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Abstract: We develop a sixth order Steffensen-type method with one parameter in order to solve
systems of equations. Our study’s novelty lies in the fact that two types of local convergence are
established under weak conditions, including computable error bounds and uniqueness of the
results. The performance of our methods is discussed and compared to other schemes using similar
information. Finally, very large systems of equations (100 x 100 and 200 x 200) are solved in order to
test the theoretical results and compare them favorably to earlier works.
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1. Introduction

A plenty of problems from Biology, Chemistry, Economics, Engineering, Mathematics, and
Physics are converted to a mathematical expression of the following form

F(u) = 0. @

Here, F : () C B — B, is differentiable, B is a Banach space and () is nonempty and open. Closed
form solutions are rarely found, so iterative methods [1-16] are used converging to the solution u..
In particular, we propose the following new scheme

-1
Yp = up — [up + F(up),up; F] F(up)

-1 -1
zp =ty — Ay + F(up),up; F] (F(up) + F(yp)) — (1= A)[up,yp; F] "F(up) )
-1
Upr1 = 2zp — [zp + F(zp),2p; F| Fl(zp),
up € () is an initial point and A € R is a free parameter. In addition to this, [-,;F] : Q x Q —
£(B,B) is a divided difference of order one.

We shall present two convergence analyses. Later, we present the advantages over other methods
using similar information.

2. Local Convergence Analysis I

We assume that B = R. We use method (2) with standard Taylor expansions [9] for studying
local convergence.
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Theorem 1. Suppose that mapping F is s sufficient differentiable on Q), with us. € Q, a simple zero of F.
We also consider that the inverse of F, F'(u.)~" € £(B,B). Then, lgn up = U provided that ug is close
p [ee]

enough to u... Moreover, the convergence order is six.
F'(u

pl
Taylor series expansions, first for F(u,) and F (up +F (up)):

Proof. Sete, = up —u,and Q, = =) where (€p)” = (€1,€2,...,€()7, €y € RP. We shall use some

F(up) = Qi€p + Qa5 + O(e;) 3)

and

p(up + F(up)) = (Q1+ Q})ep + (3Q1Q2 + Q2 + Q3Q2)el + O(e)), )

respectively.
By using the expressions (3) and (4) in the first substep of scheme (2), we have

€p=Yp —Us = blef? + bze; + bge‘; + O(ef,), (5)
where
Q2
b= =2 +Q,
o Q2
205 2Q5 203
b= =2 =2 T2 +3Q; —
2= 5, T 0 Q2 Q1Q3+3Q3 — Q3
and
303 3Qs  4Q3 | 507 10Q:Q;

by =—=2 2Q1Q2Q3+Q2+Q1Q4+4Q1Q4+6Q4*7Q2Q3+Q7+ Q2 ?% o}

Secondly, we expand F(yy)
F(yp) = Q16 + Q26,° + 0(6°). 6)
In view of (3)—(6), we get in the second substep of scheme (2)
€p = Upy1 — Us = Zp — Uy = b4e‘; + O(e;‘,), 7)
where
by = 352 + 2522 +Q5-A <4§2 +Q3+ 3Qsz>
Thirdly, we need the expansions for F(z,) and F (zp +F (zp))
F(zp) = Qi6p + Q26> +0(5°), ®
Hence, by (5) and (8), we get
F(zy + F(zp)) = bsep + becp” + O(&,°), 9)
leading together with the third substep of method (2) to
epy1 = Upy1 — Uy = b7€2 + O(e;), (10)

where
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b5:Q1+Q2/
be =3Q1Q2 + Q2 + Q7 Q2
and

Q) [3Q3 , 207 | v 405 | 303 2
by = =) | ==+ == A ==+ == )
7 <Q2+Q1> Ql+Q1+Qz <Q1+Q1+Q2

O

According to Theorem 1, the applicability of method (2) is limited to mappings F with derivatives
up to the seventh order.

Now, we choose B =R, Q) = [— %, %] and define a function f, as follows:
P2+ -3, T#0
= . 11
f(¢) { 0, F=0 (11)

We have the following derivatives of function f

£(&) =382 In &% + 5% — 48 + 222,
(&) = 12EIn & 42083 — 1282 + 10¢,
(&) = 12Ing* + 60& — 12¢ 4 22.

