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Abstract: We establish nonoscillation criterion for the even order half-linear differential equation

(−1)n
(

fn(t)Φ
(

x(n)
))(n)

+ ∑n
l=1(−1)n−l βn−l

(
fn−l(t)Φ

(
x(n−l)

))(n−l)
= 0, where β0, β1, . . . , βn−1

are real numbers, n ∈ N, Φ(s) = |s|p−1 sgn s for s ∈ R, p ∈ (1, ∞) and fn−l is a regularly varying
(at infinity) function of the index α− lp for l = 0, 1, . . . , n and α ∈ R. This equation can be understood
as a generalization of the even order Euler type half-linear differential equation. We obtain this Euler
type equation by rewriting the equation above as follows: the terms fn(t) and fn−l(t) are replaced by
the tα and tα−lp, respectively. Unlike in other texts dealing with the Euler type equation, in this article
an approach based on the theory of regularly varying functions is used. We establish a nonoscillation
criterion by utilizing the variational technique.

Keywords: higher order half-linear differential equation; nonoscillation criterion; variational principle;
energy functional; regular variation
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1. Introduction

Consider the 2n-th order half-linear differential equation

(−1)n
(

fn(t)Φ
(

x(n)
))(n)

+
n

∑
l=1

(−1)n−l βn−l

(
fn−l(t)Φ

(
x(n−l)

))(n−l)
= 0, (1)

where β0, β1, . . . , βn−1 are real numbers, n ∈ N, Φ is the odd power function defined by the relation
Φ(s) = |s|p−1 sgn s for s ∈ R, p ∈ (1, ∞) and for each l ∈ {0, 1, . . . , n} the function fn−l is defined,
positive and continuous on [S, ∞), where S ∈ R.

Moreover, we assume that fn−l is a regularly varying (at infinity) function of the index α− lp
(the definition is given later) for l = 0, 1, . . . , n and α ∈ R. More briefly, we write fn−l ∈ RV(α− lp),
where RV(ϑ) for ϑ ∈ R denotes the set of all regularly varying functions of the index ϑ. Denote
SV := RV(0). Functions belonging to SV are called slowly varying functions and the function fn−l
can be equivalently described for l = 0, 1, . . . , n as follows: there exists a function Ln−l defined and
continuous on [S, ∞) such that

Ln−l ∈ SV and fn−l(t) = tα−lpLn−l(t), t ∈ [S, ∞).

The function Ln−l is called component of fn−l .
In this article, we give sufficient conditions on the constants β0, β1, . . . , βn−1 and on the

slowly varying functions L0, L1, . . . , Ln−1 (the components of f0, f1, . . . , fn−1), such that Equation (1)
is nonoscillatory.
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Equation (1) can be understood as a generalization of the 2n-th order Euler type half-linear
differential equation

(−1)n
(

tαΦ
(

x(n)
))(n)

+
n

∑
l=1

(−1)n−l βn−l

(
tα−lpΦ

(
x(n−l)

))(n−l)
= 0, (2)

studied in [1,2]. The two-term even order (Euler type and more general) half-linear differential
equations are studied in [1,3,4] and in the book [5] (Section 9.4).

The two-term 2n-th order Euler type linear differential equation

(−1)n
(

tαx(n)
)(n)

+ γtα−2nx = 0 (3)

with γ ∈ R is a special case of Equation (2) since Φ(s) = s for s ∈ R and p = 2. Equation (3) with
α ∈ RrMn,2 is nonoscillatory if and only if γn,2,α + γ ≥ 0 (see [6] (p. 132) and for α = 0 see also [7]
(pp. 97–98)), where

Mn,p := {p− 1, 2p− 1, . . . , np− 1}, γp,α :=
(
|p− 1− α|

p

)p
and γn,p,α :=

n−1

∏
l=0

γp,α−lp.

Equation (2) with n = 1 and β0 = γ is the second order Euler type half-linear differential equation

−
(
tαΦ

(
x′
))′

+ γtα−pΦ(x) = 0, (4)

which is nonoscillatory if and only if γp,α + γ ≥ 0, see [5] (Theorem 1.4.4) for α ∈ RrM1,p and for
the proof see [8]. For the case α ∈ M1,p (that is α = p− 1) see Remark 2 in this article. Equation (4)
with α = 0 and its various perturbations are also studied in [9–14].

