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Abstract: This paper studies a loss-averse newsvendor problem with reference dependence, where both
demand and yield rate are stochastic. We obtain the loss-averse newsvendor’s optimal ordering policy
and analyze the effects of loss aversion, reference dependence, random demand and yield on it. It is
shown that the loss-averse newsvendor’s optimal order quantity and expected utility decreases in loss
aversion level and reference point. Then, that this order quantity may be larger than the risk-neutral
one’s if the reference point is less than a negative threshold. In addition, although the effect of random
yield leads to an increase in the order quantity, the loss-averse newsvendor may order more than,
equal to or less than the classical one, which significantly depends on loss aversion level and reference
point. Numerical experiments were conducted to demonstrate our theoretical results.
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1. Introduction

The newsvendor problem is a fundamental decision-making model in operations management
and has attracted much scholarly attention over the decades. Nevertheless, most previous studies
mainly focused on the randomness in demand, while ignoring the supply uncertainty. In fact,
supply risk has been increasingly significant in recent years and seriously undermines the operational
performance and profits. Many factors, such as equipment malfunctions in production process and
damage during transportation, often result in the supply uncertainty, and then the quantity received
by the newsvendor is different from that ordered. For example, a semiconductor manufacturer in the
high-tech industries often suffers a very high yield loss that is usually more than 50% [1]. Another
example occurs in agriculture and the perishable fruit and vegetables often suffer a loss in transit. As a
result, the newsvendor indeed is confronted by both demand and supply uncertainties, and should
consider these two factors simultaneously when he makes the order decisions. Treatment of supply
risk has been an important topic in analyzing inventory management, and extensive reviews of the
literature on random yield models are provided by Yano and Lee [2] and Grosfeldnir and Gerchak [3].

In addition, the decision makers are assumed to be risk-neutral and the expected profit maximizers
in most of the newsvendor-type models. However, many practical examples show they are bounded
rationality and the actual order quantities are deviating from the optimal solution, which is referred to
as "decision bias" (e.g., [4–7]). Then Kahneman and Tversky [8] propose prospect theory and explain
this phenomenon. They suggest that the outcome is separated into gains and losses using a reference
point (i.e., reference dependence), and the decision makers facing equivalent gains and losses are more
averse to the latter (i.e., loss aversion). Since prospect theory can better characterize the individual
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choice behavior under risk, many researchers introduce it into inventory management and study the
loss-averse newsvendor models, while most of them only take into account the demand uncertainty.
Although several works (e.g., [9,10]) consider the supply risk simultaneously, the reference point is
set to zero in the loss aversion utility function and thus its effect is ignored. However, some existing
studies have revealed that reference dependence plays an important role in explaining the decision bias
and has a significant effect on the order decisions (e.g., [11,12]). Therefore, it is meaningful to study the
loss-averse newsvendor’s ordering policy when both supply uncertainty and reference dependence
are considered. The purpose of our study is to shed light on the following problems: (1) How does the
loss-averse newsvendor with reference dependence make order decisions under uncertain demand
and supply? (2) How would the newsvendor’s optimal order quantity and expected utility change if
the loss aversion level or reference point were to vary? (3) How do the demand and yield uncertainties
affect the order decisions? (4) What are the joint effects of loss aversion, reference dependence and
supply risk on the order quantity?

To address the above problems, we studied a loss-averse newsvendor problem with reference
dependence and stochastically proportional yield, a typical supply risk under which the yield is the
product of random yield rate and order quantity. This approach of modeling supply uncertainty is
widely used in the literature (e.g., [10,13,14]), and can apply in a case in which batch size is relatively
large or its variation is small, etc. [2]. To the best of our knowledge, this model has not been considered
in the literature. The loss-averse newsvendor’s optimal ordering policy in the presence of reference
dependence and random yield is first obtained herein. Then we analyze the effects of loss aversion,
reference dependence, random demand and yield on it, and also derive the managerial insights on
their joint effects. The loss-averse newsvendor’s order quantity may be larger than the risk-neutral
one’s if the reference point is less than a negative threshold. In addition, although the effect of random
yield drives the order quantity up, the loss-averse newsvendor may order more than, equal to or less
than the classical one, which heavily depends on loss aversion level and reference point. These results
demonstrate the significance of considering reference dependence.

The rest of this paper is organized as follows. In Section 2, we review the newsvendor problem
with loss aversion and reference dependence, as well as uncertain supply. In Section 3, we formulate
the problem. In Section 4, we obtain the optimal ordering policy and study the impacts of different
factors on it. In Section 5, we conduct numerical experiments to illustrate our results. In Section 6,
we conclude our paper.

2. Literature Review

We review the literature on the newsvendor problem from the following three aspects: loss aversion,
reference dependence and supply uncertainty. Note that the existing studies only consider one or two
factors, whereas we build a comprehensive model by jointly considering those three factors.

