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Abstract: We show a simple model of the dynamics of a viral process based, on the determination of
the Kaplan-Meier curve P of the virus. Together with the function of the newly infected individuals
I, this model allows us to predict the evolution of the resulting epidemic process in terms of the
number E of the death patients plus individuals who have overcome the disease. Our model has as a
starting point the representation of E as the convolution of I and P. It allows introducing information
about latent patients—patients who have already been cured but are still potentially infectious,
and re-infected individuals. We also provide three methods for the estimation of P using real data,
all of them based on the minimization of the quadratic error: the exact solution using the associated
Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme
acting on the total set of local minima, and a genetic algorithm for the approximation of the global
minima. Although the calculation of the exact solutions of all the linear systems provided by the
use of the Lagrangian naturally gives the best optimization result, the huge number of such systems
that appear when the time variable increases makes it necessary to use numerical methods. We have
chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good
solutions for the model.
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1. Introduction

The epidemic processes caused by viral infections are global problems that affect all human beings.
Their understanding, also from a mathematical point of view, is crucial. It provides effective tools for
decision makers who are leading the country’s response to the virus to do so in a correct and informed
manner. The global crisis of Covid-19 requires a rapid update of mathematical procedures. The aim is
to help medical professionals and politicians to understand the dynamic system in a simple way. It
must also be deep enough to reflect the current situation, in all aspects of the problem that are truly
significant for decision making.

In this paper, we focus on the procedure for determining the Kaplan-Meier (KM) survival curve
for the virus that causes the disease. This curve describes the probability that an individual who is
infected at the time t = 0, will continue to be infected after a period of time, when t > 0. The strategic
relevance of this curve is obvious: it is exactly at this time when many countries in the world are
beginning to end the period of confinement. A good estimation of this curve could help to know what
is the correct period of time after which it is safe to let people go on with their normal lives. In other
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words, how long it is necessary to wait before the survival of the virus is small enough to be considered
insignificant. The risk of new infections after the first wave is also evident as can be seen in many
countries at this time. In this way survival curves can help manage the response of health systems.

Table 1 presents the main variables considered in the model. One of the main problems in
analyzing the real dynamics is that the way in which different countries are measuring these variables
differs greatly. Moreover their values do not correspond at all to the real values of these variables. This
was the case, for example, during the Covid-19 pandemic. When mass testing was not possible due
to lack of tests caused by strong international demand, sick people were either counted as Covid-19
patients or not, depending on the symptoms. In particular, in some countries (Spain or France) some
deaths in nursing homes have not been recorded as deaths caused by Covid-19. In other countries
(Germany), deaths of already ill people who eventually died for other reasons but who tested positive
for Covid-19 were not recorded as deaths by Covid-19. In addition, a patient was considered free of
the virus once they left the hospital. However often returned positive after a few days, or negative
several days before leaving the hospital. The decision on how to do this was made with different
criteria depending on the region. In fact this was a source of national discussion in countries like Spain,
as the interested reader can find in local newspapers from March to May 2019.

Table 1. Main variables used in the model.

I(s) number of new infections at time s
M(s) number of death patients at that time s
F(s) number of patients considered recovered at time s

This means that, although one might think that the Kaplan-Meier curve of the virus has to be
independent of the country—it only depends on the virus itself and how it affects humans, this is
not really true: each country has its own viral behavior. From a mathematical point of view, this is
not a problem. The prediction that governments are interested in making refers to their own defined
variables, as long as this definition is not changed throughout the period. Consequently, each region has its
own curve, and similar curves indicate similar variable definitions, rather than the similarity of virus
characteristics in different countries.

Choosing the right set of independent variables to fully describe the system could significantly
improve the characteristics of the model allowing each country’s data to be modeled in a general
scheme based on more variables. This could be done in several ways, depending on the analyst’s
point of view. The logrank test can be used to check whether two different populations, for example
from different countries, follow the same statistical description. In the context of regression analysis,
well-known classical techniques can also be used. This is for instance the case of the comparison of
standardized regression coefficients R, or the analysis of the increase in R-squared when a new variable
is added to a model that already contains all other variables. The principal values method would also
provide a way to look for a reduced set of relevant independent variables. In the case of this paper we
will only consider the number of new infected individuals as independent variable, and the number of
recovered patients plus the dead as a dependent variable, and so a general study is not considered.

With regard to the Covid-19 crisis, attention has focused on determining the epidemic (epi) curves,
which provide an understanding of the global dynamics of the viral pandemic. Updated information
on this highly topical subject can be found in References [1–3]. The main mathematical models that
support the description and forecast of its dynamics are based on the SIR model of the spread of
the disease, and on variations of this model. The main objective of this mathematical structure is to
predict the values of the main variables after a period of time, which makes it possible to forecast the
number of individuals I infected and recovered (plus the dead) E. However, our interest is to calculate
a different component of the system, the KM survival curve P . We will demonstrate that E can be
estimated by means of a simple formula that involves the convolution of functions, as E = I ∗ P .
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Let us mention that this article is of a mathematical nature, and we are interested in developing
a procedure for the calculation of the Kaplan-Meier curve by means of empirical data. Our ideas
also allow us to define a transfer model (infected individuals→recovered individuals plus the dead),
in which the transfer function is the survival curve, which could help in the management of epidemic
processes. We will continuously refer to the Covid-19 pandemic, but it is clear that the mathematical
method can be used to control the spread of any similar dynamic process.

The document is structured as follows. In Section 2, a general description of the mathematics used
in the paper is given. After a review of the usual methods for dealing with epidemic spread modelling,
the variables, basic and general equations of the model—constructed as a convolution of the number
of infected individuals and a survival curve that plays the role of a transfer function, are described in
Sections 2.1–2.4. The least-squares equations to find the best approximation to the real data are shown
in Section 2.5, and the exact solution—including the proposed Karush-Kuhn-Tucker conditions—is
presented in Sections 2.6 and 2.7. To complete the overview of methodological approaches, a different
model equation based on a (non-linear) fit is briefly explained in Section 2.8.

Section 3 is devoted to showing the results of three different methods to compute approximations
to the solution of the equations presented in Section 2. First, a direct Monte Carlo approximation
is presented in Section 3.1. The result of the application of a more sophisticated method, based
on a sampling on the set of possible linear systems obtained from the Lagrange equation with the
Karush-Kuhn-Tucker conditions, is shown in Section 3.2. A genetic algorithm approach is presented in
Section 3.3, together with some comments comparing all the proposed methods. Finally, the conclusions
are presented in Section 4.