However, f " (§ ) is not bounded on (), so Section 2, cannot be used. In this case, we have a more
general alternative given in the up coming section.

3. Local Convergence Analysis II

Considera > 0and b > 0. Let wy : [0,00) x [0,00) — [0, 00) be a increasingly continuous map
with w(0,0) = 0.
Suppose equation
wo(at, ) =1 (12)

has p; as the smallest positive zero. In addition, we assume that w : [0,p1) X [0,p1) — [0,00) is a
increasingly continuous map with w(0,0) = 0.
Consider functions g; and /; defined on semi open interval [0, p;) as follow:

_w(bt,t)
s1(t) = 1—wo(at,t)’
and
hi(t) = gi(t) — 1.

By these definitions, we have h;(0) = —1 and hy(t) — oo ast — p;. Subsequently,
the intermediate value theorem assures that function #; has minimum one solution in (0, p1). Let 1 be
the minimal such zero.

The expression

wo(t,g1(t)t) =1 (13)

has the smallest positive zero p,. Set p3 = min{p1,p2}.
We construe the functions g, and h; on interval [0, p3) in the following way
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b1 Ao (Bt (14 g1(8)) ¢ ) g1 (8)
&(t) =g1(f) + w( ( Y >)g1
(1 - wg(at,t)) (1 — wp (t,gl(t)t>)

7

and

ha(t) = &(t) — 1.

We yield /1;(0) = —1 and hy(t) — oo since t — p5 . The r; stand for the minimal such zero of
function h; on (0, p3).
The equation

wo(aga(H)t, g2 (D)) =1 (14)

has p4 as the smallest positive solution. Set p = min{p3, p4 }. Define functions gzand &3 on [0, p) as

w(bgz(t)t,gz(f)f)gz(t)
gs(t) = ’
1w (aga(D)t, 2 (1))

and
ha(t) = ga(t) — 1.

We obtain h3(0) = —1 and h3(t) — oo as t — p~. The r3 imply the minimal zero of k3 on (0, p).
Moreover, define

r =min{r;}, fori =1,2,3. (15)
Accordingly, we have
0 <wp(at, t) <1, (16)
0 <wo(t,g1(t)t) <1, (17)
0 < wy (agz(t)t,gz(t)t> <1, (18)
and
0<gi(t) <1, (19)

forallt € [0,7).

S(v,c) denotes the open ball centered at v € B and of radius ¢ > 0. By S(v,c), we denote the
closure of S(v,¢)

We use the following conditions (A) in order to study the local convergence:

(a1) F:Q — Bis a differentiable operator in the Fréchet sense, [, -; F] : QO x Q — ¢(B,B) is a divided
difference of order one. In addition to this, we assume that u, € Q) is a simple zero of F. At last,
the inverse of operator F, F'(u,) ! € ¢(B,B).

(ap) Let wy : [0,00] x [0,00) — [0,00) be a increasingly continuous function with wy(0,0) = 0,
parameters a > 0 and b > 0, such that for each u,y € O

[P0 ™l B = F ()| < ol = el ly = we ),
|1+ [, usi F)|| < a,

and

o, 3 FI| < b.

Set Qg = QN S(uy, p1), where p; exists and is given by (12).
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(a3) We assume that w : [0, 1) X [0,01) — [0,0) is a increasingly continuous Vx,y,, 71 € Q

(ag) S(us, R) C O, where R = max{r,ar, br}, r is defined in (15) and p, psexist and are given by (13)
and (13), respectively.

F' ()™ (1, y: F) = (6, F1) || < o= 2l ly = ).

(a5) There exists 7 > r, such that
ZU()(O,T_’) <lor wo(i_’,O) <1

Set Oy = QN S(uy, 7).

Theorem 2. Under the hypotheses (A) further consider that uy € S(us, r) — {us}. Accordingly,
the proceeding assertions hold

{up} € S(us, 1), (20)
lim (1} = 1., (21)
lyp = uall < g1(llup — wal)lup — ual] < [Jup —ui|| <7, (22)
lzp — |l < g2(llup — D[y — 1| < Jlup — ], (23)
and
ltp a1 — el < g3y — wallup — wa| < [Jutp — . (24)

In addition, the u, is the unique solution of F(u) = 0 in the set ()1 mentioned in hypothesis (as).

