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Abstract: The purpose of this paper is to introduce two different kinds of iterative algorithms
with inertial effects for solving variational inequalities. The iterative processes are based on the
extragradient method, the Mann-type method and the viscosity method. Convergence theorems
of strong convergence are established in Hilbert spaces under mild assumption that the
associated mapping is Lipschitz continuous, pseudo-monotone and sequentially weakly continuous.
Numerical experiments are performed to illustrate the behaviors of our proposed methods, as well as
comparing them with the existing one in literature.
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1. Introduction and Preliminaries

Let C be a closed, convex and nonempty subset of a Hilbert space H. The inner product and its
induced norm of H are denoted by 〈·, ·〉 and ‖ · ‖ respectively.

Problem 1. Let A : H → H be a nonlinear operator. We consider the following variational inequality problem

find x∗ ∈ VI(C, A) := {x∗ ∈ C : 〈z− x∗, A(x∗)〉 ≥ 0, ∀z ∈ C}. (1)

The variational inequality, which serves as an important model in studying a wide class of real
problems arising in traffic network, medical imaging, machine learning, transportation, etc. Due to
its wide applications, this model unifies a number of optimization-related problems, such as, saddle
problems, equilibrium problems, complementary problems, fixed point problems; see, e.g., [1–5].

Next, one introduces an important tool in this paper: the nearest point (metric) projection. For all
x ∈ H, there exists a unique nearest point in C, which is denoted by PCx, such that ‖x − PCx‖ =

inf{‖x− y‖ : y ∈ C}. Then PC is called the nearest point (metric) projection from H onto C. It is known
that the projection operator is firmly nonexpansive and can be characterized by 〈x− PCx, y− PCx〉 ≤ 0,
∀x ∈ H, y ∈ C, which is also equivalent to ‖x − PCx‖2 ≤ ‖x − y‖2 − ‖y − PCx‖2, ∀x ∈ H, y ∈ C;
see [6]. As a routine way, one can turn the variational inequality problem into a fixed point problem
via a resolvent operator, that is, PC(I − αA)x∗ = x∗, for all α > 0.

Let us recall some definitions of mappings involved in our study. An operator A : H → H is said
to be

(i) Sequentially weakly continuous if, for each weak sequence {xk} to x∗, in this case we say that
{Axk} converges weakly to Ax∗;
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(ii) Pseudomonotone on H if 〈Ax, y− x〉 ≥ 0⇒ 〈Ay, y− x〉 ≥ 0, ∀x, y ∈ H;
(iii) Monotone on H if 〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ H;
(iv) L-Lipschitz continuous on H if there exists L > 0 such that ‖Ax− Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H.

Suppose that g : H → R is convex and continuously Fréchet differentiable. Then g is convex if
and only if ∇g : H → H is monotone. At the same time, it is well known that ∇g is pseudo-monotone
if and only if g is pseudo-convex.

Recently, iterative methods for solving variational inequalities and related optimization problems
have been proposed and analyzed by many authors [7–11]. Let us start with Korpelevich’s method [12],
which was proposed for the Euclidean case, known as the extragradient method. This method needs
two calculations of the projection onto a nonempty closed convex subset, that is, it generates a sequence
by the following iteration procedure

x0 ∈ C,
wk = PC(xk − λAxk),
xk+1 = PC(xk − λAwk),

(2)

where the mapping A : H → H is monotone and L-Lipschitz continuous for some L > 0 and
λL ∈ (0, 1). Recently, the extragradient method has received great attention by many authors [13].
It has been studied in various ways for solving a more general problem in the setting of Hilbert spaces.
Typically, the extragradient method has been successfully applied for solving the pseudomonotone
variational inequality, see [14].

Now, let us consider the inertial extrapolation, which can be regarded as an acceleration procedure
of speeding up the convergence properties. Due to its importance, there are increasing interests in
studying inertial-type algorithms; see, e.g., [15–19] and the references therein. By incorporating the
inertial extrapolation into the extragradient method, Dong et al. [20] introduced the following inertial
extragradient algorithm (EAI). Given any x0, x1 ∈ H,

zk = xk + γk(xk − xk−1),
yk = PC(zk − βAzk),
xk+1 = (1− αk)zk + αkPC(zk − βAyk),

(3)

for each k ≥ 1, where the mapping A : H → H is monotone and Lipschitz continuous with the
constant L > 0. The authors showed that {xk} converges weakly to an element of VI(C, A) under the
following conditions:

(i) {γk} is non-decreasing with γ1 = 0 and 0 ≤ γk ≤ γ < 1 for each k ≥ 1;
(ii) ∃α, σ, δ > 0 such that

γ[(1 + βL)2γ(1 + γ) + (1− β2L2)γσ + σ(1 + βL)2]

1− β2L2 < δ

and

(1− β2L2)δ− γ[(1 + βL)2γ(1 + γ) + (1− β2L2)γσ + σ(1 + βL)2]

δ[(1 + βL)2γ(1 + γ) + (1− β2L2)γσ + σ(1 + βL)2]
≥ αk ≥ α > 0.

