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Abstract: The motivation of mixing distributions in communication/queueing systems modeling is
that some input data (e.g., service time in queueing models) may follow several distinct distributions
in a single input flow. In this paper, we study the sensitivity of performance measures on proximity
of the service time distributions of a multiserver system model with two-component Pareto mixture
distribution of service times. The theoretical results are illustrated by numerical simulation of the
M/G/c systems while using the perfect sampling approach.
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1. Introduction

Mixtures of distributions arise in complex stochastic systems and they are extensively used
for statistical analysis in many real fields, such as lifetime modeling, ageing or failure processes,
engineering reliability [1], and survival theory [2], where data are assumed to be heterogeneous. The
application of the mixture of distributions in the modeling of queueing systems is often induced
by diverse structure of the customers in the system, e.g., by various service time requirements of
multiple classes of customers that arrive into the system (for instance, the transmission time of IP
datagrams with different lengths), or by the noisy/biased measurements that induce the so-called
contaminated distributions. Ignoring such a diversity at the modeling phase may lead to significant
deviation of system performance at practical implementation phase as compared to the modelled
values. This motivates various types of analysis, including the analysis of continuity, robustness,
monotonicity, stability, and sensitivity. In this regard, we mention the fundamental result obtained for
telecommunication system models by B. A. Sevast’yanov [3], and the basic monographs [4,5].

The authors would like to use this opportunity to pay tribute to Professor Vladimir Zolotarev
and to note his outstanding role as the founder of the International Seminar on Stability Problems for
Stochastic Models. One of the authors had a great pleasure to communicate with Professor Zolotarev
over many years, and all of the authors actively participated in the seminar he has founded. In the
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context of this paper, it is especially appropriate to emphasize an important role of Professor Zolotarev
in the study of the stability and monotonicty of queuieng processes, see [6–8].

Information flows in modern telecommunications and computing systems have the form of a
superposition of some sequential-parallel structures [9]. Ranging from small personal devices up to
large scale high-performance computing systems, all of these may be modeled as multiserver queueing
systems. Thus, it is highly important to study the performance of such systems and, in particular,
the sensitivity of stationary performance indexes with respect to the variability of input parameters.
However, direct output analysis of queueing systems is often tricky (see e.g., [10,11]), and explicit
expressions for the distributions of steady-state performance indexes of a multiserver system are, in
general, hardly available and, beyond classic models, known in some special cases only. In some
cases, the analysis may be performed by obtaining asymptotic upper bounds, as in the paper [12], or
studying the continuity of the process, as in [8], or stochastic stability of the queueing process, like
in [4,13], or by means of simulation. In the present paper, we utilize the latter approach.

This paper is dedicated to sensitivity analysis of a steady-state performance index of a multiserver
system with respect to service time distribution having the form of the so-called finite mixture [14].
However, instead of studying the direct parametric sensitivity, we focus on a more delicate analysis of
the (combined) effect of the service time distribution on the steady-state performance estimate. That is,
we compare the basic system to a disturbed one, using a sensitivity measure (Kolmogorov–Smirnov
distance) both for the service time distributions, and for the steady-state performance estimate
(queue size). The service time distribution perturbation is performed by changing the mixing coefficient
and parameters defining the mixture components. We formalize this at the end of Section 3.

In general, the output distributions are hardly analytically available and, in this case, we must be
able to obtain the steady-state performance indexes by simulation. As a basic model, we consider the
classical M/G/c model, where the steady-state distribution of the vector workload process is unknown
as well; however, it can be estimated by means of the recently developed method of regenerative
perfect simulation [15]. In more detail, as the target (perturbed) service time distribution we take the
two-component mixture of Type-II Pareto distributions with support on the positive axis, which is
known as Lomax distributions, as well as two-component exponential (hyperexponential) distribution.
Such a choice also allows for obtaining some analytical expressions. Our interest to Pareto distribution
is caused by the heavy tailed property of this distribution that is frequently observed in models of file
size and flow duration [16].

This paper continues the study performed in [17] in the context of monotonicity. The key idea of
the present paper is to study qualitatively the sensitivity of the steady-state distribution of the system
performance index (steady-state queue size) to the variability of service time distribution by means of
simulation. We also apply the auxiliary results on the failure rates comparison, which allows us to
characterize the monotonicity of some stationary performance measures.

