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Abstract: A single species stage structure model with Michaelis–Menten-type juvenile population
harvesting is proposed and investigated. The existence and local stability of the model equilibria
are studied. It shows that for the model, two cases of bistability may exist. Some conditions for the
global asymptotic stability of the boundary equilibrium are derived by constructing some suitable
Lyapunov functions. After that, based on the Bendixson–Dulac discriminant, we obtain the sufficient
conditions for the global asymptotic stability of the internal equilibrium. Our study shows that
nonlinear harvesting can make the dynamics of the system more complex than linear harvesting; for
example, the system may admit the bistable stability property. Numeric simulations support our
theoretical results.
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1. Introduction

It is well known that many species go through two stages, juvenile and adult, and that there are
significant differences in the characteristics of species at different stages, so the stage structure model
can better show the real-world phenomena.

In recent years, many scholars have considered the stage structure model [1–13], and they have
achieved many excellent results in the extinction, permanence, and global attractivity of the model.
For example, Lei [5] considered a two species stage-structured commensalism model:

dx1

dt
= αx2 − βx1 − δ1x1,

dx2

dt
= βx1 − δ2x2 − γx2

2 + dx2y,

dy
dt

= y(b2 − a2y),

(1)

where α, β, δ1, δ2, γ, d, a2, and b2 are all positive constants; x1 and x2 describe the juvenile and adult
of the first species densities at time t, respectively; y describes the second species densities at time
t. The stability of the equilibria is investigated. Their study shows that increasing the intensity
of cooperation between species is one of the most effective ways to prevent the extinction of
endangered species.
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After that, considering that the juvenile species needs time to grow up, Ma, Li, et al. [4],
Chen, Xie, et al. [7], Chen, Chen, et al. [8], and Chen, Wang, et al. [9] proposed the stage-structure
predator-prey model; the main model takes the following:

ẋ1(t) = r1(t)x2(t)− d11x1(t)− r1(t− τ1)e−d11τ1 x2(t− τ1),

ẋ2(t) = r1(t− τ1)e−d11τ1 x2(t− τ1)− d12x2(t)

−b1(t)x2
2(t)− c1(t)x2(t)y2(t),

ẏ1(t) = r2(t)y2(t)− d22y1(t)− r2(t− τ2)e−d22τ2 y2(t− τ2),

ẏ2(t) = r2(t− τ2)e−d22τ2 y2(t− τ2)− d21y2(t)

−b2(t)y2
2(t) + c2(t)y2(t)x2(t),

(2)

where x1(t), x2(t) denote the juvenile and adult of the prey species densities at time t, respectively;
y1(t), y2(t) describe the juvenile and adult of the predator species densities at time t, respectively.
The persistent, extinction and stability of the model are discussed. The results show that under
appropriate conditions, the system is persistent, and when the prey population is extinct, the predator
is not necessarily extinct.

In addition, in order to meet their own needs, human beings develop and utilize natural resources.
Therefore, to ensure the sustainable development of the ecosystem and maximize the economic
benefits, the harvest model has attracted the attention of many scholars [14–33]. There are two types of
harvesting proposed by May et al. [34]: constant [14]: it is a constant independent of the number of
harvested populations; and linear harvesting [15–24]: it is proportional to the number of harvested
populations, namely its expression is h = qEx. With constant harvesting, we cannot harvest a fixed
number of species each year. With linear harvesting, if x is fixed, E → ∞ or E is fixed, and x → ∞,
then we have h→ ∞; this is contrary to the facts. In order to overcome this shortcoming, nonlinear
harvesting [25–33] was proposed by Clark [35]. Among them, the nonlinear harvesting, which is also

called Michaelis–Menten-type harvesting, can be expressed as h = qEx
mE+nx . If E → ∞, then h → qx

m
;

or if x → ∞, then h→ qE
n

. However, the fact is that the number of species and the ability to harvest
are limited, that is to say, the number of species that can be harvested is limited, so from the biological
and economic point of view, it is more realistic [29].

This brings to our attention that for linear harvesting systems, generally speaking, the dynamic
behavior is relatively simple. For example, Xiao and Lei [15] discussed the impact of harvesting on the
dynamics of a single species stage structure model; the main model is as follows:

dx1

dt
= αx2 − βx1 − δ1x1 − q1Emx1,

dx2

dt
= βx1 − δ2x2 − γx2

2 − q2Emx2,

(3)

in which x1, x2 describe the juvenile and adult species densities at time t, respectively. The authors

showed that if α < (δ2 + q2Em)
(
1 +

δ1 + q1Em
β

)
, then the system has a globally asymptotically stable

boundary equilibrium O(0, 0). Moreover, if α > (δ2 + q2Em)
(
1+

δ1 + q1Em
β

)
, the positive equilibrium

A(x∗1 , x∗2) of the system is globally asymptotically stable. The dynamic behaviors of the system (3) are
very simple, since only two cases exist.

