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Abstract: We proposed and analyzed a predator–prey model with both the additive Allee effect
and the fear effect in the prey. Firstly, we studied the existence and local stability of equilibria.
Some sufficient conditions on the global stability of the positive equilibrium were established
by applying the Dulac theorem. Those results indicate that some bifurcations occur. We then
confirmed the occurrence of saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.
Those theoretical results were demonstrated with numerical simulations. In the bifurcation analysis,
we only considered the effect of the strong Allee effect. Finally, we found that the stronger the fear
effect, the smaller the density of predator species. However, the fear effect has no influence on the
final density of the prey.

Keywords: fear effect; additive allee effect; saddle-node bifurcation; transcritical bifurcation;
hopf bifucation

1. Introduction

In 1931, to study the relationship between the growth of a species and its density, Allee [1]
proposed the effect later called the Allee effect, which means that the population size will decrease
if it is too sparse. The Allee effect occurs due to lots of factors, including inbreeding, depression [2],
difficulty in finding spouses [3], social dysfunction at low-densities [4], and so on. In the following,
we mention two single species models with Allee effects.

The first one proposed by Bazykin [5] is described by the following equation.

dx
dt = rx

(
1− x

K
)
(x−m), (1)

where r denotes the intrinsic per capita growth rate of the population and K is the carrying capacity
of the environment. Model (1) is said to havecq strong Allee effect if 0 < m < K and to have a weak
Alleee effect if m ≤ 0. To study the dynamics, Bazykin introduced a population threshold, which is
the minimum population size for the species to survive. It is shown that with a strong Allee effect,
the population must surpass this threshold in order to grow. However, there is no threshold for a
weak effect.

Further, in a study on how mating affects a population’s reproductive rate, Dennis [6] found that
not only can a lack of mates affect it, but also the mating function has a great influence on the birth rate
in the population growth rate. To describe the Allee effect of prey, the isometric hyperbolic function is
used. Under such circumstances, the Allee effect is called additive. The single species model with an
additive Allee effect proposed in [6] is as follows.

Mathematics 2020, 8, 1280; doi:10.3390/math8081280 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math8081280
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/8/1280?type=check_update&version=2


Mathematics 2020, 8, 1280 2 of 21

dx
dt =

[
r
(

1− x
K

)
− m

x+a

]
x, (2)

where m and a are constants, which reflect the degree of Allee effect. Biologically, m denotes the rate
for level of Allee effect and a represents the population size of the prey specie whose fitness is half its
maximum value. Note that if 0 < m < ar then (2) has the weak Allee effect and if m > ar then it has
the strong Allee effect. For sparse populations experiencing the Allee effect, Dennis demonstrated
with numerical simulations that the critical density, the growth, and the extinction probability can be
obtained. Until now, many researchers have paid a great deal of attention on the impact of Allee effect
on predation (see [7–18]). For example, Liu et al. [9] showed that a system with gestation delay and
an additive Allee effect is unstable if economic interest increases through zero, which may occur in
the case of an Allee effect (strong or weak). In [10], they found the extinction of species due to the
Allee effect.

Research has indicated that predators can not only kill prey directly but also affect the behavior
of prey, and the latter is more lethal than the former. In fact, all animals show many kinds of
anti-predator responses, such as changes of foraging behavior, habitat usage, physiology, and so
on ([19–23]). To describe that, the concept of fear in the prey was introduced and studied ([24–30]).
In particular, Wang et al. [29] for the first time proposed the following predator–prey model with the
cost of fear:

du
dt = r0u f (k, v)− du− au2 − g(u)v,
dv
dt = −mv + cg(u)v,

(3)

where k is the level of fear, which is due to anti-predator behaviors of the prey; g is the functional
response. Based on the biological background, the following reasonable assumptions are imposed,

f (0, v) = 1, f (k, 0) = 1, lim
k→+∞

f (k, v) = 0,

lim
v→+∞

f (k, v) = 0, ∂ f (k,v)
∂k < 0, ∂ f (k,v)

∂v < 0.

Taking the linear functional response, i.e., g(u) = pu, Wang et al. found that if d < r0 <

d + am
cp then E1(

r0−d
a , 0) is globally asymptotically stable and if r0 > d + am

cp then the unique positive
equilibrium E2 is globally asymptotically stable. Moreover, analysis reveals that the fear factor does
not change the stability of the equilibrium when it exists. In (3), the fear factor affects the intrinsic
growth rate. Then, inspired by [29] Sasmal [30] considered the case wherein the fear factor impacts the
growth rate and the growth rate has the strong Allee effect. The model studied is given by

dx
dt = rx

(
1− x

k
)
(x− θ) 1

1+ f y − axy,
dy
dt = aαxy−my,

(4)

where f represents the effect of fear. It was found that (4) undergoes a subcritical Hopf-bifurcation
at m = 1+θ

2 . Moreover, changing the parameter values of θ and m can produce bi-stability or stable
oscillatory coexistence of both prey and predator. It was further observed that the change of f can only
change the density of predator at the positive equilibrium but not the stability of the equilibrium.

