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Abstract: Due to the remarkable property of the seven-dimensional unit sphere to be a Sasakian
manifold with the almost contact structure (ϕ, ξ, η), we study its five-dimensional contact
CR-submanifolds, which are the analogue of CR-submanifolds in (almost) Kählerian manifolds.
In the case when the structure vector field ξ is tangent to M, the tangent bundle of contact
CR-submanifold M can be decomposed as T(M) = H(M)⊕ E(M)⊕Rξ, where H(M) is invariant
and E(M) is anti-invariant with respect to ϕ. On this occasion we obtain a complete classification of
five-dimensional proper contact CR-submanifolds in S7(1) whose second fundamental form restricted
to H(M) and E(M) vanishes identically and we prove that they can be decomposed as (multiply)
warped products of spheres.
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1. Introduction

Let M be a Riemannian submanifold of the seven-dimensional unit sphere. It is well-known that
S7(1) possesses the almost contact structure (ϕ, ξ, η), which is also contact and Sasakian. Having in
mind the behaviour of the endomorphism ϕ, submanifolds in the Sasakian manifolds carrying
a ϕ-invariant distribution such that its orthogonal complement is ϕ-anti-invariant, are called
contact CR-submanifolds. This notion is the odd-dimensional analogue of CR-submanifolds in
(almost) Kählerian manifolds, introduced by Bejancu in [1], who requested the existence of
a differentiable holomorphic distribution such that its orthogonal complement is a totally real
distribution. Also, CR-submanifolds of the nearly Kähler six-dimensional unit sphere have also been
investigated (see [2,3], for example). As the ϕ-invariant distribution H(M) is always even-dimensional,
the lowest possible dimension for a proper contact CR-submanifold (i.e., suchthat the dimensions
of both ϕ-invariant and anti-invariant distributions are different from zero) is four. In this paper we
continue our study of certain contact CR-submanifolds in seven-dimensional unit sphere, which we
started in [4] for the case of four-dimensional submanifolds and continued in [5], where we presented
several examples of four and five-dimensional contact CR-submanifolds of S7(1), which are of product
and warped product type.

One of the natural problems in the theory of submanifolds is the condition of immersibility.
For example, it is interesting to investigate totally geodesic submanifolds, that is, those submanifolds
for which all geodesics—when the induced Riemannian metric is considered—are also geodesics on
the ambient manifold. This property is equivalent to the vanishing of the second fundamental form.
It is well-known that any contact CR-submanifold in a Sasakian manifold can never be totally geodesic.
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Therefore, on this occasion we study those five-dimensional contact CR-submanifolds in a Sasakian
sphere S7(1) which are close to be totally geodesic, namely those whose second fundamental form
restricted to both ϕ-invariant and ϕ-anti-invariant distributions vanishes identically. Calling them
nearly totally geodesic contact CR-submanifolds, we prove that such submanifolds are (multiply) warped
products of spheres and finding the immersions, we obtain their complete classification.

Theorem 1. Let M be a five-dimensional proper nearly totally geodesic contact CR-submanifold of
seven-dimensional unit sphere. Then M is locally congruent to (multiply) warped product via the immersions (86)
and (114).

Remark 1. In [5] we presented several examples of four and five-dimensional contact CR-submanifolds of
product and warped product type of seven-dimensional unit sphere, which are nearly totally geodesic, minimal
and which satisfy the equality sign in some Chen type inequalities.

2. Preliminaries

2.1. Sasakian Manifolds

Let M̃2n+1 be a Sasakian manifold with the structure tensors ϕ, ξ, η and g̃. If ∇̃ denotes the
Levi-Civita connection on M̃, then the following relations

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, η ◦ ϕ = 0, ϕξ = 0,

g̃(ϕX, ϕY) = g̃(X, Y)− η(X)η(Y), η(X) = g̃(X, ξ), dη(X, Y) = g̃(ϕX, Y),

(∇̃X ϕ)Y = −g̃(X, Y)ξ + η(Y)X, ∇̃Xξ = ϕX,

hold on M̃ for all X, Y ∈ χ(M̃). For more details we refer to [6], although we use the convention
of [7,8].

2.2. Submanifolds

Let (M, g) be a submanifold in the Riemannian manifold (M̃, g̃), where g is the induced metric
and let ∇ and ∇̃ be the Levi Civita connections on M and M̃, respectively. Recall the formulae of
Gauss and Weingarten

(G) ∇̃XY = ∇XY + h(X, Y),
(W) ∇̃X N = −SN X +∇⊥X N,

for X, Y ∈ T(M) and N ∈ T⊥M, where h and SN are the second fundamental form and the
shape operator corresponding to N, respectively, related by g̃(h(X, Y), N) = g(SN X, Y). Here ∇⊥ is
a connection in the normal bundle of M and R⊥ is its curvature tensor. If ∇̄ stands for the van der
Waerden–Bortolotti connection, which is defined as

(∇̄Xh)(Y, Z) = ∇⊥X h(Y, Z)− h(∇XY, Z)− h(Y,∇XZ),

for X, Y, Z tangent to M, the Codazzi Theorem can be written as

(EC) nor(R̃XYZ) = (∇̄Xh)(Y, Z)− (∇̄Yh)(X, Z),

where R̃ is the curvature tensor on M̃ defined by R̃XY = [∇̃X , ∇̃Y]− ∇̃[X,Y], and by nor we mean the
projection on the normal bundle. For submanifolds of real space forms, like spheres, this projection
vanishes identically and therefore the covariant derivative ∇̄h of the second fundamental form,
defined by ∇̄h(X, Y, Z) = (∇̄Xh)(Y, Z), is totally symmetric.

The equations of Gauss and Ricci are given by

(EG) g(RXYZ, W) = g̃(R̃XYZ, W) + g̃(h(Y, Z), h(X, W))− g̃(h(X, Z), h(Y, W)),
(ER) g̃(R⊥XY Na, Nb) = g̃(R̃XY Na, Nb) + g([Sa, Sb]X, Y),
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respectively, where R is the curvature on M, and Sa, Sb are the shape operators corresponding to the
normal vectors Na, Nb, respectively.

2.3. Contact CR-Submanifolds

The notion of contact CR-submanifolds in Sasakian manifolds is the odd-dimensional analogue of
CR-submanifolds in (almost) Kählerian manifolds. See also [9]. Particularly, a contact CR-submanifold
in the Sasakian manifold (M̃, ϕ, ξ, η, g̃) is a submanifold M carrying a ϕ-invariant distribution D,
that is, ϕpDp ⊆ Dp, for any p ∈ M, such that the orthogonal complement D⊥ of D in T(M) is
ϕ-anti-invariant, that is, ϕpD⊥p ⊆ T⊥p M, for any p ∈ M. This notion was used by Bejancu and
Papaghiuc in [10], using the terminology of semi-invariant submanifold. It is standard to require that
ξ is tangent to M rather than normal, which is too restrictive (by Prop. 1.1 in [11], p. 43, M must be
ϕ-anti-invariant, that is, ϕTp M ⊆ T⊥p M, for all p ∈ M), or oblique which leads to highly complicated
embedding equations. The contact CR-submanifold is called proper if both distributions D and D⊥ are
non-trivial distributions.

For a contact CR-submanifold M of a Sasakian manifold M̃, with ξ tangent to M, the tangent
space at each point decomposes orthogonally as

T(M) = H(M)⊕ E(M)⊕Rξ,

where ϕH(M) = H(M), ϕ2 = −I along H(M) and ϕE(M) ⊆ T⊥M. It should be remarked that
the Levi distribution H(M) is never integrable (see [12]), while H(M)⊕Rξ can be, as in the case of
contact CR-products (see [13]). On the other hand, the normal bundle of M can be decomposed as
T⊥M = ϕE(M) ⊕ ν(M), where ν(M) is the orthogonal complement of ϕE(M) in T⊥M, invariant
under the action of ϕ.