Proof. We first show items (20)—(24) by adopting mathematical induction. Because p € S(uy,r) — {u+}
hold and by condition (a;), we have

lp+ F(p) — || = [I(1 + [P, us; F]) (p — ws) |

<+ [p s ][ lp — ue|
<alp—u]

and

IE(p)I| = [[E(p) = F(u)]|
< |\lp s F](p — ws) |
< lp,ue; FYl{lp — us|
< bllp — u]

so p + F(p) — uy and F(p) belong in S(u, R). Afterwards, for u,y, € S(u,,r) — {u.}, and
P e) 7 (3 F) = F (1))]| < o (1l = e, 1y = 1)

<wp(r,r) <1,

so the Banach lemma on invertible operators [3-5,12] gives [u,y; F]~! C ¢(B,B), and

< ! (25)

1= wo ([lug — ]|, ly — w.])

|0, F1 7P )

It also follows that y is defined.
Adopting (15), (16), (19) (for i = 1), (a2), (a3), (25) and yo, we get



Mathematics 2020, 8, 1249 60of 17

o — 1| = Huo —u, — [uo + F(uo), ug; F]*F(uo)H
= | o -+ F (s, 0z FY ([0 -+ F (o), 03 F] = [mo, .3 Fl oo — ) )|

< |+ F(uo), o FI 7' ()

F'(u*)*l([uo + F(ug), ug; ] — [ug,u*;F]) HHuo —

w(IF@), o = ] o — 1 (26)

1= wo(alluo — ], o — 1]

w(bluo — |, o = wl]) o — .

1 —wo(alluo — usll, [luo — ul))

g1(l[uo — w0 — ws || < [luo —usl| <7,

s0 Yo € S(us,r) (for yo # u,) and (22) holds for n = 0.

F'(1.) ([0, yo; F) = F'(u H<wo(||u0—u*\| lyo —u.1/)

(|u0fu*\| 81 ||”0*M*||)||“0*M*H>

SUGEICURS

so [ug, yo; F] ™ € ¢(B,B) and

< 1 . 27)

1= wo (lluo — ., g1 (o — ) 1to — -]

H (10, yo; F] ' F' (1)

It also follows that zg is well defined by the second substep of method (2) for n = 0. In particular,
we have

z0 = g — Alug + F(ug), 1o; ]~ (F(up) + F(yo)) — (1= A)[ug + F(up), uo; F] ' F(ug)
= (uo — [uo + F(uo), uo;Flle(uo)) + [uo + F(uo), uo; F] " F(ug) — Alug + F(ug), uo; F] ' F(uo)

o . (28)
— (1= A)[uo, yo; F] " F(ug) — Alug + F(uo), uo; F] ™ F(yo)
= o+ (1= A) ([uto + F(uto), 0; F| ™ — o, yo, F] ™" ) F(uto) = Ao + F(uo), uo; F] ' F(yo)
Next, by (15), (19) (for i = 2) and (25)—(28), we get, in turn, that
2o = woll < llyo — ]l + [1 = A 10 + F(uo), 03 FI ™ F' () || (1)~ ([st0, y0: F) = [t + F(so), wo; )|
" II[t40, yo; FI ™" F' () ||| F' (1)~ [tt0, s F] |l 140 — s |
(1= ool = oo =) ) (1 =0 (o = o = Do = . 1)
+ \/\|H [uo + F(ug),ug; F] 1F'(u HHF 1) " yo, F]HHyg |
bl — Ao (bl — e ], (1+ 1 (o — ) lto — ) @9)

< [g1<|uou*|>+
(1= ool =, o = ) (1 =0 (o = o = Dl . 1)

+1Al

b (lluo — )
Ugp — u
T wo(alluo — Tl o —aa) |10~ ]

= 8a([luo — uxllfuo — s || < fluo — 1],

s0 zg € S(ux,r) (for zy # u, ) and (23) holds for p = 0.
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We have by (15), (18) and (29)

F' ()™ (o + F(uo), 20 F] = F (1)) | < wo (bllz0 — sl 120 — ]
< wo (bga(llto — . Dllto — ., gt — ) o — -] )
< wy (bgz(r)r,gz(r)r> <1

Accordingly, [zo + F(zo), zo; F]~' € ¢(B,B) and

< ! . (30)

1~ wo (bgallo — e )lluo — well, g2(lluo — el 1o — )

