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Abstract: In recent years, the concept of domination has been the backbone of research activities
in graph theory. The application of graphic domination has become widespread in different
areas to solve human-life issues, including social media theories, radio channels, commuter train
transportation, earth measurement, internet transportation systems, and pharmacy. The purpose of
this paper was to generalize the idea of bondage set (BS) and non-bondage set (NBS), bondage number
α(G), and non-bondage number αk(G), respectively, in the intuitionistic fuzzy graph (IFG). The BS
is based on a strong arc (SA) in the fuzzy graph (FG). In this research, a new definition of SA
in connection with the strength of connectivity in IFGs was applied. Additionally, the BS, α(G),
NBS, and αk(G) concepts were presented in IFGs. Three different examples were described to
show the informative development procedure by applying the idea to IFGs. Considering the
examples, some results were developed. Also, the applications were utilized in water supply systems.
The present study was conducted to make daily life more useful and productive.

Keywords: α(G); αk(G) of IFG

1. Introduction

Fuzzy graph models are advantageous mathematical tools for dealing with combinatorial
problems of different domains including: algebra, environmental science, topology, optimization,
social science, computer science, and operations research. Fuzzy graphical models are much better
than graphical models due to natural existence of vagueness and ambiguity. Initially, we needed fuzzy
set theory to cope with many complex phenomenons having incomplete information. A fuzzy set, as a
superset of a crisp set, owes its origin to the work of Zadeh [1] in 1965 that has been introduced to
deal with the notion of partial truth between absolute true and absolute false. Zadeh’s remarkable
idea has found many applications in several fields, including chemical industry, telecommunication,
decision making, networking, computer science, and discrete mathematics. Kauffman [2] introduced
fuzzy graphs using Zadeh’s fuzzy relation [3]. Rosenfeld [4] gave an additional extended definition
of a fuzzy graph (FG). He also continued to work on the ideas of graph theory in various fields like
paths and connectivity. Since the concept of strong edges is useless in graphs, its importance in FGs
cannot be neglected. In 1998, Somasundram [5] analyzed the domination in FGs by using effective
edges. Gani et al. [6] also used the notion of strong arcs (SAs) to discuss the domination in FGs. Also,
dominating sets consist of components in fault tolerance, wireless sensor network, and operational
research, such as issues with the area of infrastructure. Bhutani [7] presented the concept of strong
arcs. Gani [8] categorized vertices utilizing domination critical properties and studied the idea of
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increasing or reducing domination numbers by eliminating vertices. Gani et al. [9] conducted a study
on the concept of bondage and non-bondage set (NBS) in FGs. They discovered bondage and αk(G)

of different classes of an FG and acquired upper bounds for both. Akram et al. [10–16] studied new
concepts in different kinds of fuzzy graphs and fuzzy hypergraphs.

Membership function was not adequate enough to explain the complexity of object characteristics,
and accordingly, there exists a non-membership function. Atanassov [17] developed the intuitionistic
fuzzy set theory, which was an expansion of the initial set theory, by incorporating the non-membership
and hesitancy features. This theory has been implemented in various fields such as computer
programming, problems in decision-making, medical fields, marketing evaluation, and banking
problems. In 2006, Karunambigai and Parvathi [18] introduced an intuitionistic fuzzy graph (IFG) as a
specific case of the IFG by Atanassove. Fink et al. [19] developed the notion of α(G) in graphs. Kulli
and Janakiram [20] first discovered the αk(G) in graphs. Cockayne and Hedetniemi established [21]
the domination number (η(G)) and the independent domination number of graphs but the theory of
dominating sets in graphs was developed by Ore and Berge [22,23]. Later in 1994, Hartnell et al. [24]
explored the bounds on the α(G). As each arc is strong, there is no idea of SA in graph theory,
but finding an arc in IFGs is necessary. The research of weak and strong SAs was extensively laid out
by Karunambigai et al. [25] depending on the connectivity strength of two vertices and extended to
α-strong and δ-weak with relevant descriptions. Palanivel [26] examined several kinds of domination
in IFGs. In 2012, Velammal and Karthikeyan [27] presented the notion of domination and complete
domination in IFGs and defined the amount of domination and total domination number for various
IFGs and obtained bounds for them. Similarly, Jayalakshmi et al. [28] expanded domination research
and studied total strong-weak domination in IFGs.

The α(G) is a key factor of graphs that is focused on a well-known η(G) and it is a key tool
for determining the stability or the uncertainty of a domination in a graph or a network. Likewise,
the concept of α(G) in fuzzy graphs has been developed to solve world life problems in many essential
fields like school bus routing, computer communication networks, radio stations, land surveying,
etc. The study on the α(G) was motivated by the increasing importance in the design and analysis
of interconnection networks. Since then, the α(G) has attracted much attention from the researchers.
If we take a fuzzy graph as a communication networks system, then, α(G) is a key factor, which is
based upon η(G). The domination is such an important and classic conception that it has become one
of the most widely studied topics in fuzzy graph theory and also is frequently used to study properties
of networks. The domination, with many variations and generalizations, is now well studied in fuzzy
graph and networks theory.

