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Abstract: The aim of this paper is to discuss the relations between various notions of sequential
completeness and the corresponding notions of completeness by nets or by filters in the setting of
quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space
for which the corresponding completeness is equivalent to the sequential completeness. In this
way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240,
and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets
defined over ordered or pre-ordered directed sets is also included.
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1. Introduction

It is well known that completeness is an essential tool in the study of metric spaces, particularly
for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably
more involved, due to the lack of symmetry of the distance—there are several notions of completeness
all agreing with the usual one in the metric case (see [1] or [2]). Again these notions are essential
in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as,
for instance, [3–6] (see also the book [7]). A survey on the relations between completeness and the
existence of fixed points in various circumstances is given in [8].

It is known that in the metric case the notions of completeness by sequences, by nets and by
filters all agree and, further, the completeness of a metric space is equivalent to the completeness of
the associated uniform space (in all senses). In the present paper we show that, in the quasi-metric
case, these notions agree in some cases, but there are situations when they are different, mainly for the
notions of right-completeness. Such a situation was emphasized by Stoltenberg [9], who proposed a
notion of Cauchy net for which completeness agrees with the sequential completeness. Later Gregori
and Ferrer [10] found a gap in the proof given by Stoltenberg and proposed a new version of right
K-Cauchy net for which sequential completeness and completeness by nets agree. In the present
paper we include a discussion on this Gregori-Ferrer notion of Cauchy net and complete these
results by proposing a notion of right-K-Cauchy net for which the equivalence with sequential
completeness holds.

2. Metric and Uniform Spaces

For a mapping d : X× X → R on a set X consider the following conditions:
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(M1) d(x, y) > 0 and d(x, x) = 0;

(M2) d(x, y) = d(y, x);

(M3) d(x, z) 6 d(x, y) + d(y, z);

(M4) d(x, y) = 0 ⇒ x = y;

(M4′) d(x, y) = d(y, x) = 0 ⇒ x = y,

for all x, y, z ∈ X.
The mapping d is called a pseudometric if it satisfies (M1), (M2) and (M3). A pseudometric that

also satisfies (M4) is called a metric.
The open and closed balls in a pseudometric space (X, d) are defined by

Bd(x, r) = {y ∈ X : d(x, y) < r} and Bd[x, r] = {y ∈ X : d(x, y) 6 r} , (1)

respectively.
A filter on a set X is a nonempty family F of nonempty subsets of X satisfying the conditions

(F1) F ⊆ G and F ∈ F ⇒ G ∈ F ;

(F2) F ∩ G ∈ F for all F, G ∈ F .

It is obvious that (F2) implies

(F2′) F1, . . . , Fn ∈ F ⇒ F1 ∩ . . . ∩ Fn ∈ F .

for all n ∈ N and F1, . . . , Fn ∈ F .
A base of a filter F is a subset B of F such that every F ∈ F contains a B ∈ B.
A nonempty family B of nonempty subsets of X such that

(BF1) ∀B1, B2 ∈ B, ∃B ∈ B, B ⊆ B1 ∩ B2 .

generates a filter F (B) given by

F (B) = {U ⊆ X : ∃ B ∈ B, B ⊆ U} .

A family B satisfying (BF1) is called a filter base.
A relation ≤ on a set X is called a preorder if it is reflexive and transitive, that is,

(O1) x ≤ x and (O2) x ≤ y ∧ y ≤ z ⇒ x ≤ z ,

for all x, y, z ∈ X. If the relation ≤ is further antireflexive, i.e.

(O3) x ≤ y ∧ y ≤ x ⇒ x = y ,

for all x, y ∈ X, then ≤ is called an order. A set X equipped with a preorder (order) ≤ is called a
preordered (ordered) set, denoted as (X,≤).

A preordered set (I,≤) is called directed if for every i1, i2 ∈ I there exists j ∈ I with i1 ≤ j and
i2 ≤ j. A net in a set X is a mapping φ : I → X, where (I,≤) is a directed set. The alternative notation
(xi : i ∈ I), where xi = φ(i), i ∈ I, is also used.

A uniformity on a set X is a filter U on X× X such that

(U1) ∆(X) ⊆ U, ∀U ∈ U ;

(U2) ∀U ∈ U , ∃V ∈ U , such that V ◦V ⊆ U ,

(U3) ∀U ∈ U , U−1 ∈ U .
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where

∆(X) = {(x, x) : x ∈ X} denotes the diagonal of X,

M ◦ N = {(x, z) ∈ X× X : ∃y ∈ X, (x, y) ∈ M and (y, z) ∈ N}, and

M−1 = {(y, x) : (x, y) ∈ M} ,

for any M, N ⊆ X× X.
The sets in U are called entourages. A base for a uniformity U is a base of the filter U .

The composition V ◦ V is denoted sometimes simply by V2. Since every entourage contains the
diagonal ∆(X), the inclusion V2 ⊆ U implies V ⊆ U.

For U ∈ U , x ∈ X and Z ⊆ X put

U(x) = {y ∈ X : (x, y) ∈ U} and U[Z] =
⋃
{U(z) : z ∈ Z} .

A uniformity U generates a topology τ(U ) on X for which the family of sets {U(x) : U ∈ U} is a
base of neighborhoods of any point x ∈ X.

Let (X, d) be a pseudometric space. Then the pseudometric d generates a topology τd for which
{Bd(x, r) : r > 0}, is a base of neighborhoods for every x ∈ X.

The pseudometric d generates also a uniform structure Ud on X having as basis of entourages
the sets

Uε = {(x, y) ∈ X× X : d(x, y) < ε}, ε > 0 .

Since
Uε(x) = Bd(x, ε), x ∈ X, ε > 0,

it follows that the topology τ(Ud) agrees with the topology τd generated by the pseudometric d.
A sequence (xn) in (X, d) is called Cauchy (or fundamental) if for every ε > 0 there exists nε ∈ N

such that
d(xn, xm) < ε for all m, n ∈ N with m, n > nε ,

a condition written also as
lim

m,n→∞
d(xm, xn) = 0 .

A sequence (xn) in a uniform space (X,U ) is called U -Cauchy (or simply Cauchy) if for every
U ∈ U there exists nε ∈ N such that

(xm, xn) ∈ U for all m, n ∈ N with m, n > nε .

It is obvious that, in the case of a pseudometric space (X, d), a sequence is Cauchy with respect to
the pseudometric d if and only if it is Cauchy with respect to the uniformity Ud.

