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Abstract: Epistasis, which indicates the difficulty of a problem, can be used to evaluate the basis of
the space in which the problem lies. However, calculating epistasis may be challenging as it requires
all solutions to be searched. In this study, a method for constructing a surrogate model, based on
deep neural networks, that estimates epistasis is proposed for basis evaluation. The proposed
method is applied to the Variant-OneMax problem and the NK-landscape problem. The method is
able to make successful estimations on a similar level to basis evaluation based on actual epistasis,
while significantly reducing the computation time. In addition, when compared to the epistasis-based
basis evaluation, the proposed method is found to be more efficient.
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1. Introduction

In terms of computation, various challenges such as black-box problems still exist. Multiple
attempts have been made to resolve the difficulties by constructing surrogate models based on deep
learning [1,2].

When we use a basis other than the standard basis, the structure of problem space can be quite
different from the original one. Mbarek et al. [3,4] changed the standard basis of a vector space to
ensure the efficient performance of an algorithm. Seo et al. [5] modified problem space by nontrivial
encoding through a method changing the standard basis. The effects of basis change on a genetic
algorithm (GA) in binary encoding have been investigated [6]. Furthermore, it has been shown that
using this method, problem space can be fundamentally changed in graph problems, the performance
of GAs gets affected. There were several studies that measured the problem difficulty from the view of
epistasis [7,8]. To search a basis to smooth the ruggedness of the problem space, Lee and Kim [9,10]
proposed a method that used a meta-GA and an epistasis-based basis evaluation method which largely
reduced computational time over the meta-GA. In order to calculate epistasis accurately, all feasible
solutions need to be first searched. However, searching all solutions becomes challenging as the
complexity of the problem increases. They have resolved this issue by estimating the epistasis of
solution samples.

However, estimating the epistasis using samples of the solutions still requires a large computational
cost. Therefore, in this study, deep neural networks (DNNs) are used to construct an epistasis-estimating
surrogate model to remarkably reduce the computational cost.
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The remaining of the paper is consisted as follows. The background is explained in Section 2.
In Section 3, related studies are introduced. First, a method of smoothing the ruggedness of the
problem space using a meta-GA is described, and then, a study related to basis evaluation based on
actual epistasis is described. Section 4 discusses the deep learning-based epistasis estimation method
proposed in this study. In Section 5, the results of applying the basis change to a GA are analyzed.
We draw conclusions in Section 6.

2. Backgrounds and Test Problems

In this section, we describe various backgrounds needed to understand the rest of this paper.
In Sections 2.1 and 2.2, we describe basis and epistasis, respectively. We explain how we calculated
epistasis in Section 2.3. Sections 2.4 and 2.5 discuss the deep learning and surrogate models, respectively.
In Section 2.6, we introduce test problems used in our experiments.

2.1. Basis

In linear algebra, the basis of a vector space is the linear independent vectors that span the vector
space [11,12]. In other words, they are vectors that give a unique representation as a linear combination
to any vector in the vector space. The basis can be defined as follows:

Definition 1. [Basis] Basis B, which is a basis of V, which is a vector space, over F, which is a field, is a linear
independent subset of V that spans V. Satisfying the following two conditions means that B, which is a subset of
V, is a basis:

• Linear independence property: for every finite subset {b1, b2, . . . , bn} of B and every a1, a2, . . . , an in F,
if a1b1 + a2b2 + · · ·+ anbn = 0, then necessarily a1 = a2 = · · · = an = 0;

• Spanning property: it is possible to choose v1, v2, . . . , vn in F and b1, b2, . . . , bn in B such that v =

v1b1 + v2b2 + · · ·+ vnbn for every vector v in V.

The standard basis for vector space Zn is e1, e2, . . . , en, where ei is a column vector with the i-th
component of 1 and remaining components of 0 If the basis is expressed as a 0-1 matrix, it becomes the
identity matrix. Changing the identity matrix into an invertible one can lead to the transformation of
the standard basis.