Note that inertial extragradient algorithm involving the inertial term mentioned above is weakly
convergent.

Many problems, arising in a broad range of applied areas, such as image recovery, quantum
physics, economics, control theory and mechanics, have been extensively studied in the infinite
dimensional setting. In such problems, the norm convergence is essential, since the energy ‖x− xn‖2 of
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the error between the solution x and the iterate xn eventually becomes arbitrarily small. Furthermore,
in the context of solving the convex optimization problem min{Λ(x) : x ∈ H}, the rate of convergence
of {Λ(xk)} seems to be better in the case when {xk} enjoys a strong convergence than that in the
case when {xk} enjoys a weak convergence. Thus, these naturally give rise to a question how to
appropriately modify the inertial extragradient method so that the strong convergence is guaranteed.
To solve the above question, we will propose two modified inertial extragradient algorithms. The first
modification stems from the Mann-type method [21,22] and the other one is of viscosity nature [23].

An obvious disadvantage of Algorithms (2) and (3) is the assumption that the mapping A should
be Lipschitz continuous and monotone. To avoid this restrictive assumption, in this paper, we show
that our proposed algorithms can solve the pseudo-monotone variational inequality under suitable
assumptions. It is worth mentioning that the class of pseudo-monotone mappings virtually contains the
class of monotone mappings. Indeed, the scope of the related optimization problems can be enlarged
from convex optimization problems to pseudoconvex optimization problems. This guarantees the
advantage of modified inertial extragradient methods in comparing with the other solution methods.

The following lemmas will be used in the proof of our main results.

Lemma 1 ([24]). Let {ak} be nonnegative real sequence with relation ak+1 ≤ αkbk + ak(1 − αk), where
{αk} ⊂ (0, 1) and {bk} are real sequences satisfying the restrictions limk→∞ αk = 0, ∑∞

k=0 αk = ∞ and
lim supk→∞ bk ≤ 0. Then ak → 0 as k→ ∞.

Lemma 2 ([25]). Let {ak} be a real sequence defined in [0,+∞) such that there exists a subsequence {akj}
of {ak} with akj

< akj+1 for all j ∈ N. There exists a nondecreasing sequence {mi} such that limi mi = ∞
and the following properties are satisfied by all (sufficiently large) number i ∈ N: ami+1 ≥ ai and ami+1 ≥ ami .
Indeed, mi is the largest number of n in the range of {1, 2, . . . , i} such that ak ≤ ak+1 holds.

The rest of the paper is organized as follows. In Section 2, we give two variants of the inertial
extragradient method for solving pseudo-monotone variational inequalities. We also prove strong
convergence results for the proposed algorithms. In Section 3, some numerical experiments are
presented to deal with quadratic programming problems, which demonstrates the performances of
our methods. Finally, the conclusion is given in the last section.

2. Algorithm and Convergence

Throughout the rest of the paper, one always systematically assumes that the following set
of hypotheses:

• The feasible set C is a nonempty, closed and convex set in a real Hilbert space H;
• The operator A : H → H is pseudo-monotone, sequentially weakly continuous and L-Lipschitz

continuous for some L > 0, with its solution set VI(C, A) 6= ∅.

First, we present the algorithm for solving the pseudo-monotone variational inequality which
combines the inertial extragradient method and Mann-type method.

The following propositions are known results of the iterative sequences generated by Algorithms 1
and 2, which are crucial for the proof of our convergence theorems, see [14].

Proposition 1. Assume that A is pseudo-monotone and L-Lipschitz continuous with VI(C, A) 6= ∅. Let x∗

be a solution of VI(C, A). Setting zk = PC(yk − λk Ayk), we have

‖zk − x∗‖2 ≤ ‖wk − x∗‖2 − (1− λ2
k L2)‖yk − wk‖2.