The Cauchyness of nets in pseudometric and in uniform spaces is defined by analogy with that
of sequences.

A filter F in a uniform space (X,U ) is called U -Cauchy (or simply Cauchy) if for every U ∈ U
there exists F ∈ F such that

F× F ⊆ U .

Definition 1. A pseudometric space (X, d) is called complete if every Cauchy sequence in X converges.
A uniform space (X,U ) is called sequentially complete if every U -Cauchy sequence in X converges and
complete if every U -Cauchy net in X converges (or, equivalently, if every U -Cauchy filter in X converges).

Remark 1. We can define the completeness of a subset Y of a pseudometric space (X, d) by the condition that
every Cauchy sequence in Y converges to some element of Y. A closed subset of a pseudometric space is complete
and a complete subset of a metric space is closed. A complete subset of a pseudometric space need not be closed.
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The following result holds in the metric case.

Theorem 1. For a pseudometric space (X, d) the following conditions are equivalent.

1. The metric space X is complete.
2. Every Cauchy net in X is convergent.
3. Every Cauchy filter in (X,Ud) is convergent.

An important result in metric spaces is Cantor characterization of completeness.

Theorem 2 (Cantor theorem). A pseudometric space (X, d) is complete if and only if every descending
sequence of nonempty closed subsets of X with diameters tending to zero has nonempty intersection. This means
that for any family Fn, n ∈ N, of nonempty closed subsets of X

F1 ⊇ F2 ⊇ . . . and lim
n→∞

diam(Fn) = 0 implies
∞⋂

n=1

Fn 6= ∅ .

If d is a metric then this intersection contains exactly one point.

The diameter of a subset Y of a pseudometric space (X, d) is defined by

diam(Y) = sup{d(x, y) : x, y ∈ Y} . (2)

3. Quasi-Pseudometric and Quasi-Uniform Spaces

In this section we present the basic results on quasi-metric and quasi-uniform spaces needed in
the sequel, using as basic source the book [2].

3.1. Quasi-Pseudometric Spaces

Dropping the symmetry condition (M2) in the definition of a metric one obtains the notion of
quasi-pseudometric, that is, a quasi-pseudometric on an arbitrary set X is a mapping d : X × X → R
satisfying the conditions (M1) and (M3). If d satisfies further (M4′) then it called a quasi-metric.
The pair (X, d) is called a quasi-pseudometric space, respectively a quasi-metric space (In [2] the
term “quasi-semimetric” is used instead of “quasi-pseudometric”). Quasi-pseudometric spaces were
introduced by Wilson [11].

The conjugate of the quasi-pseudometric d is the quasi-pseudometric d̄(x, y) = d(y, x), x, y ∈ X.
The mapping ds(x, y) = max{d(x, y), d̄(x, y)}, x, y ∈ X, is a pseudometric on X which is a metric if
and only if d is a quasi-metric.

If (X, d) is a quasi-pseudometric space, then for x ∈ X and r > 0 we define the balls in X by (1)
The topology τd (or τ(d)) of a quasi-pseudometric space (X, d) can be defined through the family

Vd(x) of neighborhoods of an arbitrary point x ∈ X:

V ∈ Vd(x) ⇐⇒ ∃r > 0 such that Bd(x, r) ⊆ V

⇐⇒ ∃r′ > 0 such that Bd[x, r′] ⊆ V.

The topological notions corresponding to d will be prefixed by d- (e.g., d-closure, d-open, etc.).
The convergence of a sequence (xn) to x with respect to τd, called d-convergence and denoted by

xn
d−→ x, can be characterized in the following way

xn
d−→ x ⇐⇒ d(x, xn)→ 0. (3)

Also
xn

d̄−→ x ⇐⇒ d̄(x, xn)→ 0 ⇐⇒ d(xn, x)→ 0. (4)
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As a space equipped with two topologies, τd and τd̄ , a quasi-pseudometric space can be viewed
as a bitopological space in the sense of Kelly [12].

The following example of quasi-metric space is an important source of counterexamples in
topology (see [13]).

Example 1 (The Sorgenfrey line). For x, y ∈ R define a quasi-metric d by d(x, y) = y − x, if x ≤ y
and d(x, y) = 1 if x > y. A basis of open τd-open neighborhoods of a point x ∈ R is formed by the family
[x, x+ ε), 0 < ε < 1. The family of intervals (x− ε, x], 0 < ε < 1, forms a basis of open τd̄ -open neighborhoods
of x. Obviously, the topologies τd and τd̄ are Hausdorff and ds(x, y) = 1 for x 6= y, so that τ(ds) is the discrete
topology of R.

Asymmetric normed spaces
Let X be a real vector space. A mapping p : X → R is called an asymmetric seminorm on X if

(AN1) p(x) > 0;

(AN2) p(αx) = αp(x);

(AN3) p(x + y) 6 p(x) + p(y) ,

for all x, y ∈ X and α > 0.
If, further,

(AN4) p(x) = p(−x) = 0 ⇒ x = 0 ,

for all x ∈ X, then p is called an asymmetric norm.
To an asymmetric seminorm p one associates a quasi-pseudometric dp given by

dp(x, y) = p(y− x), x, y ∈ X,

which is a quasi-metric if p is an asymmetric norm. All the topological and metric notions in an
asymmetric normed space are understood as those corresponding to this quasi-pseudometric dp

(see [2]).
The following asymmetric norm on R is essential in the study of asymmetric normed spaces

(see [2]).

Example 2. On the field R of real numbers consider the asymmetric norm u(α) = α+ := max{α, 0}.
Then, for α ∈ R, ū(α) = α− := max{−α, 0} and us(α) = |α|. The topology τ(u) generated by u is called
the upper topology of R, while the topology τ(ū) generated by ū is called the lower topology of R. A basis
of open τ(u)-neighborhoods of a point α ∈ R is formed of the intervals (−∞, α + ε), ε > 0. A basis of open
τ(ū)-neighborhoods is formed of the intervals (α− ε, ∞), ε > 0.

In this space the addition is continuous from (R × R, τu × τu) to (R, τu), but the multiplication is
discontinuous at every point (α, β) ∈ R×R.

The multiplication is continuous from (R+, | · |)× (R, τu) to (R, τu) but discontinuous at every point
(α, β) ∈ (−∞, 0)×R to (R, τu), when (−∞, 0) is equipped with the topology generated by | · | and R with τu.

The following topological properties are true for quasi-pseudometric spaces.

Proposition 1 (see [2]). If (X, d) is a quasi-pseudometric space, then the following hold.