The first stream is on the newsvendor problem based on loss aversion. Schweitzer and Cachon [15]
is a seminal paper on this problem and shows that loss-averse preferences lead to a decrease in the
order quantity. Then this problem has attracted much attention and been studied in various contexts
in recent years. Wang and Webster [16] extend their model by considering shortage cost and find
that the loss-averse newsvendor may order more than the risk-neutral one. Wang [17] assumed
multiple loss-averse newsvendors order from a single supplier and studied the newsvendor game
under the proportional demand allocation rule. Liu et al. [13] also investigated the game in which
two loss-averse newsvendors compete for substitutable demand. Both studies found the supply chain
inventory understocking would occur if the effect of loss aversion was strong enough and dominated
that of competition. Xu et al. [18] investigated the newsvendor’s option purchase decision when the
excess demands could be replenished. When only the mean and variance of the demand distribution
were known, Yu et al. [19] considered the robust newsvendor problem and obtained the robust optimal
ordering policy. Moreover, some researchers consider the loss-averse newsvendor’s risk management
and introduce CVaRmeasure into this problem. Xu et al. [20] studied the loss-averse newsvendor
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problem, wherein the objective is to maximize the CVaR of utility, and present some insights for the
risk management of loss-averse newsvendor. Xu et al. [21] considered the newsvendor problem with
backordering, and found the optimal order quantity with the CVaR objective was smaller than that
maximizing expected utility.

The second stream is on the newsvendor problem with reference dependence. Herweg [22]
studied the expectation-based loss-averse newsvendor problem, wherein the overall utility consists
of realized profit and gain-loss utility. Long and Nasiry [11] demonstrated that prospect theory can
explain the newsvendor’s ordering behavior observed in experiments when the reference point is
considered. Wu et al. [23] studied the competitive newsvendor problem in the case of proportional
demand allocation and demand reallocation. They showed that the total inventory level in the
decentralized case may be lower than that in the centralized case. Wang and Wang [24] proposed
a reference dependence utility function to study the newsvendor problem, and showed that the
loss-averse newsvendor may order more than the classical one. Mandal et al. [25] investigated the joint
pricing and ordering problem under an inventory-dependent demand. Bai et al. [26] also considered
this problem under a price-dependent demand. They found both demand and reference point types
have a heavy impact on the optimal decisions. Uppari and Hasija [27] built several newsvendor models
under different reference point types and found that mean demand, as a stochastic reference point,
outperformed others.

The third stream is on the newsvendor problem with supply uncertainty, in which random
yield and random supply capacity are two main forms of modeling supply risk. Gerchak et al. [28]
studied the periodic review model with random yield and obtained the optimal ordering policy in
each period. Wang and Gerchak [29] extended their work when random supply capacity was also
considered. He [30] analyzed how a firm made price and production quantity decisions under random
yield. Lee and Lu [31] studied two firms’ inventory competition when the yield was random and
demand was substitutable. Shi et al. [32] investigated the effect of supply process improvement on
the newsvendor’s decision when capacity was random. Moreover, some researchers incorporated
the loss-averse preferences into this problem. Liu et al. [33] studied the loss-averse newsvendor
problem with random yield, while considering both shortage cost and no shortage cost, respectively.
Ma et al. [14] assumed that yield rate follows a binomial distribution and also investigated this
problem. Regarding both supplier and retailer having loss-averse preferences, Du et al. [10] considered
a two-echelon supply chain with random yield and obtained the supplier’s and retailer’s optimal
policies. Liu et al. [34] investigated a periodic review inventory problem with loss-averse retailer and
random supply capacity. Nevertheless, all those studies set a zero reference point and ignored the
effect of reference dependence, which is the key factor of prospect theory.

3. Model Description

We consider a single-period inventory problem with random yield and loss-averse newsvendor
(retailer). Before the selling season, the newsvendor makes an order quantity decision. The supplier
responds to provide the quantity the newsvendor orders and the lead time is zero. Due to the issues
that may arise in production and transit, there are some defective units in the products delivered.
Assuming the fraction of good units (yield rate) is random, the available quantity is the product of
yield rate and initial order quantity. The newsvendor only needs to pay for this quantity rather than
the quantity ordered. The leftover inventory at the end of the season is salvaged and any unsatisfied
demand is lost. The notation concerned in this paper is listed in Table 1.
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Table 1. Summary of the notation.

Notation Description

p Selling price per unit,
c Purchasing cost per unit,
s Salvage value per unit, p > c > s,
Q Order quantity,
X Random demand. Its probability density function is f (x)

and cumulative distribution function is F(x),
Y Yield rate, then the available quantity is YQ. Its probability

density function is g(y) and mean is µ,
w0 Target profit per unit (reference point),
λ Loss aversion level,
Q∗ Optimal order quantity,
Q∗1 Optimal order quantity of the risk-neutral newsvendor,
Q∗2 Optimal order quantity under deterministic yield,
Q∗3 Optimal order quantity of the classical newsvendor.