To the best of our knowledge, so far there is not much being done on predator–prey models with
both the additive Allee effect and the fear effect. This motivated us to modify (4) by replacing the Allee
effect with the additive Allee effect. Precisely, we studied the following model:

dx
dt = rx

(
1− x− m

x+a
) 1

1+ f y − bxy,
dy
dt = αbxy− ny,

(5)
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where 1
1+ f y and m

x+a stand for the fear effect and additive Allee effect, respectively; r is the intrinsic
growth rate of prey; b is the predation rate; α is the conversion coefficient; and n is the death rate of
the predator. As we known, the relationship between prey and predator has always been the focus of
scholars [31–37]; hence, this paper will enrich the literature in this field.

The remaining part of this paper is organized as follows. First, we study the existence and local
stability of equilibria of (5) in Sections 2 and 3, respectively. Then we provide sufficient conditions
ensuring the global stability of the positive equilibrium in Section 4. In Section 5 is the bifurcation
analysis, which includes saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.
These theoretical results are supported with numerical simulations in Section 6. The paper concludes
with a discussion on the impact of the fear effect.

2. Existence of Equilibria

Obviously, system (5) always has the trivial equilibrium E0(0, 0). In order to obtain the other
equilibria, we consider the two nullclines:

rx
(
1− x− m

x+a
) 1

1+ f y − bxy = 0,
αbxy− ny = 0.

(6)

Note that y = 0 if x = 0 from the second line of (6). Additionally, from this equation, we get y = 0
(which corresponding to the boundary equilibria) and y 6= 0 with x = n

αb (which corresponds to the
positive or internal equilibrium).

We first study the existence of boundary equilibria. Substituting x = 0 into 1st line of (6) gives

rx
(

1− x− m
x + a

)
= 0,

or
x2 + (a− 1)x + m− a = 0. (7)

Denote
∆(m) = (a + 1)2 − 4m.

Let m∗ = (a+1)2

4 . Then ∆(m) = 0 when m = m∗ and hence (7) only has one root, denoted by

x1 = 1−a
2 ; ∆(m) > 0 when m < m∗ and hence it has two roots, denoted by x2 =

1−a−
√

∆(m)
2 and

x3 =
1−a+
√

∆(m)
2 ; ∆(m) < 0 when m > m∗ and hence it has no real roots. Note that a ≤ m∗ and a = m∗

if and only if a = 1. Based on the above discussion, we can have the following result on the existence
of boundary equilibria.

Lemma 1. The following results on the existence of boundary equilibria of (5) are true.

(i) Suppose a ∈ (0, 1). Then the existence of boundary equilibria in addition to E0 is summarized in Table 1.
(ii) Suppose a = 1. Then besides E0, there is also another boundary equilibrium E4 = (x4, 0) = (

√
1−m, 0)

only when 0 < m < 1.
(iii) Suppose a > 1. Then besides E0, there is also another boundary equilibrium

E5 = (x5, 0)

(
1−a+
√

∆(m)
2 , 0

)
only when 0 < m < a < m∗.

Next, we consider the existence of positive equilibria. In this case, we have x∗ = n
αb . Substituting

it into 1st line of (6) gives

b f y2 + by− r
(

1− x∗ − m
x∗ + a

)
= 0.
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The above equation has positive solutions only when 1− x∗ − m
x∗+a > 0, and in this case it has

only one positive solution y∗ = −b+
√

∆
2b f , where ∆ = b2 + 4b f r

(
1− x∗ − m

x∗+a

)
. Additionally, in other

cases, there is no positive root. That is summarized in the following result.

Table 1. Boundary equilibria besides E0 of (5) with a ∈ (0, 1).

Condition Boundary Equilibria

a < m∗ < m No
a < m = m∗ E1 = (x1, 0) = ( 1−a

2 , 0)

a < m < m∗ E2 = (x2, 0) =
(

1−a−
√

∆(m)
2 , 0

)
and E3 = (x3, 0) =

(
1−a+
√

∆(m)
2 , 0

)

0 < m = a < m∗ E3 (E2 and E0 coincide)
0 < m < a < m∗ E2 (x2 < 0) and E3

Lemma 2. Let x∗ = n
αb . Then (5) has positive equilibria only when 1− x∗ − m

x∗+a > 0, and in this case, there

is only one positive equilibrium E∗ = (x∗, y∗), where y∗ = −b+
√

∆
2b f with ∆ = b2 + 4b f r

(
1− x∗ − m

x∗+a

)
.

Additionally, in other cases, there is no positive equilibrium.

3. Local Stability of Equilibria

The purpose of this section is to study the local stability of the equilibria obtained in Lemmas 1
and 2 one by one. Note that both E4 and E5 are in fact E3.

Theorem 1. The trivial equilibrium E0 of (5) is a stable node if a < m or a = m = 1, a saddle-node if
a = m 6= 1, and a saddle if a > m.

Proof. The Jacobian matrix of (5) at E0 is

J(E0) =

(
r
(
1− m

a
)

0
0 −n

)
,

whose eigenvalues are λ1 = r(1− m
a ) and λ2 = −n. If a < m then λ1 < 0 and hence E0 is a stable

node while if a > m then E0 is a saddle as λ1 > 0. What left is what happens when a = m, as in this
case λ1 = 0. To study the stability of E0, we rescale t by τ = −nt and expand the resulting system
from (5) in power series up to the third order around E0 to get

dx
dτ = b

n xy− r
n

(
1
m − 1

)
x2 + r f

n

(
1
m − 1

)
x2y + r

m2n x3 + P1(x, y),
dy
dτ = y− αb

n xy,

where P1(x, y) is a power series in (x, y) with terms xiyj satisfying i + j ≥ 4. By applying Theorem 7.1
of Chapter 2 in [38], we see that E0 is a saddle-node if a = m 6= 1 as the coefficient of x2, r

n (
1
m − 1),

is not 0; and E0 is a stable node if a = m = 1 as in this case that coefficient of x2 is 0 but r
m2n 6= 0.