Proposition 2. The mapping A is pseudo-monotone, sequentially weakly continuous and L-Lipschitz
continuous for some L > 0. Assume that VI(C, A) 6= ∅. Assume additionally that limk→∞ ‖yk − wk‖ = 0
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and lim infk→∞ λk > 0. Then the sequence {wk} generated by Algorithms 1 and 2 converges weakly to a
solution of VI(C, A).

Algorithm 1:

Input: Input the algorithm parameters (αi)i∈N, (βi)i∈N, (γi)i∈N and (λi)i∈N;
Output: Output x ;

1 Initialize the data x0, x1 ∈ H;
2 Set k← 1 ;
3 for k = 1 to N do
4 Compute wk := xk + αk(xk − xk−1);
5 if wk := PC(wk − λk Awk) then
6 Goto final;
7 end
8 else
9 Compute yk := PC(wk − λk Awk);

10 Compute xk+1 = (1− βk − γk)xk + βkPC(yk − λk Ayk);
11 Set k← k + 1;
12 end
13 end
14 final;
15 return x = xk.

Now we are in a position to establish the main result of this note.

Theorem 1. Let {λk}, {γk}, {βk} be three real sequences in (0, 1) such that 0 < a ≤ λn ≤ b < 1
L for

some a, b ∈ (0, 1), limk→∞ γk = 0, ∑∞
k=1 γk = ∞, {βk} ⊂ (0, 1− γk) and limk→∞ βk > 0. Assume that

the sequence {αk} is chosen such that limk→∞
αk
γk
‖xk − xk−1‖ = 0. Then the sequence {xn} generated by

Algorithm 1 converges to the solution x̂ = PVI(C,A)0 in norm.

Proof. Let us fix x∗ = PVI(C,A)0. To simplify the notations, one sets zk = PC(yk − λk Ayk). By applying
Proposition 1, together with the definition of {wk}, one easily obtains that

‖zk − x∗‖ ≤ ‖wk − x∗‖ = ‖xk + αk(xk − xk−1)− x∗‖ ≤ αk‖xk − xk−1‖+ ‖xk − x∗‖. (4)

Invoking (4), the definition of {xk} implies that

‖xk+1 − x∗‖ ≤‖(1− βk − γk)(xk − x∗) + βk(zk − x∗)‖+ γk‖x∗‖

≤(1− γk)‖xk − x∗‖+ γk

(
αk
γk
‖xk − xk−1‖+ ‖x∗‖

)
.

(5)

Let M1 > 0 be a positive constant such that αk
γk
‖xk − xk−1‖ ≤ M1. Due to the assumption

limk→∞
αk
γk
‖xk − xk−1‖ = 0. Coming back to (5), we obtain that

‖xn+1 − x∗‖ ≤ max{‖xk − x∗‖, M1 + ‖x∗‖} ≤ · · · ≤ max{‖x0 − x∗‖, M1 + ‖x∗‖}. (6)

This clearly implies that {xk} is bounded. As a result, we have that sequences {yk}, {wk} and {zk} are
bounded as well. Again, by using the definition of {xk}, we find that
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‖xk+1 − x∗‖2

=‖βk(zk − x∗) + (1− βk − γk)(xk − x∗)− γkx∗‖2

≤‖βk(zk − x∗) + (1− βk − γk)(xk − x∗)‖2 − 2γk〈(1− βk − γk)(xk − x∗) + βk(zk − x∗), x∗〉
≤‖βk(zk − x∗) + (1− βk − γk)(xk − x∗)‖2 + 2γk‖(1− βk − γk)(xk − x∗) + βk(zk − x∗)‖‖x∗‖.

(7)

On the other hand,

‖βk(zk − x∗) + (1− βk − γk)(xk − x∗)‖2

≤β2
k‖zk − x∗‖2 + (1− βk − γk)

2‖xk − x∗‖2 + 2(1− βk − γk)βk‖xk − x∗‖‖zk − x∗‖
≤β2

k‖zk − x∗‖2 + (1− βk − γk)
2‖xk − x∗‖2 + (1− βk − γk)βk‖xk − x∗‖2

+ (1− βk − γk)βk‖zk − x∗‖2

≤(1− γk)βk‖zk − x∗‖2 + (1− βk − γk)(1− γk)‖xk − x∗‖2.