The structure of the paper is as follows. In Section 2, we introduce the two-component mixture
of distributions and discuss some properties that are used in the subsequent analysis. Subsequently,
we define the uniform distance between the mixture and the corresponding parent distribution.
In Section 3, some known stochastic monotonicity properties of the multiserver system are collected,
which further are specified for the considered mixture distributions. In Section 4, we describe the
perfect sampling algorithm that is then used to sample from exact (but unknown) steady-state
distribution of a multiserver queue M/G/c. The results of simulation are presented in Section 5.
We study the sensitivity of the steady-state queue size distribution with respect to (w.r.t.) the shape
parameters of mixture and the mixing coefficient and illustrate stochastic monotonocity of the system
performance. The discussion of the simulation results finalizes the paper in the concluding Section 6.

2. Two-Component Mixture Distributions

The goal of this Section is to derive the uniform distance between the two-component mixture
distribution and its parent distribution. First, we introduce the two-component mixture, and then give
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a few properties, including the stochastic monotonicity. This property is further used to obtain the
monotonicity of the corresponding output queueing process.

Let Xi be independent random variables having mean EXi, density fi, tail distribution function
(d.f.) Fi(x) = 1− Fi(x), and failure rate

ri(x) =
fi(x)
Fi(x)

, i = 1, 2,

defined for such x that Fi(x) > 0. We assume that F1 6= F2 to avoid trivial case. Let I be a Bernoulli
random variable independent of Xi, with success probability P(I = 1) = p. Subsequently, it is called
the random variable

XM = IX1 + (1− I)X2,

has the two-component mixture distribution [18] (we use the index M to denote the mixture). The
mean EXM and density, fM of XM equal, respectively,

EXM = pEX1 + (1− p)EX2, (1)

fM(x) = p f1(x) + (1− p) f2(x), (2)

and it is easy to see that the tail distribution is

FM(x) = pF1(x) + (1− p)F2(x). (3)

Note that the d.f. Fi may belong to the same family of distributions but have other parameters.
In reliability analysis, such a mixture may be interpreted as a contaminated distribution [19], where
1− p is, as a rule, small enough. F1 is called the parent distribution and F2 is the contaminating
distribution. In this Section, we focus on the distance between the mixture and its parent distribution.

A straightforward analysis shows that the failure rate of the mixture has the following form [20]:

rM(x) =
p f1(x) + (1− p) f2(x)
pF1(x) + (1− p)F2(x)

= a(x)r1(x) + (1− a(x))r2(x), (4)

where

a(x) =
pF1(x)

pF1(x) + (1− p)F2(x)
, x ≥ 0.

In particular, it follows from Equation (4) that

rM(x) ≥ min(r1(x), r2(x)), x ≥ 0. (5)

It is worth mentioning that the mixture preserves the monotonicity of failure rate in the following
way: if both rates ri(x) are non-increasing, that is d.f.’s Fi(x) are decreasing failure rate distributions
(DFR), then the mixture FM(x) is DFR distribution as well [21]. Indeed, one can check that

r′M(x) = a(x)r′1(x) + (1− a(x))r′2(x)− a(x)(1− a(x))(r1(x)− r2(x))2, (6)

also see [1]. Subsequently, if r′i(x) < 0, i = 1, 2, it follows from Equation (6) that r′M(x) < 0, since
a(x) ∈ [0, 1] for any x ∈ (0, ∞). In particular, it follows from Equation (6) that the mixture of two
exponential distributions is DFR (note that the exponential distribution has constant failure rate).

Another example of a DFR distribution is the Type-II Pareto distribution, denoted by Pareto(αi, x0),
having d.f. (see e.g., [22])

Fi(x) = 1−
(

x0

x0 + x

)αi

, x ≥ 0, x0 > 0, αi > 0, i = 1, 2.
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The failure rate of Pareto(αi, x0) equals

ri(x) =
αi

x0 + x
, x ≥ 0, i = 1, 2, (7)

and it is monotonically decreases to 0 as x → ∞. As has been noted above, the two-component mixture
of Pareto distributions is DFR distribution. However, the failure rate of finite mixtures, in general, is a
complicated function [20].

