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Abstract: Determination of the seven parameters of a Direct Current (DC) motor and drive is
presented, based on the speed and current step responses. The method is extended for the motor and
drive parameter determination in the case of a controlled drive. The influence of a speed controller
on the responses is considered in the motor model with the use of the measured voltage. Current
limitation of the supply unit is also considered in the DC motor model. For parameter determination, a
motor model is used, which is determined with two coupled differential equations. Euler’s first-order
and Runge-Kutta fourth-order methods are used for the motor model simulations. For parameter
determination, evolutionary methods are used and compared to each other. Methods used are Genetic
Algorithm, Differential Evolutions with two strategies, Teaching-Learning-Based Optimization, and
Artificial Bee Colony. To improve results, deviation of the motor model simulation time is used
and Memory Assistance with three different approaches is analyzed to shorten the calculation time.
The tests showed that Differential Evolution (DE)/rand/1/exp is the most appropriate for the presented
problem. The division of the motor model simulation time improves the results. For the presented
problem, short-term memory assistance can be suggested for calculation time reduction.

Keywords: electric drive; DC motor; evolutionary optimization methods

1. Introduction

Drives with Direct Current motors (DC motors) are used widely in industrial applications.
DC motors are easy to control and model, and therefore they are often used for industry control
systems. The problem is that often, DC motor and a drive parameters are not known. Without known
parameters, a precise model of the DC motor cannot be made, although it may be needed, among other
things, for analytical control system design and optimization. Motor parameters, given in the motor
specifications provided by the motor manufacturer, could have relatively large tolerances in their
electric and mechanical parameters, especially for cheaper DC motors, and often not all parameters
are given. Some of them can be measured, but appropriate equipment is needed, and for some
measurements the coils should be disconnected, which can be a problem.

Also, drive parameters, such as inertia of the drive and friction, are important parameters in
dimensioning of the drive control system. Inertia of the drive influences the start, stop times, and times
needed for speed changes. Also, energies needed for transient phenomena are strongly dependent on
the inertia. Friction means losses, and it is welcome to evaluate the friction of the motor or of the drive.
Usually the inertia and friction of all the drive parts are not known, and because of that, they cannot be
determined based on the manufacturer data.

In the past, many authors tried to determine DC motor parameters using different methods.
Some of these approaches are: The use of the curve fitting approach [1], the use of the constraint
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optimization technique [2], the pattern search and last square algorithm [3], parameter identification
via the moments method [4], parameter identification via inverse problem methodology using the
conjugate gradients method and Tikhonov’s regularization method [5], parameter determination using
the regression method [6], etc. Also, evolutionary methods are used for parameter estimation [7-10].

Determination of seven parameters of the DC motor and drive, based on the speed and current
step responses, is presented in our work. These parameters are: Three DC motor parameters, inertia of
the motor or drive, and three parameters describing the friction of the motor or drive.

The input data for the parameter determination measured speed and current responses. Measured
responses are compared to calculated responses, obtained using the DC motor simulation. Simulation
is made based on numerical solving of a differential equations system which describes the DC motor
drive. Two methods are tested for numerical solving of the differential equations system, which are the
simple first-order Euler method and fourth-order Runge-Kutta method. Parameters used as input
for simulation should be selected in such a way that simulated responses are as similar as possible to
measured responses. We are dealing with an inverse problem, which is also an optimization problem;
we are searching for the minimum difference between measured and simulated responses. We decided
to use evolutionary methods. Different methods behave differently on different problems, therefore, we
tested different methods with the aim to find the most appropriate for the presented problem. We tested
Genetic Algorithm (GA) [11-16], Differential Evolution (DE) [17-26] with two different strategies,
which are DE/rand/1/exp and DE/best/1/bin, Teaching-Learning-Based Optimization (TLBO) [27-35]
and Artificial Bee Colony (ABC) [36-45]. To evaluate the quality of the methods better, tests were also
made for simulated input data (all parameters are known), and not only for measured input (mostly
exact values of the parameters are not known).

Our contributions in this work are:

e Determination of seven DC motor and drive parameters only based on speed and current
responses. We tested different evolutionary methods, while other authors used only one standard
or evolutionary method. The most appropriate evolutionary method between those selected is
proposed based on tests.

e  Different parameters can be determined with the presented approach: Only the motor (parameters
of the motor and inertia and friction of the motor), DC motor drive without load (parameters of
the motor and inertia and friction of the drive), DC motor drive with the load (parameters of the
motor and inertia of the drive and load characteristic of the drive).

e The method is also extended for the motor and drive parameter determination in the case of
a controlled drive. The influence of a speed controller on the current and speed responses is
considered in the DC motor model with the use of the measured voltage. Also, current limitation
of the supply unit is considered in the DC motor model. Such an approach has not been found
in the literature, as mostly authors use step responses of speed and current, or, in the case of
controlled drive, they use a model of the controller.

e  The accuracy of the DC motor model, used for the Objective Function calculation, is improved by
dividing the time step of the measurement, which cannot be reduced, into smaller steps in the
Objective Function calculation. Such approach to improve the accuracy of the calculation was not
found in the literature.

e  To reduce calculation time short-term memory assistance (STMA) is used, which records not only
the current population, but also population from the previous calculation step. Also presented
is long-term memory assistance (LTMA), which records the entire search history. In the case of
LTMA two different search strategies are used for the search in history.

Some other authors tried to determine DC motor parameters with some of the evolutionary
methods. In [7] Sankardos et al. used a GA for parameter determination of the permanent magnet
DC motor. Lankarani et al. also made DC motor parameter estimation using a GA [8]. In [9] Dupois et al.
proposed a multi-objective elitist GA for DC motor parameter estimation. Udomsuk used in [10] the
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adaptive tabu search technique for separately excited DC motor parameter identification. None of
them used measured voltage for simulation of the controlled drive, as we did.

The paper consists of five sections. The principle of parameter determination is described in
the second section. Methods are also presented which were used for simulation of the motor model
and the evolutionary methods used for parameter determination. Results obtained using simulated
data as input are presented in the third section. Results obtained using measured data as input are
presented in the fourth section. Cross-validation, testing of result correctness at stationary points, the
influence of different weights in Objective Function, improvement of the motor model simulations
using time division and analysis of Memory Assistance are also shown. Conclusions are given in the
last, fifth section.

2. Principle of Parameter Determination

The aim of the presented procedure is determination of the DC motor and drive parameters
(which are often not given, or they are not precise enough) based on the input data, which are current
and speed step responses. The input data are simulated current and speed responses that are used for
analysis of the solving procedure and solving methods. Or, measured current and speed responses that
are used for determination of the real DC motor and drive parameters. The parameter determination
principle is based on the comparison of the input data (current and speed responses) and simulated
data, obtained with DC motor model. In the continuation, the procedure for determination of simulated
data is presented as well as the selected evolutionary optimization methods.

2.1. DC Motor Model and Simulations

The DC motor is presented schematically in Figure 1, which also shows a working machine that
may or may not be connected to the motor. It is dependent on the requirement of which parameters of
the drive should be determined. The presented approach can be used for a DC motor with separate
excitation, with parallel excitation, and for a DC motor with permanent magnets.

i R, L,
@citation

F--------
I Ty i) i
u, e =d Working machine |
| ' !

|

l----------l
o,

Figure 1. Schematic presentation of the drive composed of a DC motor with separate excitation and a
working machine.

The values on Figure 1 are: R, ohmic resistance of the DC motor, L, inductance of the DC motor, u,
voltage at the DC motor, i, current of the DC motor, e induced voltage at the DC motor armature coil, Jm
inertia of the motor, w angular speed at the axis of the motor, and Jwm inertia of the working machine.

Step responses of the motor can be simulated using two Differential Equations (1)—(7). The first
Differential Equation describes the electrical subsystem and is written in (1), the second describes the
mechanical subsystem and is written in (2).

. di
Uy = igRy+ Ly— +e (1)
dt
dw

T — Tload = E

)
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J is the equivalent inertia of all parts in the drive reduced to the motor speed, T, is the torque of
the motor and T,q is the torque of the load, which can only be friction, or friction and load of the
working machine together.

Equations (1) and (2) are coupled, because induced voltage e depends on the speed of the motor,
and the torque of the motor T, depends on the current of the motor. e and Ty, are written in (3) and (4).

6= Cpw ®)

Tm = Cm 'iﬂ (4)

Cm is assumed to be a constant (in the continuation it is called the motor constant), because
cm=km-®D, where kp, is a constant of the DC motor and magnetic flux @ is assumed to be a constant in
the case of the considered motors. Tjoaq Written in (2) can be divided into more parts, presented in (5).

Tioad = Tha + Tip@ + Tier@? (5)

In case no load from the working machine is present, factors T}, and Ty, represent Coulomb and
viscous friction, and T represents air resistance at the fan on the motor axis, if present. In case the
working machine produces load, factors T1,, Ty, and T, represent friction, air resistance at the fan on
the motor axis and load of the working machine together. By insertion of (3), (4) and (5) into (1) and (2),
(6) and (7) are obtained.

i

Uy = iRy + Ly dt” + cprw (6)
cmeia = (Tha + Tip@ + Tiew?) = dw @)
a C dt

Based on Equations (6) and (7), we are searching for seven parameters. The meaning of the searched
parameters depends on the three different test cases: (a) Only the DC motor is tested, (b) The DC motor
and a working machine which does not produce a load are tested and (c) The DC motor and a working
machine which produces load are tested. The meaning of the seven searched parameters, dependent
on the test case, are presented in Table 1.

Table 1. Meaning of the searched parameters dependent on the test case.

Test Case (a) Test Case (b) Test Case (c)
Parameter Onlv Motor Motor and Working Machine Motor and Working Machine
y Which Does Not Produce Load Which Produces Load
R, (QY) motor resistance
La (H) motor inductance
cm (Vs) motor constant
] (kgm?) motor inertia drive inertia drive inertia
Tia (Nm) . L . common load
Tip (Nm-s) } friction of the motor friction of the drive (friction of the drive +

(motor + working machine)

Tic (Nm-s2) load of the working machine)

Simulation of the motor step responses is made with numerical solving of the differential
equations written in (6) and (7). A simple first-order Euler method [46] and more complex fourth-order
Runge-Kutta method [46] are chosen for numerical solving. Derivatives must be expressed for both
methods, the derivative of current from (6) and derivative of speed from (7), and they are written in (8)
and (9).

di, 1

5 = (e iRe = cww) = f(tig ) @®
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”;—‘;’ = }-[cm-z'u ~ (T + Tirw + Tiea?)| = g(tia, @) ©

2.1.1. Simulation with the Use of Euler’s Method

Euler’s method is a first-order method for numerical solving of differential equations [46]. The basic
equation of Euler’s method is written in (10).

y and z are searching functions, k is the value counter, / is a calculation step and f and g are
expressed derivatives of functions y and z. Considering (8) and (9), which describe the problem, and
considering Euler’s method (10), expressions (11) and (12) are written, which describe the solving of
the given system.

D _ 0 Ay f(t<k>, ifl"),w(")) — 0y At-[Lla-(uu ~ MR, — o™ )] (1)

a)(k+1) = a)(k) + Atg t(k),itgk)/w(k)
— o) & At-[%'[cm-ifzk) - (T,ﬂ + Tp® + Tlc~(a)(k))2)”

In (11) and (12) the values of i, and w in time instant k+1 are calculated, based on the previous
time instant k. At is a calculation time step.