(8)

In view of the definition of {wk}, we deduce that

‖wk − x∗‖2 ≤‖αk(xk − xk−1) + xk − x∗‖2

≤2αk‖xk − xk−1‖‖wk − x∗‖+ ‖xk − x∗‖2.
(9)

Invoking the boundedness of {xk} and {zk}, there exists a positive constant M2 > 0 such that

‖(1− βk − γk)(xk − x∗) + βk(zk − x∗)‖‖x∗‖ ≤ M2. (10)

By combining inequalities (7)–(10) with Proposition 1, one asserts that

‖xn+1 − x∗‖2

≤(1− βk − γk)(1− γk)‖xk − x∗‖2 + (1− γk)βk‖zk − x∗‖2 + 2γk M2

≤(1− βk − γk)(1− γk)‖xk − x∗‖2 + (1− γk)βk(‖xk − x∗‖2 + 2αk‖xk − xk−1‖‖wk − x∗‖
− (1− λ2

k L2)‖yk − wk‖2) + 2γk M2

≤‖xk − x∗‖2 + 2αk‖xk − xk−1‖‖wk − x∗‖ − 2(1− γk)βk(1− λ2
k L2)‖yk − wk‖2 + 2γk M2.

(11)

Note that xk+1 = (1− βk)xk + βkzk − γkxk. Setting pn = (1− βk)xk + βkzk, we find that pk − xk =

βk(zk − xk). Furthermore, we can reformulate xk+1 as

xk+1 = pk − γkxk = (1− γk)pk + γk(pk − xk) = (1− γk)pk + γkβk(zk − xk).

It follows from the above equality that

‖xk+1 − x∗‖2

=‖(1− γk)(pk − x∗) + γk(βk(zk − xk)− x∗)‖2

≤(1− γk)‖pk − x∗‖2 + 2γkβk〈zk − xk, xk+1 − x∗〉 − 2γk〈x∗, xk+1 − x∗〉.
(12)

Indeed, based on (9), we have that

‖pk − x∗‖2 =‖βk(zk − x∗) + (1− βk)(xk − x∗)‖2

≤(1− βk)‖xk − x∗‖2 + βk(2αk‖xk − xk−1‖‖wk − x∗‖+ ‖xk − x∗‖2)

≤2αk‖xk − xk−1‖‖wk − x∗‖+ ‖xk − x∗‖2.

(13)

Combining (12) with (13), we find that
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‖xk+1 − x∗‖2 ≤(1− γk)(‖xk − x∗‖2 + 2αk‖xk − xk−1‖‖wk − x∗‖)
+ 2γkβk‖zk − xk‖‖xk+1 − x∗‖ − 2γk〈x∗, xk+1 − x∗〉

≤(1− γk)‖xk − x∗‖2 + γk
(2αk

γk
‖xk − xk−1‖‖wk − x∗‖

+ 2βk‖zk − xk‖‖xk+1 − x∗‖+ 2〈x∗, x∗ − xk+1〉
)
.

(14)

Now we prove that the sequence {‖xk − x∗‖} converges to 0 by considering two possible cases on
{‖xk − x∗‖}.

Case 1. Suppose that there exists K ∈ N such that ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ K. This
implies that limk→∞ ‖xk − x∗‖ exists. From conditions limk→∞

αk
γk
‖xk − xk−1‖ = 0 and {γk} ∈ (0, 1),

we find that limk→∞ αk‖xk − xk−1‖ = 0. Since 0 < a ≤ λn ≤ b < 1
L , it holds that

0 < 1− b2L2 ≤ 1− λ2
k L2 ≤ 1− a2L2 < 1. (15)

It follows from (11) and (15) and the conditions limk→∞ γk = 0 and limk→∞ βk > 0 that

lim
k→∞
‖yk − wk‖ = 0. (16)

From the nonexpansivity of PC and the L-Lipschitz continuity of A, one concludes that

‖zk − yk‖ = ‖PC(yk − λk Ayk)− PC(wk − λk Awk)‖ ≤ (1 + λkL)‖yk − wk‖. (17)

Combining (16) with (17), one has
lim
k→∞
‖yk − zk‖ = 0. (18)

It follows that
lim
k→∞
‖wk − xk‖ = lim

k→∞
αk‖xk − xk−1‖ = 0. (19)

From (16), (18) and (19), we obtain that

lim
k→∞
‖zk − xk‖ ≤ lim

k→∞
(‖zk − yk‖+ ‖yk − wk‖+ ‖wk − xk‖) = 0. (20)

Recalling that {xk} is bounded, one assumes that there exists a subsequence {xkj
} of {xk} such

that xkj
⇀ x̂ as j → ∞. Invoking (19), one has that wkj

⇀ x̂ as j → ∞. As a sequence, by use of
Proposition 2, we find that x̂ ∈ VI(C, A). From the fact x∗ = PVI(C,A)0, we obtain that

lim sup
k→∞

〈x∗, x∗ − xk〉 = lim
j→∞
〈x∗, x∗ − xkj

〉 = 〈x∗, x∗ − x̂〉 ≤ 0. (21)

