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Abstract: A delayed perturbation of the Mittag-Leffler type matrix function with logarithm is
proposed. This combines the classic Mittag—Leffler type matrix function with a logarithm and
delayed Mittag—Leffler type matrix function. With the help of this introduced delayed perturbation
of the Mittag-Leffler type matrix function with a logarithm, we provide an explicit form for solutions
to non-homogeneous Hadamard-type fractional time-delay linear differential equations. We also
examine the existence, uniqueness, and Ulam-Hyers stability of Hadamard-type fractional time-delay
nonlinear equations.
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Mathematical descriptions of the models described through differential equations with derivatives
of non-integer orders have proved to be a very useful instrument for modeling in viscoelasticity,
stability theory, controllability theory, and other related fields. Time-delays are often related with
physico-chemical processes, electric networks, hydraulic networks, heredity in population growth,
the economy and other related industries. In general, a peculiarity of these mathematical models is
that the rate of change of these processes depends on past history. Differential systems describing
these models are called time-delay differential equations. The qualitative theory of linear time-delay
equations is well investigated. Recently, time-delay differential equations have been considered.
In [1-9] authors derived the exact expressions for solutions of linear continuous and discrete delay
equations by proposing the concept of delayed matrix functions. On the other hand, stability concepts
and relative controllability problems of linear time-delay differential equations were investigated
in [10-17].

The unification of differential equations with delay and differential equations with fractional
derivatives is provided by differential equations including both delay and non-integer derivatives,
so called time-delay fractional differential equations. In applications, this unification is useful for
creating useful models of some systems with memory. One can notice that works in this field involve
Riemann-Liouville and Caputo type fractional derivatives. For the literature on the related field of
fractional time-delay equations of Caputo type and Riemann-Liouville type, we refer the researcher
to [13-23].

Besides these derivatives, there is another fractional derivative, involving the logarithmic function:
the so-called Hadamard type fractional derivative. Details of the Hadamard type fractional integral
and derivative can be found in [24]. Recent results on the existence and uniqueness of solution for
fractional differential equations in Hadamard sense can be found in [25-32].
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In ([24], p. 235) it is shown that a solution of a Hadamard type fractional linear system

(HDi‘+y) () =Ay()+f(t), te(1,T],h>0,
(Hlll;“y) (1")=aeR AeR 0<a<],

has the form

t

y(1) = () Eg [ (n1)] + [ (ln;)“ Fua 2 (ms)“} Ok

S

However, we find that there exists only one [33] work on the representation of explicit solutions
of Hadamard type fractional order delay linear differential equations. In [33] authors studied the
Hadamard type fractional linear time-delay system

(D) (
y(t)=¢(t), 1<t<h, 1)

(Mr7ey) (1F) =a e R,

t)=By(t—h), te(1,T],h>0,

where B is a constant n x n square matrix.

Motivated by the above researches, we investigate a new class of Hadamard-type fractional
delay differential equations. We consider an explicit representation of solutions of a Hadamard type
fractional time-delay differential equation of the following form by introducing a new delayed M-L
type function with logarithm

("Di,y) (1) = Ay () + B
y(t)=¢
(1)

where (HDiﬁy) (-) is the Hadamard derivative of order &« € (0,1), A,B € R™" denote
constant matrices, and ¢ : [%, 1} — R" is an arbitrary Hadamard differentiable vector function,

f e C([1,T],R"), T = I for a fixed natural number I.
The second purpose of this paper is to study the existence and stability of solutions for a Hadamard
type fractional delay differential equation

LY+ f(t), te(1,T],h>0,
P<tsl, @)

—~ - <

("Dyy) () = Ay () +By () + f (Ly (1), te (LT, h>0,
), p<t<1, 3)

At the end of this section, we state the main contribution of the paper as follows:

(i) We propose delayed perturbation of the M-L type functions Y,ﬁ;}% (t,s) with logarithms,

by means of the matrix Equations (6). We show that for B = © the function Y}‘;&&Bﬁ (t,s) coincides

with the M-L type function with two parameters (Int — Ins)P ™! Eup (A (Int —Ins)*). For A = O the

delayed M-L type function Yf&ﬁﬁ (t,s) coincides with the delayed M-L type matrix function with two

parameters EE o (Int —Inh), introduced in (4).