The BS, NBS, α(G) and αk(G) in an IFG are very rich both in theoretical developments and
applications as compared to fuzzy graph. α(G) and αk(G) of the intuitionistic fuzzy graph are more
significant than the fuzzy graph. Also, α(G) and αk(G) for the directed graphs are more significant
than undirected graphs. In this paper, BS and NBS of an IFG were discussed and the α(G) and αk(G)

of IFG were defined. We found α(G) and αk(G) in IFG. It was proven that the isolated edge of an IFG
G constituted the BS of G. Finally, we made an application in real-life problems.

2. Preliminaries

In this section, a few preliminary concepts and definitions are developed, which are used in
the paper.

Definition 1 ([23]). A graph is an ordered pair G∗ = (V, E), where V is the set of vertices or nodes of G∗ and
E is the set of all arcs or lines or edges. Note that for an arc {x, y}, we usually use the somewhat shorter notation
xy. Two nodes x and y in an undirected graph G∗ are called adjacent in G∗ if xy is an arc of G∗. An arc in
which the terminating points are the same is called a loop. A simple graph has no loop.
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Definition 2 ([9]). The α(G) of a graph G is the minimum cardinality of a set of arcs of G in which the removal
from G resulted in a graph with the η(G) larger than that of G. The αk(G) of a graph is the maximum cardinality
among all sets of arcs of H ⊆ E so that the η(G) of G− H is equal to the η(G) of G. The domination number,
η(G), is the smallest number of vertices in any dominating set of G.

Definition 3 ([1]). A fuzzy subset φ on a set X is a map φ : X → [0, 1]. A fuzzy (binary) relation on X is a
fuzzy subset φ : X× X → [0, 1] on X× X.

Definition 4 ([4]). An FG is of the form G = (ψ; φ) which is a pair of mappings ψ : V → [0, 1] and
φ : V ×V → [0, 1] and is defined as φ(ki, k j) ≤ ψ(ki) ∧ ψ(k j), where for all vertices ki, k j ∈ V.

Definition 5 ([29]). The edge ki k j of G is called SA if ki and k j are adjacent.

Definition 6 ([25]). An arc (ki, k j) of an FG G is called SA if, φ∞(ki, k j) = φ(ki, k j). An arc in G is called
an isolated arc or edge if it is not adjacent to any arc in G. The connectedness strength between two vertices of
ki and k j is defined as the maximum strengths of all paths between ki and k j; and it is denoted by φ∞(ki, k j) or
CO(G)(ki, k j).

Definition 7 ([17]). An intuitionistic fuzzy set A on the set X is characterized by a mapping ψ1 : X → [0, 1],
which is called as a membership function and ψ2 : X → [0, 1], which is called as a non-membership function.
An intuitionistic fuzzy set is denoted by A = (X, ψ1, ψ2).

Definition 8 ([25]). (IFG) is of the form G = [(ψ1, ψ2), (φ1, φ2)] is a set of functions ψ1 : V → [0, 1],
ψ2 : V → [0, 1] and φ1 : V ×V → [0, 1], φ2 : V ×V → [0, 1] where

• 0 ≤ ψ1(ki) + ψ2(ki) ≤ 1,
• 0 ≤ φ1(ki, k j) + φ2(ki, k j) ≤ 1,
• φ1(ki, k j) ≤ ψ1(ki) ∧ ψ1(k j) and φ2(ki, k j) ≤ φ2(ki) ∨ ψ2(k j).

3. α(G) and αk(G) of IFG

In this section, we define BS, NBS, α(G), and αk(G) in the IFG and also the α(G) for a complete
IFG and some specific IFG are introduced.

Definition 9 (BS). Assume that G be an IFG. If there exists a set H ⊆ S such that η(G− H) > η(G), then
H is called BS of G, where S is the set of all SAs in G.

Definition 10 (α(G)). The α(G) of an IFG G is the minimum cardinality among all BSs of G.

Definition 11 (NBS). The set of SAs H ⊆ S is called an NBS if η(G− H) = η(G), where S is the set of all
SAs in G.

Definition 12 (αk(G)). The αk(G), is the maximum cardinality among all set of SAs in which H ⊆ S, such
that η(G− H) = η(G), where S is the set of all SAs of G.

Theorem 1. If an IFG G has an isolated edge, then α(G) =1.