This article is organized as follows. In Section 2, we define the concept of nonoscillation for (1),
we formulate the variational principle for (1) and we recall basic concepts of the theory of regularly
varying functions. The main results are given in Section 3. We conclude the article with several
examples and comments in the last two sections.

2. Preliminaries

First, we define the concept of nonoscillation for Equation (1). Similarly as in the linear case, real
points t1 and t2 are said to be conjugate relative to Equation (1), if t1 6= t2 and there exists a nontrivial
solution x of Equation (1), such that t1 and t2 are its zero points of multiplicity n, i.e., t1 and t2 satisfying

x(i)(t1) = 0 and x(i)(t2) = 0

for i = 0, 1, . . . , n− 1.
Note that the concept of conjugate points does not need such strict assumptions on coefficients as

they are given for Equation (1). Instead of βn−l fn−l(t) in (1) we can take rn−l(t) defined and continuous
on the interval [S, ∞) for l = 1, 2, . . . , n; and instead of fn(t) we can take rn(t) defined, continuous and
positive on the interval [S, ∞).

Definition 1. Equation (1) is said to be nonoscillatory if there exists T ∈ R such that no pair t1, t2 of points
from [T, ∞) conjugate relative to Equation (1) exists. In the opposite case, Equation (1) is said to be oscillatory.

Recall the definition of the Sobolev space. Denote
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Wn,p
0 [T, ∞) :=

{
y : [T, ∞)→ R | y(n−1) ∈ AC[T, ∞), y(n) ∈ Lp(T, ∞),

y(i−1)(T) = 0 for i = 1, 2, . . . , n,

∃m ∈ R such that m > T

and y(t) = 0 for t ∈ [m, ∞)
}

,

where n ∈ N, T ∈ R and p ∈ (1, ∞). The symbol AC[T, ∞) indicates the set of all absolutely
continuous functions of the form f : [T, ∞) → R and the symbol Lp(T, ∞) indicates the space of
(Lebesgue) measurable functions (equivalence classes of functions) such that f ∈ Lp(T, ∞) if and only
if
∫ ∞

T | f (t)|
p dt < ∞.

Suppose that y ∈ Wn,p
0 [T, ∞). If we say that y is nontrivial, we mean that the function y is not

identically zero on the interval [T, ∞).
The relation between Equation (1) and the energy functional Fn, for which Equation (1) is its

Euler–Lagrange equation, is formulated in the following lemma and is called the variational principle.

Lemma 1 ([5]). Equation (1) is nonoscillatory if there exists T ∈ R such that for every nontrivial function
y ∈Wn,p

0 [T, ∞), y = y(t) we have

Fn(y) :=
∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + n

∑
l=1

βn−l fn−l(t)
∣∣∣y(n−l)

∣∣∣p ]dt > 0. (5)

If Equation (1) is of the second order, condition (5) is even equivalent to nonoscillation of (1).
Consider the general second order half-linear differential equation

−
(
r(t)Φ

(
x′
))′

+ c(t)Φ(x) = 0, (6)

where r and c are continuous functions defined on a neighborhood of infinity and r is positive.

Lemma 2 ([5]). Equation (6) is nonoscillatory if and only if there exists T ∈ R such that∫ ∞

T

[
r(t)

∣∣y′∣∣p + c(t) |y|p
]

dt > 0

for every nontrivial function y ∈W1,p
0 [T, ∞), y = y(t).

For any f : M→ R, M ⊆ R we denote f−(t) := min{0, f (t)}, t ∈ M. If p ∈ (1, ∞), the symbol q
denotes the conjugate number of p, i.e., the number q is such that

1
p
+

1
q
= 1.

The auxiliary statement below is proved in [5] (Theorem 2.1.2).

Proposition 1. Denote γp := γp,0. The following statements hold.

(a) Let
∫ ∞ r1−q(t)dt = ∞ and

∫ ∞ c−(t)dt > −∞. Equation (6) is nonoscillatory provided

lim inf
t→∞

[(∫ t
r1−q(s)ds

)p−1 ∫ ∞

t
c−(s)ds

]
> −

γp

p− 1
. (7)



Mathematics 2020, 8, 1236 4 of 11

(b) Let
∫ ∞ r1−q(t)dt < ∞. Equation (6) is nonoscillatory provided

lim inf
t→∞

[(∫ ∞

t
r1−q(s)ds

)p−1 ∫ t
c−(s)ds

]
> −

γp

p− 1
.

