6
and ∆3 = 1, respectively, according to the above ratio.

As can be observed in Table 9 and Figure 5b, the solution to the exchange plan converges at the
two ends, i.e., when the weight of either discrimination or difficulty becomes less than that of guessing
(i.e., {discrimination, difficulty} = {20%, 70%} and {10%, 80%}, or {70%, 20%} and {80%, 10%}). However,
the solution ‘turns around’ at the setting when {discrimination, difficulty} = {30%, 60%}, and when
{discrimination, difficulty} = {60%, 30%} (that is, it yields a different optimal solution and then yet
another optimal solution across these barriers). Besides, either a weight portfolio of {discrimination,
difficulty} = {40%, 50%} or {50%, 40%} also converges to the same solution, which is very like the
solution when discrimination is heavily addressed (as compared to difficulty). For this item exchange
planning case, this solution yields the best compromise when the consideration for discrimination and
difficulty are almost on par. Due to a lack of space, other interesting insights from this analysis are
awaiting further discussion and exploration.
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4.4. Flow for Future Implementation of IRT–BGP

Based on these positive results, further application is expected. A more complete flow for the
implementation of IRT–BGP is therefore suggested for holding a fair test using A/B exam papers
without the use of question banks:

(1) The teacher or teacher’s team construct both the original A and B exam papers, with each pair of
questions being associated with a certain piece of knowledge.

(2) A pre-test that uses the original papers is given to two individual random groups of students
who are not the respondents in the real test.

(3) The answers to all the questions in the pre-test are recorded, and the correctness of the answers is
justified to form the data warehouse required for subsequent analysis.

(4) Use IRT to estimate the guessing, difficulty and discrimination parameters for each item contained
in A and B, based on the data available in (3).

(5) Build a (BGP–item exchange planning) model using the item parameters estimated in (4). Solve the
model to determine an ‘exchange plan’. Obtain two new exam papers, A’ and B’ by reference to
the plan.

(6) The new A’ and B’ exam papers are used to test two student groups in the real A/B test.

Figure 6 depicts this flow and the way in which the flow is applied for teachers who are teaching
a similar large general course but facing a similar problem. This acknowledges the request to set two
exam papers ‘on the fly’ (to determine an exchange plan for the paired, associated questions that have
just been set) to the fairest extent possible when there is no existing item pool from which questions
can be retrieved, which is the main RQ of this study.
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The pre-test requires a sample of students that is at least sufficient so that the results are statistically
significant, e.g., the classical magic number based on the normal distribution, which is ≥ 32 [61].
In addition, one way to guarantee that test-takers with characteristics similar to those of the students
enrolled in the real exam are included in the pre-test is to use a sample consisting of upper grade
students who have also taken the same course. In this case, the safety requirements of having an exam
previously tested using another sample of individuals can be met by asking the pre-test takers to sign a
non-disclosure agreement.

Lastly, an extensive discussion is provided in terms of methodology. Following from Section 1.2.4,
traditional test compilation is an organization problem of an (or several individual) exam paper(s),
which is in fact an ‘assignment problem’. But the studied one is an ‘arrangement problem’ between
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exam papers, in the broader sense of ‘what is to be optimized’ for ‘combinatorial optimization’. This is
true when the two original exam papers are stacked as one. Figure 7 clearly shows this difference
as well as the logics thereof, clearly. The former is an assignment problem wherein the items drawn
from a large pool are assigned to certain limited lots (as defined by the number of questions) in an
exam paper, as long as the exam paper composed can meet the required standard. However, the latter
is an arrangement problem wherein the existing questions are present but a balance between their
placements is pursued. The figure shows that the new model’s goal is to re-permute the elements
by exchanging each pair of (j, j + 20) elements and seeing whether this results in improvement.
This permutation problem is an arrangement problem de facto.
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5. Conclusions

This paper studies the niche problem of setting A/B exam papers fairly, subject to the absence of
an existing item pool of questions. Accordingly, an IRT–BGP hybrid modelling approach is proposed
(see the flowchart in Section 4.4). IRT is used to estimate the item parameters (i.e., guessing, difficulty
and the discriminative power) of the questions included in both exam papers (A and B). These are
then used as the model parameters of the proposed (BGP–item exchange planning) model, with the
preferential weights manifested by the test administrators for the three item-parametric dimensions.