(ii) We explicitly write the solution of the Hadamard type fractional delay linear system (2) via
delayed perturbation of the M-L type function with logarithm. Using this representation we study
existence, uniqueness, and Ulam-Hyers stability of the nonlinear Equation (3).
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1. Preliminaries

Let 0 < a < b < oo and C [4, b] be the Banach space of all continuous functions y : [a,b] — R"
with the norm ||y|| := max {||y (t)|| : t € [a,b]}. For 0 < < 1, we denote the space C, 1, (a, b] by the
weighted Banach space of the continuous function y : [a,b] — R", which is given by

v
Cyn (a,b] := {y(t) : <ln Z) y(t)ecC [a,b]},
endowed with the norm [y||., := sup { (InH |y ) : t € (a,b]}.

The following definitions and lemmas will be used in this paper.

Definition 1. [24] Hadamard fractional integral of order & € R of function y (t) is defined by

Hisy (t):L t Int aily(s)§,1§a<t§b,
I'(a) o s s

where I is the Gamma function.

Definition 2. [24] Hadamard fractional derivative of order & € [n—1,n), n € Z* of function y (t) is
defined by

(HDﬂt+y) (t) = 1"(;11—a) <t;t)n/at (ln£>n_a+ly(s) % 1<a<t<b.

Lemma 1. [24]Ifa,y, B > O then
p-1 I'(B)
o (" mHF = W(mg

o (ML ) (0= g Bl )

e Foro<p<1 (D5, (mHF M) (1) =0,

)ﬁ+7*1 .

Definition 3. M-L type matrix function with two parameters e, g (A;t) : R — R"*" is defined by
Cap (Ast) == tP1E, g (A;t) == tP~ 121,

Next, we introduce a definition of delayed M-L type matrix function E,LB N (Int) : RT — R"™*"
with logarithm generated by B.

Definition 4. Two parameters delayed M-L type matrix function EE wB (Int) : RY — R™ " with logarithm
generated by B is defined by

o, 0<t<t,
-1
Egaﬁ(lnt) = I%, L<tr<, @)
~, (Int+Inp)f (Int)** (Int—(p—1) Inh)" P )
i B 4+ B G .

Our definition of the two-parameter delayed M-L type matrix function with logarithm differs
substantially from the definition given in [33].
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In order to give a definition of delayed perturbation of the M-L type matrix functions with
logarithm, we introduce the following matrices Yo Bk k=0,1,2,..

£\P! t
Ya,ﬁ,O (t,S) = <h’ls> Etx,ﬂ <A;lns> ,

! t roN dr
Ya,ﬁ,l (t, Sh) = /h € <A,h’1 7’> Bsz,ﬁ,O (ﬁ’ S) 7,

S,
't t ror) dr
Yop (1 sht) = /Shk e (A;ln r) BYpx 1 (5,51 = 5)

Definition 5. Let A, B € R"*" be fixed matrices and k € N U {0}. Delayed perturbation of M-L type function
YAE () RxR—R" with logarithm generated by A, B is defined by

h,e,B
o
VB (1) = gya,ﬁ,j (t,shf) H (t - shf) ®)
j=
o, 0<t<s,
= I, t=s,

Yap0 (t,5) + Yap1 (t,sh) + ..+ Yo g i (t,shk) , shf <t < shktl,

1, t>0,

where H (t) is a Heaviside function: H (t) = { 0 t<0. "

Lemma 2. Let a,b > —1. For shk < t < sh**1,k € NU {0}, one has

¢ ¢ a s bds ¢ a+b+1
/r <lns> (ln;) - (mr) Bla+1,b+1], @)

S
1 t AN K\ dr t t rkl1\ dr
T /S ; (m r) Yo (rosht) = /s Bt (A, In r) BY,pi 1 (o0 ) @)

s t t\"© t\T, t
Proof. Letln;:Tln;.Thens:r p ,ds=r p ln;dT.Sowehave

and

To prove (8), firstly using (7) we calculate it for k = 0:

ra f (m) 0§ = rigr [ (7))

~_ (Int—=In s) P
T T(atprl) ©)
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Similarly, for any k € N, we have

F(ll—«x)/ ;k (mi) h Yok (nsh")?
—Ull_a)/;k <1 :) /S eM(A IH)BY,XM 1(i Shk— 1) ( —Shk) %?
1—rx /hk/r1< ) <A1n )drIB%sz/Sk1< sk 1) ( —shk)d??
:/Sh (A 1nr1> BY, g (11,5 ) dr%_
O