For the realized market demand x and yield rate y, the newsvendor’s profit under the order
quantity Q is

π(Q, x, y) =

{
(p− c)yQ, x ≥ yQ,

(p− s)x− (c− s)yQ, x < yQ.
(1)

The newsvendor is loss-averse and we employ the following piecewise-linear utility function:

U(π) =

{
π − π0, π ≥ π0,

λ(π − π0), π < π0,
(2)

where λ ≥ 1 is the newsvendor’s loss aversion level and π0 is his reference point that makes him
change risk attitude. That is, there is a kink at π0, and the newsvendor will perceive gains if π ≥ π0,
whereas he will perceive losses if π < π0. When λ = 1 and π0 = 0, our model reduces to the
risk-neutral one. Note that although multiple forms of loss aversion utility function are presented
(e.g., [15,24,35,36]), among them this piecewise-linear one is most widely used in the economics, finance
(e.g., [37,38]) and operations management literature (e.g., [15–21,23,24,26]) because of its simplicity.
Nevertheless, π0 is generally set to zero in (2), and we will consider the non-zero case.

In the inventory models with reference dependence, target gross profit is the main setting for
π0. For example, Long and Nasiry [11] and Mandal et al. [25] used a convex combination of the
newsvendor’s maximum and minimum possible payoff. It follows from (1) that if the newsvendor’s
minimum possible payoff is (s− c)yQ and the maximum possible payoff is (p− c)yQ, the reference
point (target gross profit) depends on the order quantity and yield rate in this setting. However,
the decision maker usually has a clear and definite target in practice. In view of this, Wu et al. [23]
and Bai et al. [26] suggest that it is easier and more realistic for the newsvendor to choose the target
unit profit instead of target gross profit as reference point. Similarly to them, we introduce a target
unit profit w0 ∈ [s− c, p− c] as the reference point, where the minimum s− c < 0 is the loss per unit
unsold product and the maximum p− c > 0 is the revenue per unit selling product. Then the target
gross profit π0 = w0yQ. Moreover, Bai et al. [26] also clearly state that this setting for the reference
point is consistent with that in Long and Nasiry [11]. When combining with (1), the utility function (2)
can be formulated as

U(π(Q, x, y)) =


(p− c− w0)yQ, x ≥ yQ,

(p− s)x− (c− s + w0)yQ, c−s+w0
p−s yQ ≤ x < yQ,

λ[(p− s)x− (c− s + w0)yQ], 0 ≤ x < c−s+w0
p−s yQ.

(3)
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The newsvendor’s expected utility is (as shown in Figure 1)
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Figure 1. A graphical presentation of demand and yield rate outcomes.

E[U(π(Q, X, Y))] =
∫ 1

0

∫ ∞

0
U(π(Q, x, y)) f (x)g(y)dxdy

=λ
∫∫
S1

[π(Q, x, y)− π0] f (x)g(y)dxdy +
∫∫

S2∪S3

[π(Q, x, y)− π0] f (x)g(y)dxdy

=(λ− 1)
∫ 1

0

∫ c−s+w0
p−s yQ

0
[(p− s)x− (c− s + w0)yQ] f (x)g(y)dxdy

+
∫ 1

0

∫ yQ

0
[(p− s)x− (c− s + w0)yQ] f (x)g(y)dxdy

+
∫ 1

0

∫ ∞

yQ
(p− c− w0)yQ f (x)g(y)dxdy.

(4)

The newsvendor’s objective is to choose an order quantity Q that maximizes the expected utility
E[U(π(Q, X, Y))]. Note that Liu et al. [33] studied a similar problem wherein the reference point was
zero, and we extend their model to the non-zero case.

4. Optimal Policy and Analysis

The loss-averse newsvendor’s optimal ordering policy when considering random yield and
reference dependence is as follows.

Proposition 1. The newsvendor’s expected utility E[U(π(Q, X, Y))] is concave in Q, and there exists a unique
optimal order quantity Q∗ that satisfies

(λ− 1)(c− s + w0)
∫ 1

0 yF
(

c−s+w0
p−s yQ∗

)
g(y)dy + (p− s)

∫ 1
0 yF(yQ∗)g(y)dy = (p− c− w0)µ. (5)

Proof. It follows from (4) that the first-order and second-order partial derivatives of E[U(π(Q, X, Y))]
with respect to Q are

∂E[U(π(Q, X, Y))]
∂Q

=− (λ− 1)(c− s + w0)
∫ 1

0
yF
(

c− s + w0

p− s
yQ
)

g(y)dy

− (p− s)
∫ 1

0
yF(yQ)g(y)dy + (p− c− w0)µ,

(6)

and

∂2E[U(π(Q, X, Y))]
∂Q2 =− (λ− 1)(c− s + w0)

2

p− s

∫ 1

0
y2 f

(
c− s + w0

p− s
yQ
)

g(y)dy

− (p− s)
∫ 1

0
y2 f (yQ)g(y)dy < 0,

(7)
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respectively. Thus E[U(π(Q, X, Y))] is concave. Since ∂E[U(π(Q,X,Y))]
∂Q

∣∣∣
Q=0

= (p− c− w0)µ ≥ 0 and

∂E[U(π(Q,X,Y))]
∂Q

∣∣∣
Q→∞

= −λ(c − s + w0)µ ≤ 0, setting (6) equal to 0 gives a unique optimal order

quantity Q∗; that is, Q∗ satisfies (5).