H[ZO + F(z0), z0; F] 'F'(u)

It also follows that u; is well defined by (30) and the last substep of method (2) for n = 0.
Then, as in (25) and (26) (for z = 3) and (30), we obtain in turn

w(bllzo — w«ll, |20 — u«[)l|z0 — u||
1 —wo(al|zo — ul], [120 — u])

IN

llug — ]|

w(bga(lluo — )0 — 104, g2(llo — s )1 — ]| ) g2llwo — we ) lto — w59

1~ wo (agal(uo — e )t = e | 82(llto — s} Jto — 0] )
= g5([[uo — usl) luo — usl| < [luo — uxll,
so, u; € S(uy,r) (for u; # u,) and (24) holds for n = 0. Subsequently, substituting 1, yo, zo, 1
by tm, Ym, Zm, Um+1, respectively. Hence, the induction for (30) and (22)—(24) is complete. Using

the estimation
1 — el < alfum —us <7, (32)

where a = g3(||ug — u«||) € [0,1], we deduce that n%gr;o Uy = Uy and Uy, 11 € S(uy, 7).
Finally, we want to illustrate that the required solution is unique. Therefore, let T = [u,, y+; F] for
Y« € Oy, so that F(y,) = 0. Then, by (a2) and (as), we get

IF/ () 7T = F'(u)) | < wo(0, [|us — yl])
<wp(0,7) <1,

so T~! € (B, B). Finally, u, = y. is deduced from 0 = F(u,) — F(y«) = T(us — y«). O

Remark 1. Another way of defining functions g;, h; and radii r; is as follows:
Let « = max{8,a}, i = 1,2,3. Subsequently, as in (12)—(18), we shall have instead:

Suppose that equation
wo(at, t) =1 (33)
has a smallest positive solution p1. Let @ : [0,p1] x [0,01] be a increasingly continuous function with
@(0,0) = 0.
Let functions g, and hy be defined in the interval [0, p1] by
_ (bt t) - s
g1(t) = 1= wolat, D and hi(t) = g (t) — 1.

The 7ystands for the smallest positive root of hy(t) = 0 in (0,pq). Moreover, define functions g, 33,ha
and hs on the closed interval [0, p1], as follows:
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b1 — /\|w(bt, 1 +g1(t)>t>g1(t)

(1 — wo(at, t‘))2

w(bg‘z(t)t,g"z(t)f>8_2(t>
1—wp(at,t)

7

7

The 7, and 73 serve as the minimal positive roots of hy(t) = 0 and h3(t) = 0 on closed interval [0, p1],
respectively. Subsequently, Theorem 2 can be written by using the "bar” conditions and functions, with 7
min{7;}.

Remark 2. The convergence of method (2) to u. is established under the conditions of Theorem 1. Howeuver,
the order convergence under the conditions of Theorem 2 can be established by using (COC) and (ACOC) (for
the details, please see Section 5).

4. Numerical Examples

Here, we monitor the convergence conditions on three problems (1)-(3). We choose
[u,y; F] = fol F'(y+6(u—y))dé in the examples. We can confirm the verification the hypotheses
of Theorem 2 for the given choices of the “w” functions and parameters a and b.

Example 1. Here, we investigate the application of our results on Hammerstein integral equations (see [9],
pp. 19-20) for B = C|0, 1] as follows:

F(u(s1)) = u(sy) — = /01 S(sl,sz)u(sz)3dsz =0, ueC[0,1], s1,s2 €1[0,1], (34)

where
5(1 - 52)/ s S 52,

S(s1,82) = {

(1—5)sp, s2 <s.

1 8
We use / ¢(t)dt ~ Y wegp(ty) in (34), where ti and wy are the abscissas and weights, respectively.
0 k=1
Using u(t;) for u; (j =1,2,3,...,8), leads to

8
Sui—5-— Y agu; =0,j=1,2,3.,8,
k=1

wktk(l — t]'), k<j,
a:; =
J wkl’]’(l — 1), j<k.

The values of ty and wy, when k = 8, are illustrated in Table 1. Subsequently, we have

u, = (1.002096. .., 1.009900..., 1.019727..., 1.026436..., 1.026436.. .,
1.019727..., 1.009900..., 1.00209...)T.