From the boundedness of {xk} and limk→∞ γk = 0, we infer

‖xk+1 − xk‖ = ‖βk(zk − xk)− γkxk‖ ≤ βk‖zk − xk‖+ γk‖xk‖ → 0, k→ ∞. (22)

Combining (21) with (22), we further find that

lim sup
k→∞

〈x∗, x∗ − xk+1〉 ≤ 0. (23)

From the condition limk→∞
αk
γk
‖xk − xk+1‖ = limk→∞ γk = 0, ∑∞

k=1 γk = ∞, (14), (20) and (23),
we conclude from Lemma 1 that limk→∞ ‖xk − x∗‖ = 0. In other words, it entails that xk → x∗

as k→ ∞.
Case 2: Suppose that there exists a subsequence {‖xkj

− p‖} of {‖xk − p‖} such that ‖xkj
− p‖ <

‖xkj+1 − p‖, ∀j ∈ N. In this case, by using Lemma 2, one sees that there exists a nondecreasing
sequence {ni} of N such that limi→∞ ni = ∞ and the following inequalities hold for all i ∈ N,
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‖xni+1 − p‖ ≥ ‖xni − p‖, ‖xni+1 − p‖ ≥ ‖xi − p‖. (24)

By using (11) and (24), we have that

2(1− γni )βni (1− λ2
ni

L2)‖yni − wni‖
2 ≤ 2αni‖xni − xni−1‖‖wni − x∗‖+ 2γni M2. (25)

Recalling that limk→∞ αni‖xni − xni−1‖ = limk→∞ γni = 0 and limk→∞ βni > 0, it follows from (15)
and (25) that

lim
i→∞
‖yni − wni‖ = 0. (26)

Using the same arguments as in the proof of Case 1, one obtains that

lim
i→∞
‖wni − xni‖ = lim

i→∞
‖zni − xni‖ = lim

i→∞
‖xni+1 − xni‖ = 0. (27)

and
lim sup

i→∞
〈x∗, x∗ − xni+1〉 ≤ 0. (28)

Coming back to (14), we have

‖xni+1 − x∗‖2 ≤ 2αni

γni

‖xni − xni−1‖‖wni − x∗‖+ 2βni‖zni − xni‖‖xni+1 − x∗‖+ 2〈x∗, x∗ − xni+1〉.

(29)
In light of (27)–(29), we have lim supi→∞ ‖xni+1− x∗‖2 ≤ 0. Invoking (24), we obtain that limi→∞ ‖xi−
x∗‖2 = 0, which further implies that xk → x∗, as k→ ∞. This completes the proof.

The other algorithm reads as follows.

Algorithm 2:

Input: Input the algorithm parameters (αi)i∈N, (λi)i∈N and (δi)i∈N;
Output: Output x ;

1 Initialize the data x0, x1 ∈ H;
2 Set k← 1 ;
3 for k = 1 to N do
4 Compute wk := xk + αk(xk − xk−1);
5 if wk := PC(wk − λk Awk)) then
6 Goto final;
7 end
8 else
9 Compute yk := PC(wk − λk Awk);

10 Compute zk := PC(yk − λk Ayk);
11 Compute xk+1 = (1− δk)zk + δkg(zk) ;
12 Set k← k + 1;
13 end
14 end
15 final;
16 return x = xk.

Now, we are ready to analyze the convergence of Algorithm 2. The outline of its proof is similar
to that of Theorem 1.

Theorem 2. Let g : H → H be a contraction mapping with the contraction parameter κ ∈ (0, 1). Let {λk},
{δk} be two real sequences in (0, 1) such that 0 < a ≤ λn ≤ b < 1

L for some a, b ∈ (0, 1), ∑∞
k=1 δk = ∞
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and limk→∞ δk = 0. Assume that the sequence {αk} is chosen such that limk→∞
αk
δk
‖xk − xk−1‖ = 0.

Then the sequence {xn} generated by Algorithm 2 converges strongly to the solution x̂ ∈ VI(C, A), where
x̂ = PVI(C,A)g(x̂).