Lemma 3. If A and B are commutative matrices, then

- k (lnt n Shk> na+kuc+,B—1
O ) L a

Proof. The proof is based on the equality (7). Using Lemma 2, for k = 1, we have

f t r dr

Ya,ﬁ,l (t, Sh) = /sh €a,n (A) In 1’> Bth,/S,O (E’S) -
L t anto—1 1 an+p—1 1 dr
_ n b 4+ k 1 dr
_B/sh ;A (lnr) F(l’éﬂ+0¢)2A ( sh) T'(ak+pB) r

k ak+a—1
L # a—k T a(n—k)+p—1 1 ﬂ
—B/ ZZA (1“ > F(ock+0¢)A (lnsh) F(a(n—k)+p)r

n=0k=0
o K 1 t AN 7\ x(n—k)+B-1 dr
=B A" / In- In — sl
ng)kzzo [ (ak+a)T (a(n—k)+p) sh(nr) <nsh) r
o k lnt_lnsh)txn+lx+/3 1
=B n L ak+o,0(n—k)+
LA T = F (n=k)+p)
© _ an+a+p—1
~BY n+1 An(lnif Insh)
=0 1 I'(an+a+ )

For k = 2, we get

ot
Vopa (197) = [ ean (A,. mf) BY, . (L sh) dr
S,
o n ka+a—1
1 n+1—k
_ k
IB3/5 L LA <ln ) F(ka—l—a)B( 1 )

n=0k=0
na—ka+a+p-1 1
A —k 1 L
% (n h2> I'(ne —ka+a+ B)

fe=}

k=0

n
o2 n+1-— . T na+2u+p-1 1
B;(g( ))A <lnsh2> I (na+2x+B)

s " + 5 (ll’lt o 1nsh2)noc+2a+/5—1
Z I (na+2x+B)

=

© n ka+a—1 .
) n+1—k " 1 /"L t T na—ka+a+p—1
=B ZE( Ar(klx+ﬁ)r(}’l047klx+0(+‘8),5]12 InJ (lnshz) dr

Using the Mathematical Induction in a similar manner we can get (10). O



Mathematics 2020, 8, 1242 60of 17

According to Lemma 3 in the case AB = BA delayed M-L type function YAE (1,5) has a

simple form: -
O, 0<t<s,
% R o
y}ﬁ}fﬁﬁ (t5) i= gm% +i§ ( i Al"llﬁg(lntr(lisi)l;“) B

(11)
Next lemma shows some special cases of the delayed M-L type function.

Lemma 4. Let Yfﬁg (t,5) be defined by (6). Then the following holds true:

() if A =@ then Y%y (1,1) = EP  (Inf), Wt < f <,

(i) if B = © then Y,ﬁfﬁ (t;s) = (I8P B g (A (In é)*) =eup(AInt),

i) if e = B = 1and AB = BA then YE (1,5) = ehlnt-ing) BN g go-Alnh gk o 4 <
shk+1.

Proof. (i) If A = O, then the formula (5)

(Int —Ins)P
re

Yapa (tsh) = /S; Can (@,mj) BY, (%S) ? _ r(ac)lr(/s)B/s; (ln i)ﬂcl (lnéyafl?
- F T (1“51)“%1 Blofl = gt (1“52>Ml'
Yopa (tsh?) = / ; e (@), 1n:) BY; (1,5h) dr = WBZ /; (m:)H (1n #)“*’“g
_ F(a)Fl(aJrﬁ)W (ln s;lz)za+ﬁ_l Bla,a+p) = MB@ (ln s;lz)za+ﬁ_l ,

1k . ¢ ka+p—1 1 L
= —_— —_— > .
Yop (bsh*) =B <1n shk) N EETIEL

t
le,‘g’o (t,S) = e,x,/; (@, lnS) =1

So Yﬁfﬂ (t,1) coincides with E%a’ﬁ (Int —Inh) :

ko in+p—1 B—1 _ at+p—1 _ ka+p—1
Yk (£1) = Y B <ln %) 1 __ Mt glnt—Ink) +.. 4 prnt=kinh)
o = h T (ia + B) T (B) T (a+pB) T (ka4 B)