2.4. CR Warped Product Submanifolds in Sasakian Manifolds

The notion of warped product is the natural and very fruitful generalization of Riemannian
products. It was introduced by Bishop and O’Neill in [14] in order to construct a large class of complete
manifolds of negative curvature.

Let B, F be two Riemannian manifolds with Riemannian metrics gB and gF respectively and let f
be a smooth positive function on B. Considering the product manifold B× F, let π1 : B× F → B and
π2 : B× F → F be the canonical projections. The manifold M = B× f F is called the warped product if it
is equipped with the Riemannian structure such that

||X||2 = ||π1,∗(X)||2 + f 2(π1(x))||π2,∗(X)||2

for all X ∈ Tx(M), x ∈ M, or, equivalently, g = gB + f 2gF with the usual meaning, while f is called
the warping function on the warped product. For more details we refer to [15].

A contact CR-submanifold M in a Sasakian manifold M̃, tangent to the structure vector field ξ, is
called a contact CR warped product, with the warping function f , if it is the warped product NT × f N⊥

of an invariant submanifold NT , tangent to ξ and a totally real submanifold N⊥ of M̃, where f is the
warping function (see [13] for more details). It is notable to point out that there is no proper contact
CR-submanifolds in Sasakian manifolds in the form N⊥ × f NT . This fact was proved in [13,16].

2.5. The Sasakian Structure on S2m+1(1)

Identifying R2m+2 with Cm+1, let J denote the multiplication with the imaginary unit i =
√
−1,

on R2m+2. The (2m + 1)-dimensional unit sphere S2m+1(1) = {p ∈ R2m+2 : 〈p, p〉 = 1}, where 〈 , 〉
is the usual scalar product in R2m+2, carries a canonical almost contact metric structure (ϕ, η, ξ, g)
induced from (J, 〈·, ·〉). Strictly speaking, as at any point p ∈ S2m+1(1), the outward unit normal to
sphere coincides with the position vector p, putting ξ = Jp to be the characteristic vector field, for X
tangent to S2m+1, JX fails, in general, to be tangent and decomposing JX into the tangent and the
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normal part we have JX = ϕX − η(X)p. Moreover, this structure is Sasakian. For more details and
proofs we refer to [6,17].

2.6. Problem

On this occasion, we consider the problem of finding all five-dimensional proper contact
CR-submanifolds in S7(1) such that

h(H(M), H(M)) = 0 and h(E(M), E(M)) = 0, (1)

where, as we have already mentioned, T(M) = H(M)⊕ E(M)⊕ Rξ and T⊥M = ϕE(M)⊕ ν(M),
with ϕH(M) = H(M), ϕE(M) ⊆ T⊥M and ν(M) being the orthogonal complement of ϕE(M)

in T⊥M.

3. Five-Dimensional Nearly Totally Geodesic Contact CR-Submanifolds in S7(1)

In order to prove our results, we first select an appropriate frame on M5 in such a way that
equations, which are the consequences of (1), become satisfied. Then, we classify all 5-dimensional
proper contact CR-submanifolds in the seven-dimensional unit sphere satisfying (1).

3.1. Essential Characteristics of Five-Dimensional Contact CR-Submanifolds in S7(1)

In this subsection, after choosing the appropriate basis, we introduce some smooth functions
to describe the induced connection and we express the shape operators. Using Codazzi and Ricci
equations, we obtain relations between these functions and we derive conditions on these functions,
namely a system of algebraic and differential equations.

First, it is straightforward, using the formulae of Gauss and Weingarten, as well as the Sasakian
structure of the 7-sphere, to prove the following:

Lemma 1. If M is a contact CR-submanifold in the Sasakian manifold S7(1) we have

g̃(h(X, Z), ϕW) = g̃(h(X, W), ϕZ),

for every X ∈ H(M), Z, W ∈ E(M).

As M is a five-dimensional submanifold of S7(1), having in mind the condition (1), we conclude that

dim H(M) = 2, dim E(M) = 2 and ϕE(M) = T⊥M.

Further, starting with two arbitrary orthonormal bases {e1, e2 = ϕe1} in H(M) and {e3, e4} in
E(M), respectively, we will choose a basis in T(M) so that the second fundamental form will depend
only on four smooth functions. In that direction, as a consequence of Lemma 1, we define, for each
X ∈ H(M), a symmetric operator

A(X) : E(M)× E(M)→ C∞(M) by A(X)(Z, W) = g̃(h(X, Z), ϕW).

Since T⊥M = ϕE(M), there exist six smooth functions a1, a2, a3, b1, b2, b3 on M such that

h(e1, e3) = a1 ϕe3 + a2 ϕe4, h(e2, e3) = b1 ϕe3 + b2 ϕe4,

h(e1, e4) = a2 ϕe3 + a3 ϕe4, h(e2, e4) = b2 ϕe3 + b3 ϕe4.

For an arbitrary (for the moment) angle t ∈ C∞(M), we consider X = cos t e1 + sin t e2 and we
compute traceA(X) = A(X)(e3, e3) + A(X)(e4, e4) = (a1 + a3) cos t + (b1 + b3) sin t.

We distinguish the following situations:
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(i) if a1 + a3 = 0 and b1 + b3 = 0 then traceA(X) = 0 for any X ∈ H(M);
(ii) if a1 + a3 = 0 and b1 + b3 6= 0, then take t = 0 and denote E2 = e1 and E1 = −e2;
(iii) if a1 + a3 6= 0 and b1 + b3 = 0, then take t = π/2 and denote E2 = e2 and E1 = e1;
(iv) if both a1 + a3 6= 0 and b1 + b3 6= 0, then take t such that tan t = − a1+a3

b1+b3
; denote the corresponding

X by E2 and set E1 = −ϕE2.

It follows that in Cases (ii)–(iv) we can choose E1 and E2 = ϕE1 in H(M) such that the operator
A(E2) is traceless. Additionally, because the operator A(E1) is also symmetric, we will take the basis
in E(M) defined by the eigenvectors of this operator. Denote them by E3 and E4. Consequently we
have that h(E1, E3) is proportional to ϕE3 and h(E1, E4) is proportional to ϕE4.

Concerning the Case (i), we (apparently) have the freedom of choosing E2. Nevertheless,
if we make a rotation about a certain angle s in E(M), we set E3 = cos s e3 + sin s e4 and
E4 = − sin s e3 + cos s e4. If a2 = 0 take s = 0 and if a2 6= 0 take s such that cot 2s = a1

a2
. Consequently,

we obtain h(e1, E3) = ã1 ϕE3 and h(e1, E4) = −ã1 ϕE4. Since s depends on a1 and a2 and hence on e1

and e2, we set E1 = e1 and E2 = e2.
For simplicity of notation, we continue to write E5 for ϕE3 and E6 for ϕE4. Moreover, since S7(1)

is Sasakian, using the Gauss formula, we can easily compute h(Ei, ξ), i = 1, . . . , 4.
Summarizing, we have thus proved

Proposition 1. For a proper contact CR-submanifold M5 in S7(1) such that the condition (1) is
satisfied, we can choose orthonormal differential vector fields E1, E2, E3, E4 defined locally on M, such that
{E1, E2 = ϕE1} ⊂ H(M), {E3, E4} ⊂ E(M) and

h(E1, E3) = a1E5, h(E2, E3) = b1E5 + b2E6,

h(E1, E4) = a3E6, h(E2, E4) = b2E5 − b1E6,
(2)

where a1, a3, b1, b2 are smooth functions on M and consequently

h(E1, ξ) = h(E2, ξ) = h(ξ, ξ) = 0, h(E3, ξ) = E5, h(E4, ξ) = E6. (3)

Further, let us introduce some smooth functions to describe the induced connection on M.