Proof. Let’s consider G an IFG with an isolated edge of p. Suppose that u and v are the terminating
vertices of the isolated edge p. Accordingly, p is a SA and u or v belongs to the minimum dominating
set of G, but not both. Thus, removing p results in u and v as isolated vertices. Therefore, both u and v
are considered to belong to each dominating set of G− p. Subsequently, η(G− p) > η(G) and {p} is a
BS of G. Hence α(G) = 1.
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Theorem 2. If G is an IFG and G* is a star, then α(G) =1.

Proof. If G is an IFG and G* is a star. In G, all arcs are SAs and the vertex in the center dominates
all other vertices in G. Therefore, η(G) = 1. By removing any one arc p from G, we have
η(G− p) = 2 > η(G). So each arc will form a BS and the bondage number of, α(G) = 1.

Example 1. Consider IFG G1 as shown in Figure 1. Calculating all the BSs and α(G) of the given graph.

Figure 1. G1.

Initially, we will calculate the SAs set in the mentioned graph. Now, we will calculate every arc
connectedness (CO) strength in the graph.

For any two nodes of ki , k j ∈ V, the µ1-strength of the connectedness and the µ2-strength of the
connectedness are CO(G)(ki, k j) = max{Sµ1}, CO(G)(ki, k j) = min{Sµ2}, respectively including all paths
of ki and k j.

We have to find CO(G)(k1, k2) = CO(G)(p1). There are two paths from k1 to k2.
The first path of k1 to k2 contains p1 edge, but the second path of k1 to k4 to k3 to k2 contains p4, p3, and

p2 edges.
Now, we will find the strength of all paths.
The strength of the first path is p1 because there is only a p1 in it. Hence, the strength of path one is

p1 = (0.4, 0.4).
The strength of the second path is (min{0.2, 0.2, 0.2},max{0.3, 0.3, 0.2}) = (0.2, 0.3).
Now, we have the strength of all paths (0.4, 0.4) and (0.2, 0.3)

CO(G)(k1, k2) = CO(G)(p1) = (0.4∨ 0.2, 0.4∧ 0.3) = (0.4, 0.3),

CO(G)(k2, k3) = CO(G)(p2) = (0.2∨ 0.2, 0.2∧ 0.4) = (0.2, 0.2),

CO(G)(k3, k4) = CO(G)(p3) = (0.2∨ 0.2, 0.3∧ 0.4) = (0.2, 0.3),

CO(G)(k1, k4) = CO(G)(p4) = (0.2∨ 0.2, 0.3∧ 0.4) = (0.2, 0.3).

Since p1 does not follow the condition φ1ij ≥ CO(G)φ1(G)(ki, k j) and φ2ij ≤ CO(G)φ2(G)(ki, k j).
Therefore the set of SAs will be

S = {p2, p3, p4}.

The dominating set of G with the lowest cardinality is F = {k3, k4}. So the η(G) is equal to,

η(G) =
1 + 0.3− 0.4

2
+

1 + 0.2− 0.2
2

η(G) = 0.95.

Since BS of G is the subset of SAs in which the removal from IFG G results in a greater η(G) of the
resulting graph, we will calculate the BSs of G.
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Suppose that H = {p2} is a subset of the set of SAs. We have to calculate SAs of G− {p2}.
First, any number of SAs is removed from the graph, and the required graph follows the conditions of
φ1ij ≥ CO(G)φ1(G)(ki, k j) and φ2ij ≤ CO(G)φ2(G)(ki, k j) as,

CO(G)(k1, k2) = CO(G)(p1) = (0.4, 0.4),

CO(G)(k3, k4) = CO(G)(p3) = (0.2, 0.3),

CO(G)(k1, k4) = CO(G)(p4) = (0.2, 0.3).

Therefore, the SA set will be,

{p1, p3, p4}. (1)

If the dominating set of G− {p2} with the lowest cardinality is {k1, k2}, then, its η(G) will be,

η(G− {p2}) =
1 + 0.5− 0.4

2
+

1 + 0.3− 0.4
2

η(G− {p2}) = 1.00 > 0.95.

Hence H = {p2} is a BS.
Let’s consider H = {p3} as a subset of the SAs set. We will calculate the SAs of G− {p3}. First any

number of SAs is removed from the graph, the required graph follows the condition of φ1ij ≥ CO(G)φ1(G)(ki, k j)

and φ2ij ≤ CO(G)φ2(G)(ki, k j) as,

CO(G)(k1, k2) = CO(G)(p1) = (0.4, 0.4),

CO(G)(k2, k3) = CO(G)(p2) = (0.2, 0.2),

CO(G)(k1, k4) = CO(G)(p4) = (0.2, 0.3).