2. Material and Methods

Due to their importance in the control of many health problems, survival curves have been studied
from different points of view since their appearance in the mid-20th century [4]. Essentially, they
are based on a probabilistic distribution, and their main development has been in statistical terms
since their appearance. In the context of infectious diseases, this distribution has some particular
characteristics that are currently the subject of formal research. In fact, as explained in References [5,6],
current research on the subject focuses on two main statistical methods for infectious disease data.
The first consists of the chain binomial models, in which disease transmission is modeled as a discrete
time process among individuals. The second is given by the generation interval models, which use
continuous time and are based on the idea that disease transmission creates a new category of infected
individuals, rather than on the spread through a population of individuals that could be infected.

In any case, these models focus on the individual infections, and the mathematical structures
are built around estimates of the associated rates. As we will explain, our methodological approach
to the survival curve does not attempt to estimate these rates but considers the curve as the transfer
function between the fundamental epidemic variables (number of infected individuals→ number of
patients recovered plus the dead). Therefore, we do not try to calculate the relevant parameters such
as the reproductive number ([5]) but provide a description of the epidemic phenomenon as a transfer
process. In addition, research is currently being conducted on determining data from the Kaplan-Meier
estimator from other perspectives, such as the computational point of view (see Reference [7] and the
references therein).

On the other hand, the most popular mathematical structure that is used in the modelling of
infectious diseases during the current Covid-19 crisis is the so called SIR model and modifications of
this model, as the so called SEIR, MSIR, SIRD, MSEIR and other compartmental models ([8? –10]).
All these models are based on the assumption of the existence of some compartments of individuals
who pass through them in successive steps, or die. The SIR model—the most elementary—consists
of a system of differential equations that reflects the behavior of the total set of individuals who are
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susceptible to be infected (S), the number of infected ones (I) and the set of recovered individuals (R)
by means of elementary balance equations. The basic model is given by the differential equations

dS
dt

= −β
IS
N

,
dI
dt

= β
IS
N
− γI,

dR
dt

= γI,

where N is the sum of S, I and R, t is the time and β and γ are characteristic constants of the
model. Modifications of these equations provide adaptations to different situations, and give the SEIR,
MSIR, SIRD, MSEIR and other models (the abbreviations come from the names of the compartments
appearing in the model). The origin of these compartmental model can be found in the classical paper,
Reference [11] (see also Reference [12]). Note that this formalims allows a global description of the
dynamics of the infection. It is assumed that the permanence of an individual in the “compartment of
infected people” is a random variable with exponential distribution. The interested reader can find
basic definitions, general explanations in the classical book of Bailey [13] and (References [14,15], Ch.I),
and current updates in References [9,10] and the references therein.

Let us explain an example of this type of model that can be found in (Reference [9], p. 601).
Suppose that a certain infectious disease affects a certain population. If a mother has been infected and
cured, some antibodies are transferred to the baby before it is born in such a way that the newborn has
a passive immunity to the infection for some period of time. This defines the compartment of passive
immunity class M, which passes to the susceptible class S when maternal antibodies disappear, along
with children whose mothers were never infected. After contact with an infected individual, they enter
the exposed class E of children who are infected but not yet infectious. After the latency period, they
enter the class of infective, and, if they survive, become an element of the recovered class R. This is
so an example of a MSEIR model constructed by a passively immune class M, a susceptible class S,
an exposed class E, an infective class I, and a recovered class R. An empirical approach as the one
presented here based on such a compartmental method can be found in Reference [16].

In (Reference [17], Section 2), an exhaustive explanation of which are the limitations of the SIR
model is presented. The third of these limitations is that the exponentially distributed duration
of infection is assumed; in particular, the model assumes that an individual becomes infectious
automatically when is infected, and the probability of recovery does not depend on the time that
has passed since infection. As we will explain, none of them is assumed in our model. General
criticism to the posibility of foreseeing the dynamics of an epidemic process that should be taken
into account are presented in Reference [18]. Some specific software packages have been developed
containing the algorithms for solving the related equations; the interesting updated package incidence
of R—the software that we use, is explained in Reference [12]. Some specific applications of epidemic
modelling using this framework to the current Covid-19 crisis have been already published (see for
example Reference [19]).

As we have explained before, our methodological point of view, although related, is significantly
different. In the framework of survival analysis, the KM curve P(s) represents the estimate of the
probability of survival of a standard individual after a time s (see for example References [4,20], ([21],
Ch.2), or the general books on mathematical modelling of biological processes cited in the previous
paragraphs). This means that no assumption is made on the probabilistic distribution of any variable of
the system, and the objective of the calculations is exactly to get some information on this distribution.
In this paper we are interested in the determination of this function.

This is the basic element of the model, in which many modifications can be incorporated,
for example to introduce continuous variables, or other groups of individuals belonging to the original
population with different properties. In any case, the model is always built on the basis of the estimate
of the instantaneous probability at a given time t. In our case, we use a different definition of the
notion of deceased, and introduces the possibility of restitution of deceased individuals to the set of
non-deceased elements (“resuscitated”, in our case, “reinfected” individuals).
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This distribution provides the form of the decreasing function that simulates the decreasing
amount of individuals that are considered to be still alive from an initial population. However, to use
the data that are given by the statistics provided by governments, for example, the initial population
cannot be considered as a fixed set; at each time t, there is a new group of population entering in the
total count of concerned individuals. Thus, other important tool for the description of the dynamics of
the system is the function that represents the new contributions to the set given at each time t. This is
the function that usual epidemic models, as the SIR explained above, try to estimate. The simplest one
is the classical exponential equation that describes the increasing behaviour of propagation of a virus
at the beginning of the epidemic process: for a time t, the formula

I(t) = K σt, t ≥ 0,

provides the desired estimate in the expansion period of the virus. Here σ is the initial infection
spread rate and K is the infected population when the epidemic process begins. As we will see,
the final variable that is desired to be predicted—the number of individuals that are already free of the
viral infection—can be forecasted by convoluting this function—either this estimate or directly the
real data—with the estimate of the Kaplan-Meier distribution. Recall that the convolution allows to
represent the output function E of a transfer process for an input function F when a transfer function
G acts on it. It describes how inputs are leaving the system at each time. The deconvolution is the
inverse operation: given the function of the inputs to the system F and the function of the outputs E, it
allows the calculation of the transfer function G. Finally, let us recall that this “deconvoluting” method
is needed because the states are publishing global data during the Covid-19 crisis, and not the concrete
dates of each patient—starting and final dates of infection. If this information would be available, we
could simply put together all the individuals, considering t = 1 for each one the day she/he started
the infection.

For the concrete case on which we focus our attention—the Covid-19 epidemic process—we have
to understand the notions of original population and deceased individuals in a different way. We
start by defining a fixed set of individuals for whom the infection has been confirmed, and analyze
the decrease in this infected population to study the survival of the virus. Therefore, opposite to the
way in which the KM distribution is usually interpreted, we consider a fixed group of infected people,
and we count as decease when a patient is either considered recovered or dies.