This proposition shows that the newsvendor’s optimal order quantity significantly depends on
loss aversion level, reference point, random demand and yield. Next we discuss the effects of those
factors on it in detail.

4.1. The Effect of Loss Aversion

The following proposition characterizes how the optimal solution and expected utility change
when loss aversion level increases.

Proposition 2. For any given w0, the newsvendor’s optimal order quantity Q∗ and expected utility
E[U(π(Q∗, X, Y))] are decreasing in λ.

Proof. Let

M(Q∗) =(λ− 1)(c− s + w0)
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗

)
g(y)dy

+ (p− s)
∫ 1

0
yF(yQ∗)g(y)dy− (p− c− w0)µ.

(8)

Its partial derivatives with respect to Q∗ and λ are

∂M(Q∗)
∂Q∗ = (λ−1)(c−s+w0)

2

p−s
∫ 1

0 y2 f
(

c−s+w0
p−s yQ∗

)
g(y)dy + (p− s)

∫ 1
0 y2 f (yQ∗)g(y)dy > 0, (9)

and
∂M(Q∗)

∂λ
= (c− s + w0)

∫ 1

0
yF
(

c− s + w0

p− s
yQ∗

)
g(y)dy > 0. (10)

Applying the implicit function theorem to M(Q∗) = 0 yields

dQ∗

dλ
= −∂M(Q∗)

∂λ

/
∂M(Q∗)

∂Q∗
< 0, (11)

thus Q∗ is decreasing in λ.
When the order quantity is Q∗, it follows from (4) that

dE[U(π(Q∗, X, Y))]
dλ

=
∂E[U(π(Q∗, X, Y))]

∂λ
+

∂E[U(π(Q∗, X, Y))]
∂Q∗

· dQ∗

dλ

=
∫ 1

0

∫ c−s+w0
p−s yQ∗

0
[(p− s)x− (c− s + w0)yQ∗] f (x)g(y)dxdy ≤ 0,

(12)

which implies that E[U(π(Q∗, X, Y))] is decreasing in λ.

This proposition shows that compared with risk neutrality (λ = 1), loss-averse preferences (λ > 1)
drive the order quantity and expected utility down. The more loss-averse the newsvendor is, the less
his order quantity is, which we refer to as the loss aversion effect. When loss aversion level increases, the
newsvendor is more averse to losses. Then he will select a smaller order quantity to avoid the potential
losses that come from the possible excess order. Note that the loss aversion effect is consistent with
that found in many inventory models based on loss aversion (e.g., [13,14,17]).
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4.2. The Effect of a Reference Point

We next study the effects of a reference point on the optimal solution and expected utility.

Proposition 3. For any given λ, the newsvendor’s optimal order quantity Q∗ and expected utility
E[U(π(Q∗, X, Y))] are decreasing in w0.

Proof. It follows from (8) that

∂M(Q∗)
∂w0

=(λ− 1)
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗

)
g(y)dy +

(λ− 1)(c− s + w0)Q∗

p− s∫ 1

0
y2 f

(
c− s + w0

p− s
yQ∗

)
g(y)dy + µ > 0.

(13)

Applying the implicit function theorem to M(Q∗) = 0 and combining with (9) yields

dQ∗

dw0
= −∂M(Q∗)

∂w0

/
∂M(Q∗)

∂Q∗
< 0; (14)

thus, Q∗ is decreasing in w0.
When the order quantity is Q∗, we have

dE[U(π(Q∗, X, Y))]
dw0

=
∂E[U(π(Q∗, X, Y))]

∂w0
+

∂E[U(π(Q∗, X, Y))]
∂Q∗

· dQ∗

dw0

=− (λ− 1)Q∗
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗

)
g(y)dy− µQ∗ ≤ 0;

(15)

then E[U(π(Q∗, X, Y))] is decreasing in w0.

This proposition states that when the reference point increases, the newsvendor will order less
products and thus his expected utility decreases. When the newsvendor selects a larger reference point,
an outcome is more likely to be perceived as a loss and then ordering less can help hedge against
the potential losses caused by overstocking. Moreover, compared with the zero reference point case,
the effects of positive and negative reference points on the optimal order quantity are significantly
different. More specifically, the newsvendor with positive reference point (w0 > 0) orders less than the
one with zero reference point (w0 = 0), and the larger the reference point is, the less his order quantity
is, which we refer to as the positive reference point effect. However, the newsvendor with a negative
reference point (w0 < 0) orders more than the one with a zero reference point, and the smaller the
reference point is, the larger his order quantity is, which we refer to as the negative reference point effect.
In short, the positive reference point effect induces the newsvendor to order less while the negative
reference point effect induces him to order more.