Next, we consider E1.

Theorem 2. The boundary equilibrium E1 of (5) is a saddle-node if αbx1 − n 6= 0, but if αbx1 − n = 0 then
E1 is a saddle.

Proof. The Jacobian matrix at E1 is given by

(
A1 −bx1

0 αbx1 − n

)
,
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where A1 = r− 2rx1 − amr
(x1+a)2 = ar[1− 4m

(a+1)2 ]. Recall that when E1 exists we have m = m∗ = (a+1)2

4

which implies that A1 = 0. Thus the one eigenvalues of J(E1) is λ1 = 0.

(i) λ2 = αbx1 − n 6= 0, then the discussion on the stability of E1 is similar to the last part of the
proof of Theorem (8).

We first translate E1 into the origin by the transformation (X, Y) = (x− x1, y) and expand the
resulting system from (5) in power series up to the second order around the origin to get

dX
dt = −bx1Y− mrx1

(a+x1)3 X2 − bXY + P2(X, Y),
dY
dt = (αbx1 − n)Y + αbXY,

(8)

where P2(X, Y) is a power series in (X, Y) with terms XiY j satisfying i + j ≥ 3. Now we apply the
transformation (

X1

Y1

)
=

(
1 − bx1

αbx1−n
0 1

)(
X
Y

)

and then the rescaling τ = (αbx1 − n)t to transform (8) into the following standard form:

dX1
dτ = mrx1

(αbx1−n)(a+1)3 X2
1 +

[
2bmrx2

1
(a+1)3(αbx1−n)2 − b

n + αb2x1
(αbx1−n)2

]
X1Y1

+
[

b2x1
(αbx1−n)2 − b2mrx1

3

(a+x1)3(αbx1−n)3 − αb3x1
2

(αbx1−n)4

]
Y2

1

+P3(X1, Y1),

dY1
dτ = Y1 − αb

αbx1−n X1Y1 +
αb2x1

(αbx1−n)2 Y2
1 ,

where P3(X1, Y1) is a power series in (X1, Y1) with terms Xi
1Y j

1 satisfying i + j ≥ 3. Since the coefficient
of X2

1 , mrx1
n(a+1)3 is not 0, we know that E1 is a saddle-node by Theorem 7.1 of Chapter 2 in [38].

(ii) λ2 = αbx1 − n = 0 and let τ1 = −bx1t; then (8) change into the following form,

dX
dτ1

= Y + r
(b(1−x1)

X2 + 1
x1

XY + o(| X, Y |2) = Y + P4(X, Y),
dY
dτ1

= − α
x1

XY = Q4(X, Y).
(9)

Let Y + P4(X, Y) = 0; then we have the following implicit functions

φ(X) = − r
b(1− x1)

X2 − r
bx1(1− x1)

X3 − r
bx1

2(1− x1)
X4 + · · · ,

ψ(X) =
αr

bx1(1− x1)
X3 +

αr
bx1

3(1− x1)
X5 + · · · ,

and

δ(X) =
2rx1 − αb(1− x1)

bx1(1− x1)
X + [X]2.

By Theorems 7.2 and 7.3 and the corollary (see page 120 to 121) of Chapter 2 in [38], we have
k = 2m + 1, m = 1; ak =

αr
bx1(1−x1)

> 0, and thus E1 is a saddle. The proof completes.

For the stability of E2, we note that the Jacobian matrix at E2 is

J(E2) =

(
A2 −bx2

0 αbx2 − n

)
,
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where A2 = r− 2rx2 − amr
(x2+a)2 = ar + r

√
∆(m)− 4amr

(a+1−
√

∆(m))2
. Recall that E2 exists when a ∈ (0, 1)

and a < m < m∗. It follows that

A2 > ar + r
√

∆(m)− 4amr
(a + 1)2 = ar

(
1− m

m∗
)
+ r
√

∆(m) > 0.

As the two eigenvalues of J(E2) are λ1 = A2 and λ2 = αbx2 − n, the following result follows
immediately.

Theorem 3. The boundary equilibrium E2 of (5) is always unstable. In particular, E2 is an unstable node if
αbx2 − n > 0, it is a saddle if αbx2 − n < 0, and it is a saddle-node if αbx2 − n = 0 (this proof is similar to
Theorem 1 (i)).

From the previous section, we can see that E3 exists if 0 < a < 1 and a < m < m∗; E4 exists if
a = 1 and 0 < m < 1; E5 exists if a > 1 and 0 < m < a < m∗. Now, we study the stability of Ei (i = 3,
4, 5). The Jacobian matrix at Ei is

J(Ei) =

(
Ai −bxi
0 αbxi − n

)
,

where Ai = r − 2rxi − amr
(xi+a)2 = rxi[

m
(xi+a)2 − 1] = rxi[

4m
(a+1+

√
∆(m))2

− 1] for i = 3 and 5 and A4 =

r− 2rx4 − amr
(x4+a)2 . The eigenvalues of J(Ei) are λ1 = Ai and λ2 = αbxi − n. As in the discussion for

Ei, one can easily show that Ai < 0 by using the conditions guaranteeing its existence. Therefore,
the following theorem summarizes the results on stability of Ei.