Proposition 2. Under the conditions stated above, the Levi-Civita connection ∇ is given by

∇E1 E1 = pE2, ∇E1 E2 = −pE1 − ξ,

∇E1 E3 = rE4, ∇E1 E4 = −rE3,

∇E1 ξ = E2,

∇E2 E1 = −qE2 + ξ, ∇E2 E2 = qE1,

∇E2 E3 = lE4, ∇E2 E4 = −lE3,

∇E2 ξ = −E1,

∇E3 E1 = aE2 + b1E3 + b2E4, ∇E3 E2 = −aE1 − a1E3,

∇E3 E3 = −b1E1 + a1E2 + αE4, ∇E3 E4 = −b2E1 − αE3,

∇E3 ξ = 0,

∇E4 E1 = cE2 + b2E3 − b1E4, ∇E4 E2 = −cE1 − a3E4,

∇E4 E3 = −b2E1 + βE4, ∇E4 E4 = b1E1 + a3E2 − βE3,

∇E4 ξ = 0,

∇ξ E1 = ωE2,

∇ξ E2 = −ωE1,

∇ξ E3 = θE4,

∇ξ E4 = −θE3,

∇ξξ = 0,

(4)
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for certain smooth functions a, l, p, q, r, α, β, c, ω and θ on M.

Proof. Since ∇̃Ei ξ = ϕEi, we immediately obtain that ∇Ei ξ = 0 for i = 3, 4 and this implies that ∇Ei X
has no component along ξ, for every X ∈ H(M) and i = 3, 4.

Now let’s prove one of the formulae in (4).
Considering ∇̃E3 E2 = ∇̃E3(ϕE1) = ϕ∇E3 E1 + ϕh(E1, E3) and identifying the tangent and the

normal parts, respectively, we obtain

∇E3 E1 = aE2 + b1E3 + b2E4, ∇E3 E2 = −aE1 − a1E3,

for a certain function a ∈ C∞(M).

In order to have the complete description of the geometry of M, we write the expression of the
normal connection, that is

∇⊥E1
E5 = rE6, ∇⊥E1

E6 = −rE5,

∇⊥E2
E5 = lE6, ∇⊥E2

E6 = −lE5,

∇⊥E3
E5 = αE6, ∇⊥E3

E6 = −αE5,

∇⊥E4
E5 = βE6, ∇⊥E4

E6 = −βE5,

∇⊥ξ E5 = θE6, ∇⊥ξ E6 = −θE5.

(5)

Lemma 2. Under the above assumptions, the coefficient b2 vanishes.

Proof. Using the fact that ∇̄h is totally symmetric, we obtain the equations given in Table 1.

Table 1. Symmetries of ∇̄h.

The Symmetry We Use The Result We Get

(∇̄h)(E3, E3, E4)
a1b2 = 0
b1(a1 + a3) = 0

(∇̄h)(E3, E4, E4)
a3b2 = 0
b1(a1 + a3) = 0

(∇̄h)(E1, E2, E3)
E1(b1) + pa1 + 1− 2b2r = E2(a1) + qb1 − 1 = a2

1 − b2
1 − b2

2
E1(b2) + 2b1r = l(a1 − a3) + qb2 = 0

(∇̄h)(E1, E2, E4)
−E1(b1) + pa3 + 1 + 2b2r = E2(a3)− qb1 − 1 = a2

3 − b2
1 − b2

2
E1(b2) + 2b1r = l(a1 − a3) + qb2 = 0

If b2 6= 0 it follows that a1 = 0 and a3 = 0. Consequently, we get q = 0 and b2
1 + b2

2 = 1. Finally,
E1(b1) − 2b2r = −2 (on one hand) and −E1(b1) + 2b2r = −2 (on the other hand). Hence we get
a contradiction.

So, from now on we will take b2 = 0.
Let us develop all situations for the Codazzi quation. Due to the totally symmetry of ∇̄h one has

30 non-trivial possibilities. Nevertheless, some of the equations are consequences of the other ones,
or they are automatically satisfied. For example we have:

Lemma 3. Under the same hypothesis as for Proposition 2, the Codazzi equations are automatically satisfied for
the triple (ξ, ξ, Z) for Z ∈ E(M), as well as for the triple (ξ, ξ, X) for X ∈ H(M).

Therefore, we emphasize only the non-trivial conditions we get from the Codazzi equations.
We remark, in the Table 2, two types of conditions, namely algebraic equations and differential

equations, respectively.



Mathematics 2020, 8, 1278 7 of 23

Lemma 4. Under the above conditions, the coefficient b1 vanishes.

Proof. Contrary, if b1 6= 0 in a point, it is different from zero on an open neighborhood. Looking to
line L1 in Table 2, we deduce that a1 + a3 = 0.

Adding, side by side, the differential equations we have in lines L2 and L3 in Table 2, we get

p(a1 + a3) + 2 = E2(a1 + a3)− 2 = a2
1 + a2

3 − 2b2
1.

We obtain a contradiction and therefore b1 vanishes.

From now on we will distinguish two cases: Case 1. a1 = a3 and Case 2. a1 6= a3.
We will obtain some more equations in each of the two cases and then we completely solve our

problem in Sections 3.2 and 3.3.

Case 1. For the sake of simplicity, we make the following notation a1 = a3 := A
From line L2 in Table 2 we get

pA + 1 = E2(A)− 1 = A2, (6)

which implies that A cannot vanish. Developing all the equations in the Table 2, we obtain:

p = A− 1
A

, a = q = c = 0, ω = 1,

E1(A) = 0, E2(A) = 1 + A2, E3(A) = 0, E4(A) = 0, ξ(A) = 0.

With respect to the orthonormal basis {E1, E2, E3, E4, ξ} in T(M) we may express the two shape
operators as follows

SE5 =


0 0 A 0 0
0 0 0 0 0
A 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 , SE6 =


0 0 0 A 0
0 0 0 0 0
0 0 0 0 0
A 0 0 0 1
0 0 0 1 0

 . (7)

Straightforward computation shows that Ricci Equations (ER) imply new relations between the
functions we have considered:

E1(θ) = ξ(r). (8)

E2(θ) = ξ(l). (9)

E3(θ) = ξ(α)− β θ. (10)

E4(θ) = ξ(β) + α θ. (11)

E1(l)− E2(r) + rp + 2θ = 0. (12)

E1(α)− E3(r)− βr = 0. (13)

E1(β)− E4(r) + αr = 0. (14)

E2(α)− E3(l)− βl − αA = 0. (15)

E2(β)− E4(l) + αl − βA = 0. (16)

E3(β)− E4(α) + α2 + β2 + A2 + 1 = 0. (17)
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Moreover, the normal curvature is completely determined by the following component

R⊥E3 E4
E5 = −(A2 + 1)E6. (18)

Table 2. Gauss equations and symmetries of ∇̄h.

The Symmetry We Use The Result We Get

L1 (∇̄h)(E3, E3, E4) b1(a1 + a3) = 0

L2 (∇̄h)(E1, E2, E3)
E1(b1) + pa1 + 1 = E2(a1) + qb1 − 1 = a2

1 − b2
1

2b1r = l(a1 − a3) = 0

L3 (∇̄h)(E1, E2, E4) −E1(b1) + pa3 + 1 = E2(a3)− qb1 − 1 = a2
3 − b2

1

L4 (∇̄h)(E1, E1, E3)
E1(a1)− pb1 = −2a1b1
r(a1 − a3) = 0

L5 (∇̄h)(E1, E1, E4) E1(a3) + pb1 = 2a3b1

L6 (∇̄h)(E1, E3, E3)
E3(a1)− ab1 = 0
α(a1 − a3) = 0

L7 (∇̄h)(E1, E4, E4)
E4(a3) + cb1 = 0
β(a1 − a3) = 0

L8 (∇̄h)(E2, E2, E3)
E2(b1)− qa1 = 2a1b1
2lb1 = 0

L9 (∇̄h)(E2, E2, E4) E2(b1) + qa3 = 2a3b1

L10 (∇̄h)(E2, E3, E3)
E3(b1) + aa1 = 0
2αb1 = 0

L11 (∇̄h)(E2, E4, E4)
E4(b1)− ca3 = 0
2βb1 = 0

L12 (∇̄h)(E1, E3, ξ)
ξ(a1) = (ω− 1)b1
θ(a1 − a3) = 0

L13 (∇̄h)(E1, E4, ξ) ξ(a3) = (1−ω)b1

L14 (∇̄h)(E2, E3, ξ)
ξ(b1) = (1−ω)a1
2θb1 = 0

L15 (∇̄h)(E2, E4, ξ) ξ(b1) = (ω− 1)a3

L16 (∇̄h)(E1, E3, E4)
E3(a3) + ab1 = 0
E4(a1)− cb1 = 0

L17 (∇̄h)(E2, E3, E4)
E3(b1)− aa3 = 0
E4(b1) + ca1 = 0

Case 2. As a1 6= a3, we immediately obtain ω = 1, p = a1 + a3 and a, c, q, l, r, θ, α and β vanish.
Moreover, we should have a1a3 = −1. Again, for the sake of simplicity we denote a1 = A and
hence a3 = − 1