4.3. Joint Effects of Loss Aversion and Reference Point

As shown in Propositions 2 and 3, when the reference point is positive, both loss aversion and
reference point effects drive inventory down and thus the loss-averse newsvendor orders less than the
risk-neutral one (zero reference point). However, when the reference point is negative, the reference
point effect drives inventory up and may mitigate the loss aversion effect. To see how the loss aversion
and reference point interact, we compare the optimal order quantity of the loss-averse newsvendor Q∗

with that of the risk-neutral one Q∗1 . Note that when λ = 1 and w0 = 0, Q∗ reduces to Q∗1 , and from (5)
we have

(p− s)
∫ 1

0
yF(yQ∗1)g(y)dy = (p− c)µ. (16)
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Let

L(w0) =
∂E[U(π(Q, X, Y))]

∂Q

∣∣∣∣
Q=Q∗1

=− (λ− 1)(c− s + w0)
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗1

)
g(y)dy

− (p− s)
∫ 1

0
yF(yQ∗1)g(y)dy + (p− c− w0)µ.

(17)

Proposition 4. For any given λ, the relation between Q∗ and Q∗1 is as follows:

(i) When 0 ≤ w0 ≤ p− c, then Q∗ ≤ Q∗1 .
(ii) When s− c ≤ w0 < 0, there exists a unique w∗0 ∈ [s− c, 0) that satisfies L(w∗0) = 0. If w0 < w∗0 ,

then Q∗ > Q∗1 ; if w0 = w∗0 , then Q∗ = Q∗1 ; otherwise, Q∗ < Q∗1 .

Proof. When 0 ≤ w0 ≤ p− c, we have mentioned above that Q∗ ≤ Q∗1 due to both positive reference
point and loss aversion effects.

When s− c ≤ w0 < 0, since F is increasing, L(w0) is decreasing in w0 and

L(s− c) = −(p− s)
∫ 1

0
yF(yQ∗1)g(y)dy + (p− s)µ = (p− s)

∫ 1

0
[1− F(yQ∗1)]yg(y)dy > 0. (18)

By combining that with (16), we have

L(0) =− (λ− 1)(c− s)
∫ 1

0
yF
(

c− s
p− s

yQ∗1

)
g(y)dy− (p− s)

∫ 1

0
yF(yQ∗1)g(y)dy + (p− c)µ

=− (λ− 1)(c− s)
∫ 1

0
yF
(

c− s
p− s

yQ∗1

)
g(y)dy < 0.

(19)

Thus there exists a unique w∗0 ∈ [s− c, 0) that satisfies L(w∗0) = 0. If w0 < w∗0 , then L(w0) > 0.
Since E[U(π(Q, X, Y))] is concave and Q∗ is the optimal solution, then Q∗ > Q∗1 . Similarly, if w0 = w∗0 ,
then L(w0) = 0 and Q∗ = Q∗1 ; if w0 > w∗0 , then L(w0) < 0 and Q∗ < Q∗1 .

A loss-averse newsvendor with a zero reference point usually understocks (e.g., [14,34]),
while Proposition 4 shows this does not always hold when the reference point is non-zero.
When 0 ≤ w0 ≤ p− c, the loss-averse newsvendor’s order quantity is less than the risk-neutral
newsvendor’s due to loss aversion and positive reference point effects. However, there exists a
threshold of reference point w∗0 when s − c ≤ w0 < 0. If w0 > w∗0 , then the loss aversion effect
that decreases the order quantity will dominate the negative reference point effect that increases
the order quantity. The loss-averse newsvendor’s order quantity is still less than the risk-neutral
one’s. If w0 = w∗0 , then the loss aversion and reference point effects offset each other and their order
quantities are equal. If w0 < w∗0 , then the negative reference point effect is strong and will dominate the
loss aversion effect. Thus the loss-averse newsvendor’s order quantity is larger than the risk-neutral
one’s. This will never occur in most loss-averse newsvendor problems where reference dependence
is ignored.

4.4. Effect of Random Demand

We now investigate the impact of the change to demand risk on the optimal order quantity
by incorporating first-order stochastic dominance. When the demand distribution changes from
F(x) to H(x), we say F first-order stochastically dominates H if F(x) ≤ H(x) for all x ∈ [0, ∞) [39].
That is, the random demand with distribution F is stochastically larger than that with distribution
H. Let E[UF(π(Q, X, Y))] and E[UH(π(Q, X, Y))] denote the expected utilities when the demand
distributions are F(x) and H(x), respectively. Q∗F and Q∗H are the corresponding optimal order
quantity, respectively. Then the effect of random demand is as follows.
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Proposition 5. If F first-order stochastically dominates H in [0, ∞), then Q∗F ≥ Q∗H .

Proof. Since F(x) ≤ H(x) for any x ∈ [0, ∞), F
(

c−s+w0
p−s yQ

)
≤ H

(
c−s+w0

p−s yQ
)

and F(yQ) ≤ H(yQ).

It follows from (6) that ∂E[UH(π(Q,X,Y))]
∂Q

∣∣∣
Q=Q∗F

≤ ∂E[UF(π(Q,X,Y))]
∂Q

∣∣∣
Q=Q∗F

= 0. Then we have Q∗F ≥ Q∗H
from the concavity of E[UH(π(Q, X, Y))].