BS = {e1, e2, . . . , en} =




1
0
...
0




0
1
...
0

 · · ·


0
0
...
1


⇔


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 = In (1)

2.2. Epistasis

In GAs, epistasis refers to any type of gene interaction. A more complex gene interaction implies
more complex problems and greater epistasis. On the other hand, if the gene interaction is independent,
the epistasis becomes zero.

A method proposed by Lee and Kim [10] used the epistasis proposed by Davidor [13]. Equations
for calculating the epistasis are provided in Section 2.3.

Typically, the standard basis is used in binary encoding. When the evaluation functions in the
standard basis with complex interdependencies of basis vectors are changed to another basis, with the
aim of smoothing the ruggedness of the problem space, the calculation of the evaluation functions
becomes simpler and the epistasis decreases as well. However, as all the feasible solutions need to be
searched first to calculate the epistasis, the epistasis of the sampled solutions was calculated in [10]
and, based on this, an estimation was made for the actual epistasis.
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2.3. How to Calculate Epistasis

In this paper, we used the formula proposed by Davidor [13] to calculate epistasis. Equations
for calculating epistasis in Section 2.2 as follows. A string S is composed of l elements (s1, s2, . . . , sl),
where si ∈ {0, 1} for each i = 1, 2, . . . , l.

The GrandPopulationΓ is the group of all strings of length l,

Γ =
l

∏
i=1
{0, 1} (2)

Let Pop denote a sample of Γ, where the sample is selected uniformly and with replacement.
NPop is the size of the sample Pop. v(S) is the fitness of a string S.

The average fitness value of Pop is:

V =
1

NPop
∑

S∈Pop
v(S) (3)

The number of string S in Pop that match si = a is denoted by Ni(a). If PopSi=a is the set of all
strings in Pop with the allele a in their i-th position. The average allele value Ai(a) is denoted by

Ai(a) =
1

Ni(a) ∑
S∈PopSi=a

v(S) (4)

The excess allele value Xi(a) is defined by:

Xi(a) = Ai(a)−V (5)

The excess genic value X(S) is:

X(S) =
l

∑
i=1

Xi(Si) (6)

The genic value A(S) of a string S is defined as:

A(S) = X(S) + V (7)

Finally, the epistasis variance ε(S) is:

ε(S) = {v(S)− A(S)}2 (8)

2.4. Deep Learning

Deep learning [14] is a high-level abstraction method that uses a combination of various non-linear
techniques. This technology is currently being used in various domains of the modern society.
In particular, it has brought significant developments in fields like computer vision, speech recognition,
and natural language processing.

A deep neural network (DNN) is one kind of artificial neural network (ANN) that consists of
various hidden layers between the input layer and output layer. Regardless of the linearity, a DNN
can model complex relationships that change from the input to the output. In addition, there are
various ANN models such as convolutional neural network (CNN) [15], recurrent neural network [16],
and restricted Boltzmann machine [17].

2.5. Surrogate Model

Surrogate model is a model used to replace tasks such as those of complex and time-consuming
calculations [18]. There are several real-world simulations that are extremely time-consuming or
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difficult to implement in a realistic manner. These simulations may take days or even weeks to produce
the results. As these tasks are highly time intensive, performing simulations in many cases is almost
infeasible. In such cases, surrogate models are used for the simulations. Sreekanth and Datte [19] built
a surrogate model for coastal aquifer management. Eason and Cremaschi [20] used an ANN-based
surrogate model for a chemical simulation.

Surrogate models are also used in the fields of mathematics and optimization. Some studies have
been conducted to optimize various objective functions using surrogate models [21–26]. Specifically,
these studies attempted to optimize the cost-expensive black-box problems. In particular, several
studies have proposed the use of Walsh-based surrogate models to reduce the computational cost
associated with pseudo-Boolean problems [27–29].