The uniform distance between distributions F and G, defined as [12]

∆(F, G) = sup
x
|F(x)− G(x)|, (8)

is a recognised measure, which is actively used in the sensitivity analysis [12]. It is easy to see that the
uniform distance ∆(FM, F1) between the mixture distribution Equation (3) and its parent distribution is

∆(FM, F1) = sup
x≥0
|pF1(x) + (1− p)F2(x)− F1(x)| = (1− p) sup

x≥0
|F1(x)− F2(x)|. (9)

Note that, if the densities fi exist, and there exists x∗ that delivers the supremum in Equation (9),

∆(FM, F1) = |F1(x∗)− F2(x∗)|,

then x∗ satisfies the equality
f1(x∗) = f2(x∗). (10)

By definition of the failure rates, ri, it then follows that

r1(x∗)F1(x∗) = r2(x∗)F2(x∗).

Thus, expression Equation (9) can be written in the following convenient form

∆(FM, F1) = (1− p)
|r2(x∗)− r1(x∗)|

r2(x∗)
F1(x∗) = (1− p)

|r1(x∗)− r2(x∗)|
r1(x∗)

F2(x∗). (11)

Note that Equation (11) allows obtaining the following upper bound for the distance ∆(FM, F1):

∆(FM, F1) ≤ (1− p)
|r2(x∗)− r1(x∗)|

r1(x∗)
=: δ(x∗). (12)

In particular, for the hyperexponential distribution, that is for two-component mixture of
exponential distributions with densities fi(x) = λie−λix, i = 1, 2, it follows from Equation (10),
that

x∗ =
log λ1 − log λ2

λ1 − λ2
,

and in this case expression Equation (11) becomes

∆(FM, F1) = (1− p)
|λ2 − λ1|

λ2

(
λ1

λ2

)− λ1
λ1−λ2 ≤ (1− p)

|λ2 − λ1|
λ2

. (13)

Note that the last inequality in Equation (13) is a particular case of Equation (12). Expression
Equation (13) is consistent with a more general result for the so-called univariate scale mixture XM
having form [2]

XM
d
=

X1

Y
, (14)
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with d.f.
F̂M(x) =

∫ ∞

0
F1(θx)dG(θ),

where F1 is the parent distribution of the random variable X1 and G is the distribution of a mixing
random variable Y ≥ 0. It is clear that the transformation Equation (14) is a scale change, and if
Y ∈ {y1, . . . , ym} is a discrete random variable, then Equation (14) becomes

XM =
m

∑
i=1

1
yi

I(Y = yi)X1, (15)

which is a finite mixture, where I is an indicator function. The aforementioned general result for the
univariate scale mixture states that if F1 is an exponential d.f., then an upper bound for the uniform
distance may be obtained as follows [2,23]:

∆(F̂M, F1) ≤ E|Y− 1|. (16)

To show that Equation (16) indeed coincides with Equation (13) for the two-component scale
mixture case, let Y have point masses at 1 and λ2/λ1 with probabilities p and 1− p, respectively.
It immediately follows from Equations (15) and (16) that

E(Y− 1) = (1− p)
|λ1 − λ2|

λ2
.

Now, we return to the two-component Pareto(αi, x0) mixture FM. It follows from Equation (11)
that in this case

∆(FM, F1) = (1− p)
|α1 − α2|

α2

(
α2

α1

) α1
α1−α2

, (17)

where the value x∗ satisfying equality Equation (10) equals

x∗ = x0

((
α1

α2

) 1
α1−α2 − 1

)
.

Note that the r.h.s. of Equation (17) is similar to the r.h.s. of Equation (13). This similarity is
caused by the specific shape of the failure rate of the distribution Pareto(αi, x0). Moreover, in such a
case, the quantity δ(x∗) defined in Equation (12) does not depend on x∗ and, thus, for Pareto mixture,
it readily follows from Equation (12) that

∆(FM, F1) ≤ (1− p)
|α1 − α2|

α2
=: δ(α1, α2). (18)

In Figure 1, to illustrate the dependence of the uniform distance on the parameter α2 of the
contaminating distribution, we depict ∆(FM, F1) jointly with δ(α1, α2) for fixed α1 = 2 and p = 0.9 by
varying α2 in the interval (1, 5).
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Figure 1. The distance ∆(FM, F1) with mixing parameter p = 0.9 and an upper bound δ(α1, α2) vs.
parameter α2.