So the SA set will be,

{p1, p2, p4}. (2)

The {k3, k4} is G− {p3} dominating set with the lowest cardinality and its η(G) will be,

η(G− {p3}) =
1 + 0.3− 0.4

2
+

1 + 0.2− 0.2
2

η(G− {p3}) = 0.95 ≯ 0.95.

Therefore, H = {p3} is not a BS bondage.
With a simple calculation similar to the above cases, we find that the BSs of giving IFG are:

{p2}, {p4}, {p2, p3}, {p2, p4}, {p3, p4}, {p2, p3, p4}.

The BS with the lowest cardinality is H = {p4} and its cardinality is α(G) of G.

α(G) =
1 + 0.2− 0.3

2
α(G) = 0.45.

Theorem 3. The isolated edge of an IFG G constitutes the BS of G.
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Proof. Suppose that s is any isolated edge of the IFG G with the incident nodes of k1, k2. We know
that s is isolated, and it follows the conditions of an SA as,

φ1ij = CO(G)φ1(G)(k1, k2) (3)

φ2ij ≤ CO(G)φ2(G)(k1, k2).

So from both k1 and k2, one must be present in the dominating set of G, it is due to either k1

dominates k2 or k2 dominates k1. If we eliminate the s from G, both k1 and k2 will not be dependent
and both of them will dominate themselves, giving a greater η(G) of G− s than G.

So s must be a BS of G as its removal from G brings about the highest η(G) than the G original
η(G), which is an axiom for BS of G.

Theorem 4. For any IFG G, αk(G) = | E | - | V | + η(G).

Proof. Suppose that D is a minimum dominating set of G and therefore, | D | = η(G). For each vertex
v ε V − D, exactly select one SA which is incidental to nodes in D. Consider S1 as the set of all these
SAs. Then S-S1 is a αk-set of G if G has no non-SAs. Assume that G has non-SAs, then every non-SA
will form an SA by removing corresponding SAs in G. Therefore

αk(G) = | S | −[| V | −η(G)]+ | S |
= | S | + | E− S | +η(G)− | V |
= | E | − | V | +η(G).

Theorem 5. If IFG G does not have a BS, then αk(G) =| S |.

Proof. Suppose that G is an IFG and it does not have a BS that is, there is not any set of H ⊆ S so
that η(G− H) > η(G). Accordingly, removing all SAs from G does not increase the η(G) of G. Now,
by removing all SAs set, S, the η(G) will be η(G− S) = η(G). As a result, αk(G) =| S |.

Theorem 6. For a complete IFG G,

α(G) =


n
2

, i f n is even,
(n + 1)

2
, i f n is odd.

Proof. Suppose G is a complete IFG with n nodes namely v1, v2, · · · , vn. In G, every vertex dominates
all other n− 1 vertices. Therefore, {vi}, i = 1, 2, · · · , n are all minimum dominating sets of G and
η(G) = 1. Now, eliminate the node (v1, v2) then v1 and v2 dominate all n− 2 vertices other than v2

and v1, respectively. Accordingly, we remove the edges (v3, v4), (v5, v6) and so on.
If n is even then delete the arcs (v1, v2), (v3, v4), · · · , (vn−3, vn−2) and (vn−1, vn). Thus, we get

n
2

such edges and these form a BS of G. So α(G) =
n
2

. If n is odd then remove the edges

(v1, v2), (v3, v4), · · · , (vn−2, vn−1) and (vn, v1). Therefore, we obtain
n + 1

2
such edges and these form

a BS of G. So, α(G) =
n + 1

2
.

Theorem 7. If an IFG G has a BS, then α(G) ≤ αk(G)+1.
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Proof. Consider G as an IFG, which has a BS. A αk(G)-set is a maximum NBS, i.e., the elimination of
all edges in a αk(G)-set results in η(G) = η(G− αk). So, the deletion of any SA p does not belong to αk
with the arcs in the set αk which results in η(G− {αk ∪ p}) > η(G) implying that {αk ∪ p} is a BS.

Thus

α(G) ≤ {αk ∪ p} = αk(G) + 1 =⇒ α(G) ≤ αk(G) + 1.

Theorem 8. If G is an IFG and G* is a star then αk(G) = 0.

Proof. Assume that G is an IFG and G* is a star. Then the η(G) of G is 1, i.e., η(G) = 1. It means that
the vertex in the center of G dominates all remaining vertices in G. Therefore, elimination of any one
edge of G will result in η(G) = 2 since all edges of G are SAs in G. Accordingly, we do not have an
NBS for G. Thus αk(G) = 0.

Theorem 9. If G is a complete IFG with k nodes, then αk(G) = (k− 1)(k− 2)/2.