1. The ball Bd(x, r) is d-open and the ball Bd[x, r] is d̄-closed. The ball Bd[x, r] need not be d-closed.
2. The topology d is T0 if and only if d is a quasi-metric.

The topology d is T1 if and only if d(x, y) > 0 for all x 6= y in X.
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3. For every fixed x ∈ X, the mapping d(x, ·) : X → (R, | · |) is d-upper semi-continuous and d̄-lower
semi-continuous.
For every fixed y ∈ X, the mapping d(·, y) : X → (R, | · |) is d-lower semi-continuous and d̄-upper
semi-continuous.

Recall that a topological space (X, τ) is called:

• T0 if, for every pair of distinct points in X, at least one of them has a neighborhood not containing
the other;

• T1 if, for every pair of distinct points in X, each of them has a neighborhood not containing
the other;

• T2 (or Hausdorff) if every two distinct points in X admit disjoint neighborhoods;
• regular if, for every point x ∈ X and closed set A not containing x, there exist the disjoint open

sets U, V such that x ∈ U and A ⊆ V.

Remark 2. It is known that the topology τd of a pseudometric space (X, d) is Hausdorff (or T2) if and only if d
is a metric if and only if any sequence in X has at most one limit.

The characterization of Hausdorff property of quasi-pseudometric spaces can also be given in terms of
uniqueness of the limits of sequences, as in the metric case: the topology of a quasi-pseudometric space (X, d) is
Hausdorff if and only if every sequence in X has at most one d-limit if and only if every sequence in X has at
most one d̄-limit (see [11]).

In the case of an asymmetric seminormed space there exists a characterization in terms of the asymmetric
seminorm (see [2], Proposition 1.1.40).

3.2. Quasi-Uniform Spaces

Again, the notion of quasi-uniform space is obtained by dropping the symmetry condition (U3)
from the definition of a uniform space, that is, a quasi-uniformity on a set X is a filter U in X × X
satisfying the conditions (U1) and (U2). The sets in U are called entourages and the pair (X,U ) is called
a quasi-uniform space, as in the case of uniform spaces.

As uniformities, a quasi-uniformity U generates a topology τ(U ) on X in a similar way: the sets

{U(x) : U ∈ U}

form a base of neighborhoods of any point x ∈ X.
The topology τ(U ) is T0 if and only if

⋂U is a partial order on X, and T1 if and only if⋂U = ∆(X).
The family of sets

U−1 = {U−1 : U ∈ U} (5)

is another quasi-uniformity on X called the quasi-uniformity conjugate to U . Also U ∪ U−1 is a subbase
of a uniformity U s on X, called the associated uniformity to the quasi-uniformity U . It is the coarsest
uniformity on X finer than both U and U−1, U s = U ∨ U−1. A basis for U s is formed by the sets
{U ∩U−1 : U ∈ U}.

If (X, d) is a quasi-pseudometric space, then

Uε = {(x, y) ∈ X× X : d(x, y) < ε}, ε > 0 ,

is a basis for a quasi-uniformity Ud on X. The family

U−ε = {(x, y) ∈ X× X : d(x, y) 6 ε}, ε > 0 ,
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generates the same quasi-uniformity. Since Uε(x) = Bd(x, ε) and U−ε (x) = Bd[x, ε], it follows
that the topologies generated by the quasi-pseudometric d and by the quasi-uniformity Ud agree,
i.e., τd = τ(Ud).

In this case
U−1

d = Ud̄ and U s
d = Uds .

Remark 3. Quasi-uniform spaces were studied by Nachbin starting with 1948 (see [14]) as a generalization of
uniform spaces introduced by Weil [15]. For further developments see [16,17].

4. Cauchy Sequences and Sequential Completeness in Quasi-Pseudometric and
Quasi-Uniform Spaces

The lost of symmetry causes a lot of trouble in the study of quasi-metric spaces, particularly
concerning completeness and compactness. Starting from the definition of a Cauchy sequence in a
metric space, Reilly et al. [1] defined 7 kinds of Cauchy sequences, yielding 14 different notions of
completeness in quasi-metric spaces, all agreeing with the usual one in the metric case. One of the
major drawbacks of most of these notions is that a convergent sequence need not be Cauchy. For a
detailed study we refer to the quoted paper by Reilly et al., or to the book [2]. In the present paper we
concentrate on the relations between the corresponding notions of completeness by sequences, nets or
filters, as well as to the completeness of the associated quasi-uniform space.

We give now the definitions following [1].

Definition 2. A sequence (xn) in (X, d) is called

• left (right) d-Cauchy if for every ε > 0 there exist x ∈ X and n0 ∈ N such that

d(x, xn) < ε (respectively d(xn, x) < ε)

for all n > n0;
• ds-Cauchy if it is a Cauchy sequence is the pseudometric space (X, ds), that is for every ε > 0 there exists

n0 ∈ N such that
ds(xn, xk) < ε for all n, k > n0 ,

a condition equivalent to
d(xn, xk) < ε for all n, k > n0 ,

as well as to
d̄(xn, xk) < ε for all n, k > n0 ;

• left (right) K-Cauchy if for every ε > 0 there exists n0 ∈ N such that

d(xk, xn) < ε (respectively d(xn, xk) < ε)

for all n, k ∈ N with n0 6 k 6 n;
• weakly left (right) K-Cauchy if for every ε > 0 there exists n0 ∈ N such that

d(xn0 , xn) < ε (respectively d(xn, xn0) < ε) ,

for all n > n0 .

Sometimes, to emphasize the quasi-pseudometric d, we shall say that a sequence is left d-K-Cauchy, etc.

It seems that K in the definition of a left K-Cauchy sequence comes from Kelly [12] who considered
first this notion.

Some remarks are in order.
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Remark 4 ([1]). Let (X, d) be a quasi-pseudometric space.

1. These notions are related in the following way:

ds-Cauchy ⇒ left K-Cauchy ⇒ weakly left K-Cauchy ⇒ left d-Cauchy.

The same implications hold for the corresponding right notions. No one of the above implications is
reversible.

2. A sequence is left Cauchy (in some sense) with respect to d if and only if it is right Cauchy (in the same
sense) with respect to d̄.

3. A sequence is ds-Cauchy if and only if it is both left and right d-K-Cauchy.
4. A d-convergent sequence is left d-Cauchy and a d̄-convergent sequence is right d-Cauchy. For the other

notions, a convergent sequence need not be Cauchy.
5. If each convergent sequence in a regular quasi-metric space (X, d) admits a left K-Cauchy subsequence,

then X is metrizable ([18]).