Similarly, these models have been adopted to reduce computational costs in several other fields as
well. Deep learning techniques can also be used to replace black-box evaluation. To this end, surrogate
models using deep learning have been developed [2,30–35]. Deep learning can be a powerful method
for estimating the evaluation values that are difficult to compute in a realistic manner. This study
intends to reduce the computation time by constructing a DNN-based surrogate model that estimates
the epistasis corresponding to a basis.

2.6. Test Problems

This study tested the same problems as those in the experiments conducted by Lee and Kim [10].
The OneMax problem is the maximization of the number of 1s in a binary vector. Variant-OneMax is
defined as the problem that maximizes the number of 1s in the binary vectors that are changed from
the standard basis to another basis. When BS is the standard basis and B is another basis, the change
of BS to B can be expressed as an invertible matrix [T]BBS

. When we change the basis, a vector v can be

represented as [T]BBS
v = [v]B. The fitness value of [v]B counts the number of 1s in [v]B. The optimal

solution to the Variant-OneMax problem is that all elements are 1.
The NK-landscape problem defined by Kauffman [36] comprises of chromosome S of length N,

and each gene has a dependency on the other K numbers of genes. The fitness contribution fi of the
gene at locus i depends on the allele Si and K other alleles Si1, Si2, . . . , SiK. The fitness f of a point
S = (S1, S2, . . . , SN) can then be expressed as follows:

f (S) =
1
N

N

∑
i=1

fi(Si, Si1, Si2, . . . , SiK) (9)

As the NK-landscape problem is an NP-complete problem, it is difficult to find the global optimum,
and therefore, it is employed extensively in the optimization field [37]. Additionally, the level of
difficulty of the problem can be adjusted through N, which represents the overall size of the landscape
and K, which represents the number of its local hills and valleys. The higher K is, the more rugged the
problem space is.

3. Prior Work on Searching Basis

In this section, we introduce prior work on searching basis. We describe the work of finding a
good basis using a meta-GA and the GA combined with epistasis-based basis evaluation.

3.1. Basis Searching with a Meta-GA

A good basis can improve the performance of a GA. Lee and Kim [9] proposed a method of using
a meta-GA to search a good basis.

The performance improvement was demonstrated for the NK-landscape problem by changing
the standard basis to the other basis obtained using the meta-GA. However, the time complexity of
searching the basis with their meta-GA was found to be O(2n2

). Hence, the method of obtaining a
good basis using the meta-GA is not practical as it is extremely time-intensive.
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3.2. Epistasis-based Basis Evaluation

Lee and Kim [10] proposed an epistasis-based basis evaluation method and subsequently applied
the proposed method to a GA in order to search a good basis. They converted the complex problem
into a simpler one by changing the basis.

Their epistasis-based basis evaluation method was conducted as follows. With a certain given
basis, the sampled solution set S was obtained from the problem, following which S′ was obtained by
a basis change. The epistasis in S′ was calculated. A low value of the epistasis represented the higher
appropriateness of the basis for the problem. When the gene size was represented by l and the number of
the sampled solution set S was represented by s, the time required for calculating the epistasis was O(l2s).

Next, GAs using the epistasis evaluation were described. A basis could be represented as an
invertible matrix. If Eis were elementary matrices, any invertible matrix T could be expressed as
T = E1× E2× . . .× EmT . Each basis was represented as a variable-length string encoding meaning the
multiplication of the elementary matrices [38].

The parents were aligned according to the Wagner–Fischer algorithm [39], after which a uniform
crossover operator was applied. For the selection operator, the tournament operator was applied
to select the best solution out of three parents. The mutation operator was used by applying either
insertion, deletion, or replacement. The replacement was applied by replacing the parent households
with child households.