Proof. Let’s consider G as a complete IFG with k nodes. In G, all edges are strong. It means that the
total number of SAs in G are k(k− 1)/2. We know that η(G) = 1. Each vertex will dominate all other
vertices. Therefore, we need a minimum of k− 1 arcs to keep η(G) = 1. As a consequence, we can
almost remove | S | −(k− 1) edges.

Therefore,

αk(G) =| S | −(k− 1) = k(k− 1)/2− (k− 1) = (k− 1)(k/2− 1) = (k− 1)((k− 2)/2),

αk(G) = (k− 1)(k− 2)/2.

Theorem 10. If G is an IFG and G∗ is a cycle with n nodes, then

α(G) =

{
3, i f n = 3m + 1, m = 1, 2, · · ·
2, else.

Proof. Suppose that G is IFG and G∗ is a cycle with n vertices.

(i) Assume there is more than one weakest arc of G then all the n edges of G are SAs.

If n = 3m + 1, then η(G) = m + 1.

The η(G) rise only if we remove minimum 3 SAs. So, α(G) = 3.

If n 6= 3m + 1, then the η(G) rises when we remove a minimum of two SAs adjacent to the same
vertices. Hence, α(G) = 2.

(ii) Suppose that e is just one weakest arc of G, then G has n− 1 SAs and elimination of any one
SA gives the weakest arc as a SA in G− e1, e1( 6= e) ∈ S. Clearly, α(G) = 3, if n = 3m + 1 and
α(G) = 2, if n 6= 3m + 1. The weakest arc is not a part of any BS of G.

Example 2. Consider IFG G2 as shown in Figure 2. Applying the concept of BS and NBS on the following IFG.
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Figure 2. G2.

First, we need to calculate the SAs of the given graph. Using the definition of SA in the IFG, we have:

CO(G)(k1, k2) = CO(G)(p1) = (0.3∨ 0.1∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.4∧ 0.3)

= (0.3, 0.3),

CO(G)(k2, k3) = CO(G)(p2) = (0.1∨ 0.1∨ 0.1∨ 0.1, 0.1∧ 0.4∧ 0.4∧ 0.3)

= (0.1, 0.1),

CO(G)(k3, k4) = CO(G)(p3) = (0.1∨ 0.1∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.4∧ 0.3)

= (0.1, 0.3),

CO(G)(k4, k5) = CO(G)(p4) = (0.2∨ 0.3∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.4∧ 0.3)

= (0.3, 0.3),

CO(G)(k1, k5) = CO(G)(p5) = (0.4∨ 0.2∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.4∧ 0.3)

= (0.4, 0.3),

CO(G)(k1, k3) = CO(G)(p6) = ((0.1∨ 0.1∨ 0.1∨ 0.1, 0.4∧ 0.3∧ 0.4∧ 0.3)

= (0.1, 0.3),

CO(G)(k1, k4) = CO(G)(p7) = (0.3∨ 0.2∨ 0.1∨ 0.1, 0.0.4∧ 0.3∧ 0.4∧ 0.3)

= (0.3, 0.3).

The SAs set of the given graph will be,

{p1, p2, p3, p5}.

The lowest dominating set with the lowest cardinality is,

{k1, k3}.

The η(G) of the G can be calculated as,

η(G) =
1 + 0.5− 0.4

2
+

1 + 0.1− 0.3
2

η(G) = 0.95.

Since BS of G is the subset of SAs in which the removal from IFG G will result in the greatest η(G) of the
resultant graph. We will now calculate BSs of G.
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Let H = {p1} be a subset of the SAs set. To calculate the SAs of G− {p1}, we have:

CO(G)(k2, k3) = CO(G)(p2) = (0.1, 0.1),

CO(G)(k3, k4) = CO(G)(p3) = (0.1∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.4) = (0.1, 0.3),

CO(G)(k4, k5) = CO(G)(p4) = (0.2∨ 0.3∨ 0.1, 0.3∧ 0.4∧ 0.4) = (0.3, 0.3),

CO(G)(k1, k5) = CO(G)(p5) = (0.4∨ 0.2∨ 0.1, 0.3∧ 0.4∧ 0.4) = (0.1, 0.3),

CO(G)(k1, k3) = CO(G)(p6) = ((0.1∨ 0.1∨ 0.1, 0.4∧ 0.4∧ 0.3) = (0.1, 0.3),

CO(G)(k1, k4) = CO(G)(p7) = (0.3∨ 0.2∨ 0.1, 0.4∧ 0.3∧ 0.4) = (0.3, 0.3).

Using the SA definition, the SAs set will be,

{p2, p3, p5}.

The dominating set of G− {p1} has the lowest cardinality of {k1, k3}, and its η(G) will be,

η(G− {p1}) =
1 + 0.5− 0.4

2
+

1 + 0.1− 0.3
2

η(G− {p1}) = 0.95 ≯ 0.95.