Proof. Fixing x∗ = PVI(C,A) ◦ g(x∗) and using the same arguments as in the proof of Theorem 1,
we infer

‖zk − x∗‖ ≤ ‖wk − x∗‖ ≤ ‖xk − x∗‖+ αk‖xk − xk−1‖, (30)

‖wk − x∗‖2 ≤ ‖xk − x∗‖2 + 2αk‖xk − xk−1‖‖wk − x∗‖, (31)

and
‖zk − yk‖ ≤ (1 + λkL)‖yk − wk‖. (32)

Now, using (30) and the definition of {xk}, one sees that

‖xk+1 − x∗‖
≤ (1− δk)‖zk − x∗‖+ δk‖g(zk)− g(x∗)‖+ δk‖g(x∗)− x∗‖
≤ (1− δk(1− κ))‖zk − x∗‖+ δk‖g(x∗)− x∗‖

≤ (1− δk(1− κ))‖xk − x∗‖+ δk(1− κ)

(
αk

δk(1− κ)
‖xk − xk−1‖+

1
1− κ

‖g(x∗)− x∗‖
)

.

(33)

Since limk→∞
αk
δk
‖xk− xk−1‖ = 0, we set briefly αk

δk
‖xk− xk−1‖ ≤ M3 for some positive constant M3 > 0.

Coming back to (33), we have that

‖xk − x∗‖ ≤ (1− δk(1− κ))‖xk − x∗‖+ δk(1− κ)

(
M3

1− κ
+

1
1− κ

(‖g(x∗)− x∗‖)
)

≤ max
{
‖xk − x∗‖, M3

1− κ
+

1
1− κ

(‖g(x∗)− x∗‖)
}

≤ · · · ≤ max
{
‖x0 − x∗‖, M3

1− κ
+

1
1− κ

(‖g(x∗)− x∗‖)
}

.

It entails that {xk} is bounded. This implies that {wk}, {yk} and {zk} are bounded as well. We apply
Proposition 1 and (31) to get that

‖xk+1 − x∗‖2 ≤ (1− δk)‖zk − x∗‖2 + δk(‖g(zk)− g(x∗)‖+ ‖g(x∗)− x∗‖)2

≤ (1− δk)‖zk − x∗‖2 + δk(‖zk − x∗‖+ ‖g(x∗)− x∗‖)2

≤ ‖xk − x∗‖2 + 2αk‖xk − xk−1‖‖wk − x∗‖ − (1− λ2
k L2)‖yk − wk‖2

+ δk(‖g(x∗)− x∗‖2 + 2‖zk − x∗‖‖g(x∗)− x∗‖).

(34)

Again, by using Proposition 1 and (31), together with (9), one concludes that

‖xk+1 − x∗‖2

≤ (1− δk)‖zk − x∗‖2 + δk‖g(zk)− g(x∗)‖2 + 2δk〈g(x∗)− x∗, xk+1 − x∗〉
≤ (1− δk(1− κ))‖zk − x∗‖2 + 2δk〈g(x∗)− x∗, xk+1 − x∗〉

≤ (1− δk(1− κ))‖xk − x∗‖2 + δk(1− κ)
( 2αk

δk(1− κ)
‖xk − xk−1‖‖wk − x∗‖

+
2

1− κ
〈g(x∗)− x∗, xk+1 − x∗〉

)
.

(35)

Now let us show that the sequence {‖xk − x∗‖} converges to zero. To obtain this result, we consider
two possible cases on the sequence {‖xk − x∗‖}.
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Case 1: There exists K ∈ N such that ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ K. Observe that
limk→∞ ‖xk − x∗‖2 exists. Due to the condition 0 < a ≤ λn ≤ b < 1

L , we have that

0 < 1− b2L2 ≤ 1− λ2
k L2 ≤ 1− a2L2 < 1. (36)

Based on the conditions limk→∞
αk
δk
‖xk − xk−1‖ = 0 and {δk} ⊂ (0, 1), we have that limk→∞ αk‖xk −

xk−1‖ = 0. Since {wk} and {zk} are bounded and the condition limk→∞ δk = 0 holds, we find that

lim
k→∞
‖yk − wk‖ = 0. (37)

Combining (32) with (37), we have that

lim
k→∞
‖yk − zk‖ = 0. (38)

It follows that
lim
k→∞
‖wk − xk‖ = lim

k→∞
αk‖xk − xk−1‖ = 0. (39)

In light of (37)–(39), we have that

lim
k→∞
‖zk − xk‖ ≤ lim

k→∞
(‖zk − yk‖+ ‖yk − wk‖+ ‖wk − xk‖) = 0. (40)

The boundedness of {xk} asserts that there exists a subsequence {xkj
} of {xk} such that xkj