We also mention the following simple properties of Cauchy sequences.

Proposition 2 ([19,20]). Let (xn) be a left or right K-Cauchy sequence in a quasi-pseudometric space (X, d).

1. If (xn) has a subsequence which is d-convergent to x, then (xn) is d-convergent to x.
2. If (xn) has a subsequence which is d̄-convergent to x, then (xn) is d̄-convergent to x.
3. If (xn) has a subsequence which is ds-convergent to x, then (xn) is ds-convergent to x.

To each of these notions of Cauchy sequence corresponds two notions of sequential completeness,
by asking that the corresponding Cauchy sequence be d-convergent or ds-convergent. Due to the
equivalence d-left Cauchy ⇐⇒ d̄-right Cauchy one obtains nothing new by asking that a d-left
Cauchy sequence is d̄-convergent. For instance, the d̄-convergence of any left d-K-Cauchy sequence is
equivalent to the right K-completeness of the space (X, d̄).

Definition 3 ([1]). A quasi-pseudometric space (X, d) is called:

• sequentially d-complete if every ds-Cauchy sequence is d-convergent;
• sequentially left d-complete if every left d-Cauchy sequence is d-convergent;
• sequentially weakly left (right) K-complete if every weakly left (right) K-Cauchy sequence is

d-convergent;
• sequentially left (right) K-complete if every left (right) K-Cauchy sequence is d-convergent;
• sequentially left (right) Smyth complete if every left (right) K-Cauchy sequence is ds-convergent;
• bicomplete if the associated pseudometric space (X, ds) is complete, i.e., every ds-Cauchy sequence is

ds-convergent. A bicomplete asymmetric normed space (X, p) is called a biBanach space.

As we noticed (see Remark 4 (4)), each d-convergent sequence is left d-Cauchy, but for each of
the other notions there are examples of d-convergent sequences that are not Cauchy, which is a major
inconvenience. Another one is that a complete (in some sense) subspace of a quasi-metric space need
not be closed.

The implications between these completeness notions are obtained by reversing the implications
between the corresponding notions of Cauchy sequence from Remark 4 (1).

Remark 5. (a) These notions of completeness are related in the following way:

sequentially d-complete ⇒ sequentially weakly left K-complete ⇒ sequentially left K-complete ⇒
sequentially left d-complete.

The same implications hold for the corresponding notions of right completeness.
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(b) sequentially left or right Smyth completeness implies bicompleteness.

No one of the above implication is reversible (see [1]), excepting that between weakly left and
left K-sequential completeness, as it was surprisingly shown by Romaguera [21].

Proposition 3 ([21], Proposition 1). A quasi-pseudometric space is sequentially weakly left K-complete if and
only if it is sequentially left K-complete.

A series ∑n xn in an asymmetric seminormed space (X, p) is called convergent if there exists x ∈ X
such that x = limn→∞ ∑n

k=1 xk (i.e., limn→∞ p (∑n
k=1 xk − x) = 0). The series ∑n xn is called absolutely

convergent if ∑∞
n=1 p(xn) < ∞. It is well-known that a normed space is complete if and only if every

absolutely convergent series is convergent. A similar result holds in the asymmetric case too.

Proposition 4 ([2], Proposition 1.2.6). Let (X, d) be a quasi-pseudometric space.

1. If a sequence (xn) in X satisfies ∑∞
n=1 d(xn, xn+1) < ∞ (∑∞

n=1 d(xn+1, xn) < ∞), then it is left (right)
d-K-Cauchy.

2. The quasi-pseudometric space (X, d) is sequentially left (right) d-K-complete if and only if every sequence
(xn) in X satisfying ∑∞

n=1 d(xn, xn+1) < ∞ (resp. ∑∞
n=1 d(xn+1, xn) < ∞) is d-convergent.

3. An asymmetric seminormed space (X, p) is sequentially left K-complete if and only if every absolutely
convergent series is convergent.

Cantor type results
Concerning Cantor-type characterizations of completeness in terms of descending sequences of

closed sets (the analog of Theorem 2) we mention the following result. The diameter of a subset A of a
quasi-pseudometric space (X, d) is defined by

diam(A) = sup{d(x, y) : x, y ∈ A} . (6)

It is clear that, as defined, the diameter is, in fact, the diameter with respect to the associated
pseudometric ds. Recall that a quasi-pseudometric space is called sequentially d-complete if every
ds-Cauchy sequence is d-convergent (see Definition 3).

Theorem 3 ([1], Theorem 10). A quasi-pseudometric space (X, d) is sequentially d-complete if and only if
each decreasing sequence F1 ⊇ F2 . . . of nonempty closed sets with diam(Fn) → 0 as n → ∞ has nonempty
intersection, which is a singleton if d is a quasi-metric.

The following characterization of right K-completeness was obtained in [22], using a
different terminology.

Proposition 5. A quasi-pseudometric space (X, d) is sequentially right K-complete if and only if any decreasing
sequence of closed d̄-balls

Bd̄[x1, r1] ⊇ Bd̄[x2, r2] ⊇ . . . with lim
n→∞

rn = 0 ,

has nonempty intersection.
If the topology d is Hausdorff, then

⋂∞
n=1 Bd̄[xn, rn] contains exactly one element.

5. Completeness by Nets and Filters

In this section we shall examine the relations between completeness by sequences, nets and
filters in quasi-metric spaces. For some notions of completeness they agree, but, as it was shown by
Stoltenberg [9], they can be different for others.
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5.1. Some Positive Results

These hold mainly for the notions of left-completeness, and may fail for those of right completeness
as we shall see in the next subsection.

The Cauchy properties of a net (xi : i ∈ I) in a quasi-pseudometric space (X, d) are defined by
analogy with that of sequences, by replacing in Definition 2 the natural numbers with the elements of
the directed set I.

The situation is good for left Smyth completeness (see Definition 3).

Proposition 6 ([6], Prop. 1). For a quasi-metric space (X, d) the following are equivalent.

1. Every left d-K-Cauchy sequence is ds-convergent.
2. Every left d-K-Cauchy net is ds-convergent.

A quasi-uniform space (X,U ) is called bicomplete if (X,U s) is a complete uniform space.
This notion is useful and easy to handle, because one can appeal to well known results from the theory
of uniform spaces, but it is not appropriate for the study of the specific properties of quasi-uniform
spaces, so one introduces adequate definitions, by analogy with quasi-pseudometric spaces.