The solution provides an ‘exchange plan’ for the way the associated questions in two exam papers
that are paired in terms of the point of knowledge to be tested should be exchanged. Two new exam
papers (A’ and B’) are thus obtained, and they may achieve the desired leverages between the exam
papers in the three dimensions, such that the two exam papers become as fair as possible for the
students taking the exam. Therefore, the test becomes as fair as possible for the exam takers who are
randomly allotted to participate in the test using either A’ or B’. The offered fairest (or almost fair) A/B
test not only benefits the dynamically-grouped teacher’s team when A/B tests should be held but the
teachers do not have the knowledge needed to intrinsically make these separate tests fair, subject to the
usual context in educational practice in which there is no item pool available, but also implies many
positive effects for both teachers and students from the perspectives of educational psychology (see the
former discussions).

This study also offers a state-of-the-art empirical case for the studied problem. The source data
was collected for a large general required course, which resulted in a solid sampling ground for
subsequent analyses and the implications drawn. In addition, for this course the teaching team is
dynamically organized year by year such that there is no common question item pool established
(and is not necessary); however, the teachers are nonetheless asked to set A/B exam papers for the two
term-test sessions. As such, the used case is sufficient to justify the proposed approach.

Some future research directions can be recommended. At first, despite the empirical finding that
the unfairness of the test would be enormous if questions in the two original exam papers were not
suitably balanced (which can be observed in Figure 1 and Tables 1 and 2), and despite the finding
that the proposed model may well balance the two exam papers by exchanging the paired associated
questions (as shown in Tables 4, 5 and 7), other observations can also be made if the flow suggested in
Section 4.4 can be implemented. In this case, the teachers in the group will be asked to agree to alter
the setting process for the exam papers used in a term test. The possible advantages can therefore be
examined by statistically testing if distributions of the students’ scores (such as Figure 2) using the
new A’ and B’ exam papers are improved (such that a true fair A/B test is given) and if the gap in the
average scores is still significant.

The other possible direction is model enhancement. In this study, the model exchanges questions
in two exam papers. However, in pedagogical practice, there are situations in which more than two
exam papers, each of which is testing the same set of knowledge, should be used for a large-scale test
but in which, meanwhile, the fairness of the test should remain unquestionable. Another situation
would be one in which even though there are two exam papers, the two papers contain blocks of
questions, such that the basic unit for item exchange would be question blocks, rather than individual
items themselves. Under these circumstances, how to improve the model to leverage in the multiple
item-parametric dimensions among more than two exam papers and exchange the given limited set of
questions in these exam papers is the challenge.

Another further enhancement relates to the flexibility of the proposed model. In Section 2.3,
the model’s generalized applications were discussed, as one can totally neglect some parameter(s)
while pursuing that of fairness (between the exam papers). However, as in the field of GP, pre-emptive
GP (PGP) is an approach that has been used to allot every goal into several prioritized goal sets,
such that any neglected parametric dimension (e.g., guessing) can also be placed at a second priority
level of PGP (i.e., and not just be neglected). In such cases, models such as PGP [62] or lexicographic
GP [42] may be applied.
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Yet another direction pertains to the future application of the BGP modelling approach to the
traditional exam paper setting problems wherein a question bank exists and the aim is to retrieve a
suitable set of questions that meets the required standard in each parametric dimension. Should this
be the case, improvements in later works could be expected since GP is a special type of LP which can
generate more information for multi-criteria decision analysis (MCDA).

Finally, it always requires supports for consistency and fairness in exam practice [63], so to
assessments in other pedagogical activities. The approach presented in this study also serves
this purpose.
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Appendix A

When an exam paper is compiled according to this method, items with higher difficulty are likely
to be included in the paper because of their higher contribution to the information function because
the model’s objective is that the information function value approaches the target value. This must be
given consideration in addition to the establishment of item question parameters in the case of a large
number of items in the question bank. Because of an imbalance between knowledge points caused by
the content validity issue, testing effectiveness cannot be achieved, which often results in a complex
and confounding compilation process.