Due to the specific properties of the virus associated to the Covid-19 disease (see for
example References [2,3], although the reader can find a lot of information on the internet about
this controversial and topical issue), we have to introduce the following new assumptions in order to
adapt the model to this case.

(1) There are individuals who test negative for infection but are still able to spread the disease to
others. So they should be considered active from the point of view of the virus—as an infected
individual—for at least a fixed period of time N.

(2) There are cases that reappear as infected after being counted as recovered individuals.

2.1. Latent Cases and Resuscitation Rate

We start by considering the necessary adaptation of the classical Kaplan-Meier estimate of the
instantaneous probability of survival. We are interested in measuring the probability of preservation of
the infected population. Thus, we will consider the function P to be the probability of survival of the
virus at the time s, that is, the probability that a standard individual who was confirmed as infected in
time t = 0 will continue to be infected in time t = s.

We have to introduce a new term r(t) representing the “resuscitated cases" at the time t, which is
not considered in the classical formula. It is defined as a function of t, although the ratio of individuals
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who are resurrected will be fixed as a constant later in the formalism. Making a simple balance, we
obtain the equation

n(t)− d(t) = n(t + 1)− r(t + 1), t ∈ N,

where n(t) is the population surviving at the time t—minus the individuals that leave the study, if any,
and d(t) is the number of individuals leaving the group after the time t. Note that, in the way we are
adapting the model, n(t) is the population still having the virus, since we are constructing the survival
function of the virus. Therefore, among the individuals who have left the group of infected individuals,
we include the recovered patients along with the death patients. Thus, the instantaneous probability
is given by

P(t) =
n(t)− d(t)

n(t)
, t ∈ N.

A resuscitation rate can be defined as T(t) := r(t)/n(t). Using it, we can also define the function

β(t) :=
n(t)

n(t)− r(t)
=

1
1− T(t)

,

which will be used next and will be assumed to be constant. It should be interpreted as a parameter
to measure the rate of resuscitation T, which has a clear meaning in the model. The estimate of the
probability of survival at the time t—the probability that an individual remains infected in our model—
is given by

P(s + 1) =
s

∏
t=N

P(t) · β(t + 1) =
n(s + 1)

n0
, s ∈ N, (1)

where n0 = n(1) = n(N) is the size of the initial confirmed population considered.

2.2. Cumulative Function and Complete Model

Now we describe the dynamics of the system when a continuous increase of the confirmed cases
is considered. Following Table 1 we write I : N → N for the function of time that represents the
number of new infected individuals at each time t. Then total amount of infected patients at a time
s ∈ N, D(s), is given by the “convolution formula"

D(s) =
s

∑
t=1

I(t) · P(s + 1− t),

where P(v), as mentioned earlier, is the probability that an individual will continue to be infected at
the time v. To what point this equation can be considered as a convolution, and also as the result of the
composition of a transfer function with the function describing the new infected individuals, will be
explained in Section 2.4.

For example, if the function I is represented at the beginning of the epidemic by an exponential
formula as I(t) = K σ(t)t, t ≥ 0, —where K is a positive constant and σ is the infection spread
rate, we get D(s) = ∑s

t=1 K σ(t)t · P(s + 1− t), s ∈ N. In general, the function I can be obtained
by experimentally observing the evolution of the epidemic, or by a functional estimate based on
previously observed data.

2.3. Dynamic Estimate of the Number of Post Infection Individuals

Essentially, the model we propose is defined as a transfer process in which there is a daily inflow
of new cases I(t), and an outflow E(t) of individuals who are no longer infected, and is given as
the sum of recovered patients F(t) and death patients M(t). These functions depend on the day t,
but while the first is defined daily, the second and third are considered cumulative, starting from the
first day t = 1. Thus, we write I(t) for newly infected individuals daily, and E(t) for the cumulative
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amount of recovered F(t) plus the cumulative amount of the dead M(t). Let us now estimate the
function E(t) := F(t) + M(t), which is in a sense the complementary magnitude associated with the
function D(s)—the total amount of infected patients— explained in the previous section. To simplify,
we will assume that the function β is in fact a constant rate, so we will write β instead of β(t). Indeed,
the fact that the rate of resuscitation is constant over time (and therefore β), is a reasonable assumption:
it means that the proportion of individuals in whom the infection“resuscitates", is constant at all stages
of the epidemic process.

Define the sequence

AN(s) := 1−
(

P(N) · · · P(s)
)

βs−N , s ≥ N.

The quantity AN(s) represents the probability of an infected individual either to become recovered or
to die at the time s. Thus, we clearly have that

E(s) = I(1) AN(s) + I(2) AN(s− 1) + . . . + I(s− N)AN(N + 1) + I(s− N + 1)AN(N),

which can be used to construct a system of equations when the time values s = 1, ..., smax are considered.
Using the quantities AN(s) we can compute the value of the characteristic parameters of the

model. In particular, for every s ≥ N + 1 we have

P(s) β =
P(N) · · · P(s) βs−N

P(N) · · · P(s− 1) βs−1−N =
1− AN(s)

1− AN(s− 1)
.

Note also that, although we are not interested in calculating it here, an estimate of the value of P(s)
would give an approximate value of β. Using these expressions, we get

P(s + 1) = P(N)
s

∏
t=N

P(t + 1) · β = P(N)
s+1

∏
t=N+1

(
P(t) · β

)
, (2)

and so

P(s + 1) = P(N)
s

∏
t=N

1− AN(t + 1)
1− AN(t)

.

Using also that P(N) = n(N)−d(N)
n(N)

= n(1)−d(N)
n(1) , we obtain the final formula of the model,

P(s + 1) =
n(1)− d(N)

n(1)

s

∏
t=N

1− AN(t + 1)
1− AN(t)

, N ≤ s ∈ N.

This expression allows us to obtain the probability H that the virus survives as the complementary
function to the probability P that an individual recovers or dies given just above. Thus, the survival
function of the virus is defined such as

H(s + 1) = 1−
(n(1)− d(N)

n(1)

s

∏
t=N

1− AN(t + 1)
1− AN(t)

)
, N ≤ s ∈ N.
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2.4. Probabilistic Model for the Evolution of a Viral Epidemic Process Based on the Kaplan-Meier Curve

In view of the definitions and formulas given above, we can fix in abstract terms the framework
for a simple modelling of the dynamics of a viral process as follows. Recall that, given a couple of
integrable functions f , g : [0, ∞)→ R, its convolution is given by

( f ∗ g)(s) :=
∫
[0,s]

f (t) g(s− t) dt, s ∈ [0, ∞).

Let us fix the origin of the measure of time at the point 0. The model is represented by the next
convolution of functions.

• Let I : [0, ∞) → R be an integrable function representing the new cases of sick people: I(t)
represents the number of new patients in the model introduced at the moment t.