Compared to linear harvesting, Michaelis–Menten-type harvesting has a greater impact on the
model dynamics, which makes the model dynamics becomes more complicated. Therefore, it is
necessary to consider the influence of Michaelis–Menten-type harvesting on the dynamic behavior
of the system. Moreover, it can reflect the harvest process more truly, so it has attracted the
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attention of many scholars. For example, Liu, Huang, Deng, et al. [29] considered the influence
of Michaelis–Menten-type harvesting on the dynamics of the amensalism model with cover; the
modified model is as follows:

dx
dt

= a1x− b1x2 − c1(1− k)xy− qE(1− k)x
m1E + m2(1− k)x

,

dy
dt

= a2y− b2y2.
(4)

The authors showed that the system has bifurcation phenomena (saddle bifurcation and
transcritical bifurcation) when the parameters meet certain conditions, and then, they obtained
the threshold of maximum sustainable harvest. Hu and Cao [30] also investigated the effect of
Michaelis–Menten-type harvesting on the dynamic behaviors of the predator-prey model, and the
dynamic behaviors of the model are more complicated, showing very rich bifurcation phenomena.

From the perspective of fishery production, etc., we basically harvest the adult fish and keep
the juvenile fish. Therefore, Yu, Zhu, Lai, et al. [33] proposed the single species stage structure
system with Michaelis–Menten-type adult species harvesting. They obtained sufficient conditions
for the global asymptotic stability of the unique boundary equilibrium and positive equilibrium
of the model. In addition, their results also indicated that the system has bifurcation phenomena;
more specifically, within the proper harvesting range, the two species can coexist; over harvesting will
lead to species extinction. At the same time, their research showed that the model has at most two
positive steady states.

To our knowledge, up to now, no scholars have considered the dynamic behaviors of the
stage structure model of single species with Michaelis–Menten-type juvenile population harvesting.
Therefore, in this paper, we propose the following models:

dx
dt

= αy− βx− δ1x− hEx
mE + nx

,

dy
dt

= βx− δ2y− γy2,
(5)

where x, y describe the juvenile and adult population densities at time t, respectively;
α, β, δ1, δ2, γ, h, E, m, and n are all positive constants, in which: α describes the per capita birth rate
of the juvenile population; β indicates the surviving rate of the juvenile to reach adulthood; δ1, δ2

indicate the death rate of the juvenile and adult population, respectively; γ represents the intraspecific
competition of the adult population; h represents the catchability coefficient of the adult population; E
represents the external effort devoted to harvesting of the juvenile population. Here, we only assume
that the immature species is harvested. A typical example is bamboo shoot and bamboo: in China,
peasants may pick bamboo shoots as their food resources.

For the sake of simplicity, we first make the following transformations:

x̄ =
γ

α
x, ȳ =

γ

δ2
y, t̄ = δ2t.

Dropping the bars, we can obtain the following system:

dx
dt

= y− ax− bx
c + x

,

dy
dt

= ex− y(1 + y),
(6)

in which:
a =

β + δ1

δ2
, b =

hEγ

αδ2n
, c =

mEγ

nα
, e =

αβ

δ2
2

,
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and the initial conditions
x(0) = x0 > 0, y(0) = y0 > 0.

By the biological implications, we only consider the model in the first quadrant.
The layout of this paper is as follows: The existence and local stability of the equilibria of the

model (6) are discussed and show that the model may exhibit two types of bistability in Section 2.
In Section 3, the global asymptotic stability of the boundary equilibrium and the positive equilibrium
of the model (6) are investigated, respectively. The paper ends with some numeric simulations and a
brief discussion.

2. Existence and The Types of Equilibria

Notice that the model always has a unique boundary equilibrium E0(0, 0). The Jacobian matrix of
Model (6) can be written as follows:

J(E) =

 −a− bc
(c + x)2 1

e −1− 2y

 . (7)

and:
DetJ(E) = (1 + 2y)(a +

bc
(c + x)2 )− e, (8)

trJ(E) = −(a + 1 + 2y +
bc

(c + x)2 ) < 0. (9)

It is clear that when DetJ(E) 6= 0, it is an elementary equilibrium; when DetJ(E) < 0, then it is a
saddle; when DetJ(E) = 0, then it is a degenerate equilibrium.

2.1. The Boundary Equilibrium

Lemma 1. [36] Suppose that O(0, 0) is the isolated singularity of system:

dx
dt

= P2(x, y),

dy
dt

= y + Q2(x, y),

and P2 and Q2 are analytic functions whose degree is no less than two in Sδ(O), so when δ is sufficiently small,
there exists an analytic function φ(x), which satisfies:

φ(x) + P2(x, φ(x)) ≡ 0,−δ < x < δ.

Let
ψ(x) = P2(x, φ(x)) = amxm + [x]m+1,

where am 6= 0, m ≥ 2, then:

(i) If m is odd and am > 0, O(0, 0) is the unstable node.
(ii) If m is odd and am < 0, O(0, 0) is the saddle.
(iii) If m is even, O(0, 0) is the saddle node.