3. Multiserver System Sensitivity

In this Section, we formalize our main goal for the numerical experiments conducted and
discussed in Section 5. We then demonstrate how stochastic and failure rate ordering can be applied
to multiserver systems with mixed service time distribution. The numerical experiments equipped
with the stochastic comparison technique not only allow for obtaining the absolute value, but also
characterizing the monotonicity of performance indexes.

Consider a classical First-Come-First-Served (FCFS) c-server M/G/c queueing system that is fed
by a Poisson input with rate λ, arrival instants {ti, i ≥ 1} with t1 = 0, independent and identically
distributed (iid) interarrival times Ti = ti+1 − ti and iid service times {Si, i ≥ 1}. Note that λ = 1/ET,
where T is generic interarrival time. Now, we consider the c-dimensional vector of the remaining
workload process in such a system,

Wi = (Wi,1, . . . , Wi,c),

where Wi,k is the kth smallest component of the vector which is observed by the ith arrival [24].
Thus, the vector components are kept in ascending order,

Wi,1 ≤ · · · ≤Wi,c,

and the quantity Wi,j, “observed” by the arriving customer i, equals the unfinished work which must
be done by server j provided no new work arrives after arrival instant ti of customer i; j = 1, . . . , c.
If there are no idle servers upon arrival of customer i, then s/he waits in a common infinite capacity
queue until the server with minimal work, Wi,1, becomes free. It is easy to see that Wi,1 is the waiting
time of customer i which starts being served at time ti + Wi,1. It is well-known that the workload
vector sequence follows the celebrated stochastic Kiefer–Wolfowitz recursion [25]:

Wi+1 = R(Wi + e1Si − 1Ti)
+, (19)

where e1 = (1, 0, . . . , 0) and 1 is the vector of ones, operator R puts the components in an ascending
order, and operation (·)+ = max(0, ·) is applied componentwise (we omit the sub-index for a generic
element of a sequence). In what follows, we assume that the stability condition holds [25],

ρ := λES < c. (20)
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Define the departure instant of customer i by di = ti + Wi,1 + Si. Now define the process

Qn = ∑
j≥1, j 6=n

I(tj ≤ tn < dj), (21)

counting the queue size (number of customers in the system) at the arrival instant tn. Under condition
Equation (20), Qn converges in distribution, as n → ∞, to the steady-state queue size Q, with
stationary distribution

πn = P(Q = n), n ≥ 0.

Note that when service times Si are exponential, the steady-state queue size distribution, πn, n ≥ 0,
is well known [26]:

πn =



(
c−1
∑

k=0

ρk

k! +
ρc

(c− 1)!(c− ρ)

)−1

, n = 0,

π0
ρn

n! , 1 ≤ n ≤ c,

π0
ρn

c!cn−c , n > c.

(22)

The operators R(·) and (·)+ in Equation (19) preserve ordering, and it allows for us to establish
the monotonicity of the workload sequence in the multiserver system in the case when the driving
sequences {T(i)

n , S(i)
n , n ≥ 1}, i = 1, 2 satisfy stochastic order. We recall that the stochastic order

X2 ≤st X1 between two random variables X1, X2 means that the tail d.f.’s satisfy inequality

P(X2 > x) ≤ P(X1 > x), x ≥ 0. (23)

In is known [27] that, in two c-server systems with stochastically ordered input sequences,
T(2) ≥st T(1) and S(2) ≤st S(1), the workload sequences {W(i)

n }, i = 1, 2, are (componentwise) ordered
in the following way

W(2)
n ≤st W(1)

n n ≥ 1. (24)

It also holds for the steady-state workloads:

W(2) ≤st W(1).

If the input in both systems is the same, which is T(2) =st T(1), then the the queue length process
at the arrival instants satisfy similar ordering both in path-wise sense and in steady-state [27]

Q(2) ≤st Q(1). (25)

The stochastic ordering ≤st can be transformed into the ordering with probability 1 by the
coupling technique [28]. In the context of this work, it is worth mentioning that the sufficient condition
for the stochastic ordering S(2) ≤st S(1) is the failure rate ordering [29]:

r2(x) ≥ r1(x), x ≥ 0, (26)

where ri is the failure rate of r.v. S(i), i = 1, 2. We summarize the discussion in the following lemma
which is a straightforward result of [27].