Definition 4. Let (X,U ) be a quasi-uniform space.
A filter F on (X,U ) is called:

• left (right) U -Cauchy if for every U ∈ U there exists x ∈ X such that U(x) ∈ F (respectively
U−1(x) ∈ F );

• left (right) U -K-Cauchy if for every U ∈ U there exists F ∈ F such that U(x) ∈ F (resp. U−1(x) ∈ F )
for all x ∈ F.

A net (xi : i ∈ I) in (X,U ) is called:

• left U -Cauchy (right U -Cauchy) if for every U ∈ U there exists x ∈ X and i0 ∈ I such that (x, xi) ∈ U
(respectively (xi, x) ∈ U) for all i > i0;

• left U -K-Cauchy (right U -K-Cauchy) if

∀U ∈ U , ∃i0 ∈ I, ∀i, j ∈ I, i0 6 i 6 j ⇒ (xi, xj) ∈ U (resp. (xj, xi) ∈ U . (7)

The notions of left and right U -K-Cauchy filter were defined by Romaguera in [21].
Observe that

(xj, xi) ∈ U ⇐⇒ (xi, xj) ∈ U−1 ,

so that a filter is right U -K-Cauchy if and only if it is left U−1-K-Cauchy. A similar remark applies
to U -nets.

Definition 5. A quasi-uniform space (X,U ) is called:

• left U -complete by filters (left K-complete by filters) if every left U -Cauchy (respectively, left U -K-Cauchy)
filter in X is τ(U )-convergent;

• left U -complete by nets (left U -K-complete by nets) if every left U -Cauchy (respectively, left U -K-Cauchy)
net in X is τ(U )-convergent;

• Smyth left U -K-complete by nets if every left K-Cauchy net in X is U s-convergent.

The notions of right completeness are defined similarly, by asking the τ(U )-convergence of the corresponding
right Cauchy filter (or net) with respect to the topology τ(U ) (or with respect to τ(U s) in the case of Smyth
completeness).
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As we have mentioned in Introduction, in pseudometric spaces the sequential completeness is
equivalent to the completeness defined in terms of filters, or of nets. Romaguera [21] proved a similar
result for the left K-completeness in quasi-pseudometric spaces.

Remark 6. In the case of a quasi-pseudometric space the considered notions take the following form.
A filter F in a quasi-pseudometric space (X, d) is called left K-Cauchy if it left Ud-K-Cauchy. This is

equivalent to the fact that for every ε > 0 there exists Fε ∈ F such that

∀x ∈ Fε, Bd(x, ε) ∈ F . (8)

Also a net (xi : i ∈ I) is called left K-Cauchy if it is left Ud-K-Cauchy or, equivalently, for every ε > 0
there exists i0 ∈ I such that

∀i, j ∈ I, i0 6 i 6 j ⇒ d(xi, xj) < ε . (9)

Proposition 7 ([21]). For a quasi-pseudometric space (X, d) the following are equivalent.

1. The space (X, d) is sequentially left K-complete.
2. Every left K-Cauchy filter in X is d-convergent.
3. Every left K-Cauchy net in X is d-convergent.

In the case of left Ud-completeness this equivalence does not hold in general.

Proposition 8 (Künzi [23]). A Hausdorff quasi-metric space (X, d) is sequentially left d-complete if and only
if the associated quasi-uniform space (X,Ud) is left Ud-complete by filters.

5.2. Right K-Completeness in Quasi-Pseudometric Spaces

It is strange that for the right completeness the things look worse than for the left completeness.
As remarked Stoltenberg [9] (Example 2.4), a result similar to Proposition 7 does not hold for right

K-completeness: there exists a sequentially right K-complete T1 quasi-metric space which is not right
K-complete by nets. Actually, Stoltenberg [9] proved that the equivalence holds for a more general
definition of a right K-Cauchy net, but Gregori and Ferrer [10] found a gap in Stoltenberg’s proof and
proposed a new version of Cauchy net. In what follows we will present these results and, in our turn,
we shall propose other notion of Cauchy net for which the equivalence holds.

An analog of Proposition 7 for right K-completeness can be obtained only under some
supplementary hypotheses on the quasi-pseudometric space X.

A quasi-pseudometric space (X, d) is called R1 if for all x, y ∈ X, d-cl{x} 6= d-cl{y} implies the
existence of two disjoint d-open sets U, V such that x ∈ U and y ∈ V.

Proposition 9 ([24]). Let (X, d) be a quasi-pseudometric space. The following are true.

1. If X is right K-complete by filters, then every right K-Cauchy net in X is convergent. In particular,
every right K-complete by filters quasi-pseudometric space is sequentially right K-complete.

2. If the quasi-pseudometric space (X, d) is R1 then X is right K-complete by filters if and only if it is
sequentially right K-complete.

Stoltenberg’s example
As we have mentioned, Stoltenberg [9] (Example 2.4), gave an example of a sequentially right

K-complete T1 quasi-metric space which is not right K-complete by nets, which we shall present now.
Denote by A the family of all countable subsets of the interval [0, 1

3 ]. For A ∈ A let
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XA
1 = A, XA

k+1 = A ∪
{

1
2

,
3
4

, . . . ,
2k − 1

2k

}
, k ∈ N, and

XA
∞ = A ∪

{
2k − 1

2k : k ∈ N
}

=
⋃
{XA

k : k ∈ N} .

Put S =
{

XA
k : A ∈ A, k ∈ N∪ {∞}

}
and define d : S × S → [0, ∞) by

d(XA
k , XB

j ) =


0 if A = B and k = j, A, B ∈ A, k, j ∈ N∪ {∞}
2−j if XB

j $ XA
k , A, B ∈ A, k ∈ N∪ {∞}, j ∈ N,

1 otherwise .

Proposition 10. (S , d) is a sequentially right K-complete T1 quasi-metric space which is not right K-complete
by nets.

Proof. The proof that d is a T1 quasi-metric on S is straightforward.

I. (S , d) is sequentially right K-complete.

Let (Xn)n∈N be a right K-Cauchy sequence in S . Then there exists n0 ∈ N such that

d(Xm, Xn) < 1 for all m, n ∈ N with n0 6 n 6 m .

For i ∈ N0 = N∪ {0} let

Xn0+i = XAi
ki

where Ai ∈ A and ki ∈ N∪ {∞} .

Since
d
(

XAi+1
ki+1

, XAi
ki

)
< 1 ,

it follows ki ∈ N for all i ∈ N0. For 0 < ε < 1 there exists i0 ∈ N such that

d(Xn0+i+1, Xn0+i) < ε for all i > i0 ,

which means that
2−ki = d

(
XAi+1

ki+1
, XAi

ki

)
< ε for all i > i0 .