(12)

2.1.2. Simulation with the Use of Fourth-Order Runge-Kutta Method

Runge-Kutta’s method is a fourth-order method for numerical solving of differential equations [46].
The basic equations of the fourth-order Runge-Kutta method are written in (13).

K1 A, y®); K, = A0 + 3, y® 1 SheKy);
( ®© 4+ 1n,y® + 1p Kz)' = f(x(k) +h,y® —|—h‘K3); (13)
y(k“) =y ) +h <1K1 + 3Ky + 3K3 + K4)

y and z are searching functions, k is the value counter, / is a calculation step and f and g are
expressed derivatives of functions y and z. K; to Ky and L; to L4 are derivatives of y and z. Considering
(8) and (9), which describe the problem, and considering the fourth-order Runge-Kutta method (13),
expressions (14)-(23) are written, which describe the solving of the given system.

Ky = f(t(k), igk),a)(k)) = Ll-(ua - ib(lk) ‘R, — cm-a)(k)) (14)
1 2

L = g(t(“,z‘i"’,w(k)) = 7~[cm.i§") - (Tza + Ty o® + Ty (0 ) )] (15)

Ky = f(t<’<> + 1At + 1Ak, 0®) + %AtLl)
(16)

=L (u,Z ( 0 4 %At-Kl)-Ru —cn(0® + %At-Ll))
Ly =g(t® + 1A + ek, w® + 1AL,
17)
= % [ ( + 3At Kl) (Tla + Ty (0® + JAEL ) + T (0® + %AbLl)z)]

K = (19 + 3o i + 1otk o) + 1ot

(18)

= = (£ 4 3ARK )Ry — () + 3¢ L)
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Ls g(t< )+ 1A% + 1ARK,, 0® + 1ARL,
(19)
=7e [ ( + At Kz) (Tla + T (0® + JAELy) + T (0® + %At-Lz)z)]

Ke = f(t0 4 AL i® 4 ALKs, 0® + At-Lg)

o (20)
= Ll—ﬂ~(ua ( + At- K3) R, — ¢ (a)(k) + At L3))
Ly g(t<’<> + ALY 4 ALK, 0B + At-L3)
2 (21)
= He [ ( + At- K3) (Tla + T(0® + AtLg) + T (w® + At-Lg) )]

. , 1 1. 1. 1
i _ 0 At~(gl<1 + 3K+ 5K+ 6I<4) (22)

1. 1. 1. 1
oD = ® 4 At-(ng + 3L+ 3La+ gL4) (23)

In (22) and (23), the values of i, and w in time instant k+1 are calculated based on the time instant
k. At is a calculation time step. In the case of the fourth-order Runge-Kutta method, many more
calculations are needed to get i, and w at a current time instant, as in the case of Euler’s method.

The discussed problem is an optimization problem. The simulated data must be as similar as
possible to the input data (measured or simulated). The Objective Function (OF) is defined as the
square of differences between the input and simulated data of current and speed, and it is written

in (24).
1 a lo_simulated_i — ia?inputﬁi 2 Wsimulated_i — Winput_i 2
=52 i + : (24)
i=1

la_mput_max a)mput_max

N is the number of points in the step responses. OF is divided by N to have the possibility
to compare the same response measured with different numbers of points. Current and speed are
normalized, divided with the maximum input value, to eliminate the different influence of current and
speed on the OF due to the different size of current and speed data.

2.2. Methods for Parameter Determination

Evolutionary optimization methods [11-45] are used for parameter determination. They are
population-based search algorithms. The space of all possible solutions is searched through many
solutions, which have various suitability (fitness). Better solutions have higher probability to be
transferred into the next generation, where they might be changed by crossover and/or mutation.
Evolutionary optimization methods have the very exceptional ability to balance exploitation and
exploration [15], and, with that, the ability to avoid local optima. They are also suitable for solving
technical problems, such as to determine the parameters of different models describing real material
properties [47-49], or also determine the parameters of models describing real devices. In the presented
work, we used and compared GA [11-16], DE [17-26], TLBO [27-35] and ABC [36—45]. In GA, the
mutation rate used was 0.2, and the used fraction of population kept was 0.5. For both DE strategies,
which are DE/rand/1/exp and DE/best/1/bin, the used amplification of the differential variation was 0.6,
and the used crossover probability was 0.8. Two different strategies were used, because a strategy that
is the best for a given problem, may not be the best when applied for a different problem. The duplicate
elimination phase was omitted in the TLBO used in our work. Therefore, the number of Fitness
Evaluations (FEs) consumed was determined statically as: FEs = 2 X population size X iterations.
The limit value, which is a control parameter for the bee population in ABC, was set at 100. Since in
ABC a scout bee might not be employed for every iteration, the number of FEs cannot be determined
statically [39].

In this work, we are dealing with seven parameters (D = 7). The population size is ten times the
number of parameters, which is 70 for seven parameters (NP = 70). For stopping criterion for all tests,
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we used 140,000 FEs, which is 2000 iterations in the case of GA and DE, 1000 iterations in the case of
TLBO, and less or equal to 2000 iterations in the case of ABC. The OF used for the quality estimation of
simulated response, compared to input data/response, was written previously in (24).

3. Simulated Data Used as Input

To compare the efficiency and efficacy of the selected methods: GA, DE/rand/1/exp, DE/best/1/bin,
TLBO, and ABC, simulated data were used as input data. Simulated input data were obtained using
the motor model presented in Section 2.1, described with coupled Differential Equations (8) and (9).
To perform the simulation the fourth-order Runge-Kutta method was used, described with expressions
(14)—(23), presented in Section 2.1.2. For the first tests, simulated input data were chosen, due to the
following advantages compared to the real measured data:

e  The weaknesses of the model are avoided. For example, L, is not a completely constant value, but
it is considered to be a constant value.

e  The phenomena, which are not covered by the model, such as armature reaction, is eliminated
from the input data.

e  The exact values of all seven parameters, which should be obtained as results, are known, because
they are used as input for preparation of the simulated current and speed step responses.

e  The same method (the fourth-order Runge-Kutta method) is used to prepare simulated input data
and to evaluate the OF (24) during the parameter determination process. With that, the influence
of the selected method on the results is eliminated.

The data used for the simulated input are presented in Table 2.

Table 2. Data used for the simulated input.

Voltage  Start Time End Time Time Step  Initial Current Initial Speed
Ua Estart tend At ia (t = tstart) w (t = tstart)

20V 0 0.05s 1x107%s 0A 0s7!

Based on fstart, feng and At, presented in Table 2, it can be seen that i, and @ were calculated for
500 time instants. The parameters used to get simulated data are presented in Table 3. Four different

sets of input data, current, and speed step responses were made. They are marked as simulated data
sets 1 to 4 (SD1-SD4).

Table 3. Parameters used to get simulated data.

Simulated Input Data
Parameter SD1 SD2 SD3 SD4
Ra (QY) 425 42.5 425 425
La (H) 0.08 0.08 0.008 0.08
cm (Vs) 0.4781 0.4781 0.4781 0.4781
] (kgm?) 21073 6x107° 2 %107 2 %1076
T}y (Nm) 0.01 0.01 0.01 0.01

T, (Nm-s) 327 x107° 3.27 x 107 327 x107° 3.27 x 107
Tie (Nm-s2) 8.55 x 1078 8.55 x 1078 8.55 x 1078 8.55 x 1078

For SD2, bigger inertia was used, for SD3, lower L,, and with that, lower electrical time constant
was used and for SD3 smaller inertia.
The used simulated data responses are presented in Figure 2.
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Figure 2. Simulated input responses: (a) SD1; (b) SD2; (c) SD3; (d) SD4.
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The limits of the parameters were set due to the physical meaning of the parameters. The used

limits are presented in Table 4.

Table 4. Limits of the parameters.

Parameter Lower Limit Upper Limit
Ra (©)) 0 100
L. (H) 0 1
¢m (Vs) 0 5
J (kgm?) 0 1
T1a (Nm) 0 1
Ti, (Nm-s) 0 1x1073
Tic (Nm-s?) 0 1x10°°

3.1. Results Obtained Using Simulated Input Data

Calculations of the DC motor and drive parameters were made for all four simulated input data
current and speed responses, which are SD1-5D4, presented in Figure 2. For parameter determination,
all five selected methods were used, which are GA, DE/rand/1/exp, DE/best/1/bin, TLBO, and ABC.
Due to the stochastic behavior of the evolutionary methods, 50 independent runs are made for each
combination of input data/used method. The Best (B), Worst (W), Mean (M) OF, and Standard Deviation
(SD) are written in Table 5. In Table 5 the lowest mean OF for each simulated input data is marked
with bold, and the second lowest mean OF for each simulated input data is marked with bold italics.
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Table 5. OF B, W, M value, and SD for 50 independent runs of different methods.

Expression Method
GA DE/Rand/ DE/Best/ TLBO ABC
1/exp 1/bin
B 3.2054 x 1074 4.8980 x 10719 4.8980 x 10719 3.9564 x 10715 6.8520 x 10710
SD1I W 43669 x 107! 4.8980 x 10719 2.5072 x 1072 2.7757 x 10710 1.6968 x 10~/
M  1.0765x 107! 4.8980 x 10~1° 6.6203 x 1074 1.6827 x 10~11 3.4562 x 1078
SD  1.1031 x 107! 2.0882 x 10727 3.6637 x 1073 47340 x 10711 43330 x 1078
B 7.8123 x 107° 6.2556 x 10719 6.2556 x 10719 7.8460 x 10713 1.0932 x 1072
SD2 W 1.8151x 107! 6.2556 x 10719 4.6771 x 1072 7.3488 x 1077 2.1087 x 1077
M 52484 x 1072 6.2556 x 10~19 9.3542 x 1074 5.1639 x 10710 41001 x 1078
SD  5.0508 x 1072 3.5547 x 10727 6.5479 x 1073 1.0976 x 10~ 45495 x 1078
B 6.9449 x 1075 4.6666 x 10719 4.6666 x 10719 1.9151 x 10712 6.1774 x 10711
SD3 W  2.8716x 107! 4.6666 x 10719 4.6005 x 1072 2.6491 x 107? 2.1340 x 107?
M 7.4399 x 1072 4.6666 x 1019 2.3516 x 1073 3.3533 x 10~10 5.2114 x 10710
SD  6.716 x 1072 2.2635 x 10727 9.1419 x 1073 5.0565 x 10710 4.4003 x 10710
B 3.6061 x 1073 3.0248 x 10719 3.0248 x 10719 4523 x 10716 9.7925 x 1072
SD4 W  2.8045x 107! 3.0248 x 1071 8.7846 x 1072 4.2365 x 107? 4.1963 x 1077
M 1.3085x 107! 3.0248 x 10719 4.4826 x 1073 1.5931 x 10710 1.3155 x 107
SD 81103 x 1072 1.1859 x 10~% 1.3509 x 1072 6.8381 x 10710 9.5220 x 1078

Based on the results presented in Table 5, it can be seen that for all four tested simulated input
data, DE/rand/1/exp was much better than the other methods. The second best, also for all tested
simulated input data, was TLBO. The mean values of calculated parameters using all five calculation
methods are presented in Table 6 for SD1.

Table 6. Mean values of calculated parameters for SD1.

