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Abstract: The theory of point vortices is used to explain the interaction of a surface vortex with 
subsurface vortices in the framework of a three-layer quasigeostrophic model. Theory and 
numerical experiments are used to calculate the interaction between one surface and one subsurface 
vortex. Then, the configuration with one surface vortex and two subsurface vortices of equal and 
opposite vorticities (a subsurface vortex dipole) is considered. Numerical experiments show that 
the self-propelling dipole can either be captured by the surface vortex, move in its vicinity, or finally 
be completely ejected on an unbounded trajectory. Asymmetric dipoles make loop-like motions and 
remain in the vicinity of the surface vortex. This model can help interpret the motions of Lagrangian 
floats at various depths in the ocean. 
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1. Introduction 

The theory of point vortices (vertical vortex lines of finite length) in a flat liquid layer, going back 
to the pioneering works of Helmholtz, Kirchhoff, Gröbli, and Thomson (Lord Kelvin) [1–5], arose to 
a large extent from the need to explain the properties of vortex movements in the atmosphere and 
ocean. Further development of the theory of point vortices is reflected in monographs and reviews 
[6–16]. The classical concept of point vortices was used in problems of meteorology [17–23] and 
oceanography in [24–30]. Gryanik first generalized the theory of two-dimensional vortices to the case 
of a two-layer [31] and then to an N-layer rotating fluid [32]. These works found their application in 
numerous problems of geophysical content [33–63]. 

In this paper, we use a quasigeostrophic model to study the features of the interaction between 
one vortex of the upper layer and one/two vortices of the middle layer of a three-layer rotating fluid. 
The vortex of the upper layer is a prototype of a surface ocean vortex (many such vortices occupy the 
upper 500–600 m of 4000 m deep oceans). The vortices of the middle layer represent intrathermocline 
lens vortices, observed in all oceans, but especially common in the Northeastern Atlantic at depths of 
600–1600 m [64,65]. Note that for the first time the idea of modeling intrathermocline lenses with 
point vortices of the intermediate layer was proposed by Hogg and Stommel in [37]. The lower layer 
will contain no vortex and will correspond to the deep ocean. 

In [66,67], the SEMANE and MEDTOP cruise data were analyzed to study the interactions of 
intrathermocline vortices with a cyclonic surface vortex; however, due to intermittent data collection 
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at sea, only a few snapshots of these interactions were obtained. This circumstance is the motivation 
for the present work. In this first part, we restrict ourselves to the motion of point vortices. In the 
second part of the article, the dynamics of vortex patches will be considered. 

After presenting the model equations and the numerical method (Section 2), in Section 3 we will 
study the different cases of interaction of a surface vortex with the deeper vortex/vortices. Finally, in 
Section 4, a discussion and conclusion are provided. 

2. Three-Layer Model 

We use a three-layer quasigeostrophic model with the following parameters characteristic of the 
North Atlantic Ocean Basin and water stratification: the total depth is 4 km, and the thicknesses of 
the upper, middle, and lower layers are H1 = 600 m, H2 = 1000 m, and H3 = 2400 m, respectively. So, 
dimensionless thicknesses of these layers are 0.15, 0.25, and 0.6, respectively. The first and second 
deformation radii calculated from the average density stratification correspond to the horizontal scale 
where the Coriolis and buoyancy effects are similar in magnitude. These deformation radii are as 
follows: Rd1 = 32 km and Rd2 = 15 km [67]. 

A dynamical system modeling the evolution of an arbitrary number of vortices with intensities 𝜅 , where 𝑚 = 1, 2, 3 is the layer number and 𝑛 = 1, 2, … , 𝑁  is the number of vortices in the nth layer, 
has the Hamiltonian [36,42] 

ℋ = − 14𝜋 𝑞 𝑠 𝜅,
,  

𝜅 ln 𝑟 +   K 𝛾 𝑟   (1) 

with canonical variables 𝑔 = 𝑥  and 𝑝 = 𝜅 𝑦 2.⁄  Here, K  is a modified Bessel function of zero 
order; 𝛾 , 𝛾  are the parameters inversely proportional to the first and second deformation radii, 

respectively; 𝑟 = (𝑥 − 𝑥 )  + (𝑦 − 𝑦 )  is the distance between vortices with intensities 𝜅  

and 𝜅 , 𝑞 ; and и 𝑠  are auxiliary 3 × 3 matrix elements: their form is given in the second part of the 
article. 

The Hamiltonian form of the equations of motion is 