A and p = A − 1
A . Obviously, A cannot vanish and satisfies the following partial

differential equations

E1(A) = 0, E2(A) = 1 + A2, E3(A) = 0, E4(A) = 0, ξ(A) = 0.

Similarly to the Case 1, we may express the two shape operators as follows

SE5 =


0 0 A 0 0
0 0 0 0 0
A 0 0 0 1
0 0 0 0 0
0 0 1 0 0

 , SE6 =


0 0 0 −1/A 0
0 0 0 0 0
0 0 0 0 0

−1/A 0 0 0 1
0 0 0 1 0

 . (19)
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Straightforward computation shows that the normal connection is flat, so the normal bundle is
parallel. Additionally, Ricci Equations (ER) imply no new relations.

3.2. The Case 1: M is Congruent to S3 × f S2

In this subsection we study in detail the case a1 = a3 and prove that then the contact nearly totally
geodesic CR-submanifold M is congruent to S3 × f S2 and we determine the explicit immersion.

Let us consider the following distributions on M: D = span{E1, E2, ξ} and D⊥ = span{E3, E4}.
Let P and Q be the orthogonal projections from T(M) to D, respectively to D⊥. From Proposition 2 we
write the expression of the Levi-Civita connection on M for the case a1 = a3 = A:

∇E1 E1 = pE2, ∇E1 E2 = −pE1 − ξ,

∇E1 E3 = rE4, ∇E1 E4 = −rE3,

∇E1 ξ = E2,

∇E2 E1 = ξ, ∇E2 E2 = 0,

∇E2 E3 = lE4, ∇E2 E4 = −lE3,

∇E2 ξ = −E1,

∇E3 E1 = 0, ∇E3 E2 = −AE3,

∇E3 E3 = AE2 + αE4, ∇E3 E4 = −αE3,

∇E3 ξ = 0,

∇E4 E1 = 0, ∇E4 E2 = −AE4,

∇E4 E3 = βE4, ∇E4 E4 = AE2 − βE3,

∇E4 ξ = 0,

∇ξ E1 = E2,

∇ξ E2 = −E1,

∇ξ E3 = θE4,

∇ξ E4 = −θE3,

∇ξ ξ = 0.

(20)

As a consequence, we find that the following relations are true:

(a) P∇ZW = g(Z, W)X0, for all Z, W in D⊥;
(b) P∇ZX0 = 0, for all Z in D⊥;
(c) Q∇XY = 0, for all X, Y in D;

where X0 = AE2. The statements (a) and (c) imply that D and D⊥ are both involutive. The statements
(a) and (b) mean that the maximal integral manifolds of D⊥ are extrinsic spheres. Finally, the statement
(c) says that the integral manifolds of D are totally geodesic.

Now, applying a famous result of Hiepko ([18], p. 213): Let (M, g) be a (pseudo-)Riemannian
manifold endowed with a pair (L, N) of non-degenerate foliations. This determines a local warped product
structure with N as a normal factor, if and only if, the foliations are orthogonal, L is geodesic, and N is spherical,
we have:

For every point p ∈ M, there exists an isometry Φ from a warped product N1 ×f N2 to
a neighborhood of p in M with the property

• Φ(N1 × {p2}) is an integral manifold for D for every p2 ∈ N2;
• Φ({p1} × N2) is an integral manifold for D⊥ for every p1 ∈ N1;

where f : N1 → (0, ∞) is the warping function on N1 ×f N2.
In order to find the warping function on M, let us consider the following vector field in D:

Ē1 = A
1+A2 E1 +

1−A2

2(1+A2)
ξ. One can immediately prove that

[Ē1, E2] = [E2, ξ] = [Ē1, ξ] = 0.
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Thus, we choose local coordinates x, y, z on M (in fact on Φ(N1)) such that Ē1 = ∂
∂x , E2 = ∂

∂y and

ξ = ∂
∂z . Using (6), after a possible translation in y-coordinate, we obtain

A = tan y. (21)

Taking y ∈ (0, π/2), we obtain p = −2 cot 2y and E1 = 2
sin 2y

∂
∂x − cot 2y ∂

∂z .
The restriction of the metric g to D can be expressed in terms of the coordinates x, y and z

as follows:
g
∣∣
D =

1
4

dx2 + dy2 + dz2 + cos 2y dxdz.

Moreover, from ([13], Theorem 3.2), we know that SϕZX =
[
η(X)− (ϕX)(log f )

]
Z, for any X ∈ D

and any Z ∈ D⊥. Using the expression (7) for the shape operator, we get that E2(log(Φ ◦ f)) = −A
and combining it with (21) we find

f ≡ Φ ◦ f = cos y,

which is the warping function on M.
Since Φ(N1 × {p2}) is totally geodesic in M and M is nearly totally geodesic in S7, it follows

that N1 × {p2} is (isometrically) immersed in S7 as a totally geodesic submanifold. With a similar
argument, {p1} × N2 is immersed in S7 as a totally umbilical submanifold. Hence Φ(N1 × {p2}) can
be considered to be a (portion of) S3(1). Additionally, Φ({p1} × N2), being totally umbilical in S7,
can be taken as a (portion of) 2-sphere of a certain radius. Looking back to the expression (20) of
the covariant derivative ∇, we conclude that the mean curvature vector field of Φ({p1} × N2) in S7

is AE2. Thus, the curvature of the 2-sphere above is 1 + A2, and hence its radius is 1√
1+A2 = cos y.

Consequently, we will consider M = S3 × f S2 with the warping function f = cos y, y ∈ (0, π
2 ).

Proposition 3. Under the conditions stated for the case 1, it follows that M is locally congruent to a contact
CR warped product S3 × f S2.

Remark 2. Defining the 1-form Ω on M by Ω(U) = −g(AE2, U), we conclude it is closed and therefore,
locally, there exists a smooth function on M such that its differential is equal to Ω. We may notice that this
function is constant on the leaves ofD⊥, that is, on Φ({p1}×N2). This function is nothing but log f . It can be
easily checked that AE2 = −grad log f .

Now, let us determine the metric. Choosing isothermal coordinates u, v on Φ(N2), we have

guu = gvv = cos2 y T2(u, v), guv = 0,

where T is a smooth positive function on M, depending on u and v. Here we made the following
notations: guu := g

(
∂

∂u , ∂
∂u

)
and similar for gvv and guv.

As both {E3, E4} and
{

1
T cos y

∂
∂u , 1

T cos y
∂

∂v

}
are orthonormal bases in E(M), then one is obtained

from the other by a (not necessary positively oriented) rotation.
Finally, due to the orthogonality of the two distributions D and D⊥, we have

gxu = gyu = gzu = 0, gxv = gyv = gzv = 0.