Parameter Method
Used Value GA DE/Rand/ DE/Best/ TLBO ABC
(Simulation) 1/exp 1/bin

R, () M 425 37.34 05 43,58 05 42.48
La (H) M 8 x 1072 5.692 x 1072 8 x 1072 8.116 x 1072 8 x 1072 8.002 x 1072

ce (Vs) M 0.4781 0.6782 0.4781 0.4773 0.4781 0.4781
J (kgm?) M 2x107° 8.302 x 107> 2x107° 1.978 x 10~ 2%107° 2.004 x 107>
Tia(Nm) M 1x 1072 1.358 x 1072 1x 1072 0.981 x 1072 0.998 x 1072 0.736 x 1072
T, Nms) M 3.27 x 107> 2.033 x 107° 3.270 x 107° 3.026 x 107° 3.260 x 107° 2.577 x 107°
Tie (Nms2) M 8.55 x 108 4778 x 1078 8.55 x 1078 10.98 x 1078 8.850 x 1078 11.34 x 1078

Based on Table 6, following conclusions can be derived:

e  Mean values of parameters calculated using DE/rand/1/exp are the same as the values used to
generate input data. These results are the best.

e  Mean values of the parameters calculated using TLBO are almost the same as the values used to
generate input data. The small difference is only for the parameters describing load, which are Ty,
T, and Tlc.

e  Mean values of the parameters calculated using GA, DE/best/1/bin and ABC are more or less
different than the values used to generate input data.

Similar results considering the mean values of calculated parameters were also obtained in the
case of SD2, SD3, and SD4. They are not shown, due to the close similarity to the case of SD1 and to
make this paper short and concise.
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Results of simulations confirmed that evolutionary methods are appropriate for solving of the
presented problem.

4. Measured Data Used as an Input and Improvement of the Method for Controlled Drive and
Current Limitation

The use of current and speed step responses is limited to small motors supplied by powerful
supply units, due to the large start-up currents of the DC motors. Usually supply units are not powerful
enough for direct start of the motor, and controlled drives are often used, in which the motor speed is
controlled. The combined drive of the AC/DC supply unit, DC motor, pulse encoder, and working
machine is presented in Figure 3.

i R L,
Excitation
] F L &R _§ _§ N N N J
AC/DC Im wz:
Supply unit Uy il Working machine |
| - '
1 |
———O
I Speed feedback loop

Figure 3. Schematic presentation of the drive composed of a controlled drive.

To consider a controlled drive we did not add a controller into the model of the motor presented
in Section 2.1 as for example in [7]. The controller influences voltage at the motor u,, which is no
longer a constant. To consider that in the case of Euler’s method (EM) presented in Section 2.1.1, the u,
used in (11) is replaced with measured u,(t). In the case of the Runge-Kutta method (RK) presented in
Section 2.1.2, the u, used in (14), (16), (18) and (20) is replaced with measured u, (t). Also, after each
calculated i,, it should be checked, and, if needed, corrected to a limit value of i, jimit. Algorithms for
parameter determination using EM and RK are presented in Figure 4.

[ Input data u, (1), ,(t), @(t), 7, e |

[ input data u(t), i,(t), w(t), i, e |
i
| Initial population NP=70; |
|

I Initial population NP=70; |
T

| Calculate OF with (24) I

No

t<t,

end

Yes
| Calculate OF with (24) |

|
I l t=t+At
|| | t=t+it ' New ' Calculate K; with (14) using u,(t) and L, with (15)
New Il | calculate i, with (11) using u () |! (ati | Loy ey P
) s I population | Calculate K, with (16) using u,(t) and L, with (17)
pqpulatlon I| | Checkand correct /; to fy jimit | |usingoneof 1] Calculate K; with (18) using u,(t) and L, with (19)
using one of || | Calculate w with (12) I selected | Calculate K, with (20) using u,(t) and L, with (21)
selectgd | No | |evolutionary | ||f | Calculate i, with (22)
evolutionary | | methods I Check and correct i, t0 i, imit
methods : e I || | calculate w with (23)
| |
' :
|
|
|

No
| All population members |
IYes

No| : P Yes
Stopping criterion END
i & ‘ ——{eno]

Figure 4. Algorithms for parameter determination using: (a) EM; (b) RK.

4.1. Measured Data Used as a Test Example

For measured data, a laboratory drive was used, which is presented in Figure 5.
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Pulse encoder

Load simulation motor

DC motor

Figure 5. Drive used for measurements.

The drive presented in Figure 5 is combined of the following parts:

e  Supply unit: SIEMENS SIMOREG DC-Master 6RA7013-6DV62-0-Z.

e  DC motor: SIEMENS 1GG5104-0ED40-6V V1.

e  Pulse encoder: HUBNER Berlin, POG 9D 1024.

e Load simulation motor: SIEMENS 1LA7139-4AA10-Z FDBO

e  Measurements were made with the use of a “Trace” function, which is a part of the SIEMENS
“Drive Monitor” software used for supply unit support.

The measurement data must be prepared properly. The excitation should be switched on before
the armature circuit. In this way, it is not necessary to consider the transient phenomenon when
switching on the excitation. Only the part of the measured data after switching the armature on is
used for the parameter determination, as presented in Figure 6.

Part of the measurement used
for the parameters determination

|
|
200 it : | 15
0 witching on the |
Z; 160 excitation | 10
& | —
7,5120 | s 2
= 80 | =
D 7 B et O R e e i aae o o o = g
3 40 “““‘“““w 0
0 ¥ -5
0 2 4 6 8 ((s) 10

s 6Umcas. - ua_mcas. % ]afmeas. Iﬁeldfmeas.
Figure 6. Preparation of the measured data.

Four different measured input data sets were made, marked as MD1, MD2, MD3, and MD4.
Since it was a controlled drive, the following values had to be defined: Speed up time fspeed_up, final
speed wgina) and current limit 7, jimit. The values used for measured input data sets are presented in
Table 7.
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Table 7. Values used to get measured data.

Measured Input Data
Value MD1 MD2 MD3 MD4

tspeed up () 0 0 0 2
Wfinal 571 126 182 182 182
N 11.44 11.44 14.56 14.56

- (110% of I, ratea)  (110% of Iy rated)  (140% Of Iy rated)  (140% of I, rated)
Load (Nm) no load no load no load ~ 753 x 1072w
Number of measured points 87 81 65 106

The measurement time step was 0.132 s. The measured voltage 1,(t), current i,(t) and speed w(t)
are presented in Figure 7 for all four measured data sets.

300 15 300 15
<200 I 2500 &
b 7 s o T &
= 100 ) = 100 4

g I& - o 0 -1
0 4 8 4 12 0 4 8 12
(a) -~ U, - iu ®) (b) =0 U, - iu A
300 15 300

= < 13
~ 11 -
=200 ~ 200 o
= 7 &2 = !
;—;100 3 "—%IOO 3
0 -1 0 -2
0 ]

p 1mn 15
(C) -0 U, -O—I.z (S) (d) - -1, +izl

Figure 7. Measured input responses: (a) MD1; (b) MD2; (c¢) MD3; (d) MD4.

The limits of the parameters were set due to the physical meaning of the parameters. We set
limits appropriate for different motor sizes and loads, but it is always good to check if the limits are
appropriate for the size of the drive. The used limits are presented in Table 8.

Table 8. Limits of the parameters.

Parameter Lower Limit Upper Limit

R, () 0 100

La (H) 0 100

cm (Vs) 0 5

] (kgm?) 0 1

T1a (Nm) 0 20

Tip, (Nm:-s) 0 9.55 x 102 (torque of 20 Nm at speed 209 s l—motor rated speed is 182 sh)
Tic (Nm-s2) 0 456 x 1076 (torque of 20 Nm at speed 209 s~1—motor rated speed is 182 s~

4.2. Results Obtained Using the Measured Input Data

Calculation results are presented for each measured input data set MD1-MD4 in separate
Sections 4.2.1-4.2.4, and results using input data sets are compared in Section 4.2.5. Comparison
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between different data makes sense, because they are obtained on the same drive, and it is expected to
get the same results for both motor and drive parameters. Cross-validation is presented in Section 4.2.6,
testing of result correctness at stationary points in Section 4.2.7, calculation times are presented in
Section 4.2.8, and the influence of weights added into OF is analyzed in Section 4.2.9.

4.2.1. Results Obtained Using Input Data MD1

In the case of MD1, parameters were calculated using EM and RK. Results using different
evolutionary methods, presented in Section 2.2, were compared, to find out which of the methods
was the best for the presented problem. OF and mean values of parameters calculated using EM are
presented in Table 9, and using RK in Table 10.

Table 9. OF and Mean value of the calculated parameters for 50 independent runs using EM for MD1.

OF and Method
Parameters Known Value GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 3.0377 x 1073 2.8906 x 1073 2.8906 x 10~ 2.8906 x 10> 2.8906 x 1073
OF w - 3.8698 x 1072 2.8906 x 1073 3.0919 x 1072 2.6806 x 1072 2.8907 x 1073
M - 1.0227 x 1072 2.8906 x 103 3.4514x 1073 3.3694x 1073  2.8906 x 1073
SD - 8.3375 x 1073 0.0 39239 x 1073 3.3480x 1073 1.5865 x 1078
Ra (Q) M 5.66 18.54 11.56 11.33 12.92 11.56
La (H) M not known 3.53 9.72 x 107! 1.95 1.12 9.72 x 1071
cm (V) M not known 1.288 1.337 1.338 1.324 1.337
] (kgm?) M ~4 %1072 2.83 x 1072 4.64 x 1072 455 x 1072 455 x 1072 4,64 %1072
T} (Nm) M % 0.9 1.79 x 1071 3.13 x 10716 0.0 329 x 107° 7.06 x 10718
Ty, (Nms) M 0 2.83 x 1073 8.95x 10717 424 x107* 495 x107* 6.27 x 107°
Tie (Nms?) M 0 239 x 1075 499 x 1075 471 %x107° 4.60 x 1073 499 x 107>

Table 10. OF and Mean value of the calculated parameters for 50 independent runs using RK for MD1.

OF and Method
Parameters Known GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 26083 x 1073 2.2531x 1073 22531 x 1073 22531 x107° 22531 x 1073
OF W - 1.7874x 1072 22531 x 1073 3.3070 x 107> 22531 x 1073 2.2555x 1073
M - 9.7051 x 103 22531 x 1073  2.3423x 1073 22531 x 1073 22534 x 1073
SD - 42762 x 1073 0.0 28456 x 1074 0.0 42741 x 1077
Ra () M 5.66 7.12 5.06 5.41 5.06 5.07
L. (H) M not known 9.98 x 107! 244 x 1071 2,50 x 1071 244 x 107! 244 x 1071
cm (Vs) M not known 1.364 1.369 1.367 1.369 1.369
] (kgm?) M x4 %1072 3.00 x 1072 4.68 x 1072 4.63 x 1072 4.68 x 1072 468 x 1072
Tia (Nm) M ~ 0.9 3.64 x 1071 7.99 x 1071 5.11x 107! 7.99 x 1071 7.86 x 1071
Ty (Nms) M =0 1.93 x 1073 7.70 x 10718 2.87 x 10721 271 x 1077 9.06 x 1077
Tie (Nms?) M ~0 1.76 x 1073 8.00 x 10719 1.84 x 1075 1.43 x 10718 7.81x 1077

Considering Tables 9 and 10, the best results were obtained using DE/rand/1/exp in the case of
EM, and using DE/rand/1/exp and TLBO in the case of RK, where the calculated values for all 50
starts were the same (SD = 0). Results obtained using EM were not correct, considering known values,
because EM was not precise enough. In the case of DE/rand/1/exp deviation of calculated R, was 104%,
of | was 16%, and calculated Ty, was O (it should be around 0.9). Calculated values using RK were
correct. In the case of DE/rand/1/exp deviation of calculated R, was 11%, of | was 17% and of Tj,
was 11%. The measured and calculated responses (using parameters obtained with DE/rand/1/exp
written in Tables 9 and 10) are presented in Figure 8. To make the Figure more transparent, only the
first two seconds of the responses are displayed, and visible differences are marked between calculated
responses using EM and RK.
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Figure 8. Measured and calculated responses in the case of MD1 using: (a) EM; (b) RK.