Theorem 4. For i = 3, 4, and 5, the boundary equilibrium Ei of (5) is a saddle if αbxi − n > 0; it is a stable
node if αbxi − n < 0; and it is a saddle-node if αbxi − n = 0(this proof is similar to Theorem 1 (i)).

Finally, we consider the stability of the positive equilibrium E∗.

Theorem 5. The positive equilibrium E∗ of (5) is locally asymptotically stable if a >
√

m− x∗ and unstable if
a <
√

m− x∗.

Proof. The Jacobian matrix of (5) at E∗ is

J(E∗) =

(
rx∗

[
m

(1+ f y∗)(x∗+a)2 − 1
1+ f y∗

]
− f rx∗

(
1− x∗ − m

x∗+a
)
− bx∗

αby∗ 0

)
.

Note that

det(J(E∗)) = αby∗
[

f rx∗(1− x∗ − m
x∗ + a

) + bx∗
]
> 0

from the condition on the existence of E∗ and

tr(J(E∗)) = rx∗
[

m
(1 + f y∗)(x∗ + a)2 −

1
1 + f y∗

]
.

It is easy to see that tr(J(E∗)) < 0 if a >
√

m− x∗, tr(J(E∗)) = 0 if a =
√

mx∗, and tr((E∗)) > 0
if a <

√
m − x∗. Therefore, both eigenvalues of J(E∗) have negative real parts if a >

√
m − x∗,

have positive real parts if a <
√

m− x∗, and have zero real parts if a =
√

m− x∗. Then the desired
result follows.
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4. Global Asymptotical Stability of the Positive Equilibrium

In Theorem 5, we have shown that the positive equilibrium E∗ of system (5) is locally
asymptotically stable if a >

√
m − x∗. In this section, we provide some sufficient conditions on

its global stability.

Theorem 6. Suppose a >
√

m− x∗. Then the positive equilibrium E∗ of system (5) is globally asymptotically
stable in the interior of R2

+ if one of the following conditions holds.

(i) a < 1, m ≤ a < m∗, and αbx3 − n > 0;
(ii) a = 1, m < a = m∗, and αbx4 − n > 0;

(iii) a > 1, m < a < m∗, and αbx5 − n > 0.

Proof. Note that, in addition to E0 and E∗, system (5) also has a boundary equilibrium E3 when (i)
holds, or E4 when (ii) holds, or E5 when (iii) holds. Under the conditions, both E0 and Ei (i = 3, 4,
5) are saddles, which are unstable, but E∗ is locally asymptotically stable. It is easy to see that all
{(x, 0)|x ≥ 0}, {(0, y)|y ≥ 0}, and {(x, y)|x > 0, y > 0} (the interior of R2

+) are positively invariant
subsets of system (5). In order to show the global stability of E∗ in the interior of R2

+, we only need to
exclude the existence of closed orbits in it. For this purpose, we denote

F1 = rx
(
1− x− m

x+a
) 1

1+ f y − bxy,
F2 = αbxy− ny.

With the Dulac function B(x, y) = 1
xy , we have

D =
∂(BF1)

∂x
+

∂(BF2)

∂y
= − r[(x + a)2 −m]

y( f y + 1)(x + a)2 < 0

in the interior of R2
+. By the Dulac Theorem, there is no closed orbit in the interior of R2

+. This completes
the proof.

5. Bifurcation Analysis

From the local stability analysis, we see that there are bifurcations occurring. In this section,
we derive conditions on saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.

Firstly, in order to prove the saddle-node bifurcation and transcritical bifurcation of system (5),
we need the following Lemma (Sotomayor’s Theorem in [39,40]).

Theorem 7 (Sotomayor’s Theorem in [39,40]). Consider the system as follows.

ẋ = f (x, µ). (10)

Suppose f (x0, µ0) = 0 at equilibrium x0 holds. Additionally, assume that the matrix An×n = D f (x0, µ0)

has one characteristic root λ = 0, and both V and W are eigenvectors belonging to the eigenvalue λ = 0 of the
matrix A and AT , respectively. Then

(1) Suppose
WT fµ(x0, µ0) 6= 0,

WT [D2 fµ(x0, µ0)(V, V)] 6= 0.

Hence, when the bifurcation parameter µ has a critical value, that is, µ = µ0, system (10) undergoes a
saddle-node bifurcation at x0.
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(2) Suppose
WT fµ(x0, µ0) = 0,

WT [D fµ(x0, µ0)V] 6= 0,

WT [D2 fµ(x0, µ0)(V, V)] 6= 0.

Hence, when µ is of a critical value, that is, µ = µ0, system (10) undergoes a transcritical bifurcation at x0.

By Table 1 of Lemma 2.1, when a < 1, system (5) has two boundary equilibria E2 and E3 if
a < m < m∗, has one boundary equilibrium E1 if a < m = m∗, and has no boundary equilibrium
if a < m∗ < m. This suggests a bifurcation around E1. The above analysis indicates that we can
choose the parameter m in the additive Allee effect as the bifurcation parameter to obtain saddle-node
bifurcation.

Theorem 8. Suppose a < 1 and αb(1− a)− 2n 6= 0. Then (5) undergoes a saddle-node bifurcation from

E1 = (x1, 0) =
(

1−a
2 , 0

)
at m = mSN = (a+1)2

4 .