• Let E : [0, ∞)→ R be other integrable function representing the cases that are out of the process
at the time t of sick people: E(t) is the sum of the dead at that time t plus recovered patients. We
can use exponential expressions σt as the ones explained above

• The function P : [0, ∞) → [0, 1] explained above, that represents the probability at the time t
of survival of the virus—that is, the probability that a confirmed individual will continue to
be infected.

• The formula that gives the relation among these terms is then

E(s) = (I ∗ P)(s) =
∫
[0,s]

I(t)P(s− t) dt.

As we have shown in the previous development of our formalism, in this paper we use the discrete
version of this formula. That is, dt is the counting measure. The general model presented by the
convolution formula could be used when the entry of new cases can occur at any time, and is
not necessarily entered daily. In this case, continuous variables and functions over the Lebesgue
measure space seem to be more convenient. But note that the formula describing the model is
essentially the same.

Note that for some relevant cases we could be interested in (for example, counts of individuals
provided by all the countries in the world with Covid-19) we cannot assume that all the individuals
that are counted as confirmed (I) are controlled in the process (i.e., some of them were not at any
hospital or passed away). In other words, the equation I = M + F—for M being the dead and F
the recovered people—cannot be assumed to hold at the end of the epidemic process in general.
So, due to the lack of correct information, we could have infected individuals who have been
detected but are not controlled by the health systems. Therefore, we have to consider another
(not determined) parameter 0 < γ ≤ 1 that represents this fact, such that the balance equation
becomes I γ = M + F, and so γ is given by

γ = 1− lim
s→∞
P(s) ∈ [0, 1).

However, in the rest of the paper we will assume that—having no other source of
information—at the end of the process we have that all individuals who were counted as infected
have been counted as recovered individuals or the dead.
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2.5. Least Squares Fitting of the Model

As usual, we cannot expect the actual data to match the model equations exactly. Therefore, it
is necessary to estimate the values of the parameters involved by means of an optimization method
applied to the specific error that we explain in what follows. Fix s ≥ N and consider the expression

ε(s) =
(

I(1) AN(N)− E(N)
)2

+
(

I(1) AN(N + 1) + I(2) AN(N)− E(N + 1)
)2

+
...

+
(

I(1) AN(s) + I(2) AN(s− 1) + . . . + I(s− N + 1)AN(N)− E(s)
)2

.

Since AN is the function that describes the cumulative probabilities, they define an increasing
sequence bounded by 1, so, we can consider the change of variables by means of the positive elements
α2

M, N ≤ M ≤ s,
α2

N + α2
N+1 + . . . + α2

s = AN(s).

Now consider the cumulative quantities J(M) given by

J(M− N + 1) = I(1) + . . . + I(M− N + 1), N ≤ M ≤ s.

A simple reordering in ε provided by the change of variables to αN shows that we can rewrite ε(s) in
terms of the 2-norm as

ε(s) =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



J(1) 0 · · · · · · · · · 0
J(2) J(1) 0 · · · · · · 0
J(3) J(2) J(1) 0 · · · 0

...
...

...
. . .

...
...

J(s− N) · · · · · · · · · J(1) 0
J(s− N + 1) · · · · · · · · · J(2) J(1)


α2

N
...

α2
s

−
E(N)

...
E(s)


∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

.

We will write J for the triangular matrix appearing in this formula. Therefore, the best solution
to our model, when s time steps (days) are considered, is given by the solution of the minimization
problem Min ε(s), under the constraints for αN , . . . , αs given by

s

∑
k=N

α2
k ≤ 1, and αk ≥ 0.

It is a classical problem of quadratic programming, and can be solved using classical techniques in
numerical analysis. The interested reader can find information about the mathematical techniques
on the topic for example in (Reference [22], Ch.16, §16.2). Standard algorithms of optimization
of R software could give some general options to solve this problem; however, after checking
these computational tools, we have developed our own procedures for doing it, facing the general
optimization problem and finding specific exact and approximate solutions for the model. Next, we
will explain the exact solution, given by the direct resolution of the optimization problem. However,
after checking the method with calculations involving many points (see below), we realized that the
direct solution cannot be used with normal calculation capabilities, so we decided to explore other
methods. A direct Monte Carlo sampling of the increasing sequence of parameters α2

k between 0 and 1
gives rather poor solutions, although some conclusions can be drawn even with this easy procedure.
Genetic algorithms have proven to be the best solution for larger data sets. They provide a good
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compromise on accurate results and computing power, so that a researcher can do the calculations
with a personal computer. We will show this in Section 3.

2.6. A Direct Estimate of the Associated Probabilities

Let us fix a numerical value to the bound in the constraint given by the inequality ∑s
k=N α2

k ≤ 1.
That is, consider a fixed 0 ≤ µs ≤ 1, and change the constraint in the minimization problem given
above by ∑s

k=N α2
k = µs, where 0 ≤ µs ≤ 1 is the parameter of evolution of the rate of non-infected

individuals. The optimal value of this parameter has to be determined also in a second step of the
process, that will be explained later on in this Section.

Once µs is fixed, this problem can be solved using different techniques, including numerical
optimization and Monte Carlo methods. We will explain in what follows the classical analytic
procedure based on the Lagrange multipliers method. This direct approach could be improved by using
more sophisticated results on nonlinear programming, based for example on the Karush-Kuhn-Tucker
conditions; however, we choose the next algorithm because it gives an easy answer to our optimization.

Step 1. Define the Lagrangian function

Ψ(αN , ..., αs) :=

∥∥∥∥∥∥∥J
α2

N
...

α2
s

−
E(N)

...
E(s)


∥∥∥∥∥∥∥

2

− 2λ
( s

∑
k=N

α2
k − µs

)

=

〈
J

α2
N
...

α2
s

−
E(N)

...
E(s)

 , J

α2
N
...

α2
s

−
E(N)

...
E(s)

〉− 2λ
( s

∑
k=N

α2
k − µs

)
,

and compute the solution of the system

∂Ψ
∂αk

= 0, k = N, ..., s

under the constraint ∑s
k=N α2

k = µs.

Step 2. In order to do it note that

∂Ψ
∂αk

= 2
∂

∂αk

(
(α2

N , . . . , α2
s )JT − (E(N), . . . , E(s))

)J

α2
N
...

α2
s

−
E(N)

...
E(s)


− 4 αk λ

= 4αk
(
(0, ..., 1k, ..., 0) JT)

J

α2
N
...

α2
s

−
E(N)

...
E(s)


− 4 αk λ = 0.

Now we have to follow the next algorithm. We have to take into account that we have to also consider
the case when yk = 0 for some N ≤ k ≤ s, and then we have to remove the corresponding equations
given by the row k.