Also, from Figure 8, it can be seen that differences between measured and calculated responses

are bigger in the case of EM than in the case of RK.

4.2.2. Results Obtained Using Input Data MD2

OF and mean values of calculated parameters for MD2 using EM are presented in Table 11, and
using RK in Table 12.

Table 11. OF and Mean value of the calculated parameters for 50 independent runs using EM for MD2.

OF and Method
Parameters I\(/:ﬁ::;l GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 3.6370 x 103 3.4006 x 107> 3.4006 x 1073 3.4006 x 107> 3.4006 x 107>
OF W - 1.8426 x 1072 3.4006 x 103 3.4056 x 1073 3.4006 x 10~ 3.4007 x 1073
M - 79539 x 1073 3.4006x 102 3.4008 x 107 3.4006 x 107> 3.4006 x 1073
SD - 3.6910x 1073 1.7347x 10718 9.7750x 1077 1.7347 x 1078 5.9380 x 1077
Ra (O) M 5.66 14.96 11.45 11.45 11.45 11.45
La (H) M not known 1.69 9.76 x 1071 9.76 x 1071 9.76 x 107! 9.76 x 107!
m (Vs) M not known 1.331 1.350 1.350 1.350 1.350
] (kgm?) M ~4x1072 3.87 x 1072 4.89 x 1072 4.89 x 1072 4.89 x 1072 4.89 x 1072
Tia (Nm) M ~ 0.9 2.66 x 1071 3.58 x 10716 0.0 6.75 x 10716 0.0
Ty, (Nms) M ~0 2.00 x 1073 9.61 x 10717 2.02 x 1074 3.44 x 10716 7.78 x 1077
Tie Nms?) M =0 1.13x 1070 2.77 x 1072 2.66 x 1072 2.77 x 107° 2.77 x107°

Table 12. OF and Mean value of the calculated parameters for 50 independent runs using RK for MD2.

OF and Method
Parameters Known Value GA DE/rand/l/exp DE/best/1/bin TLBO ABC
B - 29697 x 1073 2.6384x 107> 2.6384x 1073 26384 x 107>  2.6384 x 107°
OF W - 3.6245x 1073 2.6384x 107  39111x 1073  2.6384x107° 26433 x 1073
M - 1.0895x 1072 2.6384x10™3 27298 x 1073  2.6384x 1073  2.6389 x 1073
SD - 61378 x 103 1.3010x 10718  3.0860 x 107  1.3010 x 1078 1.1636 x 107°
Ra (Q) M 5.66 7.04 4.97 5.20 497 497
La (H) M not known 9.96 x 1071 246 x 1071 249 x 107! 2.46 x 107! 2.46 x 1071
cm (Vs) M not known 1.375 1.376 1.374 1.376 1.376
] (kgm?) M ~4x1072 3.70 x 1072 5.00 x 1072 491 x 1072 5.00 x 1072 5.00 x 1072
Tia (Nm) M ~ 0.9 3.94 x 107! 9.34 x 107! 7.47 x 1071 9.34 x 107! 9.18 x 107!
Tip (Nms) M ~0 1.44x 1073 1.10 x 10717 9.60 x 107° 253 x 10717 1.35x 1075
Tie Nms?) M =0 1.0926 x 107> 1.31x 10717 5.40 x 107° 3.34x 10710 3.65 x 1077
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Considering Tables 11 and 12, the best results were obtained using DE/rand/1/exp and TLBO in
the case of EM and RK, where the calculated values for all 50 starts were the same. Results obtained
using EM were not correct, considering the known values. In the case of DE/rand/1/exp deviation of
calculated R, was 102%, of ] was 22% and calculated T}, was 0 (it should be around 0.9). Calculated
values using RK were correct. In the case of DE/rand/1/exp deviation of calculated R, was 12%, of |
was 25% and of T}, was 3.8%. The first two seconds of measured and calculated responses (using the
parameters obtained with DE/rand/1/exp written in Tables 11 and 12) are presented in Figure 9.
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Figure 9. Measured and calculated responses in the case of MD2 using: (a) EM; (b) RK.

Also, from Figure 9, it can be seen that differences between measured and calculated responses
are bigger in the case of EM than in the case of RK.

4.2.3. Results Obtained Using Input Data MD3

OF and mean values of calculated parameters in case of MD3 are presented in Table 13 for EM
and Table 14 for RK.

Table 13. OF and Mean value of the calculated parameters for 50 independent runs using EM for MD3.

OF and Method
Parameters Known Value GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 5.8927 x 107 57731x107®  57731x10™%  57731x10°  57731x107°
OF w - 49909 x 1072 57731x 1073 4.2488x 1072  57731x 1073  5.7763 x 1073
M - 12440 x 1072 5.7731x 1073 65079 x 1073 57731 x 1073  5.7732x 1073
SD - 8.0686 x 1073 8.6736 x 10719  5.1400x 1073  8.6736 x 1071?  4.4973 x 10~/
R, (Q) M 5.66 16.42 11.92 11.68 11.92 11.92
La (H) M not known 2.95 x 1071 1.28 1.84 1.28 1.28
cem(Vs) M not known 1.313 1.342 1.344 1.342 1.342
] (kgm?) M x4 %1072 2.98 x 1072 442 x 1072 433 %1072 442 x 1072 442 x1072
T1a (Nm) M %09 3.12x 107! 6.45 x 10716 0.0 2.03x 10715 3.88 x 1074
Ti, (Nms) M 20 2.26 x 1073 9.91 x 10718 113 x 1074 6.82x 10717 5.60 x 107°
Tie Nms?) M =0 1.52x 1075 3.11x107° 3.11x107° 3.11x107° 3.10 x 107°




Mathematics 2020, 8, 1269 16 of 37

Table 14. OF and Mean value of the calculated parameters for 50 independent runs using RK for MD3.

OF and Method
Parameters Known Value GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 40166 x 1073 3.7766 x 103 3.7766 x 1073 3.7766 x 1073 3.7766 x 1073
OF W - 215311072 37766 x 1072 38196 x 107  3.7766 x 1073 3.7778 x 1073
M - 77614 x 1073 3.7766 x 107° 37817 x 1073  3.7766 x 107> 3.7766 x 1073
SD - 3.9337 x 1073 0.0 1.3977 x 107° 0.0 1.8574 x 107
Ra (Q) M 5.66 5.79 4.87 485 4.87 4.87
La (H) M not known 9.43x 107! 451x 107! 449 x 107! 451 x 107! 451 x 107!
cm (Vs) M not known 1.371 1.374 1.374 1.374 1.374
] (kgm?) M ~4 %1072 3.66 x 1072 4.44 x 1072 447 x 1072 444 x 1072 444 %1072
Tia (Nm) M % 0.9 538 x 107! 1.01 8.90 x 107! 1.01 x 1071 1.01 x 1071
Ti, (Nms) M %0 1.59 x 1073 538 x 10718 0.0 2,65 x 10717 0.0
Tie (Nms?) M 0 1.13 x 1075 6.59 x 10720 3.62 x107° 3.60 x 10719 3.66 x 1078

Considering Tables 13 and 14, the best results were obtained using DE/rand/1/exp and TLBO in
the case of EM and RK, where the calculated values for all 50 starts were the same. Results obtained
using EM were not correct, considering the known values. In the case of DE/rand/1/exp deviation of
calculated R, was 111%, of ] was 11% and calculated T, was 0 (it should be around 0.9). Calculated
values using RK were correct. In the case of DE/rand/1/exp deviation of calculated R, was 14%, of |
was 11% and of T}, was 12%. The first two seconds of measured and calculated responses (using the
parameters obtained with DE/rand/1/exp written in Tables 13 and 14) are presented in Figure 10.
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Figure 10. Measured and calculated responses in the case of MD3 using: (a) EM; (b) RK.

Also, from Figure 10, it can be seen that the difference between measured and calculated responses
is bigger in the case of EM than in the case of RK.

4.2.4. Results Obtained Using Input Data MD4

OF and mean values of the calculated parameters in the case of MD4 are presented in Table 15 for
EM and Table 16 for RK.
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Table 15. OF and Mean value of the calculated parameters for 50 independent runs using EM for MD4.

OF and Method
Parameters Known Value GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 3.1654 x 1073 29627 x 1073 29627 x 1073 29627 x 1073 2.9674 x 1073
OF W - 1.0235x 1072 29627 x 1073 29627 x 1073 2.9627 x 10~ 3.2046 x 1073
M - 492291073 29627 x 1073 29627 x 1073 29627 x 1073  3.0880 x 1073
SD - 17022 x 107%  4.3368 x 10719 4.3368 x 10717 4.3368 x 1071?  5.9401 x 1075
R, (Q) M 5.66 5.20 6.97 6.97 6.97 6.56
La (H) M not known 4.16 2.82 2.82 2.82 3.08
m (Vs) M not known 1.351 1.251 1.251 1.251 1.271
] (kgm?) M ~4 %1072 9.80 x 1072 1.19 x 1071 1.19 x 1071 1.19 x 1071 1.13 x 1071
Tja (Nm) M %~ 0.9 6.93 x 1071 1.27 x 10715 0.0 2.69 x 10714 5.27 x 1072
Ti, (Nms) M ~ 7.5 %1072 3.06 x 1072 2.66 x 107 8.14 x 10726 1.77 x 10716 1.14 x 1072
Tie (Nms?) M ~ 1.36 x 1074 291 x107* 291 x107% 291 x107* 233x107%

Table 16. OF and Mean value of the calculated parameters for 50 independent runs using RK for MD4.

OF and Method
Parameters Known Value GA DE/rand/1/exp DE/best/1/bin TLBO ABC
B - 37368 x 1073 32949 x 1073 32949 x 1073 32949 x 1073  2.1111x 1073
OF W - 73916 x 1073 32949 x 1072 57046 x 1073 32949 x 107> 3.8064 x 1073
M - 49182 x 1073 32949 x 1073  3.3464x 1073 32949 x 1073  3.3975x 1073
SD - 9.3375 x 107*  8.6736 x 10717 33730 x 107  1.0294x 10  3.1891 x 10™*
R (Q) M 5.66 3.04 5.38 5.29 5.38 498
L, (H) M not known 3.73 3.46 x 107! 426 x 1071 3.46 x 107! 4.00x 1071
cm (Vs) M not known 1.442 1.314 1.319 1.314 1.336
] (kgm?) M ~4 %1072 9.74 x 1072 1.02 x 1072 1.02 x 1072 1.02 x 1072 9.95 x 1072
Tia (Nm) M ~ 0.9 1.67 7.85 x 1071 7.22 x 1071 7.86 x 1071 1.369
T (Nms) M x 7.5 %1072 2.87 x 1072 5.13 x 1072 5.19 x 1072 5.13 x 1072 412 x1072
Tie Nms?) M 0 1.38 x 1074 7.37 x 10720 5.54 x 10722 7.46 x 10712 446 x 1075

Considering Tables 15 and 16, the best results were obtained using DE/rand/1/exp, DE/best/1/bin
and TLBO in the case of EM, and DE/rand/1/exp and TLBO in the case of RK, where the calculated
values for all 50 starts were the same. Results obtained using EM were not correct, considering known
values. In the case of DE/rand/1/exp deviation of calculated R, was 23%, of | was 198% and calculated
T1a was 0 (it should be around 0.9). Calculated values using RK were better. In the case of DE/rand/1/exp
deviation of calculated R, was 4.9%, of | was 155% and of T}, was 13%.