Appendix B

DDDM comprises four steps: data collection, data pre-processing, data analysis and
decision-making/supporting. During the decision-making phase, the BGP model’s parameters were
obtained via the IRT statistical analysis that was performed during the data analysis phase, thus creating
an epistemological framework that effectively linked the four steps and covered the transition from
data to information, and then to decision-making knowledge. It should be noted that no forecasting
was required for the research questions. This made it possible to omit the forecasting/prediction
step of big data analysis, which is normally carried out after the data analysis phase and before the
decision-making or supporting phase.

Appendix C

The BGP model, in its general form, is illustrated by following the common symbolic
conventions [40,55,64], as follows:

(BGP)
Achievement (objective) function:
Min ⊕

i∈{1,...,I}
(D+

i + D−i )

Goals and constraints:
CX −D+ + D− = T
d+i = D+[i] ≥ 0, d−i = D−[i] ≥ 0, i ∈ {1, . . . , I}
X ∈ F is a feasible set; x j = X[ j] ∈ {0, 1}, j = {1, . . . , J}.

where D+, D− and T are vectors whose dimension is I × 1, and I is the number of goals; ti = T[i] is the
target level for the i-th goal; variables d+i and d−i are positive and negative deviations from/toward
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the target level ti; X is a J × 1 decision vector to be determined, containing the 0–1 decision variables,
xi; C is an I × J matrix which contains the model parameters; F denotes the feasible solutions set of
constraints; and (+) is the aggregation operator which determines how the deviational variables are
mixed, e.g., according to a weighted goal programing (WGP) model.

Appendix D

In previous practical applications of IRT, the difficulty, discrimination and guessing (bi, ai, ci) of
every item were first measured for each item and stored in the question bank before test compilation.
The test information target was then set by the test administrator and a number of potential items
were selected. The selected items composed an exam paper that approaches the ideal information
amount. Because of the use of the same scale to define IRT item parameters and test ability indicators,
the standard error of estimation can be also calculated from the test information amount. Therefore,
test developers can select items with the highest information amount and lowest standard error based
on ability scores (θj) and, thus, compile an ideal exam paper.

First, item information function is a function of the ability score (or a given ability level, θ).
Following the convention of this text, it can be formulated based on Pj(θ) without the use of the second
derivative thereof [65,66]:

I j(θ) =
[P′j(θ)]

2

P j(θ)(1− P j(θ))
, j = 1, 2, . . . , J (A1)

where Ij(θ) is the Fisher’s information for item j; Pj(θ) is the probability of correct response, conditional
on θ and the item parameters; P’i(θ) is the first derivative of Pi(θ); and j = 1,2, . . . , J means the j-th
question item of the exam paper.

For example, given that θ = θr, r = 1,2, . . . ,R is the r-th respondent and R indicates the number of
students participating in the term test, P j(θr) = c j + (1− c j)

1
1+e−aj(θr−bj)

(e.g., Formula (1)) can be used

to assess Ij(θr).
Based on the testing items and the distribution of abilities of the tested respondents, items with

appropriate information amounts are selected to compose an exam paper so that its information
amount approaches the ideal status. Based on the item information functions for each respondent
r (θr), the information amount provided by a test can be accurately calculated. Given that all
items are independent [67], Birnbaum [68] defined ‘test information function’ and ‘standard error of
test’ as follows:

I(θ) =
J∑

j=1

I j(θ) (A2)

SE(θ) =
1√
I(θ)

(A3)

According to the formulas, the test information function is a total sum of the item information
functions. In the test information curve, the ability score (θ) corresponding to the maximum test
information function is the one that can be most accurately tested by the test. Exam papers compiled
according to IRT provide different test information amounts for different ability scores.

Appendix E

During the middle two phases of this study, the R statistical platform was used as the tool for
data pre-processing and data analysis. The ‘ltm’ package in R, which implements the 3PL model
of IRT in terms of the tpm() function, was used to estimate the question item parameters. Both the
latent trait ability of the model under the GLM (generalized linear models) framework and the ‘IRT
parameters’ option were turned on, so the coefficients’ estimates were reported under the usual IRT
parameterization [69], with the ‘nlminb’ optimizer being chosen. The last decision modelling phase
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is implemented in LINGO. Because they are the well-known tools for data analytics and decision
supports, the confidence in the results achieved by using these tools has already been established.