This shows that limi→∞ ki = ∞.
Let A =

⋃
{Ai : i ∈ N0} and X = XA

∞. Then XAi
ki
$ XA

∞, so that

d(X, Xn0+i) = d
(

XA
∞, XAi

ki

)
= 2−ki → 0 as i→ ∞ .

which shows that the sequence (Xn) is d-convergent to X.

II. The quasi-metric space (S , d) is not right K-complete by nets.

Let S0 = {XA
k : A ∈ A, k ∈ N} ordered by

X 6 Y ⇐⇒ X ⊆ Y, for X, Y ∈ S0 .

We have

XA
i 6 XB

j ⇐⇒
{

A ⊆ B and

i 6 j

for XA
i , XB

j ∈ S0, (S0,6) is directed and the mapping φ : S0 → S defined by φ(X) = X, X ∈ S0, is a
net in S .
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Let us show first that the net φ is right K-Cauchy. For ε > 0 choose k ∈ N such that 2−k < ε.
For some C ∈ A, XC

k belongs to S0 and

d(XA
j , XB

i ) = 2−i 6 2−k < ε

for all
XA

j , XB
i ∈ S0 with XC

k 6 XB
i 6 XA

j , XA
j 6= XB

i ,

showing that the net φ is right K-Cauchy.
Let X = XC

k be an arbitrary element in S . We show that for every XA
i ∈ S0 there exists XB

j ∈ S0

with XA
i 6 XB

j such that d(X, XB
j ) = 1, which will imply that the net φ is not d-convergent to X.

Since C is a countable set, there exists x0 ∈ [0, 1
3 ] \ C. For an arbitrary XA

i ∈ S0 let B = A ∪ {x0}.
Then XB

i ∈ S0, XA
i 6 XB

i and XC
k * XB

i , so that, by the definition of the metric d, d(XC
k , XB

i ) = 1.

Stoltenberg-Cauchy nets
Stoltenberg [9] also considered a more general definition of a right K-Cauchy net as a net (xi : i ∈ I)

satisfying the condition: for every ε > 0 there exists iε ∈ I such that

d(xi, xj) < ε for all i, j > iε with i 
 j . (10)

Let us call such a net Stoltenberg-Cauchy and Stoltenberg completeness the completeness with respect
to Stoltenberg-Cauchy nets.

It follows that, for this definition,

d(xi, xj) < ε and d(xj, xi) < ε for all i, j > iε with i � j,

where i � j means that i, j are incomparable (that is, no one of the relations i 6 j or j 6 i holds).

Gregori-Ferrer-Cauchy nets
Later, Gregori and Ferrer [10] found a gap in the proof of Theorem 2.5 from [9] and provided a

counterexample to it, based on Example 2.4 of Stoltenberg (see Proposition 10).

Example 3 ([10]). Let A, (S , d) be as in the preamble to Proposition 10 and I = N∪ {a, b}, where the set N is
considered with the usual order and a, b are two distinct elements not belonging to N with

k 6 a, k 6 b, for all k ∈ N,

a 6 a, b 6 b, a 6 b, b 6 a.

Consider two sets A, B ∈ A with A $ B and let φ : I → S be given by

φ(k) = XA
k , k ∈ N, φ(a) = XA

∞, φ(b) = XB
∞ .

Then the net φ is right Cauchy in the sense of (10) but not convergent in (S , d).

Indeed, for 0 < ε < 1 let k0 ∈ N be such that 2−k0 < ε.
Since

i 6 a, i 6 b, i > k0, ∀i ∈ N, k0 6 a 6 b, k0 6 b 6 a,

it follows that the condition i 
 j can hold for some i, j ∈ I, i, j > k0, in the following cases:

(a) i, j ∈ N, i, j > k0, j < i;

(b) i = a, j ∈ N, j > k0

(c) i = b, j ∈ N, j > k0
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In the case (a), XA
j $ XA

i and

d(φ(i), φ(j)) = d(XA
i , XA

j ) = 2−j 6 2−k0 < ε .

In the case (b), XA
j $ XA

∞ and again

d(φ(a), φ(j)) = d(XA
∞, XA

j ) = 2−j 6 2−k0 < ε.

The case (c) is similar to (b).
To show that φ is not convergent let X ∈ S \ {XB

∞}. Then b > i for any i ∈ I and

d(X, φ(b)) = d(X, XB
∞) = 1 ,

so that φ does not converge to X. If X = XB
∞, then a > i for any i ∈ I and

d(XB
∞, φ(a)) = d(XB

∞, XA
∞) = 1 .

Gregori and Ferrer [10] proposed a new definition of a right K-Cauchy net, for which the
equivalence to sequential completeness holds.

Definition 6. A net (xi : i ∈ I) in a quasi-metric space (X, d) is called GF-Cauchy if one of the following
conditions holds:

(a) for every maximal element j ∈ I the net (xi) converges to xj;
(b) I has no maximal elements and the net (xi) converges;
(c) I has no maximal elements and the net (xi) satisfies the condition (10).

Maximal elements and net convergence
For a better understanding of this definition we shall analyze the relations between maximal

elements in a preordered set and the convergence of nets. Recall that in the definition of a directed set
(I,6) the relation 6 is supposed to be only a preorder, i.e., reflexive and transitive and not necessarily
antireflexive (see [25]). Notice that some authors suppose that in the definition of a directed set 6 is a
partial order (see, e.g., [26]). For a discussion of this matter see [27], §7.12, p. 160.

Let (I,6) be a preordered set. An element j ∈ I is called:

• strictly maximal if there is no i ∈ I \ {j} with j 6 i, or, equivalently,

j 6 i ⇒ i = j, for every i ∈ I; (11)

• maximal if
j 6 i ⇒ i 6 j, for every i ∈ I . (12)

Remark 7. Let (I,6) be a preordered set.

1. A strictly maximal element is maximal, and if 6 is an order, then these notions are equivalent.
2. Every maximal element j of I is a maximum for I, i.e., i 6 j for all i ∈ I.
3. If j is a maximal element and j′ ∈ I satisfies j 6 j′, then j′ is also a maximal element.
4. (Uniqueness of the strictly maximal element) If j is a strictly maximal element, then j′ = j for any maximal

element j′ of I.