⇀ x̂, as
j→ ∞. Invoking (39), we observe that wkj

⇀ x̂, as j→ ∞. And hence, it follows from Proposition 2
that x̂ ∈ VI(C, A). Invoking x∗ = PVI(C,A) ◦ g(x∗), we deduce that

lim sup
k→∞

〈g(x∗)− x∗, xk − x∗〉 = lim
j→∞
〈g(x∗)− x∗, xkj

− x∗〉 = 〈g(x∗)− x∗, x̂− x∗〉 ≤ 0. (41)

Recalling the definition of {xk} and the assumption limk→∞ δk = 0, we infer that

‖xk+1 − xk‖ = ‖(1− δk)zk + δkg(zk)− xk‖ ≤ ‖zk − xk‖+ δk‖zk − g(zk)‖ → 0, k→ ∞. (42)

Combining (41) with (42), we find that

lim sup
k→∞

〈g(x∗)− x∗, xk+1 − x∗〉 ≤ 0. (43)

Invoking the conditions limk→∞
αk
δk
‖xk − xk−1‖ = 0, limk→∞ δk = 0, ∑∞

k=1 δk = ∞, κ ∈ (0, 1), we apply
Lemma 1 to get that limk→∞ ‖xk − x∗‖ = 0, that is, limk→∞ xk = x∗.

Case 2: Suppose that there is no k0 ∈ N such that {‖xk − x∗‖}∞
k=k0

is monotonically decreasing.
In this case, we can define a mapping ϕ : N→ N as

ϕ(k) := max{i ∈ N : i ≤ k, ‖xi − x∗‖2 ≤ ‖xi+1 − x∗‖2},

i.e., ϕ(k) is the largest number i in {1, 2, . . . , k} such that ‖xi − x∗‖2 increases at i = ϕ(k). Note that
ϕ(k) is well-defined for all sufficiently large k. On the other hand, ϕ(·) is a nondecreasing sequence
such that limk→∞ ϕ(k) = ∞ and the following inequalities hold for all k ≥ 0,

‖xϕ(k)+1 − p‖2 ≥ ‖xϕ(k) − p‖2, ‖xϕ(k)+1 − p‖2 ≥ ‖xk − p‖2. (44)
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The conditions limk→∞
αk
δk
‖xk − xk−1‖ = 0 and limk→∞ δk = 0 entail that limk→∞ αk‖xk − xk−1‖ = 0.

Combining (34) and (44) with the boundedness of {zk}, we successfully find that

(1− λ2
ϕ(k)L

2)‖yϕ(k) − wϕ(k)‖2

≤ 2αϕ(k)‖xϕ(k) − xϕ(k)−1‖‖wϕ(k) − x∗‖+ δϕ(k)(‖g(x∗)− x∗‖2 + 2‖zϕ(k) − x∗‖‖g(x∗)− x∗‖)→ 0,

as k→ ∞. Therefore, it follows from (36) that

lim
k→∞
‖yϕ(k) − wϕ(k)‖ = 0. (45)

With the help of (45), using the same arguments as in the proof of Case 1, we infer that

lim sup
k→∞

〈g(x∗)− x∗, xϕ(k)+1 − x∗〉 ≤ 0. (46)

According to (35) and (44), we have

‖xϕ(k) − x∗‖2 ≤
2αϕ(k)

δϕ(k)(1− κ)
‖xϕ(k) − xϕ(k)−1‖‖wϕ(k) − x∗‖+ 2

1− κ
〈g(x∗)− x∗, xϕ(k)+1 − x∗〉.

(47)
Therefore, combining the condition limk→∞

αk
δk
‖xk − xk−1‖ = 0 with (46) and (47), we have that

lim supk→∞ ‖xϕ(k) − x∗‖2 ≤ 0. And hence, it follows from (44) that xk → x∗, as k→ ∞. This completes
the proof.

3. Numerical Results

In this section, we perform some computational experiments in support of the convergence
properties of our proposed methods and compare our methods with Algorithm EAI, see [20].

All programs are written in Matlab version 5.0 and computed on a PC Desktop Intel(R) Core (TM)
i5-8250U CPU @1.60GHz. Consider the quadratic programming problem in the form below

min Λ = xTΘx + ΥTx
s.t. x ∈ Rn

xi ≥ 0, i = 1, 2, . . . , n,

with the following properties (48)–(50) in a n-dimensional Euclidean space. When Θ is symmetric
and positive-definite in Rn, and consequently A = ∇Λ = Θx + Υ is pseudo-monotone and Lipschitz
continuous with the constant L = ‖Θ‖. Meanwhile, we choose the parameters λk =

1
1.5‖Θ‖ , αk =

1
k2 ,

γk = δk = 1
k and βk = k−1

2k (k ≥ 1). We can check that all of conditions in Theorems 1 and 2 are
satisfied. We choose randomly initial points x0, x1 ∈ Rn in the following experiments. Let us consider
the first example [26] with data (48) given by

Θ =


1 2 2 . . . 2
2 5 6 . . . 6
2 6 9 . . . 10
...