Lemma 1. Consider two c-server systems with stochastically equivalent input, T(2) =st T(1), and failure rate
ordered service time distributions, r2(x) ≥ r1(x), x ≥ 0. Subsequently, Equation (25) holds.

Now, we consider two M/G/c queueing systems, denoted by Σ(1) and Σ(M), fed by
(stochastically) identical Poisson process with rate λ. Let the first system Σ(1) have the service time
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distribution F1. We refer below to the first system as being basic. In the second (contaminated) system
Σ(M), we use service time distribution FM defined by Equation (3), with the same F1 and some F2 and
p ∈ (0, 1). Let now Q(1) (with d.f. FQ(1) ) be the steady-state queue size in the first system. Define

similarly Q(M) and FQ(M) for the system Σ(M). We are interested in studying the sensitivity of the
uniform distance

∆(FQ(M) , FQ(1)) = sup
x≥0
|FQ(1)(x)− FQ(M)(x)|. (27)

More formally, we study the effect of ∆(FM, F1) given by Equation (9), on the steady-state
performance ∆(FQ(M) , FQ(1)) defined in Equation (27), by varying the mixing coefficient p and
parameters defining the mixture components F1 and F2. However, since the distributions FQ(M)

and FQ(1) are not available explicitly in general, we use simulation to obtain the corresponding
estimates. As such, we study a combined effect of the service time distribution on the steady-state
performance estimate.

The generic service time S(M) in the contaminated system Σ(M) has a two-component mixture
d.f. FM and, thus, it follows from Equation (5) that the conditions of Lemma 1 are satisfied, since M,
where rM is the failure rate of S(M). In particular, this means that the basic system Σ(1) is heavier
loaded than the contaminated system Σ(M). It then follows from Lemma 1 and Equation (23) that the
difference FQ(1)(x)− FQ(M)(x) (see Equation (27)) is negative for all x ≥ 0. In Section 5, we study the
distance Equation (27) numerically.

4. Exact Steady-State Simulation by Regenerative Approach

In general, there are no closed form expressions for the steady-state distribution of the queue
length and vector workload process in an M/G/c system. Although a number of approximations
exist [30–33], in general the accuracy of such methods is a point of discussion [34], especially when
the service times distribution is heavy-tailed. Thus, to study the sensitivity we need to rely on
simulation. A contribution of this work is that unlike classical discrete-event simulation (crude
Monte-Carlo), which always has the so-called transient (warm-up) period during which an influence
of initial conditions exists, we use the perfect simulation technique that allows exact sampling from the
(unknown) steady-state distribution. In what follows, we rely on the regenerative approach designed
for the M/G/c system in the work [15] (although there are recently developed more sophisticated
techniques based on backward coupling, for instant [35], which are valid for a more general G/G/c
system). Below, we outline the approach from [15].

This approach uses the so-called a Random Assignment (RA) system M/G/c as a majorant for
the original M/G/c system. In the RA system, each new customer is assigned to arbitrary server
randomly (that is with probability 1/c). As a result, the remaining workload in server j that customer
n meets, denoted by Vn,j, satisfies recursion

Vn+1,j = [Vn,j + I(Un = j)Sn − Tn]
+, j = 1, . . . , c, (28)

where iid random variables {Un} are uniformly distributed over {1, . . . , c}, and I(Un = j) = 1 means
that customer n is routed to server j. The RA system is indeed is a collection of M/G/1 systems, each
with Poisson input with rate λ/c. As a result, in each, such a system the stationary workload, D, is
distributed in accordance with the following version of the Pollaczek–Khintchine formula [15]

D =
L

∑
i=1

S(e)
i , (29)

where L has geometric distribution

P(L = k) =
(ρ

c
)k(1− ρ

c
)
, (30)
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and S(e) has the so-called equilibrium (integrated tail) distribution,

P
(

S(e) > x
)
=

1
ES

∫ ∞

x
FS(t)dt, (31)

where FS is the d.f. of original service time S. It is well-known that both workload process and
queue size process in the RA system dominate the corresponding process in the original M/G/c
system [5,24,27]. Applying coupling, this dominance holds with probability (w.p.) 1. In particular, the
regenerations of RA system (the instants when customers meet totally idle system) are also regeneration
instants of the original system M/G/c. These results then are used to sample from the steady-state
distribution of the RA system as follows:

1. sample the values Li, i = 1, . . . , c according to geometric distribution Equation (30);
2. sample S(e)

1 , . . . , S(e)
Li

, i = 1, . . . , c according to integrated tail distribution Equation (31); and,
3. construct the (stationary) components Di for i = 1, . . . , c, by formula Equation (29).