This proposition shows under the first-order stochastic dominance condition that the newsvendor
will order more products when the demand is stochastically larger, which is intuitive.

4.5. The Effect of Random Yield

In the previous analysis, we assumed the yield was random. However, it is interesting to
investigate the effect of random yield on the optimal decision. To do this, similarly to (4), the loss-averse
newsvendor’s expected utility in the case of deterministic yield is

E[U(π(Q, X))] =(λ− 1)
∫ c−s+w0

p−s Q

0
[(p− s)x− (c− s + w0)Q] f (x)dx

+
∫ Q

0
[(p− s)x− (c− s + w0)Q] f (x)dx +

∫ ∞

Q
(p− c− w0)Q f (x)dx.

(20)

It is easy to prove that E[U(π(Q, X))] is concave and then the optimal order quantity Q∗2 satisfies
the first-order condition, that is,

(λ− 1)(c− s + w0)F
(

c− s + w0

p− s
Q∗2

)
+ (p− s)F(Q∗2) = p− c− w0. (21)

Proposition 6. For any given λ and w0, the newsvendor’s optimal order quantity under random yield is larger
than that under deterministic yield; i.e., Q∗ ≥ Q∗2 .

Proof. Plugging Q∗2 into (6) and combining with (21), we have

∂E[U(π(Q, X, Y))]
∂Q

∣∣∣∣
Q=Q∗2

=− (λ− 1)(c− s + w0)
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗2

)
g(y)dy

− (p− s)
∫ 1

0
yF(yQ∗2)g(y)dy + (p− c− w0)µ

=(λ− 1)(c− s + w0)
∫ 1

0
y
[

F
(

c− s + w0

p− s
Q∗2

)
− F

(
c− s + w0

p− s
yQ∗2

)]
g(y)dy + (p− s)

∫ 1

0
y[F(Q∗2)− F(yQ∗2)]g(y)dy ≥ 0.

(22)

Since E[U(π(Q, X, Y))] is concave and Q∗ is the optimal solution, Q∗ ≥ Q∗2 .

This proposition implies that compared with the case of deterministic yield, yield uncertainty
induces the newsvendor to order more products, which is consistent with our common sense and
referred to as the random yield effect. When the yield is random, the available quantity the newsvendor
actually receives is less than that he orders; thus, the newsvendor will order more products to hedge
against the supply risk.

4.6. Joint Effects of Loss Aversion, Reference Point and Random Yield

Propositions 2, 3 and 6 show that random yield effect leads to an increase in the order quantity,
whereas loss aversion and positive reference point effects lead to an decrease in the order quantity and
may mitigate the inventory overstocking caused by yield uncertainty. To further investigate the joint
effects of loss aversion, reference point and random yield on the order quantity, we next compare the
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optimal order quantity Q∗ with the classical newsvendor solution Q∗3 . When λ = 1 and w0 = 0 in (21),
Q∗2 reduces to Q∗3 and satisfies

(p− s)F(Q∗3) = p− c. (23)

To facilitate the analysis, let

R(w0) =
∂E[U(π(Q, X, Y))]

∂Q

∣∣∣∣
Q=Q∗3

= −(λ− 1)(c− s + w0)
∫ 1

0
yF
(

c− s + w0

p− s
yQ∗3

)
g(y)dy

− (p− s)
∫ 1

0
yF(yQ∗3)g(y)dy + (p− c− w0)µ.

(24)

and

λ0 = 1 +
(p− s)

∫ 1
0 y[F(Q∗3)− F(yQ∗3)]g(y)dy

(c− s)
∫ 1

0 yF
(

c−s
p−s yQ∗3

)
g(y)dy

. (25)

Proposition 7. The relation between Q∗ and Q∗3 is as follows:

(i) When λ ≤ λ0, there exists a unique w∗∗0 ∈ [0, p− c] that satisfies R(w∗∗0 ) = 0. If w0 < w∗∗0 , then
Q∗ > Q∗3 ; if w0 = w∗∗0 , then Q∗ = Q∗3 ; otherwise, Q∗ < Q∗3 .

(ii) When λ > λ0, there exists a unique w∗∗0 ∈ [s− c, 0) that satisfies R(w∗∗0 ) = 0. If w0 < w∗∗0 , then
Q∗ > Q∗3 ; if w0 = w∗∗0 , then Q∗ = Q∗3 ; otherwise, Q∗ < Q∗3 .

Proof. It follows from (24) that R(w0) is decreasing in w0, and we have

R(s− c) = −(p− s)
∫ 1

0
yF(yQ∗3)g(y)dy + (p− s)µ = (p− s)

∫ 1

0
y[1− F(yQ∗3)]g(y)dy > 0, (26)

and

R(p− c) = −λ(p− s)
∫ 1

0
yF (yQ∗3) g(y)dy < 0. (27)

Moreover, combining with (23) yields

R(0) =− (λ− 1)(c− s)
∫ 1

0
yF
(

c− s
p− s

yQ∗3

)
g(y)dy− (p− s)

∫ 1

0
yF(yQ∗3)g(y)dy + (p− c)µ

=− (λ− 1)(c− s)
∫ 1

0
yF
(

c− s
p− s

yQ∗3

)
g(y)dy + (p− s)

∫ 1

0
y[F(Q∗3)− F(yQ∗3)]g(y)dy.