Experiments were conducted on the Variant-OneMax problem and the NK-landscape problem
that are described in Section 2.6. After performing the GA, to identify another basis for each
problem, the optimal solutions were found by searching solutions for each problem one hundred
times, independently. This was conducted by changing to the basis found by the GA. Thereafter,
the experimental results were compared for three cases: the case where the basis change was not
conducted, the case where a meta-GA was applied, and the case where the epistasis-based basis
evaluation method was used. The case with using the meta-GA showed better results overall.
However, as the computation of the meta-GA is time intensive, it is difficult to use in practice.
The epistasis-based basis evaluation method yielded better results compared to the basis with no
change made, and required less time compared with the meta-GA. Thus, considering both the
experimental results and process time, the epistasis-based basis evaluation method was shown to be the
most efficient method. Further, the calculation of the epistasis before and after the basis change showed
a decrease in the epistasis, thereby indicating the effectiveness of the presented model. However,
this method was still time-consuming as it required calculating the epistasis for each solution in
the solution set. We try to remarkably reduce the computational cost by estimating epistasis using
deep learning.

4. Proposed Method Based on Surrogate Model

In this section, we describe the proposed epistasis estimation method based on a surrogate model.
We present how to estimate epistasis using deep learning in Section 4.1. In Section 4.2, we introduce
our GA combined with the proposed surrogate model.

4.1. Surrogate Model-Based Epistasis Estimation Using Deep Learning

In Section 4.2, we confirmed that the complexity of a problem on a basis could be represented
by an epistasis. This was done by estimating the actual epistasis using a sampled solution set as the
problem of searching all the solutions to calculate the epistasis. However, as this estimated method of
computing the epistasis was still time-consuming, we expected that deep learning could be used to
further reduce the computation time.

We intended to apply a deep learning model when the basis and the estimated epistasis,
in Section 4.2, were considered to be input and output, respectively. In practice, it is nearly impossible
to search all the solutions to calculate epistasis. However, if the epistasis can be successfully estimated
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using a deep learning model, the deep learning model can be viewed as an objective function for
estimating the epistasis. A surrogate model estimates an unknown objective function based on
the accumulated input and output data. Therefore, the corresponding deep learning model can be
considered to be a surrogate model.

Kim et al. [40] and Kim and Kim [41] introduced an epistasis estimation method using a DNN
model. Experiments were conducted using DNN and CNN to determine the deep learning model that
was more suitable for epistasis estimation. The hyperparameters for the DNN and CNN models are
detailed in Table 1, and the used structure of the CNN model is shown in Figure 1.

Table 1. The hyperparameter configuration of deep neural network (DNN) and convolutional neural
network (CNN).

Hyperparameter DNN Value CNN Value

Learning rate 0.001 0.001
Epoch 1000 1000

Dropout rate 0.5 0.5
Loss function RMSE RMSE

Optimizer “Adam” “Adam”
Number of layers 5 N/A

Number of neurons per layer N2/2 N/A

* N : the dimension of each problem.

Figure 1. Structure of the CNN model used in this study, when N = 20.

The data used in our experiments were from the populations obtained by the GA experiments
of Lee and Kim [10] for searching the basis on each problem. Further, 10-fold cross-validation was
conducted after removing duplicated data within the dataset. The results of the experiment are
summarized in Table 2. The ratio shown there was the result calculated by 100× Es−Ed

Es
(%), where Es

denotes the calculated epistasis by sampling, and Ed represents the estimated epistasis using deep
learning. A lower ratio implies that the epistasis estimated using deep learning could be successfully
replaced by epistasis of a sampled solution set.

According to the experimental results are present in Table 2, there was no significant difference
between the ratio in DNN and the ratio in CNN. However, the CNN model required 6.5 times more
training time than the DNN model. When we considered both the estimation results and the training
time taken, the DNN model was more efficient.

There are various hyperparameters that can be configured in the DNN model, and depending on
the hyperparameter configuration, the performance of the DNN model may vary. Kim et al. [40] used
the dropout technique [42] to resolve the vanishing gradient problem of the DNN. The initial weights
also affect the model performance; the two popular initialization techniques are “Xavier” [43] and
“He” [44]. Finally, the experiment was conducted using the best composition: three layers, the “Xavier”
initializer, and a dropout rate of 0.5.