Note that the assumptions of part (a) of Proposition 1 can be weakened, see [5] (Theorem 2.2.9).
The function c− is replaced by c and instead of

∫ ∞ c−(t)dt > −∞ we assume that
∫ ∞ c(t)dt converges.

The last part of this section is devoted to the theory of regular varying functions. A comprehensive
study of regular variation can be found in [15], where the proofs of the presented statements can
be found.

Definition 2. Let ϑ and S be real numbers. A (Lebesgue) measurable function f : [S, ∞)→ (0, ∞) is said to
be regularly varying (more precisely, regularly varying at ∞) of index ϑ if

lim
t→∞

f (λt)
f (t)

= λϑ

for every λ ∈ (0, ∞).

Positive constant functions defined on [S, ∞) are trivial examples of slowly varying functions
(elements ofRV(0)). The logarithm defined on [S, ∞) is also an element of SV (where SV = RV(0))
if S > 1. Let µ1, µ2, . . . , µk be real numbers, k ∈ N and lni+1 t := ln lni t for i ∈ N, where ln1 t := ln t.
Then, the function defined by the relation

K(t) =
k

∏
i=1

(lni t)µi , t ∈ [S, ∞)

is slowly varying for sufficiently large S. Examples of regularly varying functions of index ϑ have the
form tϑL(t), where L is a slowly varying function; see Lemma 3.

Let f and g be real-valued functions, which are positive in a neighborhood of infinity.
The functions f and g are said to be asymptotically equivalent if limt→∞ f (t)

/
g(t) = 1; we write

f (t) ∼ g(t) as t→ ∞.

Lemma 3. Let ϑ and S be real numbers. Then following statements hold.

(a) A measurable function f : [S, ∞) → (0, ∞) belongs to RV(ϑ) if and only if there exists a measurable
function L : [S, ∞)→ (0, ∞) such that L ∈ SV and f (t) = tϑL(t) for t ∈ [S, ∞).

(b) If L ∈ SV and K : [S, ∞) → (0, ∞) is a measurable function such that K(t) ∼ L(t) as t → ∞,
then K ∈ SV .

(c) If f ∈ RV(ϑ), then f β ∈ RV(ϑβ) for every β ∈ R.
(d) Let f ∈ RV(ϑ1) and g ∈ RV(ϑ2). Then f g ∈ RV(ϑ1 + ϑ2).

The following statement allows us to include equations with regularly varying coefficients in
our investigation.

Proposition 2 (Karamata’s theorem [15]). Let S be a real number and L be a slowly varying function defined
on [S, ∞). The following statements hold.

(a) If ϑ < −1, then ∫ ∞

t
sϑL(s)ds ∼ − tϑ+1

ϑ + 1
L(t) as t→ ∞.

(b) If ϑ > −1, then ∫ t

S
sϑL(s)ds ∼ tϑ+1

ϑ + 1
L(t) as t→ ∞.
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Note that the case ϑ = −1 is not included in any part of Karamata’s theorem since the integral∫ ∞
S s−1L(s)ds may or may not converge.

3. Equations with Regularly Varying Coefficients

It is worthy to note that the methods presented in this section have been previously used in [16],
where we are dealing with the discrete case. As far as we know, our result in this section is new even
in the linear case (p = 2).

We use the following notation, which greatly simplifies the formulation of the main result. Recall

γp,α−lp =

(
|(l + 1)p− 1− α|

p

)p
for l = 0, 1, . . . , n− 1

and denote
γ[n](0) := 1 and γ[n](k + 1) := γ[n](k)γp,α−kp + βn−1−k

for k = 0, 1, 2, . . . , n− 1. If n > 1, then

γ[n](1) = γp,α + βn−1,

γ[n](2) = γp,αγp,α−p + βn−1γp,α−p + βn−2,
...

γ[n](n) = γn,p,α +
n−1

∑
k=1

[
n−1

∏
l=k

γp,α−lp

]
βn−k + β0.

Now we formulate the main theorem. It is an extension of the result in [1] (Theorem 3.3) obtained
for Equation (2). The result in [1] is also extended in [2]. The extension from [2] generalizes the
conditions on the coefficients of Equation (2). In this paper, moreover, a more general Equation (1)
is considered.