It is interesting to note that OF in the case of EM was lower than in the case of RK, although the
parameters calculated using RK were better than the parameters calculated using EM. In the cases of
MD1, MD2, and MD3 EM was not appropriate. In this case, the measurement deviations and errors
were bigger for the RK method, which simulates a real motor better, cannot get as close to the measured
signal as the EM method, which simulates a real motor worse. Also, 155% deviation of calculated
inertia in the case of RK can be explained by measurement deviations.

The first four seconds of measured and calculated responses (using the parameters obtained with
DE/rand/1/exp written in Tables 15 and 16) are presented in Figure 11.
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Figure 11. Measured and calculated responses in the case of MD4 using: (a) EM; (b) RK.

Also, from Figure 11 it can be seen that the differences between measured and calculated responses
are different in cases of EM and RK.

4.2.5. Comparison of Results Obtained Using All Four Input Data Sets

As previously mentioned, comparison between different data makes sense, because they are
obtained on the same drive, and it is expected to get the same results for both motor and drive
parameters. With that, also the correctness can be checked of the unknown parameters. Mean values of
the parameters calculated using DE/rand/1/exp and RK for MD1, MD2, MD3 are presented in Table 17.

Table 17. Mean values of calculated parameters for 50 independent runs using DE/rand/1/exp and RK
for all input data.

Input Data

Parameters Known Value MD1 MD2 MD3 Known Value MD4

R, () M 5.66 5.06 4.97 4.87 5.66 5.38
La (H) M not known 244 x 1071 2.46 x 107! 451 x 107! not known 3.46 x 107!

ce (Vs) M not known 1.369 1.376 1.374 not known 1.314
] (kgm?) M x4 %1072 4,68 x 1072 5.00 x 1072 444 %1072 ~4 %1072 1.02 x 1072
Tia (Nm) M % 0.9 7.99 x 1071 9.34x 107! 1.01 % 0.9 7.85x 1071
Ty, (Nms) M =0 7.70 x 10718 1.10 x 10717 5.38 x 10718 ~7.5%x1072 5.13 x 1072
Tie (Nms?) M 0 8.00 x 10717 1.31 x 1071 6.59 x 10720 0 7.37 x 10720

Considering Table 17, the first five parameters should be the same for all input data. The last two
parameters T, and T are different, because in the cases of MD1, MD2, and MD3, no load was present,
and in case of MD4 a load of approximately 14.6 Nm at angular speed 182 s~ was present (the load
was a linear function of speed).

Conclusions considering the calculated values:

e R, The maximum deviation of calculated R, was less than 14%, which is a good result.

e [,: Calculated L, was between 244 mH and 451 mH, the difference was due to the deviations in
measurements. As can be seen from the result, a small deviation in the measurement causes a
significant change of L,.

e cy: Calculated ¢, was between 1.314 and 1.376, which is a good result, because the difference
between calculated values was less than 5%.

e  J: The real inertia of the drive was approximately 0.04 kgm? (inertia of some small parts is not
known). The calculated inertia was in the range of 20% in the cases of MD1, MD2, and MD3.
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Only in the case of MD4, was the calculated inertia too small, due to the deviations of the
measurements (see a more detailed explanation in Section 4.2.4).

o  Ty,: Parameter T}, was a friction of the drive, which was approximately 0.9 Nm. The calculated
values for all four input data were in the scope of 15%.

o Ty, Ty Parameters Ty, and Ty were negligibly small in cases MD1, MD2, and MD3. In the case of
MD4 load was present, which was linearly dependent on speed. The total load at angular speed
182 57! was approximately 14.6 Nm. The calculated load considering parameters Tj,, T, and T
was 10.1 Nm, which was a deviation of 31%.

The obtained results were very satisfactory, considering the facts that the input data were measured
data with measurement deviations and errors, that the motor model did not consider the reactance
of the armature, and that real L, was not completely a constant value. Although the results were
very satisfactory, we tried to improve them, which is presented in the continuation of the paper in
Section 4.3.

4.2.6. Cross-Validation of the Obtained Results

From Table 17 it can be seen that for MD1, MD2, and MD3, all seven parameters should be the
same, because the same drive without load is used. However, different conditions were used for the
measurement (different final speed and current limit, as can be seen from Table 7), which offers a test
of the correctness of the results using cross-validation.

The parameters obtained using MD1 are input data for the motor simulation, using the values
for MD2 and MD3 presented in Table 7 and OF calculation. In the same way, parameters obtained
using MD2, are input data for the motor simulation using values for MD1 and MD3, and the
parameters obtained using MD3 are input data for the motor simulation using values for MD1 and
MD2. The cross-validation procedure and calculated OFs are presented in Figure 12.
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I
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Figure 12. Cross-validation procedure and calculated OFs.

In Figure 12, Rpp1, Rvpe, and Ryps are calculated sets of the parameters using MD1, MD2,
and MD3. Analyzing MD1 test data, based on Figure 12, it can be seen that OF = 2.2531 x 1073
for MD1. In the case of the motor simulation using values for MD1 and Ryipp, OF = 2.4928 X 1073,
which is only a slightly higher value. In the case of the motor simulation using values for MD1 and
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Ryvps, OF = 5.3863 x 1073, which is a less than two times higher value, and it can be assumed that
cross-validation confirms the correctness of the results. Based on Figure 12, similar can be concluded
analyzing MD2 and MD3 test data.

The simulated motor speed and current using Ryp1, Rmpz, and Ryps for MD1 values are presented
in Figure 13, for MD2 values are presented in Figure 14 and for MD3 values are presented in Figure 15.

300 16
250 L
12
> 200 R 10
2 ———— s
g' 150 e —_— ifg
3100 4
50 = P -
ST 0
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0.0 0.5 1.0 1.5 1(s) 2.0
= Opeas. ™ Uy meas. ™ Deale. " Dgle MD3 *~ Deale MDF* Ja-meas. ~° ia, cale. 7 iaicalc.MD_Z. "Iy caleMD3

Figure 13. The simulated motor speed and current using Ryip1, Rvpp, and Ryps for MD1 values.
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Figure 14. The simulated motor speed and current using Ryip1, Rvpe, and Ryps for MD2 values.
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Figure 15. The simulated motor speed and current using Ryp1, Rvpp, and Ryps for MD3 values.
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In Figures 13-15, it can be seen that the simulated motor speed and current are similar, although
different parameters (Ryp1, Rmp2 and Ryps) are used. For all three Figures, bigger differences appear
at current responses and smaller at speed responses.

4.2.7. Testing of Result Correctness at Stationary Points

Testing of result correctness at stationary points was made for results obtained using RK, presented
in Table 17. The whole measured data for MD1 are presented in Figure 16.

Stationary operation

B Bl e g U o JUUPRRIET . L S W
8 <
‘A."%.,h Cecsiooats tesveioed 5o Vo
i | 3
| e e e L ST SR S S e e e e e SRS
! 2
2.0 4.0 6.0 8.0 10.0  «s) 12.0
= Weas. = Uy meas. = Dcglc. +ia7mea>. Ly cale.

Figure 16. The whole measured and calculated values using RK for MD1.

From Figure 16 it can be seen that after the start of the motor, stationary operation occurs. Although
small changes of measured voltage are present, due to the measurement deviations and influence of
the controller, operating points after the start of the motor can be treated as stationary. In the case
of stationary operation derivatives di,/dt=0 and dw/dt=0, and, with that Equations (6) and (7) are
changed into (25) and (26).

. di . .
Uy = ig-Ry + La'_: +emw = uUg=ig Ry +omw = Uy cale = ia_meas'Ra + Cm@meas (25)

d

Crmlg — (Tla + Tpw+ Tlc'a)z) = ]% = Cmlg — (Tla + Tpw+ Tlc'a)z) =0
Tia+ T @meas +T1c '(‘)rzr\eas

Cm

(26)

= iuﬁcalc =

In the case of the correct calculated parameters presented in Table 17, calculated u, (4. using (25)
and calculated i, .41 using (26) should be as similar as possible to measured values. Parameters L,
and | are not included in (25) and (26), and their values are not the subject of correctness tests using
stationary points. Calculated current and speed and their deviation at selected stationary points for
MD1, MD2, MD3, and MD4 are presented in Table 18.

In Table 18, times 2, 4, 6, 8, and 10 s were selected for MD1 and MD2. In the case of MD3, times 2,
4,6,7,and 8 s were selected, because the signal was measured for a shorter final time. In the case of
MD4, times 4, 6, 8, 10, and 12 were selected, because the start of the motor was longer than 2 s.

From Table 18 it can be seen that deviations of calculated voltages are up to 3%. Deviations
of calculated speeds are, at 13 stationary points, less than 5%, and in the remaining seven, up to
13%. Based on the presented results it can be concluded that calculated parameters are correct for
stationary points.
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Table 18. Calculated current and speed using (25) and (26) and their deviation at selected points for
MD1, MD2, MD3, and MD#4 for calculated parameters obtained with RK.

Stationary Point—Measured and Calculated Values

Data  £6) v (A)  Gmess 19 tamen V) ) e NONE g, ) PRYROASE
2 0.61 125.8 177.0 175.3 1.0 0.58 43
4 0.54 124.8 172.8 173.6 0.5 0.58 8.1
MD1 6 0.60 125.5 171.6 174.8 1.9 0.58 2.7
8 0.56 124.5 171.4 173.3 11 0.58 42
10 0.56 125.0 172.6 173.9 0.8 0.58 4.22
2 0.78 181.9 252.8 254.1 0.5 0.68 13.0
4 0.74 181.2 251.0 253.1 0.8 0.68 8.3
MD2 6 0.72 182.9 258.4 255.2 1.2 0.68 57
8 0.78 183.0 258.0 255.6 0.9 0.68 13.0
10 0.69 182.8 262.0 255.0 2.7 0.68 1.6
2 0.72 181.0 253.0 252.2 0.3 0.74 2.1
4 0.76 183.2 255.3 255.4 0.0 0.74 3.3
MD3 6 0.65 183.1 255.9 254.8 0.4 0.74 13.1
7 0.73 183.1 257.5 255.1 0.9 0.74 0.7
8 0.67 182.7 257.1 254.3 1.1 0.74 9.7
4 7.87 182.5 281.5 282.1 0.2 7.72 1.9
6 7.68 182.3 283.9 280.8 1.1 7.71 0.4
MD4 8 7.79 182.3 280.9 281.4 0.2 7.71 1.0
10 7.69 182.2 283.6 280.8 1.0 7.71 0.3
12 7.78 182.4 282.3 281.5 0.3 7.72 0.8

4.2.8. Calculation Times

Mean values of calculation times for all four measured input data, for EM and RK, and for all five
tested evolutionary methods are presented in Table 19.