From the Jacobian matrix of Model (6) at E0, one could get the following theorem:

Theorem 1. Model (6) always has a unique boundary equilibrium E0(0, 0) for all positive parameters, then we
have:

(1) E0 is a saddle if b < c(e− a).
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(2) E0 is a stable node if b > c(e− a).
(3) E0 is a saddle node if b = c(e− a) and ce2 + a− e 6= 0; E0 is a saddle if b = c(e− a), ce2 + a− e = 0,

and ce >
1
2

; E0 is a stable node if b = c(e− a), ce2 + a− e = 0, and ce <
1
2

.

Proof. From (8), one could get:

DetJ(E0) =
b
c
+ a− e,

so if DetJ(E0) < 0, i.e., b < c(e− a), E0 is a saddle; if DetJ(E0) > 0, i.e., b > c(e− a), E0 is a stable
node and if DetJ(E0) = 0, E0 is a degenerate equilibrium, to discuss the property of E0, we introduce a

new time scale transformation dτ =
dt

c + x
, and we have:

dx
dτ

= −cex + cy + xy− ax2,

dy
dτ

= cex− cy + ex2 − cy2 − xy− xy2.

(10)

Then, make a transformation as follows:(
x
y

)
=

(
c −ce
ce ce

)(
u
v

)
, (11)

and let ds = −c(e + 1)dτ. System (10) becomes:

du
ds

= a01u2 + a02v2 + a03uv + a04u3 + P1(u, v),

dv
ds

= v + b01u2 + b02v2 + b03uv + b04u3 + P2(u, v) := P(u, v),
(12)

where

a01 =
ce2 + a− e
(e + 1)2 , a02 =

e2(a + c− e)
(e + 1)2 , a03 =

2e(ce + e− a)
(e + 1)2 , a04 =

ce2

(e + 1)2 , b01 =
ce + e− a
(e + 1)2 ,

b02 =
−e(ae + 2e + 1− c)

(e + 1)2 , b03 =
2ae + 2ce + 2e + 1− e2

(e + 1)2 , b04 =
ce

(e + 1)2 , and P1(u, v) and P2(u, v) are

power series in (u, v) with terms uivj satisfying i + j ≥ 3.
By the implicit function theorem, one could get an implicit function v = ω(u), in which ω(0) = 0

and P(u, ω(u)) = 0. According to the second equation of (12), one could obtain:

v = ω(u) = −b01u2 + (b01b03 − b04)u3. (13)

Substitute (13) into the first equation of (12), one could get:

du
ds

= a01u2 + (a04 − b01a03)u3 + ...

From Lemma 1, when a01 6= 0, i.e., ce2 + a− e 6= 0, we have m = 2, and E0 is a saddle node. On the

contrary, when a01 = 0, i.e., ce2 + a− e = 0, we have m = 3 and am =
ce2(1− 2ce)
(e + 1)2 , so E0 is a saddle

if ce >
1
2

. E0 is an unstable node if ce <
1
2

; however, due to the transformation ds = −c(e + 1)dτ,
the orbit goes in the opposite direction of time, then E0 is a stable node.

This completes the proof.
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2.2. The Internal Equilibria

Next, we consider the internal equilibria of System (6), and it is given by the following equations:

y− ax− bx
c + x

= 0,

ex− y(1 + y) = 0.
(14)

By the second equation of (14), one could get x =
y(1 + y)

e
, and y satisfies:

ay3 + (2a− e)y2 + (e(ac + b) + a− e)y + e(ac + b)− ce2 = 0. (15)

To investigate the properties of internal equilibria, we firstly let:

f (y) = ay3 + (2a− e)y2 + (e(ac + b) + a− e)y + e(ac + b)− ce2,

f
′
(y) = 3ay2 + 2(2a− e)y + e(ac + b) + a− e.

From f (y) = 0, we can get:

b = − ay3 + (2a− e)y2 + (ace + a− e)y + ce(a− e)
e(1 + y)

. (16)

Substituting (15) into (8), we have:

DetJ(E) =
y(y2 + y + ce)

(
2ay3 + (5a− e)y2 + (4a− 2e)y + ce2 + a− e

)
1 + y

= (y2 + y + ce)(y f
′
(y)− f (y))

= y(y2 + y + ce) f
′
(y).

(17)

By the root formula of the cubic equation of one variable, suppose that:

Ã = (2a− e)2 − 3a(e(ac + b) + a− e),

∆(b) =
1

9a2 (−4Ã3 + (3(a + e)Ã− (a + e)3 + 27a2e2c)2).

In order to investigate the maximum number of roots of (15), let us consider its constant terms;
next, we discuss it in two cases: b < c(e− a) and b ≥ c(e− a). Similar to the discussion of Lemma 2.5
in [37], we have the following results.

(I) The case b < c(e− a):

Theorem 2. If b < c(e− a), Model (6) has one to three distinct internal equilibria. Furthermore,

(1) when ∆(b) < 0, there are three distinct internal equilibria: E2 is a saddle, and Ei, (i = 1, 3) is a stable
node, in which 0 < y1 < y2 < y3.