Theorem 1. Let α ∈ RrMn,p. If

L0(t) ∼ L1(t) ∼ · · · ∼ Ln(t) as t→ ∞

and γ[n](k) > 0 for every k ∈ {1, 2, . . . , n}, then Equation (1) is nonoscillatory.

The difference in the approach of this article and our previous articles [1,2] is that we do not utilize
the so-called Wirtinger inequality, see [5] (Lemma 2.1.1). Consequently, we can consider more general
coefficients, but we lose some potentially critical states of the constants β0, β1, . . . , βn−1 (especially,
the case γ[n](k) = 0 for k from an arbitrary subset of {1, 2, . . . , n− 1} and γ[n](k) > 0 for k from the
complement of this subset with respect to {1, 2, . . . , n}). Oscillation properties in the case γ[n](n) = 0
are completely unknown to us.

Consider a special case of Equation (1), namely the second order half-linear differential equation

−
(

f (t)Φ(x′)
)′
+ γg(t)Φ(x) = 0, (8)

where γ ∈ R and functions f and g are such that

f (t) = tαK(t) for t ∈ [S, ∞) and g(t) = tα−pL(t) for t ∈ [S, ∞)

for some α ∈ R and some slowly varying functions K and L.
We start with the auxiliary nonoscillation criterion for Equation (8). In its proof, both parts of

Propositions 1 and 2 (Karamata’s theorem) are used.
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Lemma 4. Let α ∈ RrM1,p. If

γp,α + γ > 0 and K(t) ∼ L(t) as t→ ∞,

then Equation (8) is nonoscillatory.

Proof. From Lemma 1 it follows that Equation (8) is nonoscillatory for γ ≥ 0.
Let γ < 0 and α < p− 1. We verify the assumptions of part (a) of Proposition 1 for Equation (8).

By part (b) of Proposition 2 we have

∫ t

S
sα(1−q)K1−q(s)ds ∼ tα(1−q)+1

α(1− q) + 1
K1−q(t) as t→ ∞.

Indeed, α(1− q) > −1 if and only if α < p − 1 and K1−q ∈ SV by part (c) of Lemma 3. Hence,∫ ∞
S tα(1−q)K1−q(t)dt = ∞ by the limit comparison test. Now, denote c(t) = γtα−pL(t). Then c− ≡ c

for γ < 0 and by part (a) of Proposition 2 we get

∫ ∞

t
sα−pL(s)ds ∼ − tα−p+1

α− p + 1
L(t) as t→ ∞.

Therefore,
∫ ∞

S γtα−pL(t)dt > −∞ holds.
Further, the left-hand side of inequality (7) admits the form

lim inf
t→∞

[(∫ t

S
sα(1−q)K1−q(s)ds

)p−1 ∫ ∞

t
γsα−pL(s)ds

]
=

γ(p− 1)p−1

(p− 1− α)p lim
t→∞

L(t)
K(t)

and
γ(p− 1)p−1

(p− 1− α)p > −
γp

p− 1
if and only if γp,α + γ > 0

for α < p− 1.
The proof of the case α < p− 1 (with γ < 0) is analogous to the one of the case α(1− q) > −1

and it uses part (b) of Proposition 1.

Remark 1. The oscillation complement of Lemma 4 holds too. Indeed, instead of the parts (a) and (b) of
Proposition 1, we use their oscillation complements (see [5] (Theorem 2.3.2 (ii)) in case of α < p− 1 and [5]
(Theorem 3.1.4) in case of α > p− 1). Nevertheless, in this paper we only need the nonoscillation criterion
shown in Lemma 4, and therefore we do not prove the oscillation complement explicitly.

Remark 2. Due to the note below Proposition 2, we cannot decide on the convergence of integrals∫ ∞ tα(1−q)K1−q(t)dt and
∫ ∞ tα−pL(t)dt if α ∈ M1,p. However, if we set K ≡ L ≡ 1 and α = p − 1

in Equation (8), then Equation (8) is the second order Euler type half-linear differential equation and it is
nonoscillatory if and only if γp,p−1 + γ ≥ 0 (γp,p−1 = 0). Indeed, the “if” part immediately follows from
Lemma 2 and the “only if” part follows from the half-linear version of the Leighton–Wintner oscillation criterion
(see [5] (Theorem 1.2.9)).