We adopted similar notations as before for gxu, gyu and so on.
Hence the metric g is completely determined.
Now, let us find a more appropriate basis. Taking an arbitrary unit vector Z in E(M), it can be

expressed as
Z = cos sE3 + sin sE4, where s ∈ C∞(M).
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It follows that

h(E1, Z) = A(cos sE5 + sin sE6) = AϕZ and h(E2, Z) = 0.

Moreover, as the function g̃(h(E1, Z), h(E1, Z)) is equal to A2, it is independent of Z. Hence, E3 is
not uniquely defined and it could be replaced by any other unit vector Z in E(M).

So, because of this freedom, we choose

E3 =
1

T(u, v) cos y
∂

∂u
, E4 =

1
T(u, v) cos y

∂

∂v
. (22)

Now, we need to do some additional computations. In what follows, by subscripts we mean the
partial derivatives; for example, Tu = ∂T

∂u . Using (22) and (20), we conclude

• on one hand [E3, E4] =
1

T2 cos y (TvE3 − TuE4),

• and on the other hand [E3, E4] = −αE3 − βE4.

Thus, α = − Tv
T2 cos y and β = Tu

T2 cos y .
Next we have to calculate the Levi-Civita connection of the metric g in terms of the coordinates x, y,

z, u and v and then to compare the results with the relations (20). Being a straightforward computation,
we present only one situation, namely we compute ∇E2 E3:

∇E2 E3 = ∇∂y

( 1
T cos y

∂u
)
=

1
T

sin y
cos2 y

∂u +
1

T cos y
∂y(log(cos y))∂u = 0.

Comparing with ∇E2 E3 = rE4 = r
T cos y ∂v, we get

r = 0. (23)

In a similar way we find
l = 0 and θ = 0. (24)

Finally, the Ricci Equations (8)–(16) are automatically fulfilled, while the Equation (17) leads to
the following partial differential equation for T

Tuu + Tvv

T3 − T2
u + T2

v
T4 + 1 = 0. (25)

Further, our aim is to find the isometric immersion F : M5 −→ S7. Let ι : S7 −→ E8 = C4 be the
canonical inclusion of the 7-dimensional unit sphere in the 4-dimensional complex space. Denoting by

〈 , 〉 the scalar product on E8 and by
◦
∇ the corresponding flat connection, we have

∇̃XY =
◦
∇X Y + 〈X, Y〉p,

for all X and Y tangent to S7(1), where p denotes the position vector of a point of the sphere. Using the
Gauss formula (G) we have

◦
∇X F∗Y = F∗∇XY + h(X, Y)− 〈X, Y〉F,

for all X and Y tangent to M.
For example, if we put X = E2 = ∂y and Y = ξ = ∂z we get

Fyz = −F∗E1 = − 2
sin 2y

Fx + cot 2yFz. (26)
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We obtain that F also satisfies, simultaneously, the following partial differential equations:

Fy =
2

sin 2y
Fxz − cot 2yFzz, (27)

Fzz + F = 0, (28)

1
T cos y

(
2

sin 2y
Fux − cot 2yFuz

)
= tan yE5, (29)

Fuy = − tan yFu, (30)

Fuz = T cos yE5, (31)

Fvy = − tan yFv, (32)

Fyy + F = 0, (33)

2Fxy − 2 cot 2yFx +
1

sin 2y
Fz = 0, (34)

1
T cos y

(
2

sin 2y
Fvx − cot 2yFvz

)
= tan yE6, (35)

Fvz = T cos yE6, (36)

4Fxx + F = 0, (37)

Fuv =
Tu

T
Fv +

Tv

T
Fu, (38)

Fuu =
Tu

T
Fu −

Tv

T
Fv + T2 sin y cos yFy − T2 cos2 yF, (39)

Fvv =
Tv

T
Fv −

Tu

T
Fu + T2 sin y cos yFy − T2 cos2 yF. (40)

Remark 3. Observe that Equation (26) also follows from (27) and (28). Moreover, using (37) and (28),
we conclude that Equations (27) and (34) are equivalent. So, not all the previous PDEs are independent.

Then, combining (29) with (31) and (35) with (36), we get

(2Fx − Fz)u = 0, (2Fx − Fz)v = 0,

respectively, that is 2Fx − Fz depends neither on u, nor on v.
Considering Equations (28), (33) and (37), we deduce

F(x, y, z, u, v)
= cos z cos y cos x

2 u1 + cos z cos y sin x
2 v1 + cos z sin y cos x

2 u2 + cos z sin y sin x
2 v2

+ sin z cos y cos x
2 u3 + sin z cos y sin x

2 v3 + sin z sin y cos x
2 u4 + sin z sin y sin x

2 v4,

(41)

where u1, . . . , u4, v1, . . . , v4 are vectors in R8 which do not depend on x, y and z, but they do depend
on u and v.

Using (41) we compute

2Fx − Fz = cos y sin(z− x
2 )(u1 + v3)− cos y cos(z− x

2 )(u3 − v1)

− sin y sin(z− x
2 )(u2 + v4)− sin y cos(z− x

2 )(u4 − v2).
(42)

Remark 4. Since vectors u1, . . . , u4, v1, . . . , v4 do not depend on x, y and z and 2Fx − Fz does not depend on u
and v, using Equation (42) we conclude that u1 + v3, u2 + v4, u3 − v1 and u4 − v2 are constant vectors in R8.
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Equations (30) and (32) imply(
Fu

cos y

)
y
= 0,

(
Fv

cos y

)
y
= 0, (43)

respectively. Using (41) and the first equation in (43), we get

0 =
∂

∂y

{ [
cos z cos

x
2

∂uu1 + cos z sin
x
2

∂uv1 + sin z cos
x
2

∂uu3 + sin z sin
x
2

∂uv3

]
+ tan y

[
cos z cos

x
2

∂uu2 + cos z sin
x
2

∂uv2 + sin z cos
x
2

∂uu4 + sin z sin
x
2

∂uv4

] }
.

(44)

Since u1, . . . , u4, v1, . . . , v4 do not depend on y, from (44) we conclude ∂uu2 = 0, ∂uv2 = 0,
∂uu4 = 0, ∂uv4 = 0. In the same manner, using the second equation in (43), we obtain ∂vu2 = 0,
∂vv2 = 0, ∂vu4 = 0, ∂vv4 = 0. Hence, u2, v2, u4, v4 are constant vectors in R8.

Using Equations (27) and (28), we get

2Fxz + cos 2yF− sin 2yFy = 0.

Combining now with (41) we obtain

0 = cos z cos
x
2
(cos yu1 − sin yu2 + cos yv3 + sin yv4) (45)

+ cos z sin
x
2
(− cos yu3 − sin yu4 + cos yv1 − sin yv2)

+ sin z cos
x
2
(− cos yv1 − sin yv2 + cos yu3 − sin yu4)

+ sin z sin
x
2
(cos yu1 + sin yu2 + cos yv3 − sin yv4) .

Since (45) is satisfied for all x, y, z, it follows

u1 + v3 = 0, u2 − v4 = 0, u3 − v1 = 0, u4 + v2 = 0. (46)

Replacing (46) in (41) yields

F(x, y, z, u, v) = cos y cos
(
z + x

2
)

u1 + sin y cos
(
z− x

2
)

u2

+ cos y sin
(
z + x

2
)

u3 + sin y sin
(
z− x

2
)

u4,
(47)

where u2, u4 are constant vectors in R8 and u1, u3 may depend on u and v. Now, using (39), we compute
∂2u1

∂u2 =
Tu

T
∂u1

∂u
− Tv

T
∂u1

∂v
− T2u1,

∂2u3

∂u2 =
Tu

T
∂u3

∂u
− Tv

T
∂u3

∂v
− T2u3.