Proof. 1. These assertions are obvious.
2. Indeed, suppose that j ∈ I satisfies (12). Then, for arbitrary i ∈ I, there exists i′ ∈ I with i′ > j, i.

But j 6 i′ implies i′ 6 j and so i 6 i′ 6 j. (We use the notation i > j, k for i > j ∧ i > k.)
3. Let i ∈ I be such that j′ 6 i. Then j 6 i and, by the maximality of j, i 6 j 6 j′.
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4. If j is strictly maximal and j′ is a maximal element of I, then, by 2, j′ ≤ j so that, by (12) applied
to j′, j ≤ j′ and so, by (11) applied to j, j′ = j.

We present now some remarks on maximal elements and net convergence.

Remark 8. Let (X, d) be a quasi-metric space, (I,6) a directed sets and (xi : i ∈ I) a net in X.

1. If (I,6) has a strictly maximal element j, then the net (xi) is convergent to xj.
2. (a) If the net (xi) converges to x ∈ X, then d(x, xj) = 0 for every maximal element j of I. If the topology

τd is T1 then, further, xj = x.

(b) If the net (xi) converges to xj and to xj′ , where j, j′ are maximal elements of I, then xj = xj′ .

(c) If I has maximal elements and, for some x ∈ X, xj = x for every maximal element j, then the net
(xi) converges to x.

Proof. 1. For an arbitrary ε > 0 take iε = j. Then i > j implies i = j, so that

d(xj, xi) = d(xj, xj) = 0 < ε .

2. (a) For every ε > 0 there exists iε ∈ I such that d(x, xi) < ε for all i > iε. By Remark 7.2, j > iε

for every maximal j, so that d(x, xj) < ε for all ε > 0, implying d(x, xj) = 0.

If the topology τd is T1, then, by Proposition 1.2, xj = x.

(b) By (a), d(xj, xj′) = 0 and d(xj′ , xj) = 0, so that xj = xj′ .

(c) Let x ∈ X be such that xj = x for every maximal element j of I and let j be a fixed maximal
element of I. For any ε > 0 put iε = j. Then, by Remark 7.3, any i ∈ I such that i > j is also a
maximal element of I, so that xi = x and d(x, xi) = 0 < ε.

Let us say that a quasi-metric space (X, d) is GF-complete if every GF-Cauchy net (i.e., satisfying
the conditions (a), (b), (c) from Definition 6) is convergent. Remark that, with this definition, condition
(b) becomes tautological and so superfluous, so it suffices to ask that every net satisfying (a) and (c)
be convergent.

By Remarks 7.1 and 8.1, (a) always holds if 6 is an order, so that, in this case, a net satisfying
condition (c) is a GF-Cauchy net and so GF-completeness agrees with that given by Stoltenberg.

Strongly Stoltenberg-Cauchy nets
In order to avoid the shortcomings of the preorder relation, as, for instance, those put in evidence

by Example 3, we propose the following definition.

Definition 7. A net (xi : i ∈ I) in a quasi-metric space (X, d) is called strongly Stoltenberg-Cauchy if for
every ε > 0 there exists iε ∈ I such that, for all i, j > iε,

(j 6 i ∨ i � j) ⇒ d(xi, xj) < ε . (13)

We present now some remarks on the relations of this notion with the other notions of Cauchy
net (Stoltenberg and GF), as well as the relations between the corresponding completeness notions.
It is obvious that in the case of a sequence (xk)k∈N each of these three notions agrees with the right
K-Cauchyness of (xk).

Remark 9. Let (xi : i ∈ I) be a net in a quasi-metric space (X, d).
1. (a) We have

i 
 j ⇒
(
(j 6 i ∧ i 6= j) ∨ (i � j)

)
, (14)

for all i, j ∈ I. If 6 is an order, then the reverse implication also holds.
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(b) If the net (xi : i ∈ I) satisfies (13) then it satisfies (10), i.e., every strong Stoltenberg-Cauchy net is
Stoltenberg-Cauchy. If 6 is an order, then these notions are equivalent.

Hence, net completeness with respect to (10) (i.e. Stoltenberg completeness) implies net completeness with
respect to (13);

2. Suppose that the net (xi : i ∈ I) satisfies (13).
(a) If j, j′ are maximal elements of I, then xj = xj′ . Hence, if I has maximal elements, then there exists

x ∈ X such that xj = x for every maximal element j of I, and the net (xi) converges to x.
(b) Consequently, the net (xi) also satisfies the conditions (a) and (c) from Definition 6, so that,

GF-completeness implies completeness with respect to (13).

Proof. 1. (a) Let i, j ∈ I with i 
 j. Since j 6 i and i 6= j if i, j are comparable, the implication (14) holds.
If 6 is an order and i 6= j, then j 6 i ⇒ i 
 j and i � j ⇒ i 
 j.

(b) Since it suffices to ask that (10) and (13) hold only for distinct i, j > iε, the equivalence of these
notions in the case when 6 is an order follows.

Suppose that the net (xi) satisfies (13). For ε > 0 choose iε ∈ I according to (13) and let i, j > iε

with i 
 j. Taking into account (14) it follows d(xi, xj) < ε, i.e., (xi) satisfies (10).
Suppose now that every net satisfying (10) converges and let (xi) be a net in X satisfying (13).

Then it satisfies (10) so it converges.
2. (a) Let j, j′ be maximal elements of I. For ε > 0 choose iε according to (13). By Remark 7.2,

j, j′ > iε, j 6 j′, j′ 6 j, so that d(xj′ , xj) < ε and d(xj, xj′) < ε. Since these inequalities hold for every
ε > 0, it follows d(xj′ , xj) = 0 = d(xj, xj′) and so xj = xj′ . The convergence of the net (xi) follows from
Remark 8.2.(c).

(b) The assertions on GF-Cauchy nets follow from (a).

The following example shows that the notion of strong Stoltenberg-Cauchy net is effectively
stronger that that of Stoltenberg-Cauchy net.

Example 4. Let X = R and u(x) = x+, x ∈ X be the asymmetric norm defined in Example 2.
Then du(x, y) = u(y − x) = (y − x)+, x, y ∈ X, is a quasi-metric on X. Let I = N ∪ {a, b} be the
directed set considered in Example 3. Define xk = 0 for k ∈ N, xa = 1 and xb = 2. Then (xi : i ∈ I) is
Stoltenberg-Cauchy but not strongly Stoltenberg-Cauchy nor GF-Cauchy.

