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Abstract: In this work, the generalized photo-thermo-elastic model with variable thermal conductivity
is presented to estimates the variations of temperature, the carrier density, the stress and the
displacement in a semiconductor material. The effects of variable thermal conductivity under
photo-thermal transport process is investigated by using the coupled model of thermoelastic and
plasma wave. The surface of medium is loaded by uniform unit step temperature. Easily, the analytical
solutions in the domain of Laplace are obtained. By using Laplace transforms with the eigenvalue
scheme, the fields studied are obtained analytically and presented graphically.

Keywords: variable thermal conductivity; semiconductor medium; Laplace transforms; eigenvalues
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1. Introduction

The theory of bodies explains the properties of the inner structure of some materials when the
second law of thermodynamics is used. The conduction of thermal energy in thermo-elastic materials
with internal structures is investigated. The laws of the balance of a continuum medium are used
from the first moment (heat flux) the heat energy equations with microstructure when are added to
the governing equation. With the development of semiconductor integrated circuit technologies and
solid-state sensor technologies, MEMS has been widely used in many fields; it has the characteristics of
small volume, lightweight and low energy consumption.

To understand the internal structural properties of elastic media—especially in semiconductor
media—the electrical properties of these media must be investigated in such a way that considers
of their mechanical-thermal properties. The importance of semiconducting materials is due to their
recent uses in many beneficial applications—especially in modern technologies based on new energy
alternatives. Many of these applications depend on studying the effects of the fall of the sunlight or a
beam of laser on the outer surface of the semiconducting material, without taking into account the
internal structure of the medium.

Semiconductor materials have only been studied as elastic materials without taking into
consideration the influence of light beams on them. However, semiconducting materials are considered
nanomaterials in modern technology that have many uses, e.g., industrial photovoltaic solar cells.
Electronic and elastic deformations occur when a laser beam strikes the surface of a semiconductor
medium. In this case, some surface electrons will be excited and photo-excited free carriers will be
generated. In modern technology, the relationship between the uses of photothermal (PT) theory
and semiconductors is close. Many scientists have used the PT theory to obtain the values of the
temperature. The thermal diffusion of nanocomposite semiconductor materials has also been measured.

Todorovic [1,2] studied thermoelastic and plasma waves in a semiconductor materials. Ailawalia
and Kumar [3] investigated the photo-thermo-elastic interactions in semiconducting media caused by
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the ramp-type heating. Lotfy et al. [4] studied Thomson and electromagnetic effects under photothermal
transport process in semiconducting media. Lotfy et al. [5] studied the responses of electromagnetic
and Thomson impacts of semiconductor media due to laser pulses during photo-thermal excitations.
Lotfy et al. [6] used fractional-order magnetophotothermal models to study the influences of variable
thermal conductivity of a semiconductor medium with cavity. Hobiny and Abbas [7] investigated the
photo-thermal interactions in a two-dimensional semiconducting half-spaces under the Green–Naghdi
model. Othman and Marin [8] studied using the Green–Naghdi model to investigate the effects of
thermal load due to laser pulse on thermo-elastic porous media. Alzahrani and Abbas [9] studied the
photo-thermoelastic interaction in a two-dimensional semiconductor media without energy dissipations.
Jahangir et al. [10] studied photo-thermoelastic interactions in a semiconductor media with two thermal
relaxation times. Mondal and Sur [11] investigated the propagations of the photo-thermo-elastic
waves in an orthotropic semiconductor media with a spherical hole and memory response. Several
authors [12–25] have presented solutions to many problems by using generalized thermoelastic models.

The purpose of this paper is to study the effects of the variability of thermal conductive in a
semiconductor material using the eigenvalues approach. By using the eigenvalue scheme and Laplace
transforms based on analytic-numeric approaches, the basic equations are derived. The numeric results
of the main physical fields in different cases is studied and shown graphically and discussed.