Using (38), it follows 
∂2u1

∂v2 =
Tv

T
∂u1

∂v
− Tu

T
∂u1

∂u
− T2u1,

∂2u3

∂v2 =
Tv

T
∂u3

∂v
− Tu

T
∂u3

∂u
− T2u3
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and using (40), we get 
∂2u1

∂u∂v
=

Tu

T
∂u1

∂v
+

Tv

T
∂u1

∂u
,

∂2u3

∂u∂v
=

Tu

T
∂u3

∂v
+

Tv

T
∂u3

∂u
.

Therefore, we proceed solving the system

Puu =
Tu

T
Pu −

Tv

T
Pv − T2P, (48)

Pvv =
Tv

T
Pv −

Tu

T
Pu − T2P, (49)

Puv =
Tu

T
Pv +

Tv

T
Pu, , (50)

having in mind P ∈ {u1, u3}.
Considering the two vector-valued functions U(u, v) = 1

T2 Pu and V(u, v) = 1
T2 Pv and

using (48)–(50), we conclude that U(u, v) and V(u, v) satisfy the Cauchy-Riemann equations for
each component of the vector valued function U(u, v) + iV(u, v). This means that U(u, v) + iV(u, v)
depends only on w = u + iv and not on w̄ = u− iv. Therefore, the function

U + iV =
1

T2 (Pu + iPv) =
2

T2 ∂w̄P (51)

is holomorphic. Denoting it by

ζ(w) = ζ(u + iv) = a(u, v) + ib(u, v), a, b ∈ R8, (52)

where the functions a and b satisfy the Cauchy-Riemann equations, we conclude that the function P
has to satisfy the equation

∂w̄P =
T2

2
ζ(w). (53)

Up to now, we have kept the conformal factor T in the general form, without thinking at any
possible concrete expression. Our motivation has been a possibility to use this technique for solving
another problem of the same type.

Recall that N2 = S2(1). There are several ways to consider isothermal coordinates u and v on the
2-sphere, that is, to write the metric as T(u, v)2(du2 + dv2). Recall two of them:

• T(u, v) = 2
1+u2+v2 , associated to the parametrization

(u, v) 7→
(

2u
1 + u2 + v2 ,

2v
1 + u2 + v2 ,

u2 + v2 − 1
1 + u2 + v2

)
(54)

obtained from the stereographic projection;
• T(u, v) = 1

cosh v , associated to the parametrization

(u, v) 7→
(

cos u
cosh v

,
sin u

cosh v
, tanh v

)
(55)

obtained as a surface of revolution.

After setting T = 2
1+u2+v2 and solving the Equation (53), we obtain

P(w, w̄) = − 2ζ(w)

w(1 + ww̄)
+ a0(w) + ib0(w),
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where a0 and b0 also satisfy the Cauchy-Riemann equations. Since P(w, w̄) ∈ R8, we conclude

P(u, v) = − 2(ua(u, v) + vb(u, v))
(u2 + v2)(1 + u2 + v2)

+ a0(u, v), a0 ∈ R8, (56)

b0(u, v) =
2(ub(u, v)− va(u, v))
(u2 + v2)(1 + u2 + v2)

. (57)

On the other hand, since ∂w∂w̄P = 1
4 (Puu + Pvv) ∈ R8, using (53) and the information that a and b

satisfy the Cauchy-Riemann equations, we compute

∂a(u, v)
∂v

=
2(va(u, v)− ub(u, v))

1 + u2 + v2 . (58)

Consequently, using (57), we conclude

b0(u, v) = − 1
u2 + v2

∂a(u, v)
∂v

. (59)

Let us express ub− va from the Equation (57):

ub(u, v)− va(u, v) =
b0(u, v)

2
(u2 + v2)(1 + u2 + v2). (60)

For simplicity of notation, we write b0v instead of ∂b0(u,v)
∂v , for example.

Taking the partial derivatives of (60), with respect to u and with respect to v, multiplying the
obtained equations respectively by u and v and adding them, we get

av = −ub0u + vb0v

2
(1 + u2 + v2)− b0

2
(1 + 3u2 + 3v2). (61)

Moreover, after computing b0u and b0v (using (59)) and replacing it in (61), together with b0

from (59), we get
uauv + vavv = av. (62)

Further, taking the partial derivatives of (60), with respect to u and with respect to v, multiplying
the obtained equations respectively by v and u and subtracting them, we get

vb + ua− (u2 + v2)au =
vb0u − ub0v

2
(u2 + v2)(1 + u2 + v2). (63)

Using (63) and the partial derivatives of b0u and b0v (using (59)), we compute

2(ua + vb)
(u2 + v2)(1 + u2 + v2)

=
2au

1 + u2 + v2 +
uavv − vauv

u2 + v2 . (64)

Taking the partial derivative of (62), with respect to v, we compute

uauvv + vavvv = 0. (65)

Having in mind that a is a harmonic function (auu + avv = 0) and taking the partial derivative
of (62), with respect to u, we conclude

uauuv + vauvv = 0. (66)
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Taking the partial derivatives of the equation auu + avv = 0 with respect to u and with respect to
v, we get

auuu + auvv = 0, (67)

auuv + avvv = 0.. (68)

Combining Equations (65) and (68), we obtain

uauvv − vauuv = 0.. (69)

Multiplying Equations (66) and (69) respectively by v and u and adding them, we get auvv = 0,
which, together with (67), implies auuu = 0. From (66) and (65) we deduce auuv = 0 and avvv = 0.
Since all the third order derivatives of the function a(u, v) vanish, we set

a(u, v) = c0 + c1u + c2v + l1(u2 − v2) + 2l2uv, (70)

where c0, c1, c2, l1, l2 are constant vectors in R8. Using (62) and (70), it follows c2 = 0 and therefore

a(u, v) = c0 + c1u + l1(u2 − v2) + 2l2uv. (71)

From (59) we compute

b0 =
2(l1v− l2u)

u2 + v2 . (72)

The Cauchy-Riemann equations for a0 and b0, using (72), are

a0u = b0v =
2l1

u2 + v2 −
4v(l1v− l2u)
(u2 + v2)2 , (73)

−a0v = b0u = − 2l2
u2 + v2 −

4u(l1v− l2u)
(u2 + v2)2 , (74)

Using (73) and (74), we compute

a0 =
−2(l1u + l2v)

u2 + v2 + l0, l0 ∈ R8. (75)

Using (60), (71) and (72), we get

l2u3 − 2l1u2v− l2uv2 − c1uv + (b + l2)u− (c0 + l1)v = 0. (76)

Since a(u, v) and b(u, v) satisfy the Cauchy-Riemann equations, from bu = −av, using (71),
we conclude

b(u, v) = 2l1uv− l2u2 + φ(v)

and from bv = au we get φ(v) = d0 + c1v + l2v2, d0 ∈ R8, which implies

b(u, v) = d0 + c1v + 2l1uv + l2(v2 − u2). (77)

Using (76) and (77) we get d0 = −l2 and c0 = −l1. Consequently, (71) and (77) become

a(u, v) = l1(−1 + u2 − v2) + c1u + 2l2uv, (78)

b(u, v) = l2(−1− u2 + v2) + c1v + 2l1uv. (79)

Remark 5. Equation (64) is also satisfied.
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Replacing (78), (79), (75) in (56), we compute

P(u, v) = l0 − 2
c1 + 2l1u + 2l2v

1 + u2 + v2 = l0 − (c1 + 2l1u + 2l2v)T. (80)

From (48) and (80) we get l0 = c1 and conclude

P(u, v) = c1(1− T)− 2(l1u + l2v)T. (81)

Recalling that P ∈ {u1, u3}, it follows that there exist six constant vectors ε10, ε11, ε12, ε30, ε31,
ε32 ∈ R8 such that

u1 = (1− T)ε10 + T(uε11 + vε12), (82)

u3 = (1− T)ε30 + T(uε31 + vε32). (83)

Using (47), (82), (83), we compute

F(x, y, z, u, v) = (1− T) cos y
(

cos
(

z +
x
2

)
ε10 + sin

(
z +

x
2

)
ε30

)
(84)

+ Tu cos y
(

cos
(

z +
x
2

)
ε11 + sin

(
z +

x
2

)
ε31

)
+ Tv cos y

(
cos

(
z +

x
2

)
ε12 + sin

(
z +

x
2

)
ε32

)
+ sin y

(
cos

(
z− x

2

)
u2 + sin

(
z− x

2

)
u4

)
.