Proof. When a < 1 and mSN , (5) has the unique boundary equilibrium E1. We apply Lemma 3 to study

the bifurcation around E1. Firstly, we easily see that the Jacobian matrix J(E1; mSN) =

(
0 −bx1

0 αbx1 − n

)

has the two eigenvalues λ1 = 0 and λ2 = αbx1 − n = αb(1−a)−2n
2 6= 0. Choose the eigenvectors V and

W associated with the eigenvalue λ1 of J(E1; mSN) and J(E1; mSN)
T given respectively by

V =

(
V1

V2

)
=

(
1
0

)
and W =

(
W1

W2

)
=

(
1

αb(1−a)
αb(1−a)−2n

)
.

Define

F(x, y) =

(
F1(x, y)
F2(x, y)

)
=

(
rx
(
1− x− m

x+a
) 1

1+ f y − bxy
αbxy− ny

)
.

Then

Fm(E1; mSN) =

(
− r(1−a)

1+a
0

)
,

D2F(E1; mSN)(V, V) =




∂2F1
∂x2 V2

1 + 2 ∂2F1
∂x∂y V1V2 +

∂2F1
∂y2 V2

2
∂2F2
∂x2 V2

1 + 2 ∂2F2
∂x∂y V1V2 +

∂2F2
∂y2 V2

2




(E1;mSN)

=

(
− 2r

a+1
0

)
.

It follows that
WT Fm(E1; mSN) = − r(1−a)

1+a 6= 0,

WT [D2F(E1; mSN)(V, V)] = − 2r
1+a 6= 0.

Therefore, system (5) undergoes a saddle-node bifurcation at m = mSN .

To illustrate the saddle-node bifurcation, we chose r = 1, a = 0.3, f = 1.5, b = 1, α = n = 0.5.
Then mSN = 0.425. When a < 0.4 = m < mSN , system (5) has two distinct boundary equilibria, E2 and
E3; when a < m = mSN , E2 collapses to E0 and only the boundary equilibrium E3 remains. However,
when a < mSN < m = 0.5, the boundary equilibrium E3 also disappears (see Figure 1).
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(c) m = 0.5 > 0.4225 = mSN

Figure 1. (a) Two distinct boundary equilibria and one trivial equilibrium when m < mSN : there are
two stable nodes E0 and E3, and a saddle E2. (b) A boundary equilibrium and a trivial equilibrium
when m = mSN : E3 is a saddle-node and E0 is a stable node. (c) A trivial equilibrium when m > mSN :
E0 is a stable node.

Next, by Table 1 of Lemma 2.1, system (5) has two boundary equilibria E2 and E3 if a < m < m∗,
has one boundary equilibrium E3 (E2 and E0 coincide)if m = a < m∗, and has two boundary equilibria
E2 (x2 < 0) and E3 if m < a < m∗. This suggests a bifurcation around E0. The above analysis indicates
that we can choose the parameter a as the bifurcation produces transcritical bifurcation.

Theorem 9. Suppose that m < 1. Then system (5) undergoes a transcritical bifurcation from E0 at a =

aTC = m.

Proof. The proof is similar to that of Theorem 7. We just verify the condition on transcritical bifurcation
of Lemma 3. When a = aTC = m, we have

J(E0; aTC) =

(
0 0
0 −n

)
,

whose eigenvalues are λ1 = 0 and λ2 = −n 6= 0. Choose the eigenvectors of J(E0; aTC)) and
J(E0; aTC)

T associated with the eigenvalue λ1 given respectively by

V =

(
V1

V2

)
=

(
1
0

)
and W = V.
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Let F be defined as in the proof of Theorem 7. Then

Fa(E0; aTC) =

(
0
0

)
,

DFa(E0; aTC)V =

(
mr

(1+ f y)(x+a)2 0

0 0

)

(E0;aTC)

(
1
0

)
=

(
r
m
0

)
,

D2F(E0; aTC)(V, V) =




∂2F1
∂x2 V2

1 + 2 ∂2F1
∂x∂y V1V2 +

∂2F1
∂y2 V2

2

∂2F2
∂x2 V2

1 + 2 ∂2F2
∂x∂y V1V2 +

∂2F2
∂y2 V2

2




(E0;aTC)

=

(
−2r + 2r

m
0

)
.

Then we easily see that V and W satisfy

WT Fa(E0; aTC) = 0,

WT [DFa(E0; aTC)V] = r
m 6= 0,

WT [D2F(E0; aTC)(V, V)] = −2r + 2r
m 6= 0.

Therefore, system (5) undergoes transcritical bifurcation from E0 at a = aTC = m.
With r = 1, m = 0.3, f = 1.5, b = 1, α = 0.5, Figure 2 shows the transcritical bifurcation with

a = 0.2, a = 0.3, and a = 0.4.

x ’ = x (1 − x − 0.3/(x + 0.2))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(a) a = 0.2 < 0.3 = aTC

x ’ = x (1 − x − 0.3/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(b) a = aTC = 0.3

x ’ = x (1 − x − 0.3/(x + 0.4))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(c) a = 0.4 > 0.3 = aTC

Figure 2. (a) Two distinct boundary equilibria and one trivial equilibrium when a < aTC: two stable
nodes E2 and E3, and a saddle E0. (b) A boundary equilibrium and a trivial equilibrium when a = aTC:
E3 is a stable node and E0 is a saddle-node. (c) Two boundary equilibria and a trivial equilibrium when
a > aTC: E2 is a saddle, both E3 and E0 are stable nodes.
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In the remainder of this section, we consider Hopf bifurcation. From Theorem 5 and its proof,
it is easily concluded that the positive equilibrium of system (5) is locally asymptotically stable if
a >

√
m − x∗, is a center if a =

√
m − x∗, and through Hopf bifurcation loses its stability under

appropriate parameters. In the following we choose a as the bifurcation parameter to show that.