(a) Suppose first that there are solutions of the system for all the parameters being ≥ 0. The system is
given—as in the least square method—by the (restricted) normal equations

JT · J

yN
...

ys

− JT ·

E(N)
...

E(s)

 = λ · 1,
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where 1 is the column vector with each coordinate equal to 1, together with

s

∑
k=N

yk = µs.

We check now if yk ≥ 0 for every k. In this case we stop here, the obtained solution is the better one—it
is then given by α2

k = yk and AN(k) = ∑k
j=N α2

j , N ≤ k ≤ s.

(b) In case there is no such solution to this system, we consider the case when yk = 0 for one N ≤ k ≤ s,
removing the k−th equation in the system above when yk = 0 is assumed, and solving again the
system. We get in this case one equation and one variable less. The rest of the optimal values have
to be ≥ 0 too. Now we have to solve all the systems of equations that appear following this rule.
If there is at least a solution, we have to compute all of them and compare the errors. The one with the
smallest error is the right one; in case there are more than one with the smallest error, we take the means.

(c) In case there are no solutions as in b), we take all the couples of variables yk = 0 and yj = 0 and we
try to obtain solutions for which the rest of the variables are ≥ 0. We take all the couples and take the
acceptable solutions (rest of the variables ≥ 0). Comparing the associated errors, we choose the best
one.

(d) If no solution is found in the previous step, we follow in this way (3 variables =0, 4 variables =0,...)
until all the equations of the original system dissapear.

Theoretically, we can define in this way a funcion Us 3 µs 7→ (α2
N(µs), ..., α2

s (µs)) for a certain
Us ⊆ [0, 1].
Step 3. As we said, the result computed in the previous steps depends on µs. Consequently, for a
consistent fitting of the experimental data we need to compute the better parameter 0 ≤ µs ≤ 1. In
order to do it, we consider the associated error ε(s) written above, which in fact depends on µs, that is
ε(s) has to be changed by εµs(s). The final solution is then given by solving the optimization problem

Minµs ,
{

εµs(s) : 0 ≤ µs ≤ 1
}

.

Although an analytic procedure could be designed, a Monte Carlo optimization could be enough for
getting a reasonable value for µs.

Note that we have to use this algorithm at each step s, and the values of the estimates of the
constants AN(k)—and so the estimates of the final probabilities of the model P(s + 1)—will depend
also on the step s that is being computed. Note also that the sequence (µs)N≤s has to be increasing to
preserve the conditions of the model. This implies that, at each step s, the minimum above has to be
computed for the elements µs−1 ≤ µs ≤ 1, that is

Minµs ,
{

εµs(s) : µs−1 ≤ µs ≤ 1
}

,

what forces to calculate the optimal values for the model sequentially, starting with s = N until the
last value slast of s corresponding to the time of the last experimental data that is available.

Finally, a look to the definition shows that the optimal values of µs provides a direct picture of the
evolution of the system. Indeed, the function

N ≤ s 7→ µs

gives the evolution of the rate of recovered individuals plus the dead, what is the desired estimate.
Extrapolation of such functions for s ≥ slast can be done using for instance a basis of exponential
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functions. Other factors affecting survival ratios over time can be considered using for instance the
Cox regression model for the estimate of the KM curves.

2.7. Incorporating Karush-Kuhn-Tucker Conditions

Other direct method for solving the problem is provided by the calulus of the minimun of ε(s)
under the requirements AN(k) ≥ 0 for k = N, . . . , s and ∑k AN(k) ≤ 1 from the point of view of the
Karush-Kuhn-Tucker theorem. Let us consider again the change of variables to the αi’s as explained in
the previous section for reducing the number of constaints, and rewrite ε(s) in this terms. We follow
the notation introduced there.

Fix s. In this context, our problem is to find the minimum of

〈
J

α2
N
...

α2
s

−
E(N)

...
E(s)

 , J

α2
N
...

α2
s

−
E(N)

...
E(s)

〉 ,

under the constraint ∑s
k=N α2

k ≤ 1.
The suitable points are those satisfying the Karush-Kuhn-Tucker conditions, that in our case are

given by the equations coming from ∂Ψ/∂αk = 0 for all k, where

Ψ(αN , ..., αs) :=

〈
J

α2
N
...

α2
s

−
E(N)

...
E(s)

 , J

α2
N
...

α2
s

−
E(N)

...
E(s)

〉+ 2µ ·
( s

∑
k=N

α2
k − 1

)
,

together with some restrictions. Thus, the problem is solved by finding the solution of the system

∂Ψ
∂αk

= 4 αk
(
(0, ..., 1k, ..., 0) JT)

J

α2
N
...

α2
s

−
E(N)

...
E(s)


+ 4 µ αk = 0,

under the restrictions
s

∑
k=N

α2
k ≤ 1, µ ≥ 0, µ · (

s

∑
k=N

α2
k − 1) = 0.

We propose the following algorithm. We have to consider two cases, µ > 0 and µ = 0.

Step 1. If µ > 0, we have that ∑s
k=N α2

k = 1, and the problem reduces to the case given in Section 2.6,
for µs = 1. After getting the solution, we have to check that µ > 0.

Step 2. If µ = 0, we have that the system is given by the equations

αk
(
(0, ..., 1k, ..., 0) JT)

J

α2
N
...

α2
s

−
E(N)

...
E(s)


 = 0.

Therefore, we have to consider as in the case given in Section 2.6 all the cases defined for all subsets of
αk’s equal to 0. In each case, if we make αk = 0, the k−th equation of the system has to be removed.
Remark again that the solution of the linear system so considered would give αk < 0, what of course
do not provide not valid answers to the minimization problem.



Mathematics 2020, 8, 1260 13 of 24

The final result will be given, for the minimum obtained, by the value of AN(s) given by

AN(s) =
s

∑
k=N

α2
k .

Since we are computing the minimum under global constraints, we do not need in this case to follow
Step 3 in the algorithm explained in Section 2.6. Also, the final comments provided in this section
about the optimization with respect to µs are not needed in this case.

2.8. Functional Estimate of the Survival Model

A different approach, but similar in the sense that it is also based on the minimization of the error,
is given by assuming a certain functional form for the survival function. Let us consider again the
error ε(s), and suppose that the extension of AN to a function of real variable [N, ∞) 3 t 7→ AN(t) can
be approximated by minimizing this error by means of a function aN(t).

Let us show a simple example. An exponential function with negative exponent is a classical
model for survival curves. Note that the first N days, the function have to be constant equal to 0, since
there are no recovered individuals or the dead; after this point, the easiest case is given by

AN(t) ∼ aN(t) = 1− e−b(t−N+1), t ∈ [N, ∞),

where b and is a positive parameter that have to be determined. Then we have that

ε(s) =
(

I(1) (1− e−b(1))− E(N)
)2

+
(

I(1) (1− e−b(2)) + I(2) (1− e−b(1))− E(N + 1)
)2

+ ...