Appendix F

A model is reconstructed and solved using (BGP–IEP II). The solution set contains another
exchange plan that is compared with the plan suggested by the solution set using (BGP–item exchange
planning) (BGP–IEP). This is shown in Table 9. As can be seen, (BGP–IEP II) suggested that another set of
questions should be exchanged, and it suggests a total of only 7 exchanges for the item pairs. However,
as any solution in this context implies another complementary exchange plan (i.e., (20 − 7) = 13)
exchanges if the yis’ in the plan are all reversed (i.e., 0→1 and 1→0), further observations can be made
to gain deeper insights.

Table A1. The exchanging plan suggested by the (BGP–IEP II) model (compared to the plan suggested
by the (BGP–IEP) model).

Qj in
Exam Paper A Planned Exchanges Qj in

Exam Paper B
Remark (yj)

Exchanges
(BGP–IEP)

yj
(BGP–IEP)

Q1 Q1 1 � 1
Q2 � Q2 0 � 1
Q3 � Q3 0 � 1
Q4 � Q4 0 0
Q5 � Q5 0 0
Q6 � Q6 0 0
Q7 � Q7 0 0
Q8 � Q8 0 � 1
Q9 � Q9 0 0
Q10 Q10 1 � 1
Q11 Q11 1 � 1
Q12 � Q12 0 0
Q13 Q13 1 � 1
Q14 � Q14 0 � 1
Q15 Q15 1 � 1
Q16 � Q16 0 0
Q17 � Q17 0 � 1
Q18 Q18 1 � 1
Q19 Q19 1 0
Q20 � Q20 0 0

Summary 7 11

In the solution set for ‘another exchange plan’, it is coincident that with the use of (BGP–IEP
II), all of the positive deviational variables are non-zero, despite the fact that negative deviational
variables have been introduced to measure the directional distance (i.e., see Equation (9) in Section 2.3).
This means that for the studied problem case, using directional distance as the measure to balance
the two exam papers still suggests a plan of ‘paper A is slightly harder, slightly more discriminative
and slightly more easy to guess on than paper B’. However, this is not always true. As can be easily
imagined, if the exchange plan in Table A1 was completely ‘flip-flopped’, the negative deviational
variables would become non-zero and the positive ones would all be zero.

Table A2 provides a comparison between the two solution sets in terms of the distances in
each dimension using the two separate models. The gaps measured between the two new exam
papers reproduced by (BGP–IEP II) are marked with signs to indicate the direction of the given
distance. It is revealed that for the same problem solved with the same tool (LINGO) and solver
options, with directional distances as the objective to be minimized, the performance of (BGP–IEP II) is
even worse. The value of the objective function of (BGP–IEP II) is 1.03, whilst it is 0.77 when using
(BGP–IEP). Moreover, the solution produced by (BGP–IEP II) only minimizes the discrimination gap



Mathematics 2020, 8, 1290 26 of 29

more effectively while minimizing the other two gaps, that is, the difficulty and guessing gaps, less
effectively than (BGP–IEP). However, as both solutions may improve the fairness by a large amount
(as compared to the unfairness between the original A’ and B’ exam papers; see Table 5), such a tiny
difference does not count for much, as the two models are both shown to be effective in leveraging and
pursuing a Pareto optimality.

Table A2. Solutions from the two separate models using absolute distances and directional distances
as the objectives to be minimized.

Attributes of A’
(BGP–IEP) Value Absolute Distance Attributes of B’

(BGP–IEP) Value

SA′
Discrimination 14.58637 0.5587864 SB′

Discrimination 14.02758
SA′

Difficulty 14.36983 0.2008591 SB′
Difficulty 14.16897

SA′
Guessing 3.304500 0.01418366 SB′

Guessing 3.318683
Subtotal 0.7738291

Attributes of A’
(BGP–IEP II) Value Directional Distance Attributes of B’

(BGP–IEP II) Value

SA′
Discrimination 14.52774 +0.4415311 SB′

Discrimination 14.08621
SA′

Difficulty 14.47663 +0.4144685 SB′
Difficulty 14.06216

SA′
Guessing 3.398857 +0.1745316 SB′

Guessing 3.224326
Subtotal 1.030531
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