Subsequently, starting from the steady-state vector V1 = (D1, . . . , Dc) containing iid components,
the recursion Equation (28) is applied to each separate queue in the RA system until the event

Vτe = (Vτe ,1, . . . , Vτe ,c) = 0

happens at the (arrival) instant of some customer τe. Thus, τe is the length of equilibrium (steady-state)
remaining regeneration period. Note that by construction, at each step of this recursion, the workload
vector has steady-state distribution in the RA system. Omitting unnecessary details, the remaining
steps of algorithm are as follows [15]:

1. sample stochastic copies V(k) = (V(k)
1 , V(k)

2 , . . .), k = 1, 2, . . . of the sequence of workload vectors

using recursion Equation (28); each sequence starts with V(k)
1 = 0 and lasts until the event

V(k)
τ(k) = 0 happens at some instant τ(k); note that {τ(k)} are iid random variables distributed as a

generic regeneration period τ of RA system;
2. repeat previous step until the event τ(j) > τe happens in some sample V(j) = (V(j)

1 , V(j)
2 , . . .);

and,
3. the value V(j)

τe of the workload vector V(j) at instant τe, has the target steady-state distribution of
the workload in the original M/G/c system.

We note that, although this approach allows to sample exactly from the steady-state distribution,
the regeneration period in the dominated RA system can be very large in practice, and, thus, can lead
to unacceptable long simulation. For further details on perfect sampling, see [15,35–37].

Now we explain how to sample from the equilibrium distribution of a two-component mixture.
Let FM be the tail of a two-component mixture Equation (3). Subsequently, it follows from
Equation (3) that

F(e)
M (x) =

1
EXM

∫ ∞

x
FM(u)du =

pEX1

EXM
F(e)

1 (x) +
(1− p)EX2

EXM
F(e)

2 (x). (32)

It is clearly seen from Equation (32) that the equilibrium distribution of a mixture is itself a
two-component mixture of equilibrium distributions of the components. Thus, to sample from the
equilibrium distribution (32), we sample from F(e)

1 w.p. q = pEX1/EXM, and sample from F(e)
2 w.p.

1− q. Finally, note that, as easy to see, if the original distributions are Pareto(αi, x0), then F(e)
i are also

Pareto(αi − 1, x0), i = 1, 2 (also see [38]).

5. Simulation Results

As a sanity check of the perfect sampling M/G/c model, we validate the algorithm via the
M/M/c system having input rate λ = 7.5, service rate µ = 1.5, c = 10 servers, and ρ = λ/µ = 5.
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We run N = 5000 samples from steady-state process using perfect simulation and build the empirical
queue size distribution vs. theoretical values that were obtained from Equation (22). We depict the
results of validation on Figure 2. Note that the uniform distance between the empirical and theoretical
distributions is 0.0091.
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Figure 2. Theoretical distribution of the steady-state queue size in an M/M/10 system vs.empirical
distribution (N = 5000 samples), with input rate λ = 7.5, service rate µ = 1.5. The uniform distance
between the theoretical and estimated queue size distributions equals ∆ = 0.0091.

5.1. Experiment 1: Hyperexponential Case

Now, we step away from the basic Markovian case, M/M/c, having service time distribution
F1(x) = 1 − e−µ1x, by introducing a contaminated system M/G/c with generic service time,
S(M), having two-state hyperexponential distribution, H2, with Fi(x) = 1 − e−µix, and mixing
coefficient p ∈ (0, 1). Note that such a case has computationally tractable solution, see [39].
However, we use the perfect sampling algorithm to check the accuracy of the sensitivity analysis.
We fix

µ1 = 2, c = λ = 5, p = 0.7,

and vary µ2 over range (2, 8] with step 0.4. We obtain the empirical queue size d.f., F̂Q(1) , in the
basic, and F̂Q(M) in the contaminated system, and construct Equation (27) for each combination of the
parameters while using N = 10,000 samples from the steady-state distribution. The linear dependence
of ∆(F̂Q(M) , F̂Q(1)) on ∆(FM, F1) is clearly seen in Figure 3.