2. Mathematical Model

The basic equations in the context of photothermal model for a homogeneous and isotropic
semiconducting material in the absences of body force and thermal sources are given as in [26–28]:

The equations of motion:

µui, j j + (λ+ µ)u j,i j − γnN,i − γtT,i = ρ
∂2ui

∂t2 (1)

The coupling between plasma and thermoelastic waves can be given by:

DeN, j j −
N
τ
+

k
τ

T −
∂N
∂t

= 0.0 (2)

The equation of heat conduction:

(
KT, j

)
j
+

Eg

τ
N − ρce

∂T
∂t
− γtTo

∂u j, j

∂t
= 0.0, (3)

The stress–strain relations:

σi j =
(
λuk,k − γnN − γtT

)
δi j + µ

(
ui, j + u j,i

)
(4)

where ρ is the density of material, N = n−no, no is the carrier concentration at equilibrium, i, j, k = 1, 2, 3,
τ is the lifetime of photo-generated carrier, T = T∗ − To, T∗ is the variations of temperature, ui are
the displacement components, To is the reference temperature, k = ∂no

∂T is the coupling parameter of
thermal activation [27], σi j are the components of stresses, γt = (3λ+ 2µ)αt and αt is the linear thermal
expansion coefficients, De is the carrier diffusion coefficient, t is the time, γn = (3λ+ 2µ)dn, dn is the
electronic deformation coefficient, λ,µ are the Lame’s constants, ce is the heat specific at constant strain
and K is the thermal conductivity, which is considered to be temperature-dependent. We will consider
the thermal conductivity has the following linear form [29]

K(T) = Ko(1 + K1T) (5)

where K1 is a non-positive small parameter and Ko is the thermal conductivity at the initial temperature
To. The following mapping [29] can be used
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φ =
1

Ko

∫ T

0
K(T)dT (6)

where the new function φ expressing the heat conduction. Substituting from Equation (5) into
Equation (6) and integrating, we can obtain [29]

φ = T +
1
2

K1T2, (7)

From Equations (6) and (7), we can deduce the following

Koφ,i = K(T)T,i, , (8)

Koφ,ii = (K(T)T,i),i, , (9)

Ko
∂φ

∂t
= K(T)

∂T
∂t

, , (10)

Thus, the basic Equations (1)–(4) can be rewritten in the form:

µui, j j + (λ+ µ)u j,i j − γnN,i − γtφ,i = ρ
∂2ui

∂t2 , (11)

DeN, j j −
N
τ
+

k
τ
φ =

∂N
∂t

, (12)

Koφ, j j +
Eg

τ
N = ρce

∂φ

∂t
+ γtTo

∂u j, j

∂t
, (13)

σi j = µ
(
ui, j + u j,i

)
+

(
λuk,k − γnN −

γt

K1

(
−1 +

√
1 + 2K1φ

))
δi j, (14)

Let us consider a homogeneous, isotropic infinite semiconductor material, whose states can be
written in terms of the time t and the space variable x, therefore the Equations (11)–(14) are expressed by:

(λ+ 2µ)
∂2u
∂x2 − γn

∂N
∂x
− γt

∂φ

∂x
= ρ

∂2u
∂t2 , (15)

De
∂2N
∂x2 −

N
τ
+

k
τ
φ =

∂N
∂t

, (16)

Ko
∂2φ

∂x2 +
Eg

τ
N = ρce

∂φ

∂t
+ γtTo

∂2u
∂t∂x

, (17)

σxx = (λ+ 2µ)
∂u
∂x
− γnN −

γt

K1

(
−1 +

√
1 + 2K1φ

)
, (18)

3. Application

We shall also assume that the initial state of the medium is quiescent and are completed by
consider the boundary conditions at x = 0 as

u(0, t) = 0, (19)

The surface x = 0.0 is due to the with thermal shock varying heat:

T(0, t) = T1H(t), (20)

From Equation (7), then boundary condition (20) is expressed by
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φ(0, t) = T1H(t) +
1
2