Theorem 10. Under the assumptions on the existence of the positive equilibrium E∗ of system (5), that is,
1− x∗ − m

x∗+a > 0, then there is a supercritical Hopf bifurcation from E∗ at a = aH =
√

m − x∗, where
x∗ = n

αb .

Proof. Recall that the characteristic equation of the Jacobian matrix J(E∗) is

λ2 − tr(J(E∗))λ + det(J(E∗)) = 0,

where
det(J(E∗)) = αby∗

[
f rx∗(1− x∗ − m

x∗+a ) + bx∗
]
> 0

tr(J(E∗)) = rx∗
[

m
(1+ f y∗)(x∗+a)2 − 1

1+ f y∗

]
.

Clearly, E∗ is a center when a = aH and

d
da

[tr(J(E∗))]
∣∣∣
a=aH

=
−2rx∗√

m(1 + f y∗)
6= 0.

Thus a Hopf bifurcation from E∗ occurs at a = aH . To discuss the stability (direction) of bifurcated
periodic orbits, we compute the first Lyapunov number l1 at E∗ as follows.

Firstly, we translate E∗ to the origin by the transformation x = X2 + x∗ and y = Y2 + y∗ and
rewrite the resultant system as

dX2
dt = α10X2 + α01Y2 + α20X2

2 + α11X2Y2 + α02Y2
2 + α30X2

3

+α21X2
2Y2 + α12X2Y2

2 + α03Y2
3 + P5(X2, Y2),

dY2
dt = β10X2 + β01Y2 + β11X2Y2,

where
α10 = rx∗

[
m

(1+ f y∗)(x∗+a)2 − 1
1+ f y∗

]
,

α01 = − f rx∗(1− x∗ − m
x∗+a )− bx∗,

α20 = − rx∗ f√
m(1+ f y∗) ,

α11 = −
[

r(1−x∗−√m) f
(1+ f y∗)2 + b

]
,

α02 = rx∗(1−x∗−√m) f 2

(1+ f y∗)3 ,

α30 = r(x∗−√m)
m(1+ f y∗) ,

α21 = − rx∗ f√
m(1+ f y∗)2 ,

α12 = − r(1−x∗−√m) f 2

(1+ f y∗)3 ,

α03 = − rx∗(1−x∗−√m) f 3

(1+ f y∗)4 ,

β10 = bαy∗,

β01 = 0,

β11 = bα,
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and P5(X2, Y2) is a power series in (X2, Y2) with terms X2
iY2

j satisfying i + j ≥ 4.
Let ∆ = α10β01 − α01β10. Then

l1 = − 3π
2α01∆3/2 {[α10β01(α

2
11 + α11β02 + α02β11) + α10α01(β2

11 + α20β11 + α11β02)

+β2
10(α11α02 + 2α02β02)− 2α10β01(β2

02 − α20α02)− 2α10α01(α
2
20 − β20β02)

−α2
01(2α20β20 + β11β20) + (α01β10 − 2α2

10)(β11β02 − α11α20)]

−(α2
10 + α01β01)[3(β10β03 − α01α30) + 2α01(α21 + β12) + (β01α12 − α01β21)]}

∣∣∣
a=aH

= − 3π
2α01∆3/2 {α11α02β2

10 − α01α11α20β10 − α01α12β2
10}

= − 3πr
2
√

bαmx∗y∗
√

r(1−x∗−√m) f+by∗2 f 2+2by∗ f+b
.

As a = aH =
√

m− x∗, it follows from

0 = r
(

1− x∗ − m
x∗ + a

)
1

1 + f y∗
− by∗ = r(1− x∗ −

√
m)

1
1 + f y∗

− by∗

that r(1− x∗ −√m) = (1 + f y∗)by∗ > 0. Then l1 < 0 his meas that E∗ is destabilized through a
supercritical Hopf bifurcation at a = aH .

Figure 3 shows the Hopf bifurcation while Figure 4 further indicates that E∗ is locally stable when
a = aH (which can be confirmed with center manifold theory). Here r = 1, m = 0.25, f = 1.5, b = 1,
α = 0.5, and n = 0.12.

x ’ = x (1 − x − 0.25/(x + 0.23))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.12 y                             
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(a) a = 0.23 < 0.26 = aH

x ’ = x (1 − x − 0.25/(x + 0.26))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.12 y                             
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(b) a = aH = 0.26

x ’ = x (1 − x − 0.25/(x + 0.28))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.12 y                             
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(c) a = 0.28 > 0.26 = aH

Figure 3. (a) When a < aH , E∗ is unstable. (b) When a = aH , a stable periodic orbit bifurcated from E∗.
(c) When a > aH , E∗ is stable.
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x ’ = x (1 − x − 0.25/(x + 0.26))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.12 y                             
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Figure 4. When a = aH = 0.26, a stable periodic orbit bifurcated form E∗ which is locally stable.