= B (nt—Ink), 1< <

(ii) Trivially, from definition of Y,ﬁ fgﬁ (t,s) we have: if B = O, then

-1 «
Yﬁfﬁ (t,5) = (ln i) Eup (A (ln §> > .
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(iii) By (11) for the case « = B = 1 and AB = BA, we have

(Int—Ins)’ & [ i+1 (Int —Insh)"*!
YE (¢, pint—Ins) B
win () 2 T(i+1) ;( ) T(i+1)

N +i<l+k> (lnt‘—lnshk>

T(i+k+1)

_ oAlint=ins) | A(ni—Insh) g (1n ¢ _ I gh) + ... +6A(lntflnshk)]Bk% (Int— kinh)*

_ By (Int—Inh
:eA(lnt lns)ehl(n n )

O
Lemma 5. Forany s € R the function Yf Bﬁ (+,5) : (1,00) — R" ™ is continuous.
Proof. The proof is similar to that of [34] and is omitted. O

It turns out that Yf&Bﬁ (t,s) is a delayed perturbation of the Cauchy matrix with logarithm of the
homogeneous Equation (2) with f = 0.

Lemma 6. Y}‘l& Bﬁ RxR — R"*" is a solution of

—a+p-1 1 ¢
U5 Yl () = <ln S) i p " AY,5 (1s) + BY, (h,s> : (12)

Proof. According to (9) we have

(708 Yoo () ) = s (125 [ (1n8) oo tr9) T

+AY, 50 (E5). (13)

On the other hand for any k € N:

(708 Yapa (659)) 0 = ey (125) [ (108) " vapatn) &
_ (ti) /s;k Eux (A;ln i) BY, 5 (o) ?
_ S:lk (t;t) Ens (A; In i) BY, g (1) ?
+BY,px1 (;,shkl)

t
= AYL‘K,ﬁ,k <t, Sl’lk) + BYD&,ﬁ,k*l (h, Shkl) . (14)
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From (13) and (14) it follows that for sh* < t < shk*1

Hpe, yAB (t,5) =

e D%, Yo (5) + FD§ Yo (t5h) + .+ D8 Y g (1, 5H)

£\ —atp-1 1 f
B <1n ) Tt g T AYapo (69) + AYupr (t5h) +BY,po (h)

t
+ ...+ AYIX,ﬁ,k (t, Sl’lk) + EYa,ﬁ,kfl <h, Shkl)

()T L avAE g BYAB ts
- S r(—lX-l-,B) ha,B \* ha,B :

The proof is complete. [

Theorem 1. The solution y(t) of (2) with zero initial condition has the form
AB ds
/ YR (ts) f ()2, t20.
Proof. Assume that any solution of a nonhomogeneous system y (¢) has the form

y(t) = /ly,fﬁa (Ls)h ()%, 10, (15)

whereh (s),1 <s < t < Tisanunknown continuous vector function and y(1) = 0. Having Hadamard
fractional differentiation on both sides of (15), for 1 < t < h we have

("pi.v) <t>—Ay<>+Ey( )+f<>
I RCACLICERS Y A A CHTIBESNIC
—a [ R ) T ).
On the other hand, according to Lemma 2, we have
(D) () = r(f_)(tjt) [ () ([ emmone®) s
v () [ (n7) Yh*“ﬁww??

:C“”m/l (ﬂi)/ (ln:)_ Yo (r s>h<s>§§
+A/ YAB (1,5) )d:_

houx

Therefore, h(t) = f(t). The proof is complete. [

Theorem 2. The solution y € C ([1, T],R") of (2) with f = 0 has a form

y () =Y (1) a—l—/ YAB ( tsIka( )dss

thD( h,o,u
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Proof. We are looking for a solution which depends on an unknown constant ¢, and a vector function
g (t), of the form

AB AB ds
}/() YhDClX tlc+/ Yhzxoc S)?’