As a result, H = {p1} is not a BS.
Suppose that H = {p3} to be a subset of the SAs set. To calculate the SAs of G− {p3}, we have:

CO(G)(k1, k2) = CO(G)(p1) = (0.3∨ 0.1, 0.3∧ 0.4) = (0.3, 0.3),

CO(G)(k2, k3) = CO(G)(p2) = (0.1∨ 0.1, 0.1∧ 0.4) = (0.1, 0.1),

CO(G)(k4, k5) = CO(G)(p4) = (0.3∨ 0.1, 0.3∧ 0.4) = (0.3, 0.3),

CO(G)(k1, k5) = CO(G)(p5) = (0.3∨ 0.1, 0.3∧ 0.4) = (0.4, 0.3),

CO(G)(k1, k3) = CO(G)(p6) = (0.3∨ 0.1, 0.3∧ 0.4) = (0.1, 0.3),

CO(G)(k1, k4) = CO(G)(p7) = (0.3∨ 0.2, 0.4∧ 0.3) = (0.3, 0.3).

By using the SA definition, the SAs set will be,

{p1, p2, p5}.

The dominating set of G− {p3} has the lowest cardinality of {k1, k3, k4}, and its η(G) will be,

η(G− {p3}) =
1 + 0.5− 0.4

2
+

1 + 0.1− 0.3
2

+
1 + 0.3− 0.5

2
η(G− {p3}) = 1.35 > 0.95.

Accordingly, H = {p3} is a BS.
Suppose H = {p1, p2} is a subset of the SAs. To calculate the SAs of G− {p1, p2}, we have:

CO(G)(k3, k4) = CO(G)(p3) = (0.1∨ 0.1∨ 0.1, 0.3∧ 0.4∧ 0.3) = (0.1, 0.3),

CO(G)(k4, k5) = CO(G)(p4) = (0.2∨ 0.3∨ 0.1, 0.3∧ 0.4∧ 0.4) = (0.1, 0.3),

CO(G)(k1, k5) = CO(G)(p5) = (0.4∨ 0.2∨ 0.1, 0.3∧ 0.4∧ 0.4) = (0.2, 0.3),

CO(G)(k1, k3) = CO(G)(p6) = (0.1∨ 0.1∨ 0.1, 0.4∧ 0.4∧ 0.3) = (0.1, 0.3),

CO(G)(k1, k4) = CO(G)(p7) = (0.3∨ 0.2∨ 0.1, 0.4∧ 0.3∧ 0.4) = (0.3, 0.3).
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Through using the SA definition, the set of SAs will be,

{p2, p4}.

The dominating set of G− {p1, p2} has the lowest cardinality of {k1, k3}, and its η(G) will be,

η(G− {p1, p2}) =
1 + 0.3− 0.5

2
+

1 + 0.9− 0.1
2

η(G− {p1, p2}) = 1.3 > 0.95.

Consequently, H = {p1, p2} is a BS.
In the same way we can show that all the BSs of the given IFG are,

{p3}, {p1, p2}, {p1, p3}, {p3, p5}, {p1, p2, p3}, {p1, p2, p5}, {p1, p2, p3, p5}.

These are the subsets of an SAs set in which the removal from G will result in a greater η(G) of G.
To calculate the α(G) of the given IFG, we must calculate the BS with the lowest cardinality. The BS has the
lowest cardinality of {p3}. Its cardinality is α(G) of G.

α(G) =
1 + 0.1− 0.3

2
α(G) = 0.4.

Theorem 11. If an NBS of G is an edge dominating set of G, then αk(G) ≥ η(G)

2
.

Proof. Let G be an IFG. Let D be an NBS of G and edge dominating set of G. Clearly, |D| ≥ η′(G) and
|D| ≤ αk(G), η′(G) ≤ |D| ≤ αk(G), η′(G) ≤ αk(G).

We know that

η(G) ≤ 2η′(G)

η(G) ≤ 2η′(G) ≤ 2αk(G).

Hence, η(G) ≤ 2αk(G), and so
η(G)

2
≤ αk(G).

Example 3. Consider IFG G3, as shown in Figure 3, which is calculating all the NBSs and αk(G) of
a given graph.

Figure 3. G3.
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First, we calculate the set of SAs in the given graph. Subsequently, we will calculate every arc connectedness
strength in the graph.

CO(G)(k1, k2) = CO(G)(p1) = (0.1∨ 0.2, 0.2∧ 0.3) = (0.2, 0.2),

CO(G)(k1, k4) = CO(G)(p4) = (0.1∨ 0.2, 0.2∧ 0.3) = (0.2, 0.2),

CO(G)(k2, k3) = CO(G)(p2) = (0.3∨ 0.1, 0.2∧ 0.3) = (0.3, 0.2),

CO(G)(k3, k4) = CO(G)(p3) = (0.6∨ 0.1, 0.2∧ 0.3) = (0.6, 0.2).