Accordingly, we set wy(s1,s2) = w(s1,52) = %(sl +9), a= % and b = %. The radii for Example 1

are listed in Tables 2 and 3:
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Table 1. Abscissas and weights for k = 8.

£

wj

O NI O Ul WN -,

0.01985507175123188415821957 ...
0.10166676129318663020422303...
0.23723379504183550709113047 ...
0.40828267875217509753026193...
0.59171732124782490246973807 ...
0.76276620495816449290886952...
0.89833323870681336979577696...
0.98014492824876811584178043...

0.05061426814518812957626567 ...
0.11119051722668723527217800...
0.15685332293894364366898110...
0.18134189168918099148257522...
0.18134189168918099148257522...
0.15685332293894364366898110...
0.11119051722668723527217800...
0.05061426814518812957626567 ...

Table 2. Convergence radii for Example 1.

A 1 72

73 r

0 525452 3.87208 4.09301 3.87208

0.5 5.25452 4.26006
1 525452 5.25452

442602 4.26006
5.25452  5.25452

Table 3. Convergence radii for Example 1 with bar functions.

A 1 72

73 r

0 525452 3.67748
0.5 525452 4.07351

3.87626 3.67748
417413 4.07351

1 525452 5.25452 4.89162 4.89162

Example 2. Here, we choose as integral equation [17,18], for B = C[0, 1] as

[FGo] ) = wtr) = [ Gl ) ()t + BB Yay =,

where

G(r1,72) = {

1=72)72, 12 <M,
11(1=72), 11 < 720

Because B = C[0,1] so, F:C[0, 1] — C[0, 1] is given as

We get

Moreover,

[F ) =nm) = [ Gn, 1) (Gu0r)} 4 ur2) ) w2

n
H/O G(711, 12)dr2

50 px(y1) = 0, since F'(ps (1)) =1,

Hence, we have

113 53
wo(s, t) = w(s,t) = T {2(ﬁ+ \/f)+s+t] 0= 1e and b = 6

[F(0)] (n) = n(m) - /O71 G(71, 72) (H(’Yz)% + ”(’;2)2> dr2.

< 1

F'(p) " (F/(n) = ()| < % (;HV — 2 + I - nl) :

37

9o0f17

(35)

(36)

(37)

(38)

(39)
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Therefore, our results can be utilized even though F' is not bounded on Q). The radii for Example 2 are
given in Table 4.

Table 4. Convergence radii for Example 2 with bar functions.

A " 72 73 r

0 1.03137 0.502403 0.61211 0.502403
0.5 1.03137 0.61199 0.70738  0.61199
1 103137 1.03137 1.03137 1.03137

Example 3. We assume the following differential equations

f() —q(p)—1=0
ga(n) —(e=1)np—1=0 (40)
B(0)—1=0

characterizes the progress/movement of a molecule in 3D with (1, 1, 6) € Q for 41(0) = ¢2(0) = g3(0) = 0.
The required solution v = (u, 11, 8)7 describes to K := (g1, q2, q3) : Q — R3 given as

T
K(v) = (e” -1, %172—1—17, 9) = 0. (41)
It follows from (41) that
et 0 0
K'(v)=10 (e—1)n+1 0},
0 0 1
which yields
1 1 1 1
wo(s,t) = E(e —1)(s+t), w(s,t) = Ee(s +1),a= E(e+3), and b = §(6+ 1).

We depicted the radii of Example 3 in Tables 5 and 6.

Table 5. Convergence radii for Example 3.

A 1 2 3 r

0 0.1388596 0921375  0.083356  0.083356
0.5 0.1388596  0.921375  0.086297  0.086297
1 0.1388596 0.1388596 0.1388596  0.1388596

Table 6. Convergence radii for Example 3 with bar functions.

A 1 12 13 r

0 0.1388596 0.0487471 0.1229551 0.0487471
0.5 0.1388596 0.0487471 0.1377815 0.0487471
1 0.1388596 0.1388596 0.1380780 0.1380780

Example 4. By the example of Section 2, for Q3 =B =R, f(¢&) = 0, we get

.66297
wo(s, t) = w(s,t) = W(s—f—t), a= g, and b = %

The radii of method (2) for Example 4 are listed in Tables 7 and 8.
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Table 7. Convergence radii for Example 4.