The variational principle formulated in Lemma 2 allows obtaining a certain inequality from the
knowledge of nonoscillation of an equation. This way, we obtain the inequalities, as shown in the
following lemma.

Lemma 5. Let m ∈ N, p ∈ (1, ∞), α ∈ RrMm,p and ε0, ε1, . . . , εm−1 be arbitrary positive real numbers.
Further let

Li ∈ SV and Lm−j(t) ∼ Lm−j−1(t) as t→ ∞
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for i = 0, 1, . . . , m and j = 0, 1, . . . , m− 1. Then there exists T ∈ R such that∫ ∞

T

[
tα−jpLm−j(t)

∣∣∣y(m−j)
∣∣∣p + (ε j − γp,α−jp

)
tα−(j+1)pLm−j−1(t)

∣∣∣y(m−j−1)
∣∣∣p ]dt > 0

for every nontrivial function y ∈Wm,p
0 [T, ∞) and for every j ∈ {0, 1, . . . , m− 1}.

Proof. Let the assumptions of Lemma 5 hold. Then the equation

−
(

tα−jpLm−j(t)Φ
(

x′
))′

+ (ε j − γp,α−jp)tα−(j+1)pLm−j−1(t)Φ(x) = 0 (9)

is nonoscillatory for every j ∈ {0, 1, . . . , m− 1}. Indeed, let j ∈ {0, 1, . . . , m− 1} be arbitrary, then

γp,α−jp + ε j − γp,α−jp = ε j > 0, α− jp ∈ RrM1,p

and
Lm−j(t) ∼ Lm−j−1(t) as t→ ∞.

Hence, by Lemma 4, Equation (9) is nonoscillatory for every j ∈ {0, 1, . . . , m− 1}.
Due to Lemma 2, for every j ∈ {0, 1, . . . , m− 1} there exists Tj ∈ N such that

∫ ∞

Tj

[
tα−jpLm−j(t)

∣∣z′∣∣p + (ε j − γp,α−jp
)

tα−(j+1)pLm−j−1(t) |z|p
]

dt > 0 (10)

for every nontrivial z ∈W1,p
0 [Tj, ∞).

Denote T = max{T0, T1, . . . , Tm−1}, then for an arbitrary z ∈W1,p
0 [T, ∞) a function zj defined by

the relation

zj(t) =

{
0 for t ∈ [Tj, T),

z(t) for t ∈ [T, ∞)

belongs to W1,p
0 [Tj, ∞) for j = 0, 1, . . . , m− 1 (if any function of z, z1, z2, . . . , zm−1 is nontrivial, then all

the others are nontrivial). Hence,∫ T

Tj

[
tα−jpLm−j(t)

∣∣∣z′j∣∣∣p + (ε j − γp,α−jp
)

tα−(j+1)pLm−j−1(t)
∣∣zj
∣∣p]dt = 0

for every z ∈W1,p
0 [T, ∞) and for every j ∈ {0, 1, . . . , m− 1}, therefore, by (10),∫ ∞

T

[
tα−jpLm−j(t)

∣∣z′∣∣p + (ε j − γp,α−jp
)

tα−(j+1)pLm−j−1(t) |z|p
]

dt > 0

for every nontrivial z ∈W1,p
0 [T, ∞) and for every j ∈ {0, 1, . . . , m− 1}.

Choose any j ∈ {0, 1, . . . , m− 1} and any nontrivial function y ∈Wm,p
0 [T, ∞). Then the function

z defined by the relation z(t) = y(m−j−1)(t) for t ∈ [T, ∞) is nontrivial and belongs to the set
W1,p

0 [T, ∞). Hence,∫ ∞

T

[
tα−jpLm−j(t)

∣∣∣y(m−j)
∣∣∣p + (ε j − γp,α−jp

)
tα−(j+1)pLm−j−1(t)

∣∣∣y(m−j−1)
∣∣∣p]dt > 0

for every nontrivial y ∈Wm,p
0 [T, ∞) and for every j ∈ {0, 1, . . . , m− 1}.