Indeed, for ε > 0 let iε = 1 and i, j > 1 with i 
 j. Then j ∈ N and we distinguish three possibilities:

• i ∈ N and j < i , when du(xi, xj) = (xj − xi)
+ = 0;

• i = a and du(xa, xj) = (xj − xa)+ = (0− 1)+ = 0;

• i = b and du(xb, xj) = (xj − xb)
+ = (0− 2)+ = 0.

It follows that du(xi, xj) = 0 < ε in all cases, showing that (xi) satisfies the condition (10), that is,
it is Stoltenberg-Cauchy.

Notice that any two elements in I are comparable. Let 0 < ε < 1. Since, for every iε ∈
I, a, b > iε and b 6 a, but du(xa, xb) = (2− 1)+ = 1, it follows that (13) fails, that is, (xi) is not
strongly Stoltenberg-Cauchy.

Since a is a maximal element of I, b > iε for any iε ∈ I, the above equality (du(xa, xb) = 1) shows
that the net (xi) does not converge to xa. Consequently (xi) is not GF-Cauchy (see Definition 6).

We show now that completeness by nets with respect to (13) is equivalent to sequential right
K-completeness.

Proposition 11 ([9], Theorem 2.5). A T1 quasi-metric space (X, d) is sequentially right K-complete if and
only if every net in X satisfying (13) is d-convergent, i.e., every strongly Stoltenberg-Cauchy net is convergent.
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Proof. We have only to prove that the sequential right K-completeness implies that every net in X
satisfying (13) is d-convergent.

Let (xi : i ∈ I) be a net in X satisfying (13). Let ik > ik−1, k > 2, be such that (13) holds for
ε = 1/2k, k ∈ N.

This is possible. Indeed, take i1 such that (13) holds for ε = 1/2. If i′2 is such that (13) holds for
ε = 2−2, then pick i2 ∈ I such that i2 > i1, i′2. Continuing by induction one obtains the desired sequence
(ik)k∈N.

We distinguish two cases.

Case I. ∃j0 ∈ I, ∃k0 ∈ N, ∀k > k0, ik 6 j0 .

Let i > j0. Then for every k, ik 6 j0 6 i implies d(xi, xj0) < 2−k so that d(xi, xj0) = 0. Since the
quasi-metric space (X, d) is T1, it follows xi = xj0 for all i > j0 (see Proposition 1), so that the net
(xi : i ∈ I) is d-convergent to xj0 .

Case II. ∀j ∈ I, ∀k ∈ N, ∃k′ > k, ik′ 
 j .

The inequalities d(xik+1
, xik ) < 2−k, k ∈ N, imply that the sequence (xik )k∈N is right K-Cauchy

(see Proposition 4), so it is d-convergent to some x ∈ X.
For ε > 0 choose k0 ∈ N such that 2−k0 < ε and d(x, xik ) < ε for all k > k0.
Let i ∈ I, i > ik0 . By hypothesis, there exists k > k0 such that ik 
 i, implying i 6 ik ∨ ik � i. Since

ik0 6 ik, i, by the choice of ik0 , d(xik , xi) < 2−k0 < ε in both of these cases. But then

d(x, xi) 6 d(x, xik ) + d(xik , xi) < 2ε ,

proving the convergence of the net (xi) to x.

The proof of Proposition 11 in the case of GF-completeness

As the result in [10] is given without proof, we shall supply one.

Proposition 12. A T1 quasi-metric space (X, d) is right K-sequentially complete if and only if every net
satisfying the conditions (a) and (c) from Definition 6 is convergent.

Proof. Obviously, a proof is needed only for the case (c).
Suppose that the directed set (I,6) has no maximal elements and let (xi : i ∈ I) be a net in a

quasi-metric space (X, d) satisfying (10).
The proof follows the ideas of the proof of Proposition 11 with some further details. Let ik 6

ik+1, k ∈ N, be a sequence of indices in I such that d(xi, xj) < 2−k for all i, j > ik with i 
 j. We show
that we can further suppose that ik+1 
 ik.

Indeed, the fact that I has no maximal elements implies that for every i ∈ I there exists i′ ∈ I
such that

i 6 i′ and i′ 
 i. (15)

Let i′1 ∈ I be such that (10) holds for ε = 2−1. Take i1 such that i′1 6 i1 and i1 
 i′1. Let i′2 > i1 be
such that (10) holds for ε = 2−2 and let i2 ∈ I satisfying i′2 6 i2 and i2 
 i′2. Then i1 6 i2 and i2 
 i1,
because i2 6 i1 6 i′2 would contradict the choice of i2.

By induction one obtains a sequence (ik) in I satisfying ik 6 ik+1 and ik+1 
 ik such that (10) is
satisfied with ε = 2−k for every ik.

We shall again consider two cases.

Case I. ∃j0 ∈ I, ∃k0 ∈ N, ∀k > k0, ik 6 j0 .

Let i > j0. By (15) there exists i′ ∈ I such that i 6 i′ and i′ 
 i, implying d(xi′ , xi) < 2−k for all
k > k0, that is d(xi′ , xi) = 0, so that, by T1, xi′ = xi.

We also have i′ 
 j0 because i′ 6 j0 would imply i′ 6 i, in contradiction to the choice of i′.
But then, d(xi′ , xj0) < 2−k for all k > k0, so that, as above, d(xi′ , xi) = 0 and xi′ = xj0 .
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Consequently, xi = xj0 for every i > j0, proving the convergence of the net (xi) to xj0 .

Case II. ∀j ∈ I, ∀k ∈ N, ∃k′ > k, ik′ 
 j .

The condition d(xik , xik+1
) < 2−k, k ∈ N, implies that the sequence (xik )k∈N is right K-Cauchy, so

that there exists x ∈ X with d(x, xik )→ 0 as k→ ∞.
For ε > 0 let k0 ∈ N be such that 2−k0 < ε and d(x, xik ) < ε for all k > k0.
Let i > ik0 . By II, for j = i and k = k0, there exists k > k0 such that ik 
 i. The conditions

k > k0, ik0 6 i, ik0 6 ik and ik 
 i imply

d(x, xik ) < ε and d(xik , xi) < ε ,

so that
d(x, xi) 6 d(x, xik ) + d(xik , xi) < 2ε,

for all i > ik0 .

6. Conclusions

The present paper shows that there are big differences between the notions of completeness
in metric and in quasi-metric spaces, but in spite of this, by giving appropriate definitions we can
make the things to look better. The differences are even bigger in what concerns compactness in these
spaces – in contrast to the metric case, in quasi-metric spaces the notions of compactness, sequential
compactness and countable compactness can be different (see [2]).
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