Since p4 and p1 do not satisfy the condition of φ1ij ≥ CO(G)φ1(G)(ki, k j) and φ2ij ≤ CO(G)φ2(G)(ki, k j),
the set of SAs will be

S = {p2, p3}.

The dominating set of G has the lowest cardinality of F = {k1, k3}. As a result, the η(G) will be,

η(G) =
1 + 0.2− 0.3

2
+

1 + 0.6− 0.2
2

η(G) = 1.15.

Since a NBS of G is the subset of SAs in which the removal from IFG G will give an equal η(G) of the
resultant graph, we will now calculate non-BSs of G.

Let us consider H = {p2} to be a subset of the set of SAs. We will calculate SAs of G− {p2}.
After removing any number of SAs from the given graph, the remaining arcs of the graph satisfy the condition
of φ1ij ≥ CO(G)φ1(G)(ki, k j) and φ2ij ≤ CO(G)φ2(G)(ki, k j), because every pair of nodes is connected by a
unique path that is the arc between them so their strength of connectedness is equal to the degrees of their arcs as,

CO(G)(k1, k2) = CO(G)(p1) = (0.2, 0.3).

CO(G)(k3, k4) = CO(G)(p3) = (0.6, 0.2).

CO(G)(k1, k4) = CO(G)(p4) = (0.1, 0.2).

So the SA set will be,

{p1, p3, p4}. (4)

The dominating set of G− {p2} with the lowest cardinality is {k1, k3}, and its η(G) will be,

η(G− {p2}) =
1 + 0.2− 0.3

2
+

1 + 0.6− 0.2
2

η(G− {p2}) = 1.15 = 1.15.

Therefore, H = {p2} is an NBS.
Let’s assume H = {p3} as a subset of the set of SAs. The SAs of G− {p3}, will be calculated as follows:

CO(G)(k1, k2) = CO(G)(p1) = (0.2, 0.3),

CO(G)(k2, k3) = CO(G)(p2) = (0.3, 0.2),

CO(G)(k1, k4) = CO(G)(p4) = (0.1, 0.2).

Accordingly, the SA set will be,

{p1, p2, p4}. (5)
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The {k1, k2} is the dominating set of G− {p3} with the lowest cardinality, and its η(G) will be,

η(G− {p3}) =
1 + 0.2− 0.3

2
+

1 + 0.4− 0.5
2

η(G− {p3}) = 0.9 6= 1.15.

As a result, H = {p3} is not a BS.
Consider H = {p2, p3} as a subset of the SAs set. We will calculate SAs of G− {p2, p3}, as:

CO(G)(k1, k2) = CO(G)(p1) = (0.2, 0.3),

CO(G)(k1, k4) = CO(G)(p4) = (0.1, 0.2).

Therefore, the SA set will be,

{p1, p4}. (6)

The dominating set of G− {p2, p3} has the lowest cardinality of {k1, k3}, and its η(G) will be,

η(G− {p2, p3}) =
1 + 0.2− 0.3

2
+

1 + 0.6− 0.2
2

η(G− {p2, p3}) = 1.15 = 1.15.

Consequently, H = {p2, p3} is an NBS.
All the NBSs of IFG are,

{p2}, {p2, p3}.

The NBS has the highest cardinality of H = {p2, p3}. Therefore, the evaluation of its cardinality is
as follows,

αk(G) =
1 + 0.3− 0.2

2
+

1 + 0.6− 0.2
2

αk(G) = 1.25.

So αk(G) of the given IFG is obtained as αk(G) = 1.25.

4. Application

We have found the BS and number for some IFGs. Now we will try to find its applications in real
life situations.

Water Supplier Systems

Water supply systems are tools for collecting, supplying, handling, transporting and delivering
water for homes, industry, department, commercial and irrigation, as well as for government
requirements, such as fire fighting and road flushing. The provision of portable water is perhaps
the most important of all municipal services. People need water to drink, boil, do the laundry,
prepare construction material, and other home needs. Water supply systems can serve public,
financial and commercial demands. In all instances, the water must serve the demands both
quantitatively and qualitatively. To discuss the application, we give Algorithm 1 as follows:

Consider a water supply system with the supply points and pipelines.
Considering it as an IFG, for labeling the parts of IFG, vertices constitute the supply points and the

edges contain the systems pipelines. The membership degree of the supply points indicates the amount
of water being delivered through these points, the degree of non-membership indicates the water is
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not delivered and the amount that has been dried up or lost from these points can be considered as a
hesitant function.