Moreover, y (t) satisfies initial conditions
YAB (4,1) YMB S 1<t<h
]/() ]’ltXlX c+ hzxzx S)?’ <tsn,

(") (1) =

We have

a= (Hllljﬂ‘y) (1) = lim (Hlllj“y) (1)

t—1+

_ 1 ! AB ds
—tl_1>rfl+ (F(ll")/l (Int —Ins)"*Y;"° (s,1)¢c s)

h,o,0

lim #/t(lnt—lns)f"‘e (Alns)ﬁc =c
=1+ \I'(1—a) /1 e s )

Thus ¢ = a. Since 1 < t < h, we obtain that

iﬂ(fl e
YfaBa( S):{ (lns) EIX,{X(A(IHS)>, 1<s<t<h,

7

t<s<h.
Consequently, on interval 1 < t < h, we can easily derive
ds
y(H) = Y22 (t1)a+ / YiE (1,5)8 ()2 (16)
AB AB ds
_thxtx t1a+/Yhaa tS +/ houx S)?
-1 £\ ds
= (Int)""" Ega (A (Int)" a+/ <ln ) Euu (A (lns) )g(s) et
Having differentiated (16) in the Hadamard sense, we obtain
1 tro \* ! £\* ds
(HDi‘+y) (1) =A(ntH)" " Epa (A(Int)*)a —i—A/l (ln s) Eun (A <1n ) ) g (s) S T8 (1)

= Ay (H) +g(b).
Therefore, g (t) = (FD%,y) (t) — Ay (t) = Bo (+) and the desired formula holds. O
Combining Theorems 1 and 2 together we get the following result

Corollary 1. A solutiony € C ([1,T],R") of (2) has a form

htxa

AB AB s\ ds

y(t) = Yhmtla—i-/Y (ts)Bo (3) =
AB dS
ACASICES
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2. Existence Uniqueness and Stability

In this section, we consider the following equivalent integral form of the nonlinear Cauchy
problem for fractional time-delay differential equations with Hadamard derivative (3):

AB AB s\ ds

y () =YME (1,1) a+/ YAE (15 (E)?
ds

+ / Yol () f (s y()) 5 (17)

Let us introduce the conditions under which existence and uniqueness of the integral Equation (17)
will be investigated.

(A1)  f:[1,T] x R" — R" be a function such that f (t,y) € C,n [1, T] with v < & for any y € R";
(A2)  There exists a positive constant L >0 such that

1 (Ey1) = f (B y2)ll < Ly llyr = wall,
for each (t,y1), (t,y2) € [1, T] x R".
From (A1) and (A2), it follows that
If (t:9)ll < Ly |yll + Lz~ for some Ly > 0.

To prove existence uniqueness and stability of (17) we use the following properties of YAﬁB (t,s).

Lemma 7. We have for sh? < t < sh?™!,p=0,1,...,
AB All,|IB Al,[|B
V2 (1) (1,)|| < VR0 (1) < YA (0,1,

Proof. Indeed,

) na+ka+p—1

P o Lk Int — Insh*
ity (o) | < Vil s = Y 1 ( " ) B 4" < T (na+ ke + B)

0 n—+k ‘ Int na+ka+p—1

< Z ( k ) B ||A|HIM
k=0n=0

P n4+k ‘ ; (lnt)mx+k’x+ﬂ71

=y () e S

== (na + ka + B)
AllIB

=k 1)

O

Our first result on existence and uniqueness of (17) is based on the Banach contraction principle.
Theorem 3. Assume that (A1), (A2) hold. If
Ly (InT) 21BN (7, 1) < 1,

then the Cauchy problem (3) has a unique solution on [1, T).
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Proof. We define an operator © on B, := {y €Com[LT]:yl, < r} as follows

]’HXIX ]’HXIX

R @) floy ) E,

(@) (1) = Y2 (1,1) a+/ YAB (1) (%)@

M,
1— M,

where r >

All,|IB 7 All,|B s
My = (In )" V2B (1 1) a )+ )y~ (any v 2B (T 1) HIB%q)(E)Hﬂn
+ Ly (Ing) "y 2B (T, 1),

All,|IB
My = Lf (ln t)'y Y;',"R’UXH | (T/l) ”]/H'y,ln‘

It is obvious that © is well-defined due to (A1l). Therefore, the existence of a solution of the
Cauchy problem (3) is equivalent to that of the operator ® has a fixed point on B,. We will use the
Banach contraction principle to prove that ® has a fixed point. The proof is divided into two steps.

Step 1. ®y € B; forany y € B;.