Mathematics 2020, 8, 1287 7 of 17

Table 2. Experimental results of epistasis estimation using DNN and CNN.

Problems Deduplication
DNN CNN

Actual Estimated Ratio

(%)

Time

(s)

Actual Estimated Ratio

(%)

Time

(s)Before After Average Average Average Average

Variant-
OneMax

N = 20 6400 1863 4.06 4.03 0.74 21.5 4.06 4.03 0.88 36.0

N = 30 14,400 2291 4.44 4.40 0.72 24.7 4.44 4.41 0.63 60.1

N = 50 40,000 9767 8.72 8.74 0.23 103.8 8.72 8.75 0.36 680.1

NK-
landscape

N = 20
K = 3

6400 1403 3.08× 10−3 3.15× 10−3 2.26 18.8 3.08× 10−3 3.01× 10−3 2.32 31.5

N = 20
K = 5

6400 1141 3.16× 10−3 3.18× 10−3 0.53 18.4 3.16× 10−3 3.22× 10−3 1.62 28.9

N = 20
K = 10

6400 1527 4.08× 10−3 4.09× 10−3 0.09 18.4 4.08× 10−3 4.07× 10−3 0.43 32.5

N = 30
K = 3

14,400 2124 1.77× 10−3 1.80× 10−3 1.51 22.0 1.77× 10−3 1.79× 10−3 1.17 58.9

N = 30
K = 5

14,400 2822 2.49× 10−3 2.52× 10−3 1.01 23.9 2.49× 10−3 2.51× 10−3 0.71 72.2

N = 30
K = 10

14,400 3609 2.58× 10−3 2.58× 10−3 0.21 25.5 2.58× 10−3 2.59× 10−3 0.27 94.2

N = 30
K = 20

14,400 4039 2.72× 10−3 2.75× 10−3 1.03 26.3 2.72× 10−3 2.74× 10−3 0.83 105.7

N = 50
K = 3

40,000 9816 1.08× 10−3 1.16× 10−3 7.12 107.1 1.08× 10−3 1.10× 10−3 1.91 651.9

4.2. A Genetic Algorithm with Our Surrogate Model

In this section, we present a GA to find a good basis with our surrogate model. As shown in
Figure 2, we replaced the part of calculating epistasis in our GA with the proposed surrogate model.
It is known that any basis is representable as an invertible matrix [10]. Every invertible matrix can be
expressed as a product of elementary matrices. In our GA, we used a variable-length string for the
encoding of the elementary matrix product as a way to represent a basis.

For selection, we applied a tournament operator three times in order to get three solutions.
The best among the three became a parent. Parents were gathered as many as the size of population,
and two parents randomly paired up and we applied a crossover operator between them. In both
parents, one string was stretched to match the other string. The stretched string was inserted with “-”
symbols to adjust the length to minimize the Hamming distance between the two strings. Two offspring
were generated by applying a uniform crossover to align and removing the “-” symbols. The mutation
operator applied one of insertion, deletion, and replacement. The probability of applying the mutation
operator was 0.05 for each gene, and 0.2 for each individual. Afterwards, fitness was evaluated by applying
the proposed surrogate model. Finally, the parent population was replaced by the offspring population.
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Satisfy stop 
Criterion?

Finish

Basis

DNN model

Epistasis

Proposed surrogate
model

GA for finding a basis

Yes

No

Replacement

Input

Output

in prior work

Figure 2. Flowchart of our genetic algorithm (GA) [10] combined with the proposed surrogate model.

5. Results of Experiments and Discussion

We introduce our computing environments and dataset in Section 5.1. In Section 5.2, we present the
experimental results when we applied the proposed method to the Variant-OneMax problem and the
NK-landscape problem. In Section 5.3, we describe how well the proposed method estimates epistasis.