(2) when ∆(b) = 0:

(i) when Ã > 0, there are two distinct internal equilibria: E∗ is the degenerate equilibrium, and E1

(or E3) is a stable node that is an elementary equilibrium, in which y1 < y∗ < y3.
(ii) when Ã = 0, there is only one internal equilibrium E∗, and it is a degenerate equilibrium.

(3) when ∆(b) > 0, there is a unique internal equilibrium E3, and it is a stable node.
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Proof. From Equations (9) and (17) and the property of the derivative of f (y), one could easily
get Det(Ei) > 0, (i = 1, 3), Det(E2) < 0, Det(E∗) = 0, and Det(E∗) = 0, so Ei, (i = 1, 2, 3) are
elementary equilibria, in which E1 and E3 are stable nodes and E2 is a saddle, while E∗ and E∗ are
degenerate equilibria.

Next, we study the stability of E∗. We first let (X, Y) = (x− x∗, y− y∗) move E∗ to the origin and
make the Taylor expansion. System (6) becomes:

dX
dt

= a01X + Y + a02X2 + a03X3 + a04X4 + a05X5,

dY
dt

= eX + b01Y−Y2,
(18)

where

a01 = −(a +
bc

(c + x∗)2 ), a02 =
bc

(c + x∗)3 , a03 =
−bc

(c + x∗)4 , a04 =
bc

(c + x∗)5 , a05 =
−bc

(c + x∗)6 ,

b01 = −1− 2y∗.

Making the transformations as follows:(
X
Y

)
=

 b01

e
a01

−1 e

( u
v

)
, (19)

and letting dτ =
dt

a01 + b01
, System (18) can be rewritten as:

du
dτ

= c01u2 + c02v2 + c03uv + c04u3 + P3(u, v),

dv
dτ

= v + d01u2 + d02v2 + d03uv + d04u3 + P4(u, v) := Q(u, v),
(20)

where

c01 =
ea01 + a02b2

01
e(a01 + b01)2 , c02 =

ea01(e + a01a02)

(a01 + b01)2 , c03 =
2a01(a01a02 − e)
(a01 + b01)2 , c04 =

a03b3
01

(a01 + b01)2 ,

d01 =
b01(a02b01 − e)
e2(a01 + b01)2 , d02 =

a2
01a02 − eb01

a01 + b01
, d03 =

2b01(e + a01a02)

e(a01 + b01)2 , d04 =
a03b3

01
e3(a01 + b01)

,

and P3(u, v) and P4(u, v) are power series in (u, v) with terms uivj satisfying i + j ≥ 3.
From the implicit function theorem, we have an implicit function v = φ(u), in which φ(0) = 0,

Q(u, φ(u)) = 0. According to the second equation of System (20), then:

v = φ(u) = −d01u2 + ... (21)

If we take (21) into the first equation of System (20), we can get:

du
dτ

= c01u2 + ...

Based on Lemma 1, one could obtain m = 2, am = c01 > 0, so E∗ is the saddle node.

In the same way, E∗ is also a saddle node; here, we omit its proof.
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Through the above analysis and Figure 1, one could obtain that if b < c(e − a), i.e., α >

δ2(1 +
δ1

β
) +

h
βm

, the boundary equilibrium E0 of Model (6) is unstable, and there are multiple

stable states in the first quadrant. More precisely, if the birth rate of the juvenile species is much

greater than the threshold δ2(1 +
δ1

β
) +

h
βm

, then two species can always coexist stably. In order to

verify the above results, we take a = 1, b = 0.75, c = 0.26, e = 4, then we have c(e− a) = 0.78 >

b, ∆(b) = −0.272832 < 0, E1(0.04689, 0.16148) and E3(0.69311, 1.2385) are stable nodes, and E0(0, 0)
and E2(0.24, 0.6) are saddles. According to Figure 1a, the red line divides the first quadrant into
two parts, denoted as I (left one) and II (right one). If the initial conditions lie in Region I, then all
solutions tend to E1(0.04689, 0.16148), which is a stable manifold, and both E0(0, 0) and E2(0.24, 0.6)
are unstable manifolds. From the biological point of view, the juvenile and adult species will coexist
if the initial conditions lie in Region I. Similarly, the juvenile and adult species will also coexist if
the initial conditions lie in Region II. This is the first case of bistability phenomena, as shown in

Figure 1a. If we take a = 1, b =
20
27

, c =
7
20

, e = 4, then we have c(e− a) > b, ∆(b) = 0, Ã = 1 > 0.
Obviously, the model has two positive equilibria E∗ and E1 (or E3) and one unstable boundary
equilibrium E0. Therefore, the model has two positive steady states, as shown in Figure 1b. Moreover,

if we let a = 1, b =
125
243

,c =
64
243

, e = 3, then one could get c(e− a) > b, ∆(b) = 0, Ã = 0, and the
model has a positive equilibrium E∗ and an unstable boundary equilibrium E0, so the model has a
positive steady state, as shown in Figure 1c.