Further, set p0 to be the initial point on M corresponding to x = 0, y = π
4 , z = 0, u = 0, v = 0.

Then T(0, 0) = 2, Tu(0, 0) = 0, Tv(0, 0) = 0. Set also the following initial conditions satisfied by F and
the first partial derivatives, meaning that we fix the initial point on S7 and the initial tangent space at
p0 as a subspace in TF(p0)

S7:

F(p0) =
1√
2
(1, 0, 0, 0, 1, 0, 0, 0)

Fz(p0) = ξ(p0) = JF(p0) =
1√
2
(0, 1, 0, 0, 0, 1, 0, 0)

Fx(p0) =
1
2 E1(p0) =

1
2
√

2
(0, 1, 0, 0, 0,−1, 0, 0)

Fy(p0) = E2(p0) = JE1(p0) =
1√
2
(−1, 0, 0, 0, 1, 0, 0, 0)

Fu(p0) =
√

2E3(p0) =
√

2(0, 0, 1, 0, 0, 0, 0, 0)

Fv(p0) =
√

2E4(p0) =
√

2(0, 0, 0, 0, 0, 0, 1, 0).

Here J is the complex structure on R8 locally defined by

J(x1, y1, x2, y2, x3, y3, x4, y4) = (−y1, x1,−y2, x2,−y3, x3,−y4, x4). (85)

Using (84) we compute

F(p0) =
√

2
2 (−ε10 + u2)

Fz(p0) =
√

2
2 (−ε30 + u4)

Fx(p0) =
√

2
4 (−ε30 − u4)

Fy(p0) =
√

2
2 (ε10 + u2)

Fu(p0) =
√

2ε11

Fv(p0) =
√

2ε12.

Therefore we deduce ε10 = −e1, u2 = e5, ε30 = −e2, u4 = e6, ε11 = e3 and ε12 = e7.
Using (31) and (36), with E5 = JE3 and E6 = JE4, we compute ε31 = e4, ε32 = e8, where e1, . . . , e8

is the canonical basis in R8.



Mathematics 2020, 8, 1278 18 of 23

Consequently, we conclude

F(x, y, z, u, v) = − cos y(1− T)
(
cos

(
z + x

2
)

, sin
(
z + x

2
)

, 0, 0, 0, 0, 0, 0
)

+ cos yTu
(
0, 0, cos

(
z + x

2
)

, sin
(
z + x

2
)

, 0, 0, 0, 0,
)

+ cos yTv
(
0, 0, 0, 0, 0, 0, cos

(
z + x

2
)

, sin
(
z + x

2
))

+ sin y
(
0, 0, 0, 0, cos

(
z− x

2
)

, sin
(
z− x

2
)

, 0, 0
)

.

(86)

Remark 6. Recall that we used T that corresponds to the stereographic projection. The parametrization (54)
can be re-written as (u, v) 7→ (u = Tu, v = Tv, w = 1− T) ∈ S2 ⊂ R3.

Besides, we can consider the parametrization (x, y, z) 7→ (x1, y1, x2, y2), where{
x1 = cos y cos(z + x

2 ), y1 = cos y sin(z + x
2 ),

x2 = sin y cos(z− x
2 ), y2 = sin y sin(z− x

2 ).

With these notations, the immersion F : S3 × f S2 → S7 given in (86) becomes

F(x1, y1, x2, y2; u, v, w) = (−x1w,−y1w, x1u, y1u, x1v, y1v, x2, y2). (87)

Remark that F is nothing but the immersion given in (Reference [5], Equation (3.8)) up to some permutation
of coordinates and orientation of S7. The warping function is f =

√
x12 + y12 = cos y.

Remark 7. Let us see what happens in the case when we work with T(u, v) = 1
cosh v . From the Equation (50)

we immediately obtain that Pu
T does not depend on v. Hence, there exist functions A = A(u) and B = B(v)

such that P(u, v) = A(u)
cosh v + B(v). Using (48) and (49) we find that A(u) = c + c1 cos u + c2 sin u and

B(v) = − c
cosh v + c3

sinh v
cosh v , for some constants c, c1, c2 and c3. Hence

P(u, v) = c1
cos u

cosh v
+ c2

sin u
cosh v

+ c3
sinh v
cosh v

.

As before, we recall that P ∈ {u1, u3}; it follows that there exist six constant vectors ε10, ε11, ε12, ε30, ε31,
ε32 ∈ R8 such that  u1 =

cos u
cosh v

ε10 +
sin u

cosh v
ε11 +

sinh v
cosh v

ε12

u3 =
cos u

cosh v
ε30 +

sin u
cosh v

ε31 +
sinh v
cosh v

ε32.
(88)

We now replace u1 and u3 from (88) in (47) to obtain

F(x1, y1, x2, y2; u, v, w)

= x1uε10 + x1vε11 + x1wε12 + x2u2 + y1uε30 + y1vε31 + y1wε32 + y2u4,

where x1, y1, x2, y2 are as in the Remark 6 and u = cos u
cosh v , v = sin u

cosh v and w = tanh v are obtained using
the isothermal coordinates u, v on the 2-sphere. We note that, for an appropriate choice of initial conditions,
the immersion is the same as (87).

This confirms that the choice of isothermal coordinates on S2 is not so important (in our problem)
to arrive at the result. However, the most important fact is the ability of the reader in solving (explicitly)
the system of PDE equations.
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3.3. The Case 2: M is Congruent to S3 × f1 S
1 × f2 S

1

In this subsection we continue the study of Case 2, introduced in Section 3.1. Recall that in this
case: a1 = A, a3 = − 1

A , p = A− 1
A and

E1(A) = 0, E2(A) = A2 + 1, ξ(A) = 0, E3(A) = 0, E4(A) = 0. (89)

The only non-zero components of the second fundamental form are

h(E1, E3) = AE5, h(E1, E4) = −
1
A

E6, h(E3, ξ) = E5, h(E4, ξ) = E6.

In order to obtain the expression of the isometric immersion F : M5 −→ S7 in local coordinates,
we write the Lie brackets

[E1, E2] =
1− A2

A
E1 − 2ξ, [E2, E3] = A E3, [E2, E4] = −

1
A

E4, (90)

all other being zero. Considering the following vector fields:

Ē1 =
A

1 + A2 E1 +
1− A2

2(1 + A2)
ξ, Ē3 =

1√
1 + A2

E3, Ē4 =
A√

1 + A2
E4,

we can easily prove that the Lie brackets of any two vectors from the set {Ē1, E2, Ē3, Ē4, ξ} vanish.
Therefore, we can set (local) coordinates on M, call them x, y, z, u and v, such that

Ē1 =
∂

∂x
, E2 =

∂

∂y
, Ē3 =

∂

∂u
, Ē4 =

∂

∂v
, ξ =

∂

∂z
.

Using (89) we conclude A = tan y, with y ∈
(
−π

2 , π
2
)
\ {0} (after a translation in the y-coordinate)

and consequently we compute

E1 =
2

sin 2y
∂

∂x
− cot 2y

∂

∂z
, E2 =

∂

∂y
, E3 =

1
cos y

∂

∂u
, E4 =

1
sin y

∂

∂v
, ξ =

∂

∂z
.

We can write now the expression of the metric g in terms of the (local) coordinates

g =
1
4

dx2 + dy2 + dz2 + cos 2y dxdz + cos2 y du2 + sin2 y dv2.