K1(T1H(t))2, (21)

where H(t) is the Heaviside unit function and T1 is a constant temperature. The carrier density
boundary condition are difined by

De
∂N(x, t)
∂x

∣∣∣∣∣∣
x=0

= soN(0, t) , (22)

where so is the velocity of recombination on the surface. Now, for conveniences, the nondimensional
physical variables are given by

φ∗ =
φ

To
, N∗ =

N
no

, K∗1 = ToK1, σ∗xx =
σxx

λ+ 2µ
, (x∗, u∗) = ηc(x, u), (t∗, τ∗) = ηc2(t, τ), (23)

where c2 =
λ+2µ
ρ and η = ρce

K .
By using the parameters of dimensionless (23), rewrite the basic equations with neglecting the

primes one obtains:
∂2u
∂t2 =

∂2u
∂x2 − x1

∂N
∂x
− x2

∂φ

∂x
, (24)

x3
∂N
∂t

=
∂2N
∂x2 −

x3

τ
N +

β

τ
φ, (25)

∂φ

∂t
=
∂2ϕ

∂x2 +
x4

τ
N − x5

∂2u
∂t∂x

, (26)

σxx =
∂u
∂x
− x1N − x2

(
−1 +

√
1 + 2K1φ

)
, (27)

(0, t) = 0,
∂N(x, t)
∂x

∣∣∣∣∣∣
x=0

= x6N(0, t), φ(0, t) = T1H(t) +
1
2

K1(T1H(t))2, (28)

where x1 =
noγn
λ+2µ , x2 =

Toγt
λ+2µ , x3 = 1

ηDe
, β = kTo

noη2c2De
, x4 =

noEg
ρceTo

, x5 =
γt
ρce

and x6 = so
ηcDe

.

For f (x, t) function Laplace transforms was written as

f (x, p) = L[ f (x, t)] =
∫
∞

0
f (x, t)e−ptdt, p > 0, (29)

where p is the Laplace transforms parameters. Hence, the basic equations can be rewritten by forms
as follow

d2u
dx2 = p2u + x1

dN
dx

+ x2
dφ
dx

, (30)

d2N
dx2 = x3

(
p +

1
τ

)
N −

β

τ
φ, (31)

d2φ

dx2 = pφ−
x4

τ
N + x5p

du
dx

, (32)

σxx =
du
dx
− x1N − x2

(
−1 +

√
1 + 2K1φ

)
, (33)

u(0, t) = 0,
dN(x, t)

dx

∣∣∣∣∣∣
x=0

= x6N(0, t), φ(0, t) =
T1

p

(
1 +

1
2p

T1K1

)
, (34)
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We will now get the solutions of coupled differential system (30)–(32) with the boundary conditions
(34) by using the eigenvalues method proposed [30–35]. From Equations (30)–(32), the matrices–vectors
can be given by

dV
dx

= AV, (35)

where V =
[

u N φ du
dx

dN
dx

dφ
dx

]T
and A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

a41 0 0 0 a45 a46

0 a52 a53 0 0 0
0 a62 a63 a64 0 0


, with

a41 = p2, a45 = x1, a46 = x2, a52 = x3

(
p +

1
τ

)
, a53 = −

β

τ
, a62 = −

x4

τ
, a63 = p, a64 = px5

Thus, the characteristic equation of matrix A are presented by:

ξ6
− r3ξ

4 + r2ξ
2 + r1 = 0, (36)

where:
r1 = a62a53a41 − a41a63a52

r2 = a46a52a64 + a41a52 − a45a53a64 + a41a63 − a53a62 + a52a63

r3 = a46a64 + a52 + a41 + a63

The matrix eigenvalue of A are the six roots of Equation (36) which define by the forms
±ξ1, ±ξ2, ±ξ3. Thus, the eigenvectors Y are computed as:

Y1 = a46
(
a52 − ξ2

)
ξ− ξa53a45, Y2 =

(
a41 − ξ2

)
a53

Y3 = −
(
a41 − ξ2

)(
a52 − ξ2

)
, Y4 = ξY1 , Y5 = ξY2 , Y6 = ξY3

(37)