(28)

When λ ≤ λ0, then R(0) ≥ 0. Thus there exists a unique w∗∗0 ∈ [0, p− c] that satisfies R(w∗∗0 ) = 0.
If w0 < w∗∗0 , then R(w0) > 0. Since E[U(π(Q, X, Y))] is concave and Q∗ is the optimal solution, then
Q∗ > Q∗3 . Similarly, if w0 = w∗∗0 , then R(w0) = 0 and Q∗ = Q∗3 ; if w0 > w∗∗0 , then R(w0) < 0 and
Q∗ < Q∗3 .

When λ > λ0, then R(0) < 0 and there exists a unique w∗∗0 ∈ [s− c, 0) that satisfies R(w∗∗0 ) = 0.
Thus part (ii) can be proved in a similar way.

This proposition shows whether yield uncertainty leads to inventory overstocking depends
on loss aversion level and reference point. It provides the sufficient condition under which the
loss-averse newsvendor may order more than, equal to or less than the classical one (see Table 2).
When loss aversion level is small (less than λ0), there exists a positive threshold of reference point
w∗∗0 , above which both the loss aversion and positive reference point effects that decrease the order
quantity will dominate the random yield effect that increases the order quantity. Then compared with
the classical one, the loss-averse newsvendor will order less products. If w0 is equal to w∗∗0 , then they
will order the same quantity. However, if w0 belongs to [0, w∗∗0 ), the random yield effect is strong
and will dominate the loss aversion and positive reference point effects. In addition, if w0 belongs to
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[s− c, 0), the random yield and negative reference point effects will dominate the loss aversion effect.
Therefore, in these two cases, that is, when w0 ∈ [s− c, w∗∗0 ), the loss-averse newsvendor will order
more products. On the other hand, when loss aversion level is large (larger than λ0), there exists a
negative threshold of reference point, below which both the random yield and negative reference point
effects that increase the order quantity are strong and will dominate the loss aversion effect. Then the
loss-averse newsvendor’s order quantity is larger than the classical one’s. Otherwise, the loss-averse
newsvendor’s order quantity is less than or equal to the classical one’s.

Table 2. Relation between Q∗ and Q∗3 .

λ ≤ λ0 λ > λ0
w0 [s − c, 0) [0, w∗∗

0 ) w∗∗
0 (w∗∗

0 , p − c] [s − c, w∗∗
0 ) w∗∗

0 (w∗∗
0 , 0] [0, p − c]

Joint effects R + N > L R > L + P L + P = R L + P > R R + N > L R + N = L L > R + N L + P > R
Relation Q∗ > Q∗3 Q∗ > Q∗3 Q∗ = Q∗3 Q∗ < Q∗3 Q∗ > Q∗3 Q∗ = Q∗3 Q∗ < Q∗3 Q∗ < Q∗3
R = random yield effect; N = negative reference point effect; P = positive reference point effect; L = loss aversion effect.
The abbreviation “R + N > L” denotes “random yield and negative reference point effects dominate loss aversion effect”,
and other abbreviations in this row are explicated similarly.

5. Numerical Experiments

In this section, we carry out numerical experiments to illustrate the newsvendor’s order decisions
when loss aversion level and reference point change. Then the joint effects of loss aversion, reference
dependence and random yield on the optimal order quantity are investigated. Let p = 3, c = 2 and
s = 1. The demand X follows a truncated normal distribution with mean 100 and standard deviation
50, and the yield rate Y follows a uniform distribution with support [0, 1]. We conduct two sets of
numerical experiments. In the first set, to illustrate the effects of loss aversion and reference point,
we vary w0 from s− c = −1 to p− c = 1 in steps of 0.05, and three different loss aversion levels are
considered: λ = 2, λ = 5 and λ = 8. In the second set, to illustrate the joint effects of three factors, we
vary w0 from s− c = −1 to p− c = 1 in the cases of random and deterministic yields, respectively,
and two different loss aversion levels are considered: λ = 2 and λ = 8.