5.2. Experiment 2a: Pareto Case, Sensitivity to Mixing Parameter

In the following experiments, we use an M/G/c system with c = 4, load ρ = 0.5, and Pareto(α1, 1)
service time d.f., with α1 = 2.1 as the basic system for comparison. The input rate of the basic system
is taken as λ = ρc(α1 − 1) so as to guarantee the desired load ρ = 0.5. Note that, to the best of our
knowledge, there is no explicit expression for the steady-state queue size in such a system, and thus
simulation is used to obtain the corresponding estimates of the steady-state queue size d.f. To obtain
such an estimate, N = 10,000 samples from the corresponding steady-state distribution are obtained by
the perfect sampling technique described in Section 4.

In the first experiment, we study the steady-state queue size distribution sensitivity to the mixing
parameter, p. The mixing coefficient is iterated over the discrete values p = 0.95, 0.9, . . . , 0.25, and the
empirical steady-state queue size d.f., F

Q(M)
p

, is constructed for the disturbed system with mixture

service time d.f., FM given in Equation (3), consisting of Pareto(α1, 1) and Pareto(α2, 1) with mixing
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parameter p, where α2 = 4.9. The input rate λ is fixed at the level λ = 2.2, so as to guarantee the
load ρ = 0.5 in the basic system. Note that the parameter p is varied in such a way that the mixing
proportion of Pareto(α2, 1) distribution becomes larger with smaller p, and dominates the Pareto(α1, 1),
for p < 0.5. Finally, we plot the values ∆(FM, F1) vs. ∆(F̂

Q(M)
p

, F̂Q(1)) for the values p given. The results

are depicted in Figure 4. Note that the dependence of the distance is approximately linear in mixing
probability, p.
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Figure 3. Distance, ∆(F̂Q(M) , F̂Q(1) ), between the empirical queue size d.f. in a basic M/M/5 system
with input rate λ = 5, service rate µ1 = 2, compared to a contaminated M/H2/5 system with input
rate λ = 5 and hyperexponential service times being a mixture with µ1 = 2 and µ2 = 2, 2.4, . . . , 8,
p = 0.7, obtained from N = 10,000 samples, vs. service time d.f. distance, ∆(FM, F1).
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Figure 4. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4, ρ = 0.5,
F1 being Pareto(2.1, 1) service time d.f. and λ = 2.2, and system with a mixture, FM of Pareto(2.1, 1)
and Pareto(4.9, 1) service time d.f. vs. the distance between F1 and FM, for varying p = 1, 0.95, . . . , 0.25.

5.3. Experiment 2b: Pareto Case, Sensitivity to Contaminating Distribution

In the following experiment, we study the sensitivity of the steady-state queue size distribution
on the parameter α2 of the mixture. Now p = 0.7 is fixed, and α2 is iterated over the discrete
set α2 ∈ {2.1, 2.3, . . . , 4.9}, ceteris paribus. As in the previous experiment, we build the empirical
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steady-state queue size distribution of the basic system, F̂Q(1) , by exact sampling from steady state
using the method described in Section 4. We plot the values ∆(FM, F1) vs. ∆(F̂

Q(M)
α2

, F̂Q(1)) for the given

values of α2 as a parametric functions of α2. The results are depicted in Figure 5, where, unlike the
previous scenarios, the nonlinear dependence on α2 is clear.
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Figure 5. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4, ρ = 0.5,
F1 being Pareto(2.1, 1) service time d.f. and λ = 2.2, and system with a mixture, FM of Pareto(2.1, 1)
and Pareto(α2, 1) service time d.f. vs. the distance between F1 and FM, for fixed p = 0.7 and varying
α2 = 2.1, 2.3, . . . , 4.9.