This completes the proof.

x ’ = y − x − 0.75 x/(0.26 + x)
y ’ = 4 x − y (1 + y)          
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x ’ = y − x − 125/243 x/(64/243 + x)
y ’ = 3 x − y (1 + y)               
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Figure 1. (a) ∆(b) < 0. The coexistence of three internal equilibria and one boundary equilibrium when
b < c(e− a): two stable nodes E1 and E3 andtwo saddles E0 and E2. (b) ∆(b) = 0, Ã > 0. Two internal
equilibria when b < c(e− a): a stable node E1(E3) and a saddle node E∗. (c) ∆(b) = 0, Ã = 0. E∗ is the
only internal equilibrium, and it is the saddle node.

(II) The case b ≥ c(e− a):

Theorem 3. If b ≥ c(e− a), Model (6) has no more than two internal equilibria. Furthermore,

(1) when ∆(b) < 0, Model (6) has two distinct internal equilibria: E2 is a saddle, and E3 is a stable node;
in this case, 0 < y2 < y3.

(2) when ∆(b) = 0, Ã > 0, there is only one internal equilibrium E∗, which is an elementary equilibrium.
(3) when ∆(b) > 0 or ∆(b) = Ã = 0, Model (6) has no internal equilibrium.

Proof. From Equations (9) and (17) and the property of the derivative of f (y), one could easily get
Det(E3) > 0, Det(E2) < 0, and Det(E∗) = 0, so E2 is a saddle, E3 is a stable node, and E∗ is a
degenerate equilibrium, in which E∗ is a saddle node; the proof of the above conclusion is similar to
Theorem 2, so here, we omit it.

Based on the above analysis and Figure 2, one could obtain that the model has a positive steady
state. Two species will coexist permanently with some initial conditions, and under some initial
conditions, two species will be extinct. In order to verify the above results, we choose a = 1, b = 0.125,
c = 0.03125, e = 2, then we can obtain c(e − a) = 0.03125 < b, ∆(b) = −1.0518 < 0, E0(0, 0) and
E3(0.50321, 0.6209) are stable nodes, and E2(0.21178, 0.32071) is a saddle. According to Figure 2a,
the red line divides the first quadrant into two parts, denoted as I (left one) and II (right one). If the
initial conditions lie in Region I, then all solutions tend to E0(0, 0), which is a stable manifold, and
E2(0.21178, 0.32071) is an unstable manifold. From the biological point of view, the juvenile and adult
species will be driven to extinction if the initial conditions lie in Region I. However, if the initial
conditions lie in Region II, then all solutions tend to E3(0.50321, 0.6209), which is a stable manifold,
and E2(0.21178, 0.32071) is an unstable manifold. From the biological point of view, the juvenile and
adult species will coexist if the initial conditions lie in Region II. This is the second case of bistability
phenomena, as shown in Figure 2a. In addition, when we take a = 0.125, b = 6.5915, c = 1, e = 0.25,
then c(e− a) = 0.125 < b, ∆(b) = 0, Ã = 0.155 > 0. It is easy to get that the model has a positive
equilibrium E∗, and the model has a positive steady state, as shown in Figure 2b.

This completes the proof.



Mathematics 2020, 8, 1281 10 of 15
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Figure 2. (a) ∆(b) < 0. Two coexisting internal equilibria and one boundary equilibrium when
b ≥ c(e− a): two stable nodes E0 and E3 and a saddle E2. (b) ∆(b) = 0, Ã > 0. E∗ is the only internal
equilibrium, and it is the saddle node.

3. Global Stability of Equilibria

Theorem 4. When e < a holds, E0(0, 0) is globally asymptotically stable.

Proof. By constructing a suitable Lyapunov function to prove Theorem 4, let:

V(x, y) =
e
a

x + y.

It is obvious that the function V(x, y) is zero at E0(0, 0), and V is positive if x > 0, y > 0. We have:

D+V(t) =
e
a
(y− ax− bx

c + x
) + ex− y(1 + y)

= (
e
a
− 1)y− ebx

a(c + x)
− y2.

Since e < a, we have D+V(t) ≤ 0 and D+V(t) = 0 if and only if (x, y) = (0, 0). Then, V(x, y)
satisfies Lyapunov’s asymptotic stability theorem, and we have that E0(0, 0) is globally asymptotically
stable (see Figure 3).

This completes the proof of Theorem 4.

x ’ = y − x − 0.25 x/(0.125 + x)
y ’ = 0.5 x − y (1 + y)         
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Figure 3. System (6) has no internal equilibria, and a unique boundary equilibrium E0 is globally
asymptotically stable.
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Theorem 5. When b < c(e− a) and ∆(b) > 0 hold, E3(x3, y3) is globally asymptotically stable.

Proof. To prove Theorem 5, taking the Dulac function D(x, y) = 1, we have:

∂(DP)
∂x

+
∂(DQ)

∂y
= −a− 1− 2y− bc

(c + x)2 < 0,

where:
P(x, y) = y− ax− bx

c + x
,

Q(x, y) = ex− y(1 + y).

By the Bendixson–Dulac discriminant, one could show that the model (6) has no limit cycle when
x > 0, y > 0. On the other hand, When b < c(e− a), E0(0, 0) is the unique boundary equilibrium of
the model (6) and is a saddle. Therefore, according to the Poincaré–Bendixson theorem, E3(x3, y3) is
globally asymptotically stable (see Figure 4).