... +
(

I(1) (1− e−b(s−N+1)) + I(2) (1− e−b(s−N)) + ...

+I(s− N)(1− e−b(2)) + I(s− N + 1)(1− e−b(1))− E(s)
)2

.

Standard optimization techniques can be used to get the minimum of such function, and the
corresponding value of b. Note that this value depends on the value of s, and so some extrapolation
techniques have to be used to get the best value of b. Although this option can be taken into account
in case there are not good computing tools available, the previous method that we have proposed
should give better results. So we center our attention in showing the solution of the problem using
these techniques in the next section.

3. Results: Computational Methods for Estimating the Kaplan-Meier Curve

Suppose, as in the rest of the paper, that we have a function I(t) representing the new confirmed
individuals at a time t and a function E(t) that represents the output of viral process (recovered+dead).
For the aim of simplicity, and noting before that there is no change in the way the equations are solved,
we assume that the delay N is equal to one. Using the basic convolution formula E = I ∗ AN explained
in the previous sections, we propose three different methods for the estimate of the minimum that
gives the solution to the optimization problem

ε(s), restricted to
{
(αN , ..., αs) :

s

∑
k=N

α2
k ≤ 1, αk ≥ 0

}
,
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where s is the last day for which the information is registered, and ε(s) is the associated cuadratic error

ε(s) =

∥∥∥∥∥∥∥J
α2

N
...

α2
s

−
E(N)

...
E(s)


∥∥∥∥∥∥∥

2

.

Recall that, following the notation used in the previous sections, J is the lower triangular matrix of the
cumulative sum of the number of new confirmed cases per day. If s is the last value of t for which we
have recorded data, the final Kaplan-Meier function that represents the decreasing probability of the
virus to survive is given by

KM(t) := µs − AN(t) = 1−
t

∑
k=N

α2
k , t ∈ {N, ..., s},

where µs is the parameter of progression of the epidemic disease; it will be also optimized in our
model. With the aim of simplicity, and taking into account that an amount of confirmed people were
considered already free of the virus the same day that they were recorded as confirmed at the hospitals,
we will consider the case N = 0 for checking the method. Further optimizations can be designed to
get also the optimal value of N in the model. We use R software for the algorithms and computations.

In order to compare the solutions provided by the different methods, we use the data record of
the first 24 days of the Covid-19 epidemics in Spain. The values are shown in Table 2.

Table 2. Data record of infected people and the dead of the first 24 days of the Covid-19 epidemics in
Spain (natural order from left to right). Data-source: https://github.com/datadista/datasets/tree/
master/COVID%2019.

Infected 16 12 22 48 36 48 39 128 65 159 410 623
506 822 1259 1544 2000 1438 1987 2538 3431 2833 4946 3646

Dead 0 0 0 0 0 2 2 3 9 0 18 12
37 36 16 152 21 182 107 169 235 324 394 462

Recall that, according to Table 1, the function I(t) is the daily entry of new confirmed individuals
and M(t) stands for the corresponding dead in the public health system. They are shown in Figure 1.

Figure 1. Daily data of new confirmed individuals (black line) and the new dead (red line). The dashed
lines indicate the corresponding average. (Figures in HTML format are in Supplementary Materials).

https://github.com/datadista/datasets/tree/master/COVID%2019
https://github.com/datadista/datasets/tree/master/COVID%2019
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The first 18 days the number of recovered patients was not registered. All the corresponding
healed patients were registered together the 19th day; this day 498 new cases appear. In order to get
some reasonable data for the example, we have exponentially distributed these cases through the
dates from 1 to 21. The distribution formula was fitted using the data from day 25 to day 35. The final
equation used to simulate these points is

F(t) = 370
(1.16

(
exp(0.2633 t)− 1

)
370

)2
, 1 ≤ t ≤ 21.

Table 3 and Figure 2 show the simulation provided for the recovered patients F(t).

Table 3. Simulation of the recovered patients provided by the function F(t) (natural order from left
to right).

Recoreverd 0 0 0 0 0 0 0 0 0 0.62 1.08 1.87
3.23 5.54 9.48 16.17 27.54 46.85 79.61 135.15 229.31 478 540 450

Figure 2. Simulation of the daily hospital discharges given by the function F. The dashed line is the
average and the mark point is the maximum.

The function E(t) is given by cumulative sum of the addition of the recovered individuals and
the dead. It is shown in Table 4 and Figure 3.

Table 4. Cumulative sum of the addition of the recovered individuals and the dead (natural order from
left to right).

Recovered 0 0 0 0 0 2 4 7
and 16 16.62 35.7 49.58 89.8 131.34 156.82 324.99

Dead 373.54 602.39 789 1093.15 1557.46 2359.46 3293.46 4205.46

The first proposed procedure to find a good approximation to the solution is a crude Monte Carlo
method, in which a big amount of 23-coordinates vectors of possible solutions of the parameters α

are considered. The second one uses also a probabilistic sampling, this time over the set of all points
satisfying the Karush-Kuhn-Tucker conditions that provide suitable local minima. The last one uses
also a direct strategy of optimization based on genetic algorithms.
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Figure 3. Actual data of the cumulative sum function E, that is, the cumulative sum of the dead plus
recovered individuals. The dashed line corresponds to the average.

3.1. Monte Carlo Direct Approach

We compute the error ε(s) for a big set of vectors (y1, ..., ys) in the positive part of the unit ball of
the s−dimensional space `s

1, and choose the one with the minimum error. For doing it, we take such
kind of vectors uniformly distributed on the unit sphere of this space. Then we get randomly its norm
uniformly in [0, 1]. In order to obtain a (quasi-)uniform distribution on all the set, we weight more
vectors that are close to be norm one by weighting the norm λ obtained in the uniform distribution by
writing a power of this function as λ1/expo for a certain exponent 1 ≤ expo ≤ s, that can be adapted to
improve the result. The script used is:

### Define the error function using matrix J and vector E
ErrorVec <-function(v){norm((J)%*%v-E,type="2")}
### Fix the expo parameter
expo <-10
### Starting variables
mc<-c(1:24)
mcfin <-c(1:24)
ermc <-100000000
for(k in 1:1000000){

mc0 <-runif (24, min=0, max =1)
mc<-(mc0/sum(mc0))*(runif(1, min=0, max =1))^(1/expo)
if(ErrorVec(mc) > ermc ){mc<-c(1:24)*0}
ermc <-min(c(ermc ,ErrorVec(mc)))
if(ErrorVec(mc)<=ermc){mcfin <-mc}

}

The main advantage of the method is that it provides a direct estimate of the behavior of the set
of solutions. For instance, it allows to understand if the variations of the associated errors is big when
a random election is made. In what follows we show the errors associated to the crude Monte Carlo
approximation (MC) with expo = 1, 5, 10, and the associated errors in Table 5, showing that the best
solution is found for expo = 10.