Figure 2 shows the optimal order quantity with respect to the reference point under different loss
aversion levels. Note that when w0 = s− c, the newsvendor will always perceive gains and order more
products; thus the optimal order quantity is ∞. On the other hand, when w0 = p− c, the newsvendor
will always perceive losses and it is better for him to order no products; thus, the optimal order
quantity is 0. Thus, the curves become steeper when w0 approaches its minimum s− c or maximum
p− c. For any given loss aversion level, the optimal order quantity decreases when the reference
point increases. Moreover, for any given reference point, the optimal order quantity is decreasing in
loss aversion level. That is, the larger the reference point (loss aversion level) is, the less the order
quantity is, which confirms that both loss aversion and reference dependence have a significant
impact on the order decisions. Those facts are in accordance with Propositions 2 and 3, and can be
explained by the fact that ordering less helps hedge against the potential losses come from the possible
excess order. Further, it is easy to calculate the risk-neutral newsvendor’s optimal order quantity
is Q∗1 = 150.5. This figure also illustrates when λ = 2, there exists a threshold of reference point
w∗0 = −0.1. Compared with loss aversion effect, the negative reference point effect is strong and will
dominate it when w0 < w∗0 , and thus Q∗ > Q∗1 . Otherwise, we have Q∗ ≤ Q∗1 . Similarly, in the case of
λ = 5 and λ = 8, the thresholds are −0.25 and −0.35, respectively. These results are consistent with
Proposition 4.
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Figure 2. Optimal order quantity vs. reference point for different loss aversion levels.

Figure 3 illustrates the optimal order quantity with respect to the reference point under random
and deterministic yields. As we can see, the order quantity decreases when the reference point
increases, no matter whether yield is deterministic or random. For any given reference point and loss
aversion level, the order quantity under random yield is larger than that under deterministic yield,
which implies the yield uncertainty makes the newsvendor order more products. This is intuitive
since the newsvendor will enhance the order quantity to hedge against it. It is also apparent that their
difference is smaller when the reference point becomes larger, which indicates the random yield has
a less significant effect. Moreover, the classical newsvendor’s optimal order quantity is Q∗3 = 101.4.
This figure also shows that when yield is random and λ is small (λ = 2), there exists a positive threshold
of reference point w∗∗0 = 0.3, above which the loss aversion and positive reference point effects will
dominate the random yield effect and then Q∗ < Q∗3 . Otherwise, we have Q∗ ≥ Q∗3 . On the other hand,
when λ is large (λ = 8), there exists a negative threshold of reference point w∗∗0 = −0.05, below which
the negative reference point and random yield effects will dominate the loss aversion effect and
Q∗ > Q∗3 . Otherwise, we have Q∗ ≤ Q∗3 . These results are in accordance with Propositions 6 and 7.
Note that although we restrict our consideration of truncated normal demand and uniform yield rate
in the experiments, our results based on Propositions 2–4, 6 and 7 are independent of their distributions
and parameter values. −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 10100200300400500 Reference Point w0Optimal Order Quantity Q* λ=2, random yield

λ=8, random yield
λ=2, deterministic yield
λ=8, deterministic yield101.4 . w0**=0.3.w0**=−0.05

Figure 3. Optimal order quantity vs. reference point under random and deterministic yields.
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6. Conclusions

In this paper, we investigate a loss-averse newsvendor problem with reference dependence
where the yield rate is random. The newsvendor’s ordering policy is first derived. It is shown that
the optimal order quantity and expected utility are decreasing in loss aversion level and reference
point, respectively. Then we examine the interaction effects of loss aversion and reference point on
the optimal order quantity. There exists a negative threshold of reference point, above which the
loss-averse newsvendor’s order quantity is always less than the risk-neutral newsvendor’s. However,
if the reference point is less than this threshold, then the negative reference point effect that increases
the order quantity will dominate the loss aversion effect that decreases the order quantity, and the
loss-averse newsvendor’s order quantity is larger. Then we analyze the impact of random demand on
the optimal order quantity by incorporating first-order stochastic dominance. The newsvendor will
order more products when the demand is stochastically larger. Further, we also find that compared
with the case of deterministic yield, yield uncertainty induces the newsvendor to order more products.
Then the overall effects of loss aversion, reference dependence and random yield are discussed.
When the loss aversion level is small, there exists a positive threshold of reference point, above which
both the loss aversion and positive reference point effects that decrease the order quantity will dominate
the random yield effect that increases the order quantity. Then the loss-averse newsvendor will order
less products than the classical one. Otherwise, he will order more. On the other hand, when loss
aversion level is large, there exists a negative threshold of reference point, below which both the
random yield and negative reference point effects will dominate the loss aversion effect, then the
loss-averse newsvendor will order more products. Otherwise, he will order less. Thus, in contrast
to Ma et al. [14] and Liu et al. [33], who studied the loss-averse newsvendor problem with random
yield and zero reference point, our results indicate that reference dependence has a great impact on the
newsvendor’s decisions.

We only consider a single-period inventory problem. In the multi-period case, the reference
point may change in different periods and affect the reorder point and optimal order quantity.
How to determine the optimal ordering policy in each period will be a direction for future research.
Furthermore, shortage cost was ignored to facilitate the analysis. When considering shortage cost,
the reference point depends on the maximum demand, so the complexity of analysis is increased
largely. Besides, as the loss aversion level increases, the newsvendor will order more products if
the effect of stockout on profit dominates that of overstock. Thus, the joint effects of loss aversion,
reference point and random yield may be significantly different from those in our paper. The model
incorporating shortage cost deserves further study. Finally, our study is based on the assumption that
the random demand and yield rate are independent. Another future research direction would be to
consider their dependence and investigate how this would impact the whole analysis performed in
this work.
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