Proof of Theorem 1. By Lemma 1, it is sufficient to prove that for some T ∈ N the energy functional

F̃n(y) :=
∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + βn−1 fn−1(t)
∣∣∣y(n−1)

∣∣∣p + . . . + β0 f0(t) |y|p
]

dt (11)
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is positive for every nontrivial y ∈ Wn,p
0 [T, ∞). Note that Theorem 1 for n = 1 had already been

proved, see Lemma 4.
Assume that n > 1. We estimate functional (11) by using inequalities obtained via Lemma 5.

Let ε ∈ (0, ∞) be such that

ε < γ[n](n) and ε < 2n−l−1γ[n](l)
n−1

∏
j=l

γp,α−jp (12)

for every l = 1, 2, . . . , n− 1. Define real numbers ε1, ε2, . . . , ε2n−2 by the relations

ε2l−1 =
ε

2n−l ∏n−1
j=l γp,α−jp

and ε2l =
εγp,α−lp

2n−lγ[n](l)
[
∏n−1

j=l γp,α−jp

]
− ε

for l = 1, 2, . . . , n− 1. From conditions (12) we have the inequalities

γp,α−lp > ε2l > 0 and γ[n](l) > ε2l−1 > 0

for l = 1, 2, . . . , n− 1.
By Lemma 5, T ∈ R exists such that the relations∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + (ε1 − γp,α
)

fn−1(t)
∣∣∣y(n−1)

∣∣∣p ]dt > 0 (13)

and ∫ ∞

T

[
fn−j(t)

∣∣∣y(n−j)
∣∣∣p + (ε2j − γp,α−jp

)
fn−j−1(t)

∣∣∣y(n−j−1)
∣∣∣p ]dt > 0 (14)

hold for every nontrivial y ∈Wn,p
0 [T, ∞) and for every j = 1, 2, . . . , n− 1.

By direct evaluation we can verify that for l = 1, 2, . . . , n− 2 we have(
γ[n](l)− ε2l−1

) (
γp,α−lp − ε2l

)
=
[
γ[n](l + 1)− βn−1−l

]
− ε2(l+1)−1 (15)

and (
γ[n](n− 1)− ε2n−3

) (
γp,α−(n−1)p − ε2n−2

)
=
[
γ[n](n)− β0

]
− ε. (16)

Now we prove the positivity of functional (11). Among others, we use the relations

γ[n](l) > ε2l−1 and γ[n](n)− ε > 0

for l = 1, 2, . . . , n− 1. Using (13)–(15) we have∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + βn−1 fn−1(t)
∣∣∣y(n−1)

∣∣∣p ]dt

>
[(

γp,α − ε1
)
+ βn−1

] ∫ ∞

T
fn−1(t)

∣∣∣y(n−1)
∣∣∣p dt

=
(

γ[n](1)− ε1

) ∫ ∞

T
fn−1(t)

∣∣∣y(n−1)
∣∣∣p dt

>
(

γ[n](1)− ε1

) (
γp,α−p − ε2

) ∫ ∞

T
fn−2(t)

∣∣∣y(n−2)
∣∣∣p dt

=
(

γ[n](2)− βn−2 − ε3

) ∫ ∞

T
fn−2(t)

∣∣∣y(n−2)
∣∣∣p dt

for every nontrivial y ∈Wn,p
0 [T, ∞). Therefore, using (14) and (15),
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∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + βn−1 fn−1(t)
∣∣∣y(n−1)

∣∣∣p + βn−2 fn−2(t)
∣∣∣y(n−2)

∣∣∣p ]dt

>
[(

γ[n](2)− βn−2 − ε3

)
+ βn−2

] ∫ ∞

T
fn−2(t)

∣∣∣y(n−2)
∣∣∣p dt

>
(

γ[n](2)− ε3

) (
γp,α−2p − ε4

) ∫ ∞

T
fn−3(t)

∣∣∣y(n−3)
∣∣∣p dt

=
(

γ[n](3)− βn−3 − ε5

) ∫ ∞

T
fn−3(t)

∣∣∣y(n−3)
∣∣∣p dt

for every nontrivial y ∈Wn,p
0 [T, ∞). Stepwise by (14) and (16) we obtain∫ ∞

T

[
fn(t)

∣∣∣y(n)∣∣∣p + . . . + β2 f2(t)
∣∣y′′∣∣p + β1 f1(t)

∣∣y′∣∣p]dt

>
[(

γ[n](n− 1)− β1 − ε2n−3

)
+ β1

] ∫ ∞

T
f1(t)