Table 5. Exponent in the random sampling and associated error.

expo 1 5 10
Error 454.0506 431.0416 422.7197

The associated coefficients α2
k for this case— mcfin in the script—written in the natural order are

presented in Table 6 (we write only 4 digits).
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Table 6. Coefficients α2
k for the best MC solution (natural order from left to rigth).

0.0005 0.0013 0.0029 0.0150 0.0288 0.02970 0.0936 0.0865
0.0403 0.0781 0.0707 0.0877 0.0875 0.0328 0.0547 0.0404
0.0259 0.0227 0.0326 0.0322 0.0004 0.0048 0.0273 0.0304

Figure 4 shows both the exact function E constructed from the actual data (see Table 4) and its
MC approximation—obtained by the multiplication of J and the α2

k from Table 6.

Figure 4. Representation of function E consisting of cumulative recovered individuals plus the dead
(black line) and its Monte Carlo approximation (red line). The bar graph is the pointwise error with the
maximum (red point) and the average (dashed line).

3.2. Sampling on the Configurations of Local Minima of the Optimization Problem Using
Karush-Kuhn-Tucker Conditions

Under the restrictions established in the Lagrangian by the constrains of the problem,
a configuration (a vector) w = (w1, ..., wr) ∈ Ns × · · · × Ns, 0 ≤ r < s, where no wi, wj coincide,
represents the variables that are assumed to be 0 and, at the same time, the equations that are removed
from the system of linear equations (see Step 2 in the algorithm of Section 2.6). The algorithm can be
divided into two cases:

(1) The restriction ∑23
k=1 α2

k = 1 is assumed. In this case we use three auxiliary matrices (QQ0, QQ1 and
ult0) that allow to write and solve the linear systems with the necessary requirements explained in
the resolution method. This is done by using the script:

QQ0 <- matrix(nrow = s, ncol = s, byrow = FALSE ,dimnames = NULL)
for(j in 1:s){

for(k in 1:s){
if(k>j+1 | k<j ) {

QQ0[j,k]<-0
} else {if(j==k & j<s){QQ0[j,k]<-1} else{QQ0[j,k]<- -1}}
QQ0[s,s]<-0

}
}
QQ1 <- matrix(nrow = s, ncol = s, byrow = FALSE ,dimnames = NULL)
for(j in 1:(s-1)){

for(k in 1:s){
QQ1[j,k]<-0
QQ1[s,k]<-1

}
}
ult0 <-rep(0,s)
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ult0[s]<-1

For the solution of the systems (with the corresponding error) we use the functions:

### Exact solution without removing any equation:
Z<-solve(QQ0%*%t(J)%*%J+QQ1 ,QQ0%*%t(J)%*%E+ult0)
### Adapted functions providing the solution and the error
### when the equations labeled by the vector w are removed.
Sol1 <-function(w){

m<-c(1: length(w))
A<-QQ0[-m,-m]%*%((t(J)%*%J)[-w,-w])+QQ1[-m,-m]
b<-QQ0[-m,-m]%*%(t(J)%*%E)[-w]+ult0[-m]
Sol1 <-solve(A,b)}

Error1 <-function(w){norm((J[,-w])%*%Sol1(w)-E,type="2")}

Once again, a sampling technique that goes through all possible configurations of this type provides
an estimate of the minimum. Of course, if the computing power is sufficient to calculate the solutions
to all these configurations and the associated errors, an exact solution will be obtained. Since a direct
sampling could repeat the configurations (the same numbers in a different order), we can restrict
the search to sequences of increasing numbers. The corresponding script for this Monte Carlo’s
approximation of the solution is:

er<-100000
Sol2 <-c(1:s)
for(q in 1:(s-2)){

for(k in 1:10000){
w<-c(sample (1:s, q,replace=F))
cc<-0
for(u in 1:(s-q)){

if(Sol1(w)[u] >= -0.00001)
cc<-cc+1

}
if( cc==(s-q) & er >= Error1(w))
{ er <- Error1(w)
Sol2 <-Sol1(w)
w1<-w
}

}
}
### ErrorCaseEqual1 is the error for this case
ErrorCaseEqual1 <-er

After checking 105 iterations given by sets of n non zero coefficients, for 1 ≤ n ≤ 23, we obtain an
error ε = 89.7183. Figure 5 shows the estimate provided for the function E associated to this solution,
together with the function E itself. It can be seen that the approximation and the real data almost
coincide. Superposition of graphs shows almost 100% of coincidence.



Mathematics 2020, 8, 1260 19 of 24

Figure 5. Joint representation of the data in E (red line) and its approximation for the restriction case
sum = 1 (black line). The bar graph is the pointwise error with the maximum (red point) and the
average (dashed line).

(2) The condition ∑23
k=1 α2

k < 1 is assumed. The script used for this is:

er<-100000
for(q in 1:(s-2)){

for(k in 1:10000){
w<-c(sample (1:s, q,replace=F))
if(sum(Sol(w)) <=1){

cc<-0
for(u in 1:(s-q)){

if(Sol(w)[u] >= -0.00001)
cc<-cc+1

}
if( cc==(s-q) & er >= Error(w))
{ er <- Error(w)

### Sol0 is the solution
Sol0 <-Sol(w)

### w0 indicates which are the equations that have to be removed
w0<-w
}

}
}

}
### ErrorCaseLess1 is the error for this case
ErrorCaseLess1 <-er

Now, after checking 105 iterations defined by sets of n non zero coefficients, for 1 ≤ n ≤ 23, we obtain
an error ε = 131.0098. Figure 6 shows the estimate provided for the function E associated to this
solution, together with the function E itself. It can be seen that the approximation and the real data
almost coincide. Superposition of graphs shows almost 100 % of coincidence.
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Figure 6. Joint representation of the data in E (red line) and its approximation for the restriction case
sum < 1 (black line). The bar graph is the pointwise error with the maximum (red point) and the
average (dashed line).

Table 7 shows the coefficients α2
k associated to both estimates (4 digits, compare with Table 6).

Table 7. First 12 coefficients α2
k of the survival functions for the cases sum < 1 and sum = 1 (the

remaining coefficients are 0).

sum < 1 0 0 0.0046 0 0 0 0.1492 0 0.1535 0 0.6395 0
sum = 1 0 0.0013 0 0 0 0 0.1903 0 0.1216 0 0.3313 0.3555

Figure 7 shows the survival functions associated to the three approximations that we have
presented using different sampling techniques. They can be compared with the one obtained using
genetic algorithms in next subsection.