A 21 72 73 r

0 0.00344841 0.00239612 0.00256623  0.00239612
0.5 0.00344841 0.00267769  0.00280807  0.00267769
1 0.00344841 0.00344841 0.00344841 0.00344841

Table 8. Convergence radii for Example 4 with bar functions.

A 21 72 73 r

0  0.00344841 0.00225955 0.00246765 0.00225955
0.5 0.00344841 0.00225955 0.00246765  0.00225955
1 0.00344841 0.00344841 0.00334891  0.00344841

5. Applications with Large Systems

We choose A = 0, A = 0.5 and A = 1 in our scheme (2), called by (PS1), (PS2) and (PS3),
respectively. Now, we compare our schemes with a 6th-order iterative methods suggested by
Abbasbandy et al. [19] and Hueso et al. [20], among them we picked the methods (8) and (14-15)
(for t; = —% and s, = §), respectively, known as (AS) and (HS). Moreover, a comparison of them
has been done with the 6th-order iterative methods given by Wang and Li [21], among their method we
chose expression (6), denoted by and (WS). At the last, we contrast (2) with sixth-order scheme given
by Sharma and Arora [22], we pick expression (13), known as (SM). The details of all the iterative
expressions are given, as follows:

method AS:
yi=uj— %F’(u])le(u]),
Zj = uj— [H' %F/(”j)ill:/(yj) - g(F/(”j)ilF/(yj))z + 1§5(F/(”]‘)71F/(yj))3 F'(u;) "' F(uy), (42)
U1 =2z — {31 - gp/(“]’)ilp(]/j) + %(F/(”j)ilF/(yj))z F'(u;) ' F(z))

scheme HS: ) )
yj=uj— F (M]‘)7 F(uj),
H(uj,y;) = F'(uj)"'F(y;), H(yj,u;) = F'(y;) "' F(u;),

Gs(uj,y;) = s1l +s2H(yj, uj) + s3H (uj, yj) + saH(yj, 1)), #3)
zj = u; — Gs(uj, y;) F'(u;) "1 F(u)),
Ujt1 = Zj.

where 31 s, 53 and s4 are real numbers.

terative method WS: . )
yj=uj— F (uj)_ F(u]-),

2 =yj = [21 = F(u)""F (y) | F' () "' F(yy), (44)
w1 =z — [21 = P () "'F () | F' () ' F(z)).

scheme SM:

zj = ;= [pL+ F' () "' F' ) (a1 + ' (w)) "' P (y) ) | F' () 7 F ), (45)

= 5= | 31 5F ) )| Flw) E ),
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wherep:%, q:—3andr:%.

: tog [|lnj1 =1 /1 —u; . .
The (j), (IIF(uj)|), luj+1 — ujll, and p* = 08 [I41 =251/ =411 stands for index of iteration,
tog [ [l 1/ 1uj1~ ;| ]
absolute residual errors in the function F, error between two successive iterations and computational

convergence order, receptively. There values are listed in Tables 9-11. Moreover, the quantity # is the

final obtained value of H

The estimation of all the above parameters have been calculated by Mathematica-9.
For minimizing the round-off errors, we have chosen multiple precision arithmetic with 1000 digits
of mantissa. The term b; (£b;) symbolizes the by x 10(+%2) in all mentioned tables. We adopted the
command "AbsoluteTiming[]" in order to calculate the CPU time. We run our programs three times
and depicted the average CPU time in Table 12, also one can observe the times used for each iterative
method, where we want to point out that for big size problems the method PS1 uses the minimum
time, so it is being very competitive. The configuration of the used computer is given below:

Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz

Made: HP

RAM: 8:00 GB

System type: 64-bit-Operating System, x64-based processor.

Example 5. Here, we deal with a boundary value problem from Ortega and Rheinboldt [9], given by

3 !
n Yy 6y +1_ 3 _ _
y' = > i y(0) =0, y(1) =1. (46)

We assume

1
up =0 <uy <up <uz <---<uy, whereupH:up—kh,h:;, 47)

partition of the interval [0, 1] and yo = y(uo) =0, y1 = y(u1), .., Yn—1 = Y(Un-1), yp = y(up) = 1.
Now, we discretize expression (46) by adopting following numerical formula for derivatives

p_ Yl —Yir Y12t Y

y] 2h ]/]: h2 /j:112/~--/P_l/

which leads to

W 5 3 3 5, 1
Yir1 = 2 Y= ¥~ Sk — k1) = 5= TR

=0,j=12,...,p—1,

(p—1) x (p — 1) system of nonlinear equations.
For specific value of p = 7, we have a 6 X 6 system and the required solution is

Uy = (0.07654393..., 0.1658739..., 0.2715210..., 0.3984540. .., 0.5538864 ..., 0.7486878...)T.