5.1. Test Environments and Dataset

Our experiments were conducted on the computing environments presented in Table 3. Further,
GPU computation was used for tensor calculation to reduce the time of the DNN model training.
The amount of data was reduced after removing the duplicated data from Table 2. If the training
process was conducted repeatedly on a small amount of data, it may result in an overfit. To prevent
an overfit, additional data were generated in a manner similar to the one used by Lee and Kim [10].
The amount of data generated for each problem became 100 times the amount of data before the
duplication removal; the generated data were then used for the DNN model training.

Table 3. Test environments.

CPU Intel R© CoreTM i7-6850K CPU @ 3.60 GHz
GPU NVIDIA GeForce GTX 1080 Ti × 4
RAM 64 GB

Operating system Ubuntu 18.04 LTS
Programing language (version) Python (3.7)
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5.2. Results

We conducted experiments on the Variant-OneMax and NK-landscape problems. As shown in
Figure 3, the experiments were split into two parts. The first part involved searching for another basis
for each problem through a GA, whereas the second part consisted of finding the optimal solution
for each problem by changing the basis found through another GA. In this study, we used the DNN
model trained by the basis and the epistasis that were used in the experiments by Lee and Kim [10].

Initialization

Selection

Crossover

Mutation

Fitness evaluation

Replacemant

Satisfy stop
criterion?

No

Yes

Initialization

Selection

Crossover

Mutation

Fitness evaluation

Replacemant

Satisfy stop
criterion?

No

Yes

Change of basis

Finding the appropriate basis

Finding the best solution

Encoding change

End

Start

Start

Figure 3. Flowchart of a GA (right-side solid box) with a change of basis which is found by another
GA (left-side dotted box).

On the Variant-OneMax problem, experiments were conducted for N = 20 and N = 30.
This experiments was conducted under the same conditions as in [41], and the same result was
obtained. In both cases, the basis was searched for using a GA. Then, after changing as the basis
obtained by the GA, the optimal solution was obtained by independently searching for solutions one
hundred times on each of the problem instances. For finding the best solution on the problem, our GA
used one-point crossover and bit-flip mutation with probability 0.05. The remaining part including
selection and replacement were the same as GA for finding a good basis in Section 4.2. This process
was repeated 10 times to obtain the average values. Table 4 shows how well the optimal solution could
be found when the estimation method using the DNN was applied to the Variant-OneMax problem.
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Table 4. Experimental results on the Variant-OneMax Problem [41].

Trial
Variant-OneMax

N = 20 N = 30

1 35 25

2 42 48

3 17 25

4 24 31

5 51 24

6 49 70

7 36 48

8 30 41

9 55 3

10 53 47

Average 39.2 36.2

In Figures 4 and 5, “Original” corresponds to the case where the optimal solution is found without
applying the basis change. “Epistasis” corresponds to the case of finding the optimal solution using
the epistasis-based basis evaluation method proposed by Lee and Kim [10]. “DNN” is the result of
applying the method proposed in this study. Considering the results in Figure 4, “Epistasis” provided
the best results among all the cases. “DNN” provided better results than “Original”, but performed
slightly poorer than “Epistasis.” However, in Table 4, “DNN” showed almost similar results to
“Epistasis.” Considering the computation time results in Figure 5, there was a 40 to 60 times difference
between “DNN” and “Epistasis.”

On the NK-landscape problem, experiments were conducted for seven different cases: (N = 20,
K = 3), (N = 20, K = 5), (N = 20, K = 10), (N = 30, K = 3), (N = 30, K = 5), (N = 30, K = 10),
and (N = 30, K = 20). Similar to the Variant-OneMax problem, the basis was searched for using a GA,
following that the change was made on the obtained basis. This was followed by ten repetitions of the
independent GA search that was conducted 100 times. The results of the experiments are summarized
in Table 5.