Figure 7. Representation of the survival function estimates for the three methods. The red line is the
crude Monte Carlo estimate (big Error 422.7197), the black one is the genetic algorithm result, and the
red one is the exact approximation based on the Karush-Kuhn-Tucker conditions. The errors for this
last/better method are 89.7183—when the constraint sum = 1 is assumed, and 131.0098 for the case
sum < 1.

3.3. Genetic Algorithms

A Genetic Algorithm (GA) has been used to calculate an approximated solution of the problem.
GAs belong to the category of evolutionary algorithms (EAs), which mimic biological evolution and
are based on populations of individuals, where every individual is, in general, a vector from the search
space that is a candidate to be a solution the problem. These candidates should be evaluated using a
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fitness function [23]. We get profit on both the good results obtained with GAs, together with their
capability to handle a wide variety of problems with different degrees of complexity, what explains
their wide use. Our GA have been designed for getting an approximate solution to the problem by
defining a new error that balances the error ε(s) and the estimate of the cumulative sum |∑s

k=1 α2
k − µs|,

where µs can be handled to improve the result using additional information, starting for example with
µs = 1. We define as a fitness function:

ν(s) = γ1 ε(s) + γ2

∣∣∣ s

∑
k=1

α2
k − µs

∣∣∣,
where γ1 and γ2 are weights to balance the terms in the error, being chosen on the basis of the observed
convergence properties. The second term of this error function is in fact a constrain over the first part.
In the minimization problem it is given by the inequality ∑s

k=1 α2
k ≤ µs. The quotient γ1/γ2 plays the

role of “adjustment variable", being γ1, γ2 < 1 and γ1 + γ2 = 1.
We have used the GA Package in R [24,25] and we have defined a real-valued GA problem with
variables {α2

k}
s
k=1. As the genetic algorithm maximizes, we have used as a fitness function 1/ν(s).

The algorithm has two arguments that influence in its convergence: the population size (popSize) that
represents the number of possible solutions that the algorithm evaluate—with the fitness function—in
each iteration and the total number of iterations (maxiter). The GA algorithm progress applying the
genetic operators (crossover and mutation) to the members of the population to produce the offsprings
that will form part of the population in the next iteration ( [23]). We have considered values of the
popSize of 100, 250 and 500 in combination with maxiter that takes values equal to 5000, 250,00 and
50,000. In Table 8 we can see values of the relative error, defined as the norm of the difference between
the approximated solution obtained with GA and the solution obtained in Section 3.2. The bigger the
number of iterations and the population size, the lower the error.

Table 8. Relative error between the exact (Section 3.2) and the approximated solution using GAin terms
of the maximum number of iterations and the population size.

maxiter

popSize 5000 25000 50000 100000

100 0.42 0.26 0.22 0.18

250 0.38 0.23 0.19 0.17

500 0.33 0.22 0.18 0.16

Taking into account the increase in the CPU time when we increase both, number of iterations and
population size and the lowering in the relative error obtained, we have fix the values maxiter= 50000
and popSize= 250. CPU time in a Macbook 2015 (Dual-Core Intel Core i5 2,7 GHz) with 8GB of
memory laptop takes less than 30 min. For these values fixed, we have study for this particular case
the value of the quotient γ1/γ2 for which we obtain the best approximated solution. This has been
obtained for a value γ1/γ2 = 9. The solution obtained can be seen in Figures 8 and 9. It can be observed
that the approximation is very good, being the error very small. This value of the quotient means that,
in this particular case, the first part of the error function is much more important that the second part

relative to the condition
∣∣∣∑s

k=1 α2
k − µs

∣∣∣. Anyway we want to point out that the extreme values γ1 = 1.0
and γ2 = 0—that is possible to implement numerically—do not produce an acceptable solution or,

in other words, the condition
∣∣∣∑s

k=1 α2
k − µs

∣∣∣ is necessary for obtaining a good approximation. Finally,
this is not the general situation and, with real data from Covid-19 ([26]) the best fitting is obtained with
much more balanced quotient, being the usual value γ1/γ2 = 1.

The algorithm to implement GA calculation is the next:

library("GA")
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### Built matrix J with Data.
s<-23 ### Dimension of the problem
### Define the error function using matrix J and vector E
ErrorVec <-function(v){norm((J)%*%v-E,type="2")}/norm(E)
### Vector v is the solution of the problem
### Define the fitness function
fitness <- function(x) 1/(g1*ErrorVec(v)+g2*abs(sum(v)-mu_s))
### Starting variables
mu_s<-1
g1<-1
g2<-1
### Define upper and lower bounds for the values
### of the components of vector v
lb <- rep(0,s)
ub <- rep(1,s)
### Finally with fixed labels monitor=’FALSE" to
### avoid the printscreen.
### See documentation for more details.
GA <- ga(type = "real -valued", fitness = fitness ,

lower=lb , upper = ub ,
popSize =250, maxiter =50000 , monitor=’FALSE’,
seed =123456)

### Solution is save in variable Sol
Sol <-c(GA@solution)

Figure 8. Joint representation of data and fitting using genetic algorithms.

Figure 9. Survival function using genetic algorithms.
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In short, as the reader can see, the Monte Carlo method applied directly provides a weak approach
to the solution of the problem. The best solution is clearly obtained when sampling over the set of
all the systems of equations that describe the local minima. This combination of exact solutions of
linear systems with Monte Carlo sampling gives good solutions—even the ’exact’ solution for small
datasets, but poses the problem of needing powerful computational tools when the size of the datasets
increases. This is due to a “combinatorial" growth of the number of systems of equations coming
from the Lagrange equation together with the associated Karush-Kuhn-Tucker conditions. Finally,
compared with the results in Figure 7, genetic algorithms provide very good results, as can be seen
in Figures 8 and 9, even when the dataset is large. The reader can find some calculations with larger
datasets than those in this example in Reference [26] using this method.

4. Conclusions

We have shown a general model to calculate and describe the Kaplan-Meier curve of the virus
in an epidemic process, in which the information is given as aggregated data per day: confirmed
individuals, recovered individuals and the dead. The use of the survival curves obtained in this way
could help in the management of resources for the response to an epidemic process at all levels: at the
national level—to know the response capacity of a national health system in an emergency situation,
at the local level—in a city, for the management of patients between different health centers, or at the
hospital level—for example, to forecast the number of beds that might be needed.

We have made a complete mathematical study of the model, finding the main equations that
describe it and proposing different methods to solve them, in order to represent the final results as
modeling curves and survival curves. Thus, an analysis of how to solve the equations is given, from a
crude Monte Carlo method, the description of the exact method of solution mixed with Monte Carlo
search in the space of the local minima, and the use of a genetic algorithm.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. HTML versions of the
figures can be found as supplementary material. The data are taken from the public repositories on Covid-19
(published by the Spanish Government), and are not interesting in themselves as far as this article is concerned.
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