Let F be the isometric immersion of M in S7. Analogously to Case 1, we obtain the system of
partial differential equations satisfied by F:

Fuu = sin y cos yFy − cos2 yF, (91)

Fuv = 0, (92)

Fvv = − sin y cos yFy − sin2 yF, (93)

Fyy = −F, (94)

Fzz = −F, (95)

Fyz = −
2

sin 2y
Fx + cot 2yFz, (96)

Fuy = − tan yFu, (97)

Fvy = cot yFv, (98)
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Fxz =
sin 2y

2
Fy −

cos 2y
2

F, (99)

Fxy = cot 2yFx −
1

2 sin 2y
Fz, (100)

Fxx = −1
4

F. (101)

Fuz = cos yE5, (102)

Fvz = sin yE6, (103)

Fxu =
cos y

2
E5, (104)

Fxv = − sin y
2

E6. (105)

Further, we solve these partial differential equations satisfied by F.
Using Equation (94) we conclude

F = sin yU + cos yV, (106)

where U, V ∈ R8 and U, V do not depend on y. Equations (97) and (98) imply that ∂U
∂u = 0 and ∂V

∂v = 0,
that is U = U(x, z, v) and V = V(x, z, u).

Using (91) and (93), we get
Vuu = −V, Uvv = −U, (107)

and therefore {
U = cos v u1 + sin v u2,

V = cos u v1 + sin u v2,
(108)

where u1, u2, v1, v2 ∈ R8 depend on x and z.
The two functions U and V satisfy also other PDEs, namely

• from (99) we get {
Uxz − 1

2 U = 0,

Vxz +
1
2 V = 0;

(109)

• from (96) we obtain {
Uz + 2Ux = 0,

Vz − 2Vx = 0;
(110)

• from (101) we have {
Uxx +

1
4 U = 0,

Vxx +
1
4 V = 0;

(111)

• from (95) we find {
Uzz + U = 0,

Vzz + V = 0.
(112)

Then, combining (110) with (108) we deduce that

u1 = u1

( x
2
− z
)

, u2 = u2

( x
2
− z
)

, v1 = v1

( x
2
+ z
)

, v2 = v2

( x
2
+ z
)

.
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Finally, using (109), (111) and (112) we obtain the last differential equations u′′1 + u1 = 0,
u′′2 + u2 = 0, v′′1 + v1 = 0 and v′′2 + v2 = 0. Consequently, we get

u1 = cos( x
2 − z)e1 + sin( x

2 − z)e2,

u2 = cos( x
2 − z)e3 + sin( x

2 − z)e4,

v1 = cos( x
2 + z)e5 + sin( x

2 + z)e6,

v2 = cos( x
2 + z)e7 + sin( x

2 + z)e8,

(113)

for some constant vectors e1, . . . , e8 in R8.
Moreover, since F lies on S7, we conclude ‖U‖ = ‖V‖ = 1 and 〈U, V〉 = 0 and, consequently, u1,

u2, v1 and v2 are unitary and mutually orthogonal.
Further, set p0 to be the initial point on M corresponding to x = 0, y = π

4 , z = 0, u = 0, v = 0 and
set the following initial conditions satisfied by F and its first partial derivatives, meaning that we fix
the initial point on S7 and the initial tangent space at p0 as a subspace in TF(p0)

S7:

F(p0) =
1√
2
(1, 0, 0, 0, 1, 0, 0, 0)

Fz(p0) = ξ(p0) = JF(p0) =
1√
2
(0, 1, 0, 0, 0, 1, 0, 0)

Fx(p0) =
1
2 E1(p0) =

1
2
√

2
(0, 1, 0, 0, 0,−1, 0, 0)

Fy(p0) = E2(p0) = JE1(p0) =
1√
2
(−1, 0, 0, 0, 1, 0, 0, 0)

Fu(p0) =
1√
2
(0, 0, 0, 0, 0, 0, 1, 0)

Fv(p0) =
1√
2
(0, 0, 1, 0, 0, 0, 0, 0).

Here J is the complex structure on R8 locally defined by (85). Finally, set also the initial normal
space (at p0) as a subspace in TF(p0)

S7:

E5(p0) = JE3(p0) =
√

2JFu(p0) = (0, 0, 0, 0, 0, 0, 0, 1)

E6(p0) = JE4(p0) =
√

2JFv(p0) = (0, 0, 0, 1, 0, 0, 0, 0).

Using (106), (108) and (113), we conclude

F(x, y, z, u, v) =
(

cos y cos u cos(z + x
2 ), cos y cos u sin(z + x

2 ), sin y sin v cos(z− x
2 ),

sin y sin v sin(z− x
2 ), sin y cos v cos(z− x

2 ), sin y cos v sin(z− x
2 ),

cos y sin u cos(z + x
2 ), cos y sin u sin(z + x

2 )
) (114)

for y ∈ (0, π
2 ), x, z, u, v ∈ R.

We will show that M can be expressed in terms of (multiply) warped products. Consider the
following mutually orthogonal distributions on M:

D0 = span{E1, E2, ξ}, D3 = span{E3} D4 = span{E4}.

The key of the proof is to apply a generalization of Hiepko’s theorem given by Nölker in 1996
in (Reference [19], Theorem 4). The following conditions are satisfied; they are analogue to the previous
conditions (a)–(c):

(i) the decomposition T(M) = D0 ⊥©D3 ⊥©D4 is orthogonal;
(here ⊥©means the orthogonal decomposition);
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(ii) the distributions D3 and D4 are spherical;
(iii) the distributions D⊥3 and D⊥4 are autoparallel, that is ∇ZW ∈ D⊥k , (k = 3, 4), for any

Z, W ∈ D⊥k .

Let us focus on the second condition: for example, the distributions D3 and D4 are spherical since
they are totally umbilical and the corresponding mean curvature vector fields, X0 and X̂0, respectively,
are parallel. From the Equation (20) we obtain X0 = AE2 and X̂0 = − 1

A E2, which are parallel with
respect to the corresponding normal connections.

Thus, for any point p ∈ M, there exists an isometric immersion Φ of a warped product N0 ×f

N3 ×f̂ N4 onto a neighborhood of p in M such that

• Φ(N0 × {p3} × {p4}) is an integral manifold for D0 for every p3 ∈ N3, p4 ∈ N4;
• Φ({p0} × N3 × {p4}) is an integral manifold for D3 for every p0 ∈ N0, p4 ∈ N4;
• Φ({p0} × {p3} × N4) is an integral manifold for D4 for every p0 ∈ N0, p3 ∈ N3.

Similar computations as in the case a1 = a3 imply that the warping functions are given by
f = cos y and f̂ = sin y.

Proposition 4. Under the conditions stated for the case 2, it follows that M is locally congruent to a contact
CR multiply warped product S3 × f1 S

1 × f2 S
1.

In accordance to the case 1 (a1 = a3), we consider the same parametrization (x1, y1, x2, y2) on S3.
Then, on the two circles we set (u = cos u, v = sin u) ∈ S1 and (a = cos v, b = sin v) ∈ S1, respectively.
Thus, the immersion F can be thought (see also Reference [5]) as the following map

F : S3 × f1 S
1 × f2 S

1 −→ S7

F(x1, y1, x2, y2; u, v; a, b) = (ux1, uy1, vx1, vy1, ax2, ay2, bx2, by2) ,
(115)

where the warping functions f1, f2 : N0 → (0, ∞) are given by f1(x1, y1, x2, y2) =
√

x2
1 + y2

1 and

f2(x1, y1, x2, y2) =
√

x2
2 + y2

2.

4. Conclusions and Further Research

We proved that a five-dimensional proper nearly totally geodesic contact CR-submanifold
of seven-dimensional unit sphere is locally congruent to S3 × f S2 or to S3 × f1 S1 × f2 S1, via the
immersions (86) and (114). Thus, the list of five-dimensional nearly totally geodesic contact
CR-submanifolds in the seven-sphere is now complete. So, to finalize the research in this direction,
we have to investigate hypersurfaces in S7 which are nearly totally geodesic contact CR-submanifolds.
This will be done in a future paper.
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