Indeed, for any y € B; and any § > 0, by (A3)

h
TyJALIBI / (LT s\ | ds
[0y @y) ()] < (™ Yy (4,1 flall + (n)” [y (ts)||Be (7)]| %
All,|IB ds
ey [IALE ) 1 sy () (18)
Firstly, we estimate the first integral:
h
7 ["yALIBI
o [ o oo ()]

< (int)7 ) A11EI (T'l)/l (ins)~ 72 i HBG" (%) Hﬂn
< e Y2l ® (1, 1) (n) 7 |[Bo (7 |

7,In
= (Inh) ™" (i) v ALIEN (7, 1) HIB%go (%) Hm. (19)
Similarly,
)7 [ 15) 1 (s, 5)) ) 2
< (" [TAEE 1,5) (14 y (5)) + 1) ©
< Ly (In )" Y WBH (T, 1) |1y ) 1o+ Lo (1nt)7+1 Y 2LIEL (T, 1y (20)

Inserting (19) and (20) into (18) we get

[(In)” (@y) (1)|]

Al,|B - All|B s
< (nt)? Yol (1) flall + aniy = any YR B (T 1) [ Be (3) Hwn

AllI|B All,|IB
Ly () YJAVB (7 1)y )+ Ly ()7 Y ALIED (7 1)

h,o,0

< My + My [yl < Mo+ Myr <.
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Step 2. Lety,z € C,n [1, T]. Then similar to the estimation (20) we get

[an )7 (@) () = ©2) ()] < ()™ [ Al 1,5) I (s, (5)) = £ (5,2 6 &

All,|B - ds
<L <1nt>W)J,a,'L” l(r,1) /1 (ins) ™" (ins)" [y (5) 2 ()| 5

AllIB t . ds

<Ly BT [ ns) T Sy 2l
All,|IB
< Lty (T 1) fly 2]
which implies that
1@y — Ozl < Ly (0 T) Yy ™ (T,1) 1y —zl] - @)

Hence, the operator © is contraction on B, and the proof is competed by using the Banach fixed
point theorem. [

Secondly, we discuss the Ulam-Hyers stability for the problems (3) by means of integral operator
given by
y(t) = (@y) (1),
where © is defined by (17).
Define the following nonlinear operator Q : C, 1, ([1, T], R") — C, 1n([1, T], R"):

t
Q) ()= ("Dfuy) (1)~ A (1)~ By (1) = F (L ().
For some € > 0, we look at the following inequality:

1Q (W)l < & (22)

Definition 6. We say that the Equation (17) is Ulam—Hyers stable, if there exist V > 0 such that for every
solution y* € Cy1n([3, T],R™) of the inequality (22), there exists a unique solution y € C,1n([3, T], R") of
problem (17) with

1y =yl m < Ve (23)

Theorem 4. Under the assumptions of Theorem 3, the problem (17) is stable in Ulam—Hyers sense.

Proof. Let y € C,, ([} 7. T],R") be the solution of the problem (17). Let y* be any solution
satisfying (22):

(MD8y") () =y () By () +7 (65" )+ Q) ().

So
v () = 0+ [ EE 190 () 2.

s
It follows that

(nt)7 [0 () ()~ y* ()] < (mn)” [ [¥2, 9) | o ) (9 2
< (InT) Ly AHEL (T 1) e,
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Therefore, we deduce by the fixed-point property (21) of the operator ©, that

(Int)7lly (1) —y" (O] < ()7 O (y) (t) = O (y") (Ol + (In )" |© (v*) (1) =y (D)

< Ly (InT) PP (T, 1) fly = 7 + T 0B (7,2

h,o,0

and
(In )"y AMEL (T, 1)

E.
All,||B
— Ly (inT) Yy Ml (T, 1)

1y =yl < !
Thus, the problem (3) is Ulam-Hyers stable with

(n ) yJAUIEBI (7 g

L YT (7, 1)’

O

3. Existence Result

13 of 17

(24)

Our second existence result is based on the well known Schaefer’s fixed point theorem. We use

the following linear growth condition to replace (A;):
(As3) There exists My > 0 such that

If (Ey)l < My |lyll, foreacht e [LT], y €R",
My (InT)" Y, 2Bl 1) <1,

Theorem 5. Assume that (A1) and (As) hold. Then the Cauchy problem (3) has at least one solution on

Cw,ln [1/ T} .

Proof. Consider the operator ® : C,, 1 [1, T] — C, 1n [1, T] defined as follows
AB AB s ds
(@) (1) = Y/, (1) zH—/ VAR (15 g ()T
AB ds
bR ) fley ) S

For the sake of convenience, we will split the proof into several steps.
Step 1. © is continuous.