Note that the non-linear dependence of ∆(FQ(M) , FQ(1)) on α2 may be caused by the non-linear
dependence of the distance of service time distributions, ∆(FM, F1), on α2, see Figure 1. Moreover,
the mean service time, S(M), also differs from mean service time of the basic system, which causes
appropriate changes in the load, ρ, in the disturbed system, see Figure 6.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
40

0.
44

0.
48
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ρ

Figure 6. Dependence of the system load, ρ, on the parameter α2 = 2.1, 2.3, . . . , 4.9 of the mixture
distribution in an M/G/c system with c = 4, λ = 2.2, mixture, Fm of Pareto(2.1, 1) and Pareto(α2, 1)
service time d.f. with mixing coefficient p = 0.7.

Using the results of Experiment 2b, we illustrate the stochastic monotonicity property
Equation (25) for selected values of parameter α2. Figure 7 depicts the results.
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Figure 7. Stochastic monotonicity of the system output, in terms of steady-state queue size d.f., on
the parameter α2 = 2.1, 2.5, 4.9 of the mixture distribution in an M/G/c system with c = 4, λ = 2.2,
mixture, FM of Pareto(2.1, 1) and Pareto(α2, 1) service time d.f. with mixing coefficient p = 0.7.

5.4. Experiment 2c: Pareto Case, Constant Load

In the final experiment, we study the joint effect of both the parent and the contaminating (Pareto)
distributions. To do so, we change α1 = 2.1, 2.5, . . . , 4.9, vary α2 = α1, α1 + 0.4, . . . , 4.9. To mitigate the
effect of changing load illustrated by Figure 6, we simultaneously change the parameter λ, so as to
guarantee constant load ρ = 0.5 for all systems, keeping p = 0.7, c = 4 constant. The comparison is
done to the system with the parent distribution of α1 = 2.1 of the service times. Each point is obtained
then by N = 10,000 samples by the perfect sampling technique. Figure 8 depicts the results, where
the color reflects the parent distribution parameter, α1, and size of a dot is proportional to α2. With
increasing distance of the parent distribution from the contaminating distribution, the distance changes
in a linear manner. Moreover, increased α1 changes the starting point (which in all lines corresponds to
the parent distribution with parameter α1), and increasing α2 for fixed α1 increases the distance both in
the input (for the mixture) and performance index (queue size distribution distance). Interestingly,
for the lower line that corresponds to the fixed α1 = 2.1 and varying α2, there seems to be a slightly
negative slope, which is likely to be the result of an increasing variance and, hence, decreasing accuracy.
However, this effect might be interesting to study separately in the future.
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Figure 8. Distance between the empirical queue size d.f. in a basic M/G/c system with c = 4,
F1 being Pareto(α1, 1) service time d.f., and system with a mixture, FM of Pareto(α1, 1) and Pareto(α2, 1)
service time d.f. vs. the distance between F1 and FM, for fixed p = 0.7, fixed ρ = 0.5, varying
α1 = 2.1, 2.4, . . . , 4.9 (color), varying α2 = α1, α1 + 0.4, . . . , 4.9 (dot size), and varying λ, so as to fix the
load, ρ.
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Finally, we note that, to speedup the computation, we used parallel computation of the uniform
distance for various system configurations using the resources of the High-Performance Datacenter of
Karelian Research Centre of Russian Academy of Sciences.

6. Conclusions and Discussion

In this paper, the effect of the service time distribution perturbation on the steady-state
performance measures of a multiserver queueing system is studied. The explicit form for the sensitivity
measure (Kolmogorov-Smirnov distance) between the service time distribution functions was obtained,
and the performance estimates were obtained by the regenerative perfect simulation technique.
The simulation results outline the qualitative nature of the sensitivity, which is, in most cases, linear
(possibly after appropriate scaling of the input rate to guarantee the constant load).

The approach to sensitivity analysis that is presented in this paper can be applied to more
sophisticated, and more practically oriented systems, such as the simultaneous service multiserver
system [40], which would result, though, in an increased dimension of the system state. However, we
note that the steady-state exact sampling by regenerative simulation has several serious drawbacks.
First, the average working time of the algorithm may be infinite [36], e.g., in a system with large number
of servers (which indeed depends on the regenerative cycle length). This problem can be solved
either by the coupling-from-the-past technique [35] (which, although, is rather technically tricky),
or by non traditional regenerative techniques, such as the artificial regeneration [41] or regenerative
envelopes [40]. Finally, the study may be extended to larger classes of service time distributions.
At that, we leave these as opportunities for future research.
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