Table 19. Mean values of calculation times for 50 independent runs using EM and RK for all measured

input data.
Measured Data—Method Method

GA DE/rand/1/exp DE/best/1/bin TLBO ABC

MD1—E M t(s) 18.8 25.5 25.1 52.0 62.0
MD1—RK M t(s) 22.2 30.2 28.9 70.3 62.5
MD2—E M t(s) 16.8 23.7 22.7 56.5 54.9
MD2—RK M t(s) 20.5 27.7 26.6 66.3 58.0
MD3—E M t(s) 16.2 21.7 21.2 58.8 46.1
MD3—RK M t(s) 19.3 25.1 26.0 58.8 49.3
MD4—E M t(s) 16.4 24.6 19.9 40.9 70.2
MD4—RK M t(s) 214 30.3 28.8 80.0 715

Based on Table 19, the following conclusions can be written:

e Calculation times were mostly longer for a higher number of measured points (MD1 87, MD2 81,
MD3 65, MD4 106 measured points), which was the expected result.

e  Calculation times using RK were mostly approximately not more than 25% longer than calculation
times using EM, although in the case of RK, ten expressions (14)—(23) were calculated for each
time instant, and in the case of EM, only two expressions (11) and (12) were calculated for each
time instant.
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e Calculation times using different evolutionary methods were different. The fastest was GA.
The calculation times of DE were 20 to 40% longer than the times of GA. Calculation times of
TLBO and ABC were 100 to 150% longer than the calculation times of DE.

Considering the results presented in Section 3.1 (Simulated Input Data), and Sections 4.2.1-4.2.4
(measured input data), DE/rand/1/exp can be suggested for the presented problem as the best method
among those used in this study. TLBO was only slightly worse, but calculation times were much longer
than in the case of DE. DE/best/1/bin and ABC were also acceptable, but not as good as DE/rand/1/exp.
GA cannot be suggested as a method appropriate for the presented problem.

Improvements of the calculations using only DE/rand/1/exp are presented in the continuation of
the paper. Improvements were needed because EM was not suitable, and even in the case of RK, we do
not know if we got the most that can be obtained from the presented measurements.

4.2.9. Influence of Weights Used in OF on Results

The OF written in (24) is composed of two parts: Current and speed. Each of them is normalized.
By adding weights, we can increase the impact of an individual part, and thus improve the results.
Weights w; and w;, to which wy + w, = 1 applies, are added to (24), and (27) is obtained.

N . . 2 2
1 La_simulated_i — la_input_i Wsimulated_i — Winput_i
OF = NZ [wl( - P ) +w2-( P ) ] (27)
i=1

la_input_max (Y input_max

Nine combinations of weights w, w, are used, which are 0.1, 0.9; 0.2, 0.8; ... 0.9, 0.1, and
tested using MD1, MD2, MD3, and MD4. For each test, 50 independent runs were made using RK.
In Tables 20-23 the mean values of calculated parameters are presented for MD1, MD2, MD3, and
MD4 separately.

Table 20. Calculated parameters with different weights using RK for MD1 (mean values for 50
independent runs).

Parameters and OF

Weights

wr, 102 R, (Q) L, (H) La (H) J (kgm?) T1a (Nm) T (Nm's) Ty (Nm-s?) OF
0.1,0.9 456 232 x 1071 1.371 485x1072  500x10716  772x1078  519x107°  4.9217x107*
02,08 4.70 232 %1071 1.371 487x1072  595x1071% 176 x107Y7  512x107°  6.6101x107*
03,07 4.80 234 %1071 1.370 489x1072  1.08x10715  6.01x10718  509%x107° 82256 x 1074
0.4,0.6 4.88 237 x 1071 1.370 490x1072 1.60x10718  747x1078  506x107°  9.8028x107*
0.5,0.5 5.06 244 x 1071 1.369 4.68 x 1072 799%x1071  770x 10718 8.00x1071?  1.1266 x 1073
0.6,0.4 5.14 246 x 1071 1.368 4.68 x 1072 8.00x1071  491x10718  125x1071?  1.2647 x 1073
0.7,0.3 521 248 x 1071 1.368 4.69 x 1072 8.00x1071  438x10718  554x10720  1.4006 x 1073
0.8,0.2 5.27 251 x 1071 1.367 4.69 x 1072 800x1071  234x10718  352x1072  1.5345x 1073
0.9,0.1 5.34 253 x 1071 1.367 4.70 x 1072 8.00x1071  147x10718  337x10720  1.6667 x 1073
Known ;o not not ~4x1072 %09 %0 ) /

value known known
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Table 21. Calculated parameters with different weights using RK for MD2 (mean values for 50
independent runs).

Parameters and OF

Weights

wp i,  Ra ) L, (H) L, (H) J (kgm?) Tia (Nm) Ty (Nm's) Ty (Nm-s?) OF
0.1,0.9 437 227 x 1071 1.379 512x1072  650x 1071 1.03x 1077  2.88x107°  4.4913x107*
0.2,0.8 457 231x107! 1.378 516x1072  1.02x1071  700x107'8  2.84x107° 6.8282x107*
03,07 4.69 2.35x 1071 1.377 519%x1072  786x1071  257x1077  2.82x107°  9.0588x107*
0.4,0.6 4.87 242 x 1071 1.376 499 x 1072 899x1071  296x107Y7  1.07x107°  1.1189x 1073
0.5,0.5 497 246 x 1071 1.376 5.00 x 1072 934x1071  1.10x107Y  131x107?  1.3192x 1073
0.6,0.4 5.05 248 x 1071 1.375 5.01 x 1072 932x1071  722x10718  937x10720 15156 x 1073
0.7,03 5.12 251 x 1071 1.375 5.02 x 1072 932x1071  583x10718  342x1072  1.7089 x 1073
0.8,0.2 5.18 253 x 107! 1.374 5.02 x 1072 930x1071  485x10718  411x1072  1.8999 x 1073
0.9,0.1 5.24 2.55x 1071 1.374 5.03 x 1072 911x1071  343x10718  551x107  2.0902 x 1073
Known 5 o6 not not ~4x 1072 ~0.9 %0 ) /
value known known

Table 22. Calculated parameters with different weights using RK for MD3 (mean values for 50
independent runs).

Parameters and OF

V;’Uii’ggzs R, (Q) La (H) La (D J (kgm?) T} (Nm) T, Nm's) Ty, (Nm-s?) OF

0.1,0.9 4.63 3.70 x 1071 1.375 471 x1072 582x1072  940x10718  288x107° 54941 x107*
02,08 4.69 4.03 %1071 1.375 463 x1072 319%x1071 293x107Y  2.08x107° 89597 x 1074
03,07 478 425x 1071 1.375 4.52x1072 721x1070  1.73x 1077 8.69x107°  1.2326 x 107!
0.4,0.6 4.86 442 x 1071 1.374 445 x 1072 1.01 6.96x10718 448 x1071%  1.5621 x 1073
0.5,0.5 4.87 451 x1071 1.374 4.44 %1072 1.01 538x1071%  659x 10720  1.8883 x 1073
0.6,0.4 4.89 457 x 1071 1.374 444 x 1072 1.01 7.68x10718  546x10720 22128 x 1073
0.7,0.3 4.90 4.63x 1071 1.374 443 x1072 1.01 467x1071% 466 x10720 25363 x 1073
0.8,0.2 491 4.67 x 1071 1.374 443 %1072 1.02 585x10718 251 %1072  2.8590 x 1073
0.9,0.1 491 470 x 1071 1.374 443 x 1072 1.02 3.67x1071%  332x1070  3.1812x 1073
Known 5 66 not not ~4x1072 ~09 ~0 %0 /

value known known

Table 23. Calculated parameters with different weights using RK for MD4 (mean values for 50
independent runs).

Parameters and OF

Weights

wr, 102 R, () L, (H) L, (H) J (kgm?) Ty, (Nm) T (Nm's) Ty (Nm-s?) OF
0.1,0.9 444 2.64 x 1071 1.357 1.07 x 1071 121x10715  577x1072  1.74x 10720 45890 x 10~*
02,08 4.64 2.82 x 1071 1.348 1.08x1071  227x1071®  572x107%  312x10720 77123 x107*
03,07 4.82 295 x 1071 1.340 1.08 1071 4.05x107*  568x1072  6.08x10720  1.0743 x 1073
0.4,0.6 5.08 3.17 x 1071 1.328 1.06 x 107! 3.53x 107! 543x1072 6.69%x1070 13678 x 1073
0.5,0.5 5.38 3.46 x 1071 1.314 1.02 x 1072 7.85x 1071 513x1072  737x1070  1.6474x1073
0.6,0.4 5.76 3.89 x 1071 1.297 9.76 x 1072 1.30 477x1072  633x10720  1.9089 x 1073
0.7,0.3 5.38 3.15 1.319 8.55 x 1072 291 2.53 x 1072 815x10™°  2.0945x 1073
0.8,0.2 5.34 3.99 1.323 7.12 x 1072 3.92 350x1072  479x1071 20480 %1073
0.9,0.1 6.28 4.60 1.282 6.06 x 1072 4.94 277%1072  153x107Y  1.8430x 1073
Known ;o6 not not ~4x1072 209 ~7.5x1072 ~0 /
value known known

In Tables 20-23 OFs are also presented, although a lower value does not mean a better result and
the values are not comparable.
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Based on Tables 20-23 the following conclusions can be written:

e In the case of MD1, correct results (due to the known values written at the bottom of Table 20) are
obtained for weights wy > 0.5. For w; < 0.4, parameter T}, has an incorrect value. For higher w,
slightly better results were obtained, for example R, at wy = 0.5 is 5.06 and at w; = 0.9 it is 5.34.

e In the case of MD2, correct results were obtained for weights w; > 0.4. For w; < 0.3 parameter, T},
has an incorrect value. For higher w, slightly better results were obtained, for example, R, at
w1 =0.41is 4.87 and at w; = 0.9 it is 5.24.

e In the case of MD3 correct results were obtained for weights w; > 0.4. For w; < 0.3 parameter, T},
has an incorrect value. For higher w;, almost no difference in results was obtained, for example,
R, atwq =0.41is4.86 and at wy = 0.9 it is 4.91.

e In the case of MD4, only results for w; = 0.4 and 0.5 are acceptable. For w; < 0.3, Ty, is too small,
and for wy > 0.6, Ty, is too big.

Based on the written findings, only weight w; = 0.5 was appropriate for all the presented test
cases. However, general conclusions cannot be made only based on this one example. The basic OF
written in (24) is used in the continuation of the paper.

4.3. Motor Model Simulations with Time Interval Division

The measurement interval, the time step, could not be reduced, because it depends on the
hardware. However, it is well known that the solutions of differential equations can be better if a
smaller time step is used [49]. To improve results, we reduced the time step in the case of the motor
model simulations (OF calculation), and only calculated current and speed at time instants in which
measured values were known were used for OF calculation. For the tests, the number of time step
divisions (ND) was set to 5 and 10. The used methods are marked with EM5 for Euler’s method using
ND =5, EM10 for Euler’s method using ND = 10, RK5 for the Runge-Kutta method using ND = 5 and
RK10 for Runge-Kutta using ND = 10. The times between two sequential measurement time instants,
marked with #;, were calculated using (28).

b —tp—1 . .
ti=th1+——3 i=1,..., ND-1 28
i k-1 T ND ( )
tk—1 and t are sequential measurement time instants. Also, voltage is an input value, which is
measured, and it changes with the time. The voltages between two sequential measured voltages,
marked with u, ;, were determined using linear interpolation, defined with (29).