6. Numerical Simulations

In Sections 3 and 4, we studied the stability of the equilibria of system (5). In this section, we use
numerical simulations to demonstrate different scenarios of the dynamics according to whether a = 1
or not.

Example 1. Firstly, we consider the following special case of system (5) with a = 0.3:

dx
dt = x

(
1− x− m

x+0.3
) 1

1+1.5y − xy,
dy
dt = 0.5xy− ny.

(11)

We distinguish four cases to illustrate the complicated dynamics of system (11).

First, we choose 0.2 = m < a = 0.3. If n = 0.2, then the conditions of Theorems 1 and 4–6 are
satisfied, and hence, for system (11), E0 and E3 are saddle points and E∗ is a stable node (see Figure 5a);
but if n = 0.5, then E0 is a saddle point and E3 is a stable node (see Figure 5b).

Figure 4. When a = aH = 0.26, a stable periodic orbit bifurcated form E∗ which is locally stable.

6. Numerical Simulations

In Sections 3 and 4, we studied the stability of the equilibria of system (5). In this section, we use
numerical simulations to demonstrate different scenarios of the dynamics according to whether a = 1
or not.

Example 1. Firstly, we consider the following special case of system (5) with a = 0.3:

dx
dt = x

(
1− x− m

x+0.3
) 1

1+1.5y − xy,
dy
dt = 0.5xy− ny.

(11)

We distinguish four cases to illustrate the complicated dynamics of system (11).

First, we choose 0.2 = m < a = 0.3. If n = 0.2, then the conditions of Theorems 1 and 4–6 are
satisfied, and hence, for system (11), E0 and E3 are saddle points and E∗ is a stable node (see Figure 5a);
but if n = 0.5, then E0 is a saddle point and E3 is a stable node (see Figure 5b).
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x ’ = x (1 − x − 0.2)/(x + 0.3)/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                            
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(a) m = 0.2 < 0.3 = a and n = 0.2

x ’ = x (1 − x − 0.2/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(b) m = 0.2 < 0.3 = a and n = 0.5

Figure 5. (a) With m = 0.2 < 0.3 = a and n = 0.2, E0 and E3 are saddle points. (b) With m = 0.2 <

0.3 = a and n = 0.5, E∗ is a stable node.

Next, let m = a = 0.3. When n = 0.2, system (11) has a saddle-node E0 (which coincides with E2),
a saddle point E3, and a stable node E∗ (see Figure 6a), while when n = 0.5, it has a saddle-node E0

(coincides with E2) and a stable node E3 (see Figure 6b).

x ’ = x (1 − x − 0.3/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                            
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(a) m = a = 0.3 and n = 0.2

x ’ = x (1 − x − 0.3/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(b) m = a = 0.3 and n = 0.5

Figure 6. (a) With m = a = 0.3 and n = 0.2, E0 is a saddle-node, E3 is a saddle point, and E∗ is a stable
node. (b) With m = a = 0.3 and n = 0.5, E0 is a saddle node and E3 is a stable node.

Now, take m = 0.4 > 0.3 = a. When n = 0.1, system (11) has a stable node E0, a saddle-node
E2, and a saddle E3(see Figure 7a); when n = 0.2, there is a stable node E0, two saddles E2 and E3,
and a stable node E∗ (see Figure 7b); when n = 0.25, E0 is a stable node, E2 is a saddle, and E3 is a
saddle-node (see Figure 7c); when n = 0.5, E0 is a stable node, E2 is a saddle, and E3 is a stable node
(see Figure 7d).
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x ’ = x (1 − x − 0.4/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                            
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(a) m = 0.4 > 0.3 = a and n = 0.1

x ’ = x (1 − x − 0.4/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                            
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(b) m = 0.4 > 0.3 = a and n = 0.2

x ’ = x (1 − x − 0.4/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                            
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(c) m = 0.4 > 0.3 = a and n = 0.25

x ’ = x (1 − x − 0.4/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.5 y                            
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(d) m = 0.4 > 0.3 = a and n = 0.5

Figure 7. (a) With m = 0.4 > 0.3 = a and n = 0.1, there is a stable node E0, a saddle-node E2, and a
saddle E3. (b) With m = 0.4 > 0.3 = a and n = 0.2, there is a stable node E0, two saddles E2 and E3,
and a stable node E∗. (c) With m = 0.4 > 0.3 = a and n = 0.25, there is a stable node E0, a saddle E2,
and a saddle-node E3. (d) With m = 0.4 > 0.3 = a and n = 0.5, there is a stable node E0, a saddle E2,
and a stable node E3.

Finally, pick m = m∗ = 0.4225 > 0.3 = a. When n = 0.1 and n = 0.2, we see that the equilibrium
E0 of system (11) is a stable node and E1 is a saddle-node (see Figure 8a,b); when n = 0.175, E0 is also
a stable node, however, E1 is a saddle (see Figure 8c).
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x ’ = x (1 − x − 0.4225/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.1 y                               
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(a) m = m∗ = 0.4225 > 0.3 = a and n = 0.1

x ’ = x (1 − x − 0.4225/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                               
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(b) m = m∗ = 0.4225 > 0.3 = a and n = 0.2

x ’ = x (1 − x − 0.4225/(x + 0.3))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.175 y                             
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(c) m = m∗ = 0.4225 > 0.3 = a and n = 0.175

Figure 8. (a) When m = m∗ = 0.4225 > 0.3 = a and n = 0.1, E0 is a stable node and E1 is a saddle-node.
(b) When m = m∗ = 0.4225 > 0.3 = a and n = 0.2, E0 is a stable node and E1 is a saddle-node.
(c) When m = m∗ = 0.4225 > 0.3 = a and n = 0.175, E0 is a stable node and E1 is a saddle.