The proof of Theorem 5 is finished.

x ’ = y − x − x/(12 + x)
y ’ = 2 x − y (1 + y)   
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Figure 4. A unique internal equilibrium E3 is globally asymptotically stable when b < c(e− a) and
∆(b) > 0.

4. Numerical Simulations

Example 1. Consider the following single species stage structure model with Michaelis–Menten-type juvenile
population harvesting:

dx
dt

= y− x− bx
c + x

,

dy
dt

= ex− y(1 + y);
(22)

here, we choose a = 1.

(1) Let b = 0.25, c = 0.125, e = 0.5; we have b > c(e− a) and e < a, i.e., α < δ2(1 +
δ1

β
), then E0 is

globally asymptotically stable (see Figure 3). More precisely, when the birth rate of the juvenile species is

much less than the threshold δ2(1 +
δ1

β
), both species will be driven to extinction.

(2) Let b = 1, c = 12, e = 2; by simple computation, we have ∆(b) = 226704 > 0 and b > c(e − a),

i.e., α < δ2(1 +
δ1

β
) +

h
βm

, then E3 is globally asymptotically stable (see Figure 4). That is to say, when

when the birth rate of the juvenile species is much less than the threshold δ2(1+
δ1

β
) +

h
βm

and if b satisfies

∆(b) > 0, both species will coexist.
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(3) Let c = 0.125, e = 0.5, and take b = 0.2, b = 0.5, b = 0.8, respectively, and (x(0), y(0)) = (0.1, 0.1).
We have b > c(e − a) and e < a, then both species will be driven to extinction. The influence of
Michaelis–Menten-type harvesting on the model is shown in Figure 5. It shows that with b increasing,
species will become extinct in a much shorter time; in other words, increasing the harvest area will accelerate
the extinction of species.

(4) Let c = 12, e = 2, and take b = 0.2, b = 0.5, b = 0.8, respectively, and (x(0), y(0)) = (0.1, 0.1).
We have b < c(e− a) = 12 and ∆(b) = 81(2b− 24)2 + 12(23 + 2b)3 > 0, then the model has a global
asymptotically stable positive equilibrium E3. The influence of Michaelis–Menten-type harvesting on the
model is shown in Figure 6. It shows that with b increasing, the density of species decreases; in other words,
increasing the harvest area will reduce the species density.
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Figure 5. Take b = 0.2, b = 0.5, b = 0.8, respectively, and (x(0), y(0)) = (0.1, 0.1). In this case, E0 is a
stable node. (a) Juvenile species. Numerical simulation of juvenile species x of Model (22). (b) Adult
species. Numerical simulation of adult species y of Model (22).
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Figure 6. Take b = 0.2, b = 0.5, b = 0.8, respectively, and (x(0), y(0)) = (0.1, 0.1). In this case, E3 is a
stable node. (a) Juvenile species. Numerical simulation of juvenile species x of Model (22). (b) Adult
species. Numerical simulation of adult species y of Model (22).

5. Conclusions

A single species stage structure model with Michaelis–Menten-type juvenile population
harvesting is discussed. The properties of the possible equilibria of the model are studied. Our results
indicate that the Michaelis–Menten-type harvesting is more sensitive to the impact of model dynamics.
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It can not only reflect the harvesting process more realistically, but also make the dynamic behaviors of
the model more complex than the linear harvesting in [15].

According to the analysis, we can get, compared with [33], that the model exhibits rich dynamic
behaviors, and there are many kinds of positive steady states. The first type of bistability phenomenon
shows that if b < c(e− a), ∆(b) < 0, then the model is persistent when the initial value lies in the first
quadrant. From the biological point of view, juvenile and adult species can coexist steadily. The second
type of bistability phenomenon indicates that both species will coexist with some conditions, and under
some conditions, both species will be extinct. Moreover, if e < a i.e., α < δ2(β + δ1

β ), the boundary
equilibrium E0(0, 0) is globally asymptotically stable; in other words, when the birth rate of the
juvenile population is low enough, and the species will be driven to extinction. At the same time,
our research also shows that increasing the harvest area will accelerate the rate of species extinction.
In addition, if b > c(e − a) and ∆(b) > 0, the system has a unique globally asymptotically stable
internal equilibrium E3(x3, y3). That is to say, when the parameters meet certain conditions, harvesting
does not affect the persistence of the model. However, increasing the harvest area will reduce the
density of species. Our research is of great significance for decision makers in resource management of
fisheries, forestry, and wildlife management. In other words, making a reasonable harvesting plan can
not only ensure the maximization of economic benefits, but also maintain the sustainable development
of resources.

Author Contributions: Writing—original draft, X.Y.; Writing—review & editing, Z.Z. and F.C. All authors equally
contributed to this manuscript and approved of the final version. All authors read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Natural Science Foundation of Fujian Province (2019J01785).