∣∣y′∣∣p dt

>
(

γ[n](n− 1)− ε2n−3

) (
γp,α−(n−1)p − ε2n−2

) ∫ ∞

T
f0(t) |y|p dt

=
(

γ[n](n)− β0 − ε
) ∫ ∞

T
f0(t) |y|p dt

for every nontrivial y ∈Wn,p
0 [T, ∞). Hence, the functional F̃n(y) is greater than the expression[(

γ[n](n)− β0 − ε
)
+ β0

] ∫ ∞

T
f0(t) |y|p dt,

which is positive for every nontrivial y ∈Wn,p
0 [T, ∞). This implies that the energy functional F̃n(y) is

positive for every nontrivial y ∈Wn,p
0 [T, ∞).

Remark 3. We believe that the oscillation behavior of (1) in the case γ[n](n) = 0 cannot be obtained under
the general (remaining) assumptions of Theorem 1. More precisely, we conjecture that if α ∈ RrMn,p,
L0(t) ∼ L1(t) ∼ · · · ∼ Ln(t) as t → ∞, γ[n](k) ≥ 0 for every k ∈ {1, 2, . . . , n− 1} and γ[n](n) = 0, then
Equation (1) may or may not be nonoscillatory (nonoscillation of (1) depends on the functions L0, L1, . . . , Ln).

4. Examples

Example 1. Consider the full-term fourth order half-linear differential equation([
ln2(ln t) + ln(ln2 t)

]
Φ
(
x′′
))′′

− β1

(
t−p

[
ln2(ln t) + e−t

]
Φ
(
x′
))′

+ β0t−2p ln2(1 + ln t)Φ(x) = 0. (17)

It is easy to verify that function L(t) = ln2(ln t) + ln(ln2 t) defined in some neighborhood of infinity is slowly
varying, and that[

ln2(ln t) + ln(ln2 t)
]
∼
[
ln2(ln t) + e−t

]
∼ ln2(1 + ln t) as t→ ∞.

According to Theorem 1, Equation (17) is nonoscillatory if (
p− 1

p

)p
+ β1 > 0,(

p− 1
p

)p (2p− 1
p

)p
+

(
2p− 1

p

)p
β1 + β0 > 0.
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If p = 2 (Equation (17) is linear), then these inequalities take the form 1
4 + β1 > 0 and 9

16 + 9
4 β1 + β0 > 0.

To our knowledge, oscillation properties of the full-term Euler type linear differential equation
(Equation (2) with p = 2) were only studied for the case n = 2 (fourth order), see [17].

Example 2. Consider the eighth order half-linear differential equation with a middle term(
t4pΦ

(
x(4)

))(4)
+ β2

(
(t + 1)2pΦ

(
x′′
))′′

+ β0

(
1 +

1
lnp t

)
Φ(x) = 0. (18)

According to Theorem 1, Equation (18) is nonoscillatory provided

γp,4pγp,3p + β2 > 0, i.e.,
(

3p + 1
p

)p (2p + 1
p

)p
+ β2 > 0,

γ4,p,4p + γp,2pγp,pβ2 + β0 > 0, i.e.,
4

∏
i=1

(
(4− i)p + 1

p

)p
+

(
p + 1

p

)p 1
p p β2 + β0 > 0.

The next example shows a special case of our result for a two-term equation.

Example 3. Let α ∈ RrMn,p. By Theorem 1, the two-term half-linear differential equation

(−1)n
(

tαK(t)Φ
(

x(n)
))(n)

+ γtα−npL(t)Φ(x) = 0

(the two-term version of (1) with Ln ≡ K, L0 ≡ L and β0 = γ) is nonoscillatory if

−γn,p,α < γ and K(t) ∼ L(t) as t→ ∞.

5. Conclusions

We derived a general nonoscillation criterion formulated in Theorem 1. The coefficients are
not completely generic functions, which are usually considered in even order half-linear differential
equations, but they are still from a “large” class of regularly varying functions. Additionally, we believe
the methods in our proofs may result in a new approach for obtaining nonoscillation criteria for more
general even ordered half-linear differential equations considered as a perturbation of Equation (1).
However, as we conjecture in Remark 3, oscillatory behavior of the coefficients’ boundary states in (1)
might not be unambiguously determined without additional assumptions.
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