Example 2. This time we let a = 1 and consider the following system:

dx
dt = x

(
1− x− m

x+1
) 1

1+1.5y − xy,
dy
dt = 0.5xy− ny.

(12)

For system (12), we have m∗ = 1. Choose m = 0.84 < a. From Theorems 1, 4, and 5, we can
see that when n = 0.1, it has two saddle points E0 and E4, and a stable node E∗ (see Figure 9a);
when n = 0.2, E0 is a saddle and E4 is a saddle-node (see Figure 9b); when n = 0.3, E0 is a saddle and
E4 is a saddle-node (see Figure 9c).
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x ’ = x (1 − x − 0.84/(x + 1))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.1 y                           
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(a) m = 0.5 < 1 = a = m∗ and n = 0.1

x ’ = x (1 − x − 0.84/(x + 1))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                           
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(b) m = 0.5 < 1 = a = m∗ and n = 0.2

x ’ = x (1 − x − 0.84/(x + 1))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.3 y                           
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(c) m = 0.5 < 1 = a = m∗ and n = 0.3

Figure 9. (a) When m = 0.5 < 1 = a = m∗ and n = 0.1, there are two saddle points E0 and E4, and a
stable node E∗. (b) When m = 0.5 < 1 = a = m∗ and n = 0.2, E0 is a saddle and E4 is a saddle-node.
(c) When m = 0.5 < 1 = a = m∗ and n = 0.3, E0 is a saddle and E4 is a stable node.

Example 3. Now we consider

dx
dt = x

(
1− x− m

x+1.3
) 1

1+1.5y − xy,
dy
dt = 0.5xy− ny,

(13)

where a = 1.5.

In this case, m∗ = 1.3225. Take m = 1. From Theorems 1, 4, and 5, we can know that we should
let n = 0.2. Then system (13) has two saddle points E0 and E5, and a stable node E∗ (see Figure 10a);
when we let n = 0.25, it has a saddle point E0 and saddle-node E5 (see Figure 10b); but when we let
n = 0.3, it has a saddle point E0 and stable node E5 (see Figure 10c).
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x ’ = x (1 − x − 1/(x + 1.5))/(1 + 1.5 y) − x y
y ’ = 0.5 x y − 0.2 y                          
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Figure 10. (a) When m = 0.4 < 1.3 = a < m∗ = 1.3225 and n = 0.2, both E0 and E5 are saddle points
and E∗ is a stable node. (b) When m = 0.4 < 1.3 = a < m∗ = 1.3225 and n = 0.25, E0 is a saddle point
and E5 is a saddle-node. (c) When m = 0.4 < 1.3 = a < m∗ = 1.3225 and n = 0.3, E0 is a saddle point
and E5 is a stable node.

7. Discussion and Conclusions

In this paper, we mainly focused on the impact of the additive Allee effect. In this section, we first
discuss the influence of the fear effect on the coexistence of the two species. For this purpose, we regard
x∗ and y∗ functions of f . Differentiating both sides of

r
(
1− x∗ − m

x∗+a
) 1

1+ f y∗ − by∗ = 0,
αbx∗ − n = 0,

with respect to f gives




r− mr
(x∗+a)2

1+ f y∗ −
r f
(

1−x∗− m
x∗+a

)

(1+ f y∗)2 − b

αb 0



( dx∗

d f
dy∗
dy

)
=

(
− ry∗(1−x∗− m

x∗+a )

(1+ f y∗)2

0

)
.



Mathematics 2020, 8, 1280 19 of 21

It follows that

dx∗

d f
= 0 and

dy∗

d f
=

dy∗

d f
= − ry∗

(
1− x∗ − m

x∗+a
)

r f
(
1− x∗ − m

x∗+a
)
+ b(1 + f y∗)2 < 0.

Thus the fear effect has no influence at the size of the prey at the coexistence equilibrium (final size
of prey) but enhancing it will make the final size of the predator decease. This is the same as in [29,30].
Figure 11 shows the relationship between the intensity of fear effect and the final size of the predator.
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Figure 11. Relationship between the fear effect intensity and the final size of the predator.

We briefly summarize our findings to conclude this paper below.
In this paper, we proposed and studied a predator–prey model with the additive Allee effect

and the fear effect. Though much has been done for predator–prey model with the Allee effect and
the fear effect, to the best of our knowledge, the combined impact of these two factors has not been
investigated. The findings here have some similarities and differences from those for system (4)
with the strong Allee effect. For our model, both additive the Allee effect and the fear effect can
affect the number and stability of equilibria. For example, the trivial equilibrium can be a stable
node, or a saddle-node, or a saddle point. These results suggest possible bifurcations. By applying
Sotomayor’s theorem, we established conditions for the occurrence of saddle-node bifurcation and
transcritical bifurcation from boundary equilibria. We also studied Hopf bifurcation from the positive
(or coexistence) equilibrium. By calculating the first Lyapunov number, we know that the Hopf
bifurcation is supercritical. Finally, the fear effect only affects the final size of the predator. These results
indicate that the additive Allee effect can produce much more complex dynamics that the multiplicative
Allee effect can.
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