Figure 4. Performance comparison of the experiment in this study (“DNN”) and those in previous
studies (“Original” and “Epistasis”) on the Variant-OneMax problem [41].
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Figure 5. Comparison of processing time for the experiment in this study (“DNN”) and that in previous
study (“Epistasis”) on the Variant-OneMax problem [41].

Table 5. Experimental results for the NK-landscape problem.

N, K N = 20
K = 3

N = 20
K = 5

N = 20
K = 10

N = 30
K = 3

N = 30
K = 5

N = 30
K = 10

N = 30
K = 20

1
Average 0.8169 0.7445 0.7487 0.7714 0.7655 0.7313 0.7209

Best 0.8250 0.7613 0.7814 0.7763 0.7952 0.7791 0.7549

2
Average 0.8154 0.7433 0.7572 0.7663 0.7658 0.7388 0.7210

Best 0.8250 0.7613 0.7855 0.7763 0.7873 0.7745 0.7627

3
Average 0.8141 0.7467 0.7550 0.7625 0.7683 0.7358 0.7240

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.8048 0.7615

4
Average 0.8130 0.7533 0.7595 0.7718 0.7643 0.7337 0.7217

Best 0.8250 0.7613 0.7855 0.7763 0.7897 0.7802 0.7526

5
Average 0.8165 0.7560 0.7563 0.7706 0.7720 0.7338 0.7244

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.7804 0.7726

6
Average 0.8137 0.7504 0.7573 0.7700 0.7701 0.7322 0.7215

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.8034 0.7627

7
Average 0.8158 0.7463 0.7529 0.7630 0.7701 0.7373 0.7244

Best 0.8250 0.7613 0.7814 0.7763 0.7952 0.7717 0.7715

8
Average 0.8094 0.7461 0.7540 0.7671 0.7719 0.7323 0.7215

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.7855 0.7590

9
Average 0.8091 0.7429 0.7540 0.7678 0.7582 0.7400 0.7216

Best 0.8250 0.7613 0.7855 0.7763 0.7876 0.7844 0.7525

10
Average 0.8150 0.7501 0.7475 0.7679 0.7706 0.7341 0.7210

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.7749 0.7541

Total
Average 0.8139 0.7480 0.7542 0.7678 0.7677 0.7349 0.7222

Best 0.8250 0.7613 0.7855 0.7763 0.7952 0.8048 0.7726

In Figures 6–8, “Original,” “Epistasis,” and “DNN” illustrate the same trends as obtained from
the Variant-OneMax problem. Figure 6 compares the entire population averages. The best quality
of population was obtained when “Epistasis” was used. “DNN” had better results than “Original”,



Mathematics 2020, 8, 1287 12 of 17

but showed slightly poorer results than “Epistasis.” However, the comparison results for the optimal
solutions were more important because the best solution of the population was the optimal solution.
In Figure 7, “DNN” generally found better optimal solutions than “Original,” and also found almost
identical or slightly poorer solutions when compared with “Epistasis.” In Figure 8, when we compared
the computing time taken, “Epistasis” required 46 to 87 times longer times compared with that required
by “DNN.”

In this study, it was confirmed only how well the best solution of the problems was found, and we
did not perform a statistical analysis. Derrac et al. [45] explained how to use statistical tests to compare
evolutionary algorithms. In future work, it is valuable to check the significance of our improvement
through a statistical analysis.

Figure 6. Performance comparison of the experiment in this study (“DNN”) and those in previous
studies (“Original” and “Epistasis”) on the average of population for the NK-landscape problem.

Figure 7. Comparison of best solution results for the experiments in this study (“DNN”) and previous
studies (“Original” and “Epistasis”) on the NK-landscape problem.
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(a) N = 20 (b) N = 30
Figure 8. Comparison of processing time for the experiments in this study (“DNN”) and previous
study (“Epistasis”) on the NK-landscape problem.