The solutions of Equation (35) have the following from:

V(x, p) =
∑3

i=1

(
BiYie−ξix + Bi+1Yi+1eξix

)
, (38)

Due to the regularity condition of the solution, the increasing exponential nature with the variable
x has been eliminated to infinity, so the general solutions (34) can be presented as:

V(x, p) =
∑3

i=1
BiYie−ξix, (39)

where B1, B2 and B3 are constants which can be determined by using the boundary conditions of the
problem. Thus, the general solutions of physical quantities can be taken the forms:

u(x, p) =
∑3

i=1
BiUie−ξix, (40)

N(x, p) =
∑3

i=1
BiNie−ξix, (41)

ϕ(x, p) =
∑3

i=1
BiTie−ξix, (42)

The numeric inversions scheme adopted the general solutions of the carrier density,
the displacement, the temperature and the stress distribution. The Stehfest method [36] was taken
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as a numeric inversions scheme. In this method, the Laplace transforms inverses for f (x, p) are
approximated as:

f (x, t) =
ln(2)

t

∑N

n=1
Vn f

(
x, n

ln(2)
t

)
, (43)

where:

Vn = (−1)(
N
2 +1)

min(n, N
2 )∑

p= n+1
2

(2p)!p(
N
2 +1)

p!(n− p)!
(

N
2 − p

)
!(2n− 1)!

where N is the term numbers.

4. Numeric Results and Discussion

For numeric computations, silicon medium was selection for purposes of numeric estimation.
The parameters values for silicon (Si) medium are given by [37]:

dn = −9× 10−31(m3), λ = 3.64× 1010(N)(m−2), µ = 5.46× 1010(N)(m−2), To = 300(k)

ce = 695(J)(kg−1)(k−1), ρ = 2330(kg)(m−3), Eg = 1.11 (eV), αt = 3× 10−6(k−1)

so = 2 (m)(s−1), no = 1020(m−3), τ = 5× 10−5(s), De = 2.5× 10−3(m2)(s−1), T1 = 1

The numeric computations are carried out for the time t = 1.5. Based on the above values
of parameters, the values of physical quantities (numeral) with respect to the distances x with the
coupled theory of plasma and thermoelastic wave are presented in Figures 1–5. The variations of
carrier density, the variations of temperature, the variations of displacement and the variation of
stress along the distances x in the context of the coupled photo-thermo-elastic model are computed
numerically. Figure 1 shows the variations of temperature versus x. It is observed that the temperature
has maximum values (T1 = 1) which satisfy the problem boundary conditions when x = 0 after that it
gradually reduces with the rising of the distance x until it reached to zero. Otherwise, Figure 2 exhibits
the variations of the heat conduction along the distance x. Figure 3 displays the variation of carrier
density with respect to the distance x. It is observed that it begins with its ultimate value at the surface
x = 0 then it gradually reduces with the rising of the distances x until it close to zeros. Figure 4 depicts
the variation of displacement along the distance x. It is clear that the displacement begin from zero
which satisfy boundary conditions of the problem when x = 0 then it is rising gradually up to peak
values then reduces to zero. Figure 5 demonstrates the variations of stress versus the distance x. It is
observed that it attains maxmum negative value after that it increases gradually to zeros.

Finally, in the compressions between the solutions, it can be concluded that considering the
coupling photo-thermoelastic models with variable thermal conductivity is significant phenomenon
and have important effects on the distributions of the studding fields.
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5. Conclusions

In the present work, I study the effects of variable thermal conductivity in semiconductor materials
photogenerated by a focused thermal shock. The resulting nondimensional equations were solved
employing the Laplace transforms techniques and were solved using the eigenvalues approach.
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The significant effects of the variable thermal conductivity are discussed for all physical quantities.
The results carried out in this work can be used to design various semiconductor elements to meet
special engineering requirements.
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