Acknowledgments: The authors would like to thank the reviewers for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, Z.; Han, M.; Chen, F. Global stability of stage-structured predator-prey model with modified Leslie-Gower
and Holling-type II schemes. Int. J. Biomath. 2012, 6, 1250057. [CrossRef]

2. Li, Z.; Han, M.; Chen, F. Global stability of a predator-prey system with stage structure and mutual
interference. Discret. Contin. Dyn. Syst. B 2014, 19, 173–187. [CrossRef]

3. Xiao, Z.; Li, Z.; Zhu, Z.; Chen, F. Hopf bifurcation and stability in a Beddington-DeAngelis predator-prey
model with stage structure for predator and time delay incorporating prey refuge. Open Math. 2019, 17,
141–159. [CrossRef]

4. Ma, Z.H.; Li, Z.Z.; Wang, S.F.; Li, T.; Zhang, F.P. Permanence of a predator-prey system with stage structure
and time delay. Appl. Math. Comput. 2008, 201, 65–71. [CrossRef]

5. Lei, C.Q. Dynamic behaviors of a stage-structured commensalism system. Adv. Differ. Equ. 2018, 2018, 301.
[CrossRef]

6. Zhang, F.; Chen, Y.; Li, J. Dynamical analysis of a stage-structured predator prey model with cannibalism.
Math. Biosci. 2019, 307, 33–41. [CrossRef]

7. Chen, F.; Xie, X.; Li, Z. Partial survival and extinction of a delayed predator-prey model with stage structure.
Appl. Math. Comput. 2012, 219, 4157–4162. [CrossRef]

8. Chen, F.; Chen, W.; Wu, Y.; Ma, Z. Permanece of a stage-structured predator-prey system. Appl. Math. Comput.
2013, 219, 8856–8862.

9. Chen, F.; Wang, H.; Lin, Y.; Chen, W. Global stability of a stage-structured predator-prey system.
Appl. Math. Comput. 2013, 223, 45–53. [CrossRef]

10. Yue, Q. Permanence of a delayed biological system with stage structure and density dependent juvenile
birth rate. Eng. Lett. 2019, 27, 1–5.

11. Pu, L.; Miao, Z.; Han, R. Global stability of a stage-structured predator-prey model. Commun. Math.
Biol. Neurosci. 2015, 2015, 5.

http://dx.doi.org/10.1142/S179352451250057X
http://dx.doi.org/10.3934/dcdsb.2014.19.173
http://dx.doi.org/10.1515/math-2019-0014
http://dx.doi.org/10.1016/j.amc.2007.11.050
http://dx.doi.org/10.1186/s13662-018-1761-1
http://dx.doi.org/10.1016/j.mbs.2018.11.004
http://dx.doi.org/10.1016/j.amc.2012.10.055
http://dx.doi.org/10.1016/j.amc.2013.08.003


Mathematics 2020, 8, 1281 14 of 15

12. Lin, Y.; Xie, X.; Chen, F.; Li, T. Convergences of a stage-structured predator-prey model with modified
Leslie-Gower and Holling-type II schemes. Adv. Differ. Equ. 2016, 2016, 181. [CrossRef]

13. Xue, Y.L.; Pu, L.Q.; Yang, L.Y. Global stability of a predator-prey system with stage structure of
distributed-delay type. Commun. Math. Biol. Neurosci. 2015, 2015, 12.

14. Ji, L.L.; Wu, C.Q. Qualitative analysis of a predator-prey model with constant-rate prey harvesting
incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 2010, 11, 2285–2295. [CrossRef]

15. Xiao, A.; Lei, C.Q. Dynamic behaviors of a non-selective harvesting single species stage structure system
incorporating partial closure for the populations. Adv. Differ. Equ. 2018, 2018, 245. [CrossRef]

16. Chen, B.G. Dynamic behaviors of a nonselective harvesting Lotka-Volterra amensalism model incorporating
partial closure for the populations. Adv. Differ. Equ. 2018, 2018, 111. [CrossRef]

17. Lei, C.Q. Dynamic behaviors of a nonselective harvesting May cooperative system incorporating partial
closure for the populations. Commun. Math. Biol. Neurosci. 2018, 2018, 12.

18. Chen, F.D.; Wu, H.L.; Xie, X.D. Global attractivity of a discrete cooperative system incorporating harvesting.
Adv. Differ. Equ. 2016, 2016, 268. [CrossRef]

19. Zhang, N.; Chen, F.; Su, Q.; Wu, T. Dynamic behaviors of a harvesting Leslie-Gower predator-prey model.
Discret. Dyn. Nat. Soc. 2011, 2011, 473949. [CrossRef]

20. Lin, Q.F. Dynamic behaviors of a commensal symbiosis model with nonmonotonic functional response and
nonselective harvesting in a partial closure. Commun. Math. Biol. Neurosci. 2018, 2018, 4.