Let {yn} C Cyn[1,T] be a sequence converging to y € C, 1 [1,T]. Then for each t € [1,T],

we have

H(W (©yn) (1) — (@) (1)
)7 [ Y2 69) |1 o 5)) — £ 5y %
< L)Y E T, £ G () = F Gy ()l -
Since f € C.1 [1, T], we have
1®yn — Oyl 1n
<Ly (InT) Y MPH(T,0) )£ oy () = £y (D)l — 0

asn — oo.
Step 2. © maps bounded sets into bounded sets in C, 1, [1, T].
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Step 3. @ is equicontinuous of C,, 1, [1, T].
Letl < t; < tp < T,y € B,. Using the assumption (A3), we have

[(@y) (f2) — (Oy) (1)l
(Y‘w tr,1)a—YME (tl,l)aH

h,o,0 h,o,0

AB AB s\ || ds

o O s =i )| e (5] S
AB ’

+/ H Yhtxa tl’ Yhzxac ta,s )H ”f Sy )H

+/t1 ‘YfaBa t2’S)H I f (S,y(s))” ?

ds

The case 1 = t; < tp < T is similar. By Lemmas 5 and 7, as f; — f;, the right hand side tends to
zero, so O is equicontinuous.

Steps 1-3 imply that ® is continuous and completely continuous.

Step 4. A priori bounds.

Now it remains to show that the set

W={yeCym[l,T]:y= A0y, forsome0 < A <1}
is bounded. Assume thaty € W, then y = A@y for some 0 < A < 1. Thus, for any ¢ € [1, T], we have

lan )"y ()] = A ) (@y) ()]
< ey Y AE (1) o ||+<1nh> "ty vl (1) B (7))

X
A, In

All,||B
+ My (Int)" YA 1y 1y

Since My (InT)" YA'?!"HBH (T,1) < 1, this shows that the set W is bounded. As a consequence of
Schaefer’s fixed point theorem, we deduce that ® has a fixed point which is a solution of the Cauchy
problem (3). O

4. Example

In this section, we give an examples to illustrate the obtained theoretical result.

Example 1. Let « = 0.3, h = 1.2, k = 4. Consider

H 0.7 LJF —g e R2 (25)
AN '

2 1 1
A=0, IBB—<3 5 ), a—<2>.

The solution of (25) can be represented by Y2 (&, s)

I,

where

OB ( 0B s\ ds
y(H) =Y t1a+/Y (t,5)B ()S

ho,0 ]’ltXlJ(
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where
0, —0 <t <s,
1, t=s,
_ 0.7
I%, s<t<12s,
I(lntflns)70'7 +B((1nt71n1.zs))*°-4 125 < £ < (12)%s
I (0.3) T (0.6) ’ ' SV
2 —-0.1
0B = Int—Ins)~% Int —In1.2s)) "4 Int—In(12)"s
Vipga (£5) ( r(0.3)) + Bl 06 N e ( F09) ) (12)%s <t < (12)%s,
2 —-0.1
(Int —Ins)~%7 N ((Int —In1.25)) %4 LR (lnffln (12) S)
r(0.3) T (0.6) r(0.9)
0.2
(lnt —In(12) s) 3 .
+B3T (1.2)°s < t < (1.2)%s.

Example 2. Consider

(HDg’fy) (t) = By (12) + Ly ( sinya (f) > , te(1,2.0736],
<

tsinyy (t) — y1 (t) cost
17 ) (17) Z g e
sY)\12 )~ '
Clearly, the function

fty) = Lf< sy )

tsiny, —yj cost

is jointly continuous and Lipschitz continuous with respect to y. We can choose L > 0 so that the conditions of
Theorems 3 and 4 are satisfied. Thus, the above problem has a unique solution which is Ulam—Hyers stable.

5. Conclusions

In this paper, we have introduced delayed perturbation of the M-L matrix exponential with
logarithms, to get a representation formula for time-delay Hadamard type fractional differential
equations with non-commutative linear part. Using this representation formula we have obtained
several existence results for an initial value problem of time-delay Hadamard-type fractional
differential equations. Furthermore, we have presented a sufficient condition for stability in the
Ulam-Hyers sense. In our future work, we are planing to investigate the existence, stability and
controllability of solutions to an initial value problem for time-delay fractional differential equations
involving a combination of Caputo and Hadamard fractional derivatives.
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