Ug | —Ug k-1 g

5~ i=1....ND~1 (29)

Ug i = Ug -1+
U, k-1 and u, i are sequential measured voltages.
The algorithm showing the calculation procedure is presented in Figure 17. Parts which were
added to the algorithms of EM and RK without a time step division (presented in Figure 4) are marked
with red.
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Figure 17. Algorithm for parameter determination using a time step division for: (a) EM5 (ND = 5) or
EM10 (ND = 10); (b) RK5 (ND = 5) or RK10 (ND = 10).

OF and mean values of the calculated parameters using EM, EM5, EM10, RK, RK5, and RK10 for
MD1 are presented in Table 24.

Table 24. OF and Mean value of the calculated parameters for 50 independent runs using EM, EM5,
EM10, RK, RK5, and RK10 for MD1.

OF and Method
Parameters EM EM5 EM10 RK RK5 RK10
B 28906 x 1073 21738 x 1073 21541 x 1073 22531 x 107  2.1453x 107!  2.1464 x 107!
OF w 2.8906 x 1073 21738 x 1073 2.1541x 1073 22531 x 1073 21453 x 107! 2.1464 x 107!
M 2.8906 x 1073 21738 x10™% 21541 x 1073 22531 x 1073 21453 x 1071 2.1464 x 107
SD 0.0 1.7347 x 10718 1.3010 x 10718 0.0 8.6736 x 10719 2.1684 x 10718
Ra (Q) M 11.56 5.63 4.94 5.06 425 4.25
La (H) M 9.72 x 1071 2.64 x 1071 2.07 x 1071 244 x 1071 1.57 x 107 1.57 x 1071
ce (Vs) M 1.337 1.366 1.370 1.369 1.373 1.373
] (kgm?) M 4.64 x 1072 468 x 1071 4.71 x 1072 4.68 x 1072 4.77 x 1072 4.76 x 1072
Tia (Nm) M 3.13 x 10716 7.96 x 1071 8.00 x 1071 7.99 x 1071 8.03x 1071 8.03x 1071
Ty, (Nms) M 8.95 x 10717 7.84 x 10718 6.53 x 10718 7.70 x 10718 6.27 x 10717 322x 10718
Tic Nms2) M 499 x 107> 1.22 x 1071 1.35 x 1071 8.00 x 10719 6.04 x 10720 5.09 x 10720

Base on Table 24 it can be seen that results using EM were improved. In the cases of EM5 and
EM10 calculated R, and T}, were correct, although they were not correct using EM. Considering OFs,
EM5 was an improvement on EM, and EM10 was only a small improvement on EM5. RK5 was a small
improvement on RK, and RK10 was not an improvement on RK5. It must be noted that lower OF
values does not automatically mean more precisely calculated parameters, because in the measured
signal, measurement deviations and errors are present.
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Measured and calculated responses using EM5 and EM10 are shown in Figure 18, and using
RKS5 and RK10 in Figure 19. Only the first second of the responses is displayed to make Figures
more transparent.
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Figure 18. Measured and calculated responses in the case of MD1 using: (a) EM5; (b) EM10.
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Figure 19. Measured and calculated responses in the case of MD1 using: (a) RK5; (b) RK10.

Comparing Figures 8 and 18, the improvement achieved with EM5 and EM10 can be seen.
The simulated responses were closer to the measured responses.

OF and mean values of the calculated parameters using EM, EM5, EM10, RK, RK5, and RK10 for
MD2 are shown in Table 25.

Table 25. OF and Mean value of the calculated parameters for 50 independent runs using EM, EM5,
EM10, RK, RK5, and RK10 for MD2.

OF and Method
Parameters EM EM5 EM10 RK RK5 RK10
B 34006 x 1073 24870 x 1071 2.4192x 1071 26384 x 1073 23706 x 1071 2.3676 x 107
OF W 34006 x 1073 24870 x 1071 24664 x 1071 26384 x 10~  2.3706 x 1071 2.4366 x 107!
M 3.4006 x 1073 24870 x 107! 24306 x 1071 2.6384 x 103 23706 x 107! 2.3690 x 107!
SD  1.7347x 10718 26021 x 10718 20131 x10° 1.3010x 1078 23706 x 1071  9.6658 x 10~°
Ra (Q) M 11.45 5.72 5.00 4.97 438 4.37
La (H) M 9.76 x 1071 2.69 x 1071 211x 107! 246 x 107! 1.61 x 1071 1.61 x 1071
ce (Vs) M 1.350 1.373 1.376 1.376 1.378 1.378
] (kgm?) M 4.89 x 1072 4.86 x 1072 4.95 % 1072 5.00 x 1072 4.98 x 1072 496 x 1072
Tia (Nm) M 3.58 x 10716 9.19 x 1071 7.01 x 1071 9.34x 107! 9.23 x 107! 9.05 x 1071
Ti, (Nms) M 9.61 x 10717 9.43 x 10718 6.73 x 10720 1.10 x 10717 7.19 x 10718 8.90 x 10718
Tie (Nms?) M 2.77 x 107° 7.32 x 10720 6.59 x 107° 1.31 x 10719 475%x 10720 5.48 x 1077
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Base on Table 25, it can be seen that results using EM were improved. In the cases of EM5 and
EM10 calculated R, and Tj, were correct, although they were not correct using EM. Considering OFs,
EMS5 was an improvement on EM, and EM10 was only a small improvement on EM5. RK5 was a small
improvement on RK, and RK10 was not an improvement on RK5.

The first second of the measured and calculated responses using EM10 and RK10 is shown in

Figure 20.
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Figure 20. Measured and calculated responses in the case of MD2 using: (a) EM10; (b) RK10.

Comparing Figures 9 and 20, especially the improvement achieved with EM10 can be seen.
OF and mean values of the parameters calculated using EM, EM5, EM10, RK, RK5, and RK10 for
MD3 are presented in Table 26.

Table 26. OF and Mean values of the calculated parameters for 50 independent runs using EM, EM5,
EM10, RK, RK5, and RK10 for MD3.

OF and Method
Parameters EM EM5 EM10 RK RK5 RK10
B 57731 x 1073 4.0635x 1073 39179 x 1071  3.7766 x 10~  3.7887 x 10°!  3.7887 x 107!
OF w 57731 x 107 4.0635x107% 39179 x 107! 37766 x 107>  3.7887 x 10”1 3.7887 x 107!
M 57731 x 1073 4.0635x 107 39179 x10~1  3.7766 x 10~  3.7887 x 10°!  3.7887 x 107!
SD 86736 x 107  2.6021 x 10718 0.0 0.0 3.7887 x 1071 3.0358 x 10718
Ra (O) M 11.92 6.05 5.42 4.87 4.74 4.74
La (H) M 1.28 5.96 x 1071 538 x 107! 451 x 1071 479 x 107! 479 x 107!
ce (Vs) M 1.342 1.369 1.372 1.374 1.375 1.375
] (kgm?) M 442 x 1072 445 %1071 441x107! 4.44 x 1072 445 x 1072 4.45x 107!
Tia (Nm) M 6.45 x 10716 7.33 x 1071 1.01 1.01 1.01 1.01
Ty, (Nms) M 9.91 x 10718 1.08 x 10717 1.62 x 10717 538 x 10718 9.13x 10718 1.81 x 10717
Tie (Nms?) M 3.11x107° 8.71 x 107° 1.09 x 1077 6.59 x 10720 246 x 10717 251 x 1071

Based on Table 26, it can be seen that results were improved using EM. In the cases of EM5 and
EM10 calculated R, and T}, were correct, although they were not correct using EM. Considering OFs,
EMS5 was an improvement on EM, and EM10 was only a small improvement on EM5. In the cases of
RK5 and RK10 no improvements were made.

The first second of the measured and calculated responses using EM10 and RK10 is shown in
Figure 21.
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Figure 21. Measured and calculated responses in the case of MD3 using: (a) EM10; (b) RK10.

Comparing Figures 10 and 21, especially the improvement achieved with EM10 can be seen.
OF and mean values of the calculated parameters using EM, EM5, EM10, RK, RK5, and RK10 for
MD#4 are shown in Table 27.

Table 27. OF and Mean value of the calculated parameters for 50 independent runs using EM, EM5,
EMI10, RK, RK5, and RK10 for MD4.

OF and Method
Parameters EM EM5 EM10 RK RK5 RK10
B 29627 x 1073 33114x 1073 3.2788x 10~ 32949 x 1073  32719x 10!  3.2719 x 1073
OF w 29627 x 1073 3.3114x 1073 32911x 1073 32949 x 1073  32719x 1071 3.2719x 1073
M 29627 x 1073 33114x 1073 32906 x 1073 32949 x 10~  3.2719x10°!  3.2719 x 1073
SD  4.3368x 1071 17347 x 10718 24102x107®  8.6736 x 1071?  2.1684 x 10718  8.6736 x 1071?
Ra () M 6.97 5.84 5.60 5.38 5.36 5.36
La (H) M 2.82 348 x 107! 2.63x 1071 3.46 x 1071 1.99 x 1071 1.98 x 1071
ce (Vs) M 1.251 1.295 1.305 1.314 1.315 1.315
J (kgm?) M 1.19 x 1071 1.02 x 1071 1.02 x 1071 1.02 x 1071 1.02 x 1071 1.01 x 1071
Tia (Nm) M 1.27 x 1071° 6.35 x 1071 7.34 x 1071 7.85x 1071 8.29 x 1071 8.29 x 1071
Ti, (Nms) M 2.66 x 10717 5.13 x 1072 5.12 x 1072 5.13 x 1072 5.11 x 1072 5.11 x 1072
Tie (Nms?) M 291 %1074 1.44 x 1079 2.63x 10719 7.37 x 10720 8.78 x 10720 1.49 x 10719

Based on Table 27 it can be seen that results using EM were improved, although the OF value
was higher. In this case, the measurement deviations and errors were bigger than the EM5 and EM10
methods, which simulated a real motor better, could not get as close to the measured signal as the
EM method, which simulated a real motor worse. In the cases of EM5 and EM10, calculated R, and
T}, were correct, although they were not correct using EM. Considering OFs, EM10 was only a small
improvement on EM5. In the cases of RK5 and RK10 only very small improvements were made.

The first four seconds of the measured and calculated responses using EM10 and RK10 are shown
in Figure 22.
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Figure 22. Measured and calculated responses in the case of MD4 using: (a) EM10; (b) RK10.

Division of the time interval in the case of the motor simulations results in a higher number of
calculations, and, with that, with a longer calculation time. Calculation times using E, EM5, EM10, RK,
RKS5, and RK10 for all measured input data are presented in Table 28.

Table 28. Mean values of the calculation times for 50 independent runs using EM, EM5, EM10, RK,
RK5, and RK10 for all measured input data.