21. Su, Q.Q.; Chen, F.D. The influence of partial closure for the populations to a nonselective harvesting
Lotka-Volterra discrete amensalism model. Adv. Differ. Equ. 2019, 2019, 281. [CrossRef]

22. Xie, X.; Chen, F.; Xue, Y. Note on the stability property of a cooperative system incorporating harvesting.
Discret. Dyn. Nat. Soc. 2014, 2014, 327823. [CrossRef]

23. Huang, X.; Chen, F.; Xie, X.; Zhao, L. Extinction of a two species competitive stage-structured system with
the effect of toxic substance and harvesting. Open Math. 2019, 17, 856–873. [CrossRef]

24. Liu, Y.; Xie, X.D.; Lin, Q.F. Permanence, partial survival, extinction, and global attractivity of a
nonautonomous harvesting Lotka-Volterra commensalism model incorporating partial closure for the
populations. Adv. Differ. Equ. 2018, 2018, 211. [CrossRef]

25. Chen, B.G. The influence of commensalism on a Lotka-Volterra commensal symbiosis model with
Michaelis–Menten-type harvesting. Adv. Differ. Equ. 2019, 2019, 43. [CrossRef]

26. Kong, L.; Zhu, C.R. Bogdanov-Takens bifurcations of codimensions 2 and 3 in a Leslie Gower predator-prey
model with Michaelis–Menten-type prey harvesing. Math. Methods Appl. Sci. 2017, 40, 6715–6731. [CrossRef]

27. Yu, X.Q.; Chen, F.D.; Lai, L.Y. Dynamic behaviors of May type cooperative system with
Michaelis–Menten-type harvesting. Ann. Appl. Math. 2019, 4, 3.

28. Yu, L.; Guan, X.; Xie, X.; Lin, Q. On the existence and stability of positive periodic solution of a
nonautonomous commensal symbiosis model with Michaelis–Menten-type harvesting. Commun. Math.
Biol. Neurosci. 2019, 2019, 2.

29. Liu, Y.; Zhao, L.; Huang, X.Y.; Deng, H. Stability and bifurcation analysis of two species amensalism model
with Michaelis–Menten-type harvesting and a cover for the first species. Adv. Differ. Equ. 2018, 2018, 295.
[CrossRef]

30. Hu, D.P.; Cao, H.J. Stability and bifurcation analysis in a predator-prey system with Michaelis–Menten-type
predator harvesting. Nonlinear Anal. Real World Appl. 2017, 33, 58–82. [CrossRef]

31. Lin, Q.; Xie, X.; Chen, F.; Lin, Q. Dynamical analysis of a logistic model with impulsive Holling type-II
harvesting. Adv. Differ. Equ. 2018, 2018, 112. [CrossRef]

32. Xue, Y.L.; Xie, X.D.; Lin, Q.F. Almost periodic solutions of a commensalism system with
Michaelis–Menten-type harvesting on time scales. Open Math. 2019, 17, 1503–1514. [CrossRef]

33. Yu, X.Q.; Zhu, Z.L.; Lai, L.Y.; Chen, F. Stability and bifurcation analysis in a single-species stage structure
system with Michaelis–Menten-type harvesting. Adv. Differ. Equ. 2020, 2020, 238. [CrossRef]

34. May, R.M.; Beddington, J.R.; Clark, C.W.; Holt, S.J.; Laws, R.M. Management of multispecies fisheries. Science
1979, 205, 267–277. [CrossRef]

35. Clark, C.; Mangel, M. Of schooling and the purse seine tuna fisheries. Fish. Bull. 1979, 77, 317–337.

http://dx.doi.org/10.1186/s13662-016-0887-2
http://dx.doi.org/10.1016/j.nonrwa.2009.07.003
http://dx.doi.org/10.1186/s13662-018-1709-5
http://dx.doi.org/10.1186/s13662-018-1555-5
http://dx.doi.org/10.1186/s13662-016-0996-y
http://dx.doi.org/10.1155/2011/473949
http://dx.doi.org/10.1186/s13662-019-2209-y
http://dx.doi.org/10.1155/2014/327823
http://dx.doi.org/10.1515/math-2019-0067
http://dx.doi.org/10.1186/s13662-018-1662-3
http://dx.doi.org/10.1186/s13662-019-1989-4
http://dx.doi.org/10.1002/mma.4484
http://dx.doi.org/10.1186/s13662-018-1752-2
http://dx.doi.org/10.1016/j.nonrwa.2016.05.010
http://dx.doi.org/10.1186/s13662-018-1563-5
http://dx.doi.org/10.1515/math-2019-0134
http://dx.doi.org/10.1186/s13662-020-02652-7
http://dx.doi.org/10.1126/science.205.4403.267


Mathematics 2020, 8, 1281 15 of 15

36. Zhang, Z.F.; Ding, T.R.; Huang, W.Z.; Dong, Z.X. Qualitative Theory of Differential Equation; Science Press:
Beijing, China, 1992.

37. Xiang, C.; Huang, J.; Ruan, S.; Xiao, D. Bifurcation analysis in a host-generalist parasitoid model with Holling
II functional response. J. Differ. Equ. 2020, 268, 4618–4662. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jde.2019.10.036
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Existence and The Types of Equilibria
	The Boundary Equilibrium
	The Internal Equilibria

	Global Stability of Equilibria
	Numerical Simulations
	Conclusions
	References