A water flow rate or rupture rates varies with a period. The issue is inserted at the consumption
level that has the lowest quantity of electric water to supply the water both to other supplies and to
itself, which can only be supplied through SAs. Usually, higher water levels occur in the summer
and smaller water price levels occur in the winter months, although this is not always the scenario in
monsoon systems. SA in the setup process is a pipeline that can deliver the highest quantity of water
from all the linked pipelines in a path. By identifying strong IFG arcs, pipelines with the largest flow
can be described as the lowest number of supply points where the pumps can be fitted. If a water’s
average flow is not sufficient for a limited water supply, a conservation reservoir may be constructed.

There is a problem where certain SAs or pipelines are blocked and cannot provide water.
Adam blocks the stream of water, enabling the formation of an artificial lake. Conservation reservoirs
hold much water for use during flooding and limited stream flow from moist climate phases. Inside
the tank, a fluid supply system is constructed with multi-depth inlet pipes and pumps. Then what are
the new supply points where the smallest number of pumps can be placed to supply the whole system
with water?

Algorithm 1: Increasing Water Flow.
Pseudocode
Begin
Define IFG, supply points, pipelines
label the IFGvertices as supply points
label the IFG edges as pipelines

total water=membership degree+nono-membership degree
f (hesitant) = non-membership degree supply

if current month falls (in summer monthe OR monsoon period)
water level=higher

else if
water level=lower

else if

Define strongest fiows
do i from 1 toIFG.arcs.size

if IFG.arcs[i] is strng arc do
strongest flows.add (IFG.arcs[i])

end if
end do
Fit pumps in all piplines in strongest flows

if average f lows < su f f icient do
construct conversation reservoir

end if

if pipelines = blocked OR SAs = blocked
enable formation of artifical lake
end if



Mathematics 2020, 8, 1241 14 of 17

Algorithm 1: Cont.
SAs to erase =BS Of IFG will inform
Insert pumps at supply points
smalltanks = a(G)

V(tank) = πr2l
for each vertex v in V[G] do

d[v] := ∞
parent[v] := unknown
end
d[s] := 0
Q := V
while Q not empty do

u := Take O f f Min(Q)

for each vertex v− neighbor u do
if d[v] > d(u) + w(u, v) then

d[v] := d[u] + w(u, v)
previous[v] := u

else
Continue

end if
end

end
for each edge e in E[G] do

d[e] := ∞
parent[e] := unknown

end
d[s] := 0
Q := E
while Q not empty do

f := Take O f f Min(Q)

for each edge e− neighbor f do
if d[e] > d( f ) + w(e, f ) then

d[e] := d[ f ] + w(e, f )
previous[e] := f

else
Continue

end if
end

end
mark p1, p2, p3, p5 as strong pipelines
place pumps at k1, k3

mark p1, p2, p5 blocked
frash domination range is p3, p4, p6, p7

End

The BS of the IFG will inform us which SAs we can neglect, so we can get new supply points
where the pumps can be inserted. To compensate for the limited capacity of a supply line, the volume
of a tank must be designed. The α(G) will inform us by separating several powerful pipelines with
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which the system’s smallest effectiveness will be wasted. We can recognize the set of pipelines that has
the smallest possible extraction effect system.

Considering example 3.2 as a water supplier as shown in Figure 4, the set of strong pipelines in
the graph was {p1, p2, p3, p5} and the lowest dominating set was {k1, k3}. So we will place the pumps
at k1, k3 as,

Figure 4. G4.

Consider the position when some water system pipelines are blocked or destroyed and are unable
to perform water flow. Let the pipelines be blocked at the edges of {p1, p2, p5}. The system has been
removed, which means, it is added to the fresh scheme panels, while the fresh domination range is
{p3, p4, p6, p7}, which is used to place the water pumps.

We can use the idea to discover the smallest amount of water supply points quickly as shown in
Figure 5 (G5) where it will be appropriate to locate the pump.

Figure 5. G5.

5. Conclusions

Intuitionistic fuzzy models are much better than FGs in precision, elasticity, and compatibility
for the system. The IFG concept generally has a large variety of applications in different areas such
as computer science, engineering and operational research. In this study, a description of results
associated with extensions of certain ideas in IFGs was presented and their applications listed in this
paper were more dynamic and realistic than FGs. Moreover, the BS and NBS concepts that already
exist in IFGs were introduced and some results were established. A series of examples were given in
IFGs that illustrated the concepts application method and its reliability. Using our approach to this
idea, we inadvertently created a real-life application. This method adds uncertainty to the current
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techniques and opens the door to new research and application areas. The α(G) and αk(G) of an IFG
with examples were defined. Our future work is to apply this concept of BS, NBS, α(G) and αk(G) on
the vague graphs.
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