The computational estimations are listed in Table 9 on the basis of initial approximation

0 T
y](»):(3 3 33 3 g).

27272727202
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Table 9. Comparisons of different methods on a Boundary value problem in Example 5.

Il2j1 =2l

Methods ] ”F(uj) ” ||uj+1 - uj” P MTuj—u; 1]

1 1.9(-4) 6.1(—4)

As 2 87(-27)  2.8(—26) 5.133234733(~7)
3 81(—161)  2.6(—160) 59985  5.920693970(—7)
1 1.3(-4) 5.7(—4)

Hs 2 81(-23)  2.8(-22) 8.252588019(—3)
3 35(—114) 1.0(—113) 49954 2.013368332(+16)
1 2.6(—4) 1.1(-3)

ws 2 L1(=25)  31(-25) 1.977528884(—7)
3 86(—155)  24(—154) 59957  2.448277731(—7)
1 7.3(=5) 2.7(-3)

sv 2 82(-29)  27(-28) 7.804847473(~7)
3 1.1(-172) 3.6(—172) 5.9973 9.053257416(—7)
1 49(—6) 1.6(—5)

psy 2 16(=38)  4.8(-38) 2.474537279(—9)
3 9.3(-234) 2.7(—233) 6.0010  2.302596208(—9)
1 11(-5) 3.7(-5)

psy 2 37(=36)  11(=35) 4.513404180(—9)
3 24(-219) 7.2(=219) 6.0013  4.108378955(—9)
1 1.9(-5) 6.5(—5)

Ps3 2 1.9(—34) 5.6(—34) 7.168046437(—9)
3 6.6(—209) 1.9(—208) 6.0016  6.434316717(—9)

Example 6. The classical 2D Bratu problem [23,24] is given by

Uyy + ugg + Ce" =0,
. (48)
Q= {(y,@) €e0<u<1,0<6< 1}, with boundary hypotheses u = 0 on Q.

By adopting finite difference discretization, we can deduced the above PDE (48) to a nonlinear system.
For this purpose, we denote A; j = u(;, ;) as numerical solution at the grid points of the mesh. In addition to
this, My and M stand for the number of steps in the directions of u and 0, respectively. The h and k called
as the respective step sizes in the directions of y and 0. Adopt the following central difference formula to uy,,

and ugg
Aip1j— 20+ Ny
(3, 0) = == ===, c =01, 6 € [0,1), (49)

leads to us
Ai,]'-i-l + Ai,j—l — Ai,j + Ai+1,]‘ + Ai—l,j + h2C exp (Ai,j) i=1,2,3,... ,Ml,j =1,23,...,Mp (50)

For obtaining a large system of 100 x 100, we choose My = My = 11, C = 0.1and h = {;. The numerical
T
results are listed in Table 10 based on the initial guess uy = 0.1 ( sin(7thi) sin(nhj)) , i=j=10.
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Table 10. Comparisons of different methods on two-dimensional (2D) Bratu problem in Example 6.

; llotj1 — ;]
Methods j  |[F(u)|l  lluj41 — ul P Tur—w T

1 44(=15)  24(-14)

AS 2 69(—95)  3.5(—94) 1.428095547(—12)
3 79(-574)  3.9(—573) 59994  1.973434769(—12)
1 21(-13)  12(-12)

HS 2 21(=71)  1.2(-70) 7.368055345(—11)
3 17(-361)  9.3(—361) 49997  3.495510769(+1)
1 50(-19)  29(—18)

WS 2 1.7(-122)  1.0(—121) 1.754949400(—16)
3 3.1(-743)  1.8(—742) 59999  1.666475363(—16)
1 44(-15)  24(-14)

SM 2 71(=95)  3.6(—94) 1.433541371(—12)
3 92(—574)  4.5(—573) 59994  1.433541371(—12)
1 91(-21)  53(—20)

ps1 2 12(-134)  7.1(—134) 3.060974255(—18)
3 69(—818)  4.0(—817) 6.0000  3.068006721(—18)
1 19(=20)  1.1(-19)