...
...

. . .
...

2 6 10 . . . 4k− 3

 , Υ =


−1
−1
−1

...
−1

 . (48)

We apply Algorithm 1 to solve this problem in H = R5. We take the iteration number k = 5000 as
the stopping criterion. As depicted in Figure 1, one sees that the optimal solution of this problem is
unique (1, 0, 0, 0, 0)T .
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Figure 1. Behaviors of x1–x5 with the number of iterations (resp.) k = 5000. Numerical results for
Algorithm 1.

We use the sequence {Ek} defined by Ek = ‖xk − PC(xk − λk Axk)‖(k = 1, 2, 3, . . . ) to study
the convergence of different algorithms in H = R5. From the definition of the metric projection,
if ‖Ek‖ ≤ ε, xk can be considered as an ε-solution of this problem. We take the iteration number
k = 100 as the stopping criterion. To illustrate the computational performance of all the algorithms,
the numerical results are shown in Figure 2. From the changing processes of the values of {Ek}, we
find that Algorithm 2 has a better behavior than Algorithms 1, EAI. It achieves a more stable and
higher precision with the number of iterations. Moreover, the convergence of {Ek} to 0, implies that
the iterative sequence {Ek} converges to the solution of this test.
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0.7
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Algorithm 1 
Algorithm 2 
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VIP用户福利：

1. 可以转换所有页面。

2. 输出文件无水印。

立即移除

Figure 2. Behaviors of error sequence {Ek} with the number of iterations k = 100. Numerical results
for Algorithms 1 and 2 and EAI.

Now, we show the second example [27] with the data (49) expressed as
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Θ =



4 −1 0 . . . 0 0 0
−1 4 −1 0 . . . 0 0
0 −1 4 −1 0 . . . 0
...

...
. . . . . . . . . . . .

...
0 . . . 0 −1 4 −1 0
0 0 . . . 0 −1 4 −1
0 0 0 . . . 0 −1 4


, Υ =


−1
−1
−1

...
−1

 . (49)

We apply Algorithm 1 to solve this problem in H = R5. We set the iteration number k = 5000 as
the stopping criterion. As depicted in Figure 1, one sees that the optimal solution of this problem is
unique (1, 0, 0, 0, 0)T .

This problem is solved for Θ, 50× 50 matrix, Υ, 50 vector and Θ, 30× 30 matrix, Υ, 30 vector,
respectively. We use Algorithms 1 and 2 to solve this problem and we take the iteration number
k = 200, 100 as the stopping criterion. The test results are described in Figures 3 and 4. Thus, we
obtain the changing processes of x1 − x30 with respect to the number of iterations and the running
time (x-axis). From this, we find that the iterative sequences generated by Algorithms 1 and 2 converge
to a unique solution.
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Figure 3. Behaviors of x1–x50 with the number of iterations (resp.) k = 200. Numerical results for
Algorithm 1.
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Figure 4. Behaviors of x1–x30 with the number of iterations (resp.) k = 100. Numerical results for
Algorithm 2.
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Next, we consider another example [27] with the data (50) written as

Θ = diag(1/k, 2/k, . . . , 1), Υ = (−1, . . . ,−1)T . (50)

We take the iteration number k = 1000 as the stopping criterion in H = R25. From the results
reported in Figure 5, one has shown the changing processes of the values of x1–x25 (y-axis) in terms
of the number of iterations and the cpu time (x-axis). Accordingly, one sees that Algorithm 1 has a
convergent behavior.
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Figure 5. Behaviors of x1–x25 with the number of iterations (resp.) k = 1000. Numerical results for
Algorithm 1.

4. Conclusions

In this paper, we proposed two inertial extragradient extensions for finding a solution of the
pseudo-monotone variational inequalities in the setting of Hilbert spaces. We also established strong
convergence theorems of the proposed algorithms. Numerical experiments show that our algorithms
enjoy a faster rate of convergence than the one given by Dong et al. [20]. It is worth mentioning that
many significant real life problems are generally defined in Banach spaces. Therefore, it is of interest to
extend our results to the Banach space, which is more general than the Hilbert space.
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