5.3. Epistasis Estimation Based on Basis

This section examines the effectiveness of the epistasis estimation method based on the DNN.
Through Figures 9–11, we can know the comparison results of estimating the epistasis with the DNN
and calculating the epistasis of sampled solutions in the basis search using a GA. Considering Figure 9,
the estimation results using the DNN model appeared to be similar to the calculated epistasis for the
Variant-OneMax problem. However, from Figures 10 and 11, when we considered the NK-landscape
problem, the difference between the DNN model estimation and the calculated epistasis is observed
to increase with the growth in problem complexity. Owing to this tendency, the reason for the lower
quality of the population by “DNN” than that by “Epistasis” for the cases of (N = 30, K = 10) and
(N = 30, K = 20) can be guessed as follows. As the Variant-OneMax problem is a relatively simple
problem, the epistasis estimation based on the basis was not presented with any significant difficulties;
however, on the NK-landscape problem, as the problem complexity increased, the estimation by the
DNN became more difficult.

(a) N = 20 (b) N = 30
Figure 9. Comparison of target epistasis values (“Epistasis”) and ones estimated by DNN (“DNN”) on
the Variant-OneMax problem.

(a) K = 3 (b) K = 5

Figure 10. Cont.
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(c) K = 10

Figure 10. Comparison of target epistasis values (“Epistasis”) and ones estimated by DNN (“DNN”)
on the NK-landscape problem (N = 20).

(a) K = 3 (b) K = 5

(c) K = 10 (d) K = 20

Figure 11. Comparison of target epistasis values (“Epistasis”) and ones estimated by DNN (“DNN”)
on the NK-landscape problem (N = 30).

6. Conclusions

Lee and Kim [10] introduced an epistasis-based basis evaluation method; in this study, however,
we propose a surrogate model-based epistasis estimation method, which uses deep neural networks
(DNNs) for epistasis estimation.The proposed method was applied to two types of problems,
as discussed in Section 2.6, then experiments were conducted. The results were compared with
those obtained using the epistasis-based basis evaluation method. Regarding the optimal solution
search, estimating the epistasis of the basis using the DNN model was nearly always better than
that with no basis change. In addition, the method using the DNN showed nearly similar or slightly
poorer results than the epistasis-based basis evaluation. In particular, on the NK-landscape problem,
the method using the DNN provided optimal solutions that were quite similar to those obtained using
the epistasis-based basis evaluation. However, using the DNN, the time required for the epistasis
estimation was 87 times less as compared with the one conventionally used. Although our method
spent time to construct a surrogate model using DNN, the time was just for pre-processing, and it was
a low overhead that was much less than the time taken by the previous method [10] that repeatedly
calculated epistasis. Therefore, by applying our method, a successful estimation of the epistasis was
achieved, along with effective reduction in the computation time. (See Table 2, and Figures 5 and 8).
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The contributions of our study can be described as follows. Kim and Yoon [6] presented the effect
of basis change. Lee and Kim [9] obtained a good basis by using a meta-GA, and also obtained better
results on the NK-landscape problem using this basis. However, the meta-GA is time intensive and is
therefore very impractical. To address this issue, they proposed an epistasis-based basis evaluation
method [10] that showed better efficiency than the meta-GA method; however, their method was still
computationally intensive. To this end, we proposed a surrogate model method of estimating the
epistasis by using a DNN model. The proposed method showed similar qualities as the epistasis-based
basis evaluation method while significantly reducing the computation time. Thus, our epistasis
estimation using the DNN was more efficient than the previous methods; furthermore, our method
was found to be more practical.

However, the DNN model was presented with challenges when we estimate the epistasis as the
problem complexity increased, due to the following reasons: the use of the estimated epistasis values
instead of the actual calculated values for DNN training resulted in a lower estimation accuracy, or that
each problem required different optimal hyperparameters for the DNN. Thus, in the future, we intend
to improve the results of the present study by improving the method of searching for the better optimal
solution or by developing separate DNN models for each problem.
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