PS2 2 1.7(-132)  1.0(—131) 6.095821945(—18)
3 1.1(—804)  6.7(—804) 6.0000  6.105210728(—18)
1 31(=20)  1.8(—19)

PS3 2 67(—131)  3.9(—130) 1.016575545(—17)
3 63(—795)  3.7(—794) 6.0000  1.017779424(—17)

Example 7. Let us consider the following nonlinear system

For specific value p = 200, we have 200 x 200 system, and chose the following starting point

x© = (125,125, 1.25, ---, 1.25)T.

2 .
uiui1—1=0,1<7<p—-1
]]+1 ’ S]=Pp s
F(x): 5
X u1—1:O.

14

(51)

Theus = (1, 1, 1, - -+, 1)T is the required solution of system 7. Table 11 provides the numerical results.

Remark 3. On the basis of Tables 9-11, we conclude that our methods namely PS1, PS2 and PS3 perform
better in the contrast of existing schemes AS, HS, SM and SM on the basis of residual errors, errors between
two consecutive iterations, and asymptotic error constant. In addition, our methods also demonstrate the stable
computational order of convergence. Finally, we concluded that our methods not only perform better than
existing methods in numerical results, but also take half of the CPU time in contrast to other existing methods
(results can be easily found in Table 12).
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Table 11. Comparisons of different methods on Example 7.

. 141 =
Methods j  ||F(u)|l  |lujp1 —uill  px T

1 52(=3) 1.7(=3)

AS 2 62(-21)  21(-21) 7.686036043(—5)
3 17(—128)  58(—129)  6.0000 7.695242316(—5)
1 23(=3) 7.7(—4)

HS 2 54(—20)  1.8(—20) 8.659247536(—2)
3 39(—103) 1.3(—103)  5.0000 3.689254113(+15)
1 35(=3) 1.2(=3)

WS 2 40(-22)  1.3(-22) 5.299207889(—5)
3 84(—136) 2.8(—136)  6.0000  5.303300859(—5)
1 3.0(-3) 1.0(-3)

SM 2 14(-22)  46(-23) 4.671758076(—5)
3 13(—138)  43(—139)  6.0000 4.674761498(—5)
1 51(-3) 1.7(-3)

Ps1 2 84(-21)  2.8(-21) 1.130483172(—4)
3 16(—127) 55(—128)  6.000  1.131370850(—4)
1 1.0(=1) 33(-2)

PS2 2 40(-12)  1.3(-12) 9.906447117(—4)
3 17(-74)  58(—75) 59989  1.018233765(—4)
1 33(=1) 1.1(-1)

PS3 2 13(-8) 43(-9) 2.565472254(—3)
3 56(—53)  19(—53) 59943  2.828427114(—3)

Table 12. CPU time of different methods on Examples 5-7.

Methods Example5 Example6 Example?7 Total Average
Time Time

AS 0.465330  210.079553  356.906591 567.451474  189.1504913
HS 0.583412  189.541919 366.511753 556.637084  185.5456947
WS 0.274193  128.377322 182956711 311.608226 103.8694087
SM 1.130812  126.641140 401.627979 529.399931 176.4666437
PS1 0.101071  120.094370  52.204957  172.400398  57.46679933
PS2 0.100071  117.901198  52.146903  170.148172  56.71605733
PS3 0.100083  117.923227  51.972773  169.996083  56.665361

According to the CPU time, method PS3 is taking the lowest time for executing the results. All of the other
schemes AS, HS, SM; and, SM consuming at least double CPU timing as compare to our methods namely
PS1,PS2 and PS3. So, we conclude that our methods provide results faster than the other existing methods.

6. Conclusions

We presented a new family of Steffensen-type methods with one parameter. The local convergence
is studied in Section 2 while using Taylor expansion and derivative up to the order seven, when B = R/.
To extend the suitability of these iterative methods, we only use hypotheses on the first derivative in
Section 3 and Banach space valued operators. This way, we also find computable error bounds on
|up — u.|| as well as uniqueness results based on generalized Lipschitz-type real functions. Numerical
examples of equations, favorable comparisons to other methods can be found in Section 4.
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