Measured Data—Method Method
EM EM5 EM10 RK RK5 RK10
MD1 M t(s) 25.5 39.31 48.9 30.2 54.9 79.9
MD2 M t(s) 237 384 457 277 523 7438
MD3 M t(s) 21.7 33.4 39.7 25.1 45.5 63.3
MD4 M t(s) 24.6 424 50..2 30.3 62.7 91.0

Based on Table 28, it can be seen that calculation times using EM5 were, on average, 1.5 times
longer than the times of EM, and using EM10 were, on average, 2 times longer than the times of EM.
Calculation times using RK5 were, on average, 2 times longer than the times of RK, and using RK10
were, on average, 3 times longer than the times of RK.

4.4. Analysis of Memory Assistance

Memory Assistance offers the possibility to shorten calculation times [50], which is always
welcome. The presented problem is interesting for Memory Assistance analysis, because using different
approaches different calculation times are achieved (without division of the time interval and with 5 or
10 divisions of the time interval).

We used three different Memory Assistances, which are the following:

e STMA:In each iteration, population members are compared with members from only one previous
iteration. After each iteration, the whole population is saved into memory. Only additional
memory for one population set is used using the presented approach. In the presented case, this
is ((7 parameters + OF) x 70 population members) memory locations.

e Long-Term Memory Assistance—Strategy 1 (LTMA-S1): Each population member is compared
with all members written into memory, obtained from all previous iterations. Each member which
is not found in the memory is added to the memory. Strategy 1 means that the search in the
memory starts from first added to the last added (when the same population member is found, the
search is finished). Theoretically ((7 parameters + OF) x 70 population members x 2000 iterations)
locations of additional memory can be used.
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e Long-Term Memory Assistance—Strategy 2 (LTMA-S2): It is the same as LTMA-S1, only the
strategy of the search is changed. It starts from the last added to the first added.

LTMA-S2 is better than LTMA-S1, probably because the latter solutions are less different and
duplicates occur sooner. Using both strategies it will be seen if memory processing time is negligible

or large compared to the calculation time of the Evolutionary Method.

The STMA algorithm is presented in Figure 23, and the LTMA algorithm for both strategies is

presented in Figure 24.
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]
| Initial population NP=70; |
4
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Figure 23. STMA algorithm.
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Figure 24. LTMA algorithm.

The expression “record” used in Figures 23 and 24 means one set of parameters + OF value (R,,
La, cm, |, Tia, Tib, Tie, OF). It is important to set appropriate precision, differences of the parameters for
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which duplication may be identified. These values determine the decimal accuracy of the calculated
parameters, and they depend on the physical background of the problem. Precisions used for
duplication identification are presented in Table 29.

Table 29. Precisions which determine duplication identification.

Parameter Maximum Difference
Ra () <1 mQO
L, (H) <lmH
cm (Vs) <1 mVs
] (kgmz) <1074 kgm2
T1a (Nm) <1 mNm
T, (Nm-s) <5x107% Nm:s (torque of 1 mNm at speed 209 s~!—motor rated speed is 182 s71)
Tic (Nm:-s2) <2 % 1078 Nm-s2 (torque of 1 mNm at speed 209 s~1—motor rated speed is 182 s71)

Results presenting calculation times and repetitions obtained with EM, EM5, EM10, RK, RKS5,
and RK10 using STMA, LTMA-51, and LTMA-S2 are presented in Table 30 for MD1, Table 31
for MD2, Table 32 for MD3, and Table 33 for MD4. Time (%) is the relative value of used
time according to the calculation time without Memory Assistance. Duplications (%) is the
relative number of duplications according to all possible duplications, which are, in our problem,
(70 population members x 2000 iterations = 140,000) duplications.

Table 30. Mean value of the calculation Times (Time) and Duplications (Dupl.) in respect to no
additional memory use for 50 independent runs using EM, EM5, EM10, RK, RKS5, and RK10 for MD1.

MD1 Method
EM EM5 EM10 RK RK5 RK10
Memory Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl
Use (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
STMA 1048 515 84.0 54.2 67.0 54.2 96.1 50.1 73.6 54.9 62.7 56.5
LTMA-S1 3343 815 2108 849 1595 844 3181 809 1486 854 1046 86.1
LTMA-S2  188.2 79.3 104.2 84.0 86.2 84.2 189.6 75.8 83.3 84.1 56.8 85.4

Table 31. Mean value of the calculation Times (Time) and Duplications (Dupl.) in respect to no
additional memory use for 50 independent runs using EM, EM5, EM10, RK, RKS5, and RK10 for MD2.

MD2 Method
EM EM5 EM10 RKS5 RK10
Memory Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl.
Use (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
STMA 1029 514 78.1 55.1 69.7 57.5 94.3 53.1 70.1 56.2 61.1 57.6
LTMA-S1 3547 840 2206 8.0 1735 8.8 2971 840 1491 861 1077 86.4
LTMA-S2 176.0 821 1069 827 84.7 843 1453 826 78.2 85.1 58.4 85.3




Mathematics 2020, 8, 1269 33 of 37

Table 32. Mean value of the calculation Times (Time) and Duplications (Dupl.) in respect to no
additional memory use for 50 independent runs using EM, EM5, EM10, RK, RKS5, and RK10 for MD3.

MD3 Method
EM EM5 EM10 RK RK5 RK10

Memory Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl
Use (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

STMA 109.0 552 96.8 36.3 88.4 389 1008  56.3 74.3 56.5 64.7 57.7
LTMA-S1 3619 8.4 2904 813 2311 826 3070 858 1800 857 1334  86.0
LTMA-S2 1628 837 1592 779 1344 786 1381 852 85.0 84.9 64.3 84.9

Table 33. Mean value of the calculation Times (Time) and Duplications (Dupl.) in respect to no
additional memory use for 50 independent runs using EM, EM5, EM10, RK, RKS5, and RK10 for MD4.

MD4 Method
EM EM5 EM10 RK RK5 RK10

Memory Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl. Time Dupl.
Use (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

STMA 1025  40.2 88.7 33.8 51.1 34.6 99.9 32.6 85.3 33.1 68.5 33.9
LTMA-S1 4314 778 2106 725 1752 740 4343 71.8 2032 728 1046 736
LTMA-S2 2158 743 1647 688 1324 706  240.1 67.1 127.0 687 91.3 69.3

Based on Tables 30-33, the following remarks can be written:

e  Duplications for STMA were between 50-60% for MD1 and MD2, between 35-60% for MD3 and
between 30-40% for MD4.

e  Duplications for LTMA (S1 and S2) were between 75-86% for MD1, MD2, and MD3 and between
67-78% for MDA4.

e Based on previous remarks, it can be seen that in the case of LTMA, the number of duplications
was much higher than in the case of STMA, which was expected. It is interesting that duplications
depend not only on precision, stopping criteria, type of problem, etc., but also on input data.

e Calculation times using STMA were, in the cases of EM and RK, in the range from 94.3% up to
109% of times without Memory Assistance, so the time was only a little shorter or even longer.
In the cases of EM5, EM10, RK5, and RK10, times were shortened up to 51.1% of times without
Memory Assistance.

e  Calculation times using LTMA-S1 were longer than times without Memory Assistance. They were
in the range from 104.6% in the case of RK10 (MD1 and MD4), up to 431.4% in the case of EM
(MD4). The presented problem is not time-consuming enough to be suitable for LTMA-S1.

e  Calculation times using LTMA-S2 were longer than times without Memory Assistance in the cases
of EM, EM5 and RK, in the range from 104.2% in the case of EM5 (MD1) up to 240.1% in the case
of RK (MD4). In the cases of EM10 and RK5, times were in some cases shorter and in some longer.
They were in the range from 78.2 up to 132.4%. The shortest times were obtained in the case of
RK10, which was the most time-consuming method. They were in the range from 56.8 up to 64.3%
for MD1, MD2, and MD3, which were even shorter than the times in the case of STMA. Only in
the case of MD4, where the number of duplications is smaller, was the calculation time 91.3%,
which was a longer time than in the case of STMA.

The use of STMA can be suggested for the presented problem. To get a feeling about the relation
between OF calculation time and memory handling time, Figure 25 shows the mean OF calculation
times and the mean memory handling times (entry and search) for one fitness evaluation.
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Figure 25. Mean OF calculation times and mean memory handling times for one fitness evaluation.
5. Conclusions

The extension of the step responses approach into the approach also using measured voltage
and considering limitation of the current, which was one of the main contributions of this work, was
successful. Such an approach offers the possibility to determine the parameters of big controlled drives
without modeling of the controller.

In the case of simulated input data, the computed parameters (in the case of DE/rand/1/exp) were
exactly the values used for preparation of the input data, and, thus, confirmed the correctness of the
approach. In the case of measured input data, the calculated parameters (for known values) were
mainly in the range of 15%, in some cases up to 25%, and only in the case of calculated torque (MD4)
was the deviation 30.1%. Due to the fast time responses and measurement deviations and errors, it can
be assumed that deviations were within normal limits.

The tested evolutionary methods (GA, DE/rand/1/exp, DE/best/1/bin, TLBO, and ABC) showed
the same properties in the case of simulated input data (ideal input without armature reaction and
measuring errors) as in the case of measured input data (real input). The DE/rand/1/exp was the most
robust. For each run in the scope of individual test data, results were the same. TLBO was only slightly
worse, but calculation times were 2 times longer. Results obtained using DE/best/1/bin and ABC were
also acceptable. Only results obtained using GA were too poor. Based on this, DE/rand/1/exp can be
suggested as the best method for the presented problem.

Comparison between EM and RK showed that EM was not good enough, while RK was appropriate.
The suitability of the method depends on the measurement time interval, electrical time constant of
the motor and mechanical time constant of the drive, and it is strongly problem dependent. It was
expected that the fourth-order RK method was more appropriate than first-order EM, but, on the other
hand, calculation times using RK were longer and programming of RK is more demanding.

Results were improved by division of the time interval in the case of the motor model simulations.
Also, results using EM5 and EM10 were correct, although results using EM were incorrect. Based on
OF analysis, it was seen that in some cases, no improvement was achieved, improvement was achieved
using ND = 5 and no more using ND = 10, or improvement was achieved using ND = 5 and only
a small, irrelevant additional improvement was achieved using ND = 10. At the start, with a new
problem with unknown time constants, it is difficult to determine the appropriate number of divisions.
It is suggested to make calculations by increasing the number of divisions until no correction is present.
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Analyses of Memory Assistance showed that STMA was appropriate for the presented problem.
A good feature of STMA is that only a small amount of additional memory was used (one set of
population members). The use of LTMA-S2 was successful only in some cases of EM10 and RKS5, and
in all cases of RK10. The use of LTMA-S1 was not successful. In the case of a similar problem (similar
precision, number of measured points, stopping criteria, used method, ND) the use of STMA can
be suggested.

It must be mentioned that in the case of the presented or similar problems, three types of errors
are present: (I) The error of the mathematical model, (II) The error of the calculation method and (III)
The computer round-off errors [51-53]. We tried to reduce error (I) by properly prepared measured
data, as presented in Figure 6. In the presented work, the main emphasis was on the reduction of error
(II) by decreasing the time step of numerical integration to increase the degree of matching between
the parameters of the physical and mathematical models.

We did not consider torsional dynamic properties, masses with torsional stiffness and damping
effect, and this can be a topic for further research. However, we considered constant, linear, and square
parts of the load, but this does not cover all the physical phenomena during the start of the motor.

In the future, findings about the used evolutionary methods and the use of Memory Assistance,
presented in the paper, will be used to solve optimization problems in Electromagnetics and to shorten
calculation times. Also, the possibilities to adopt the presented method to parameter determination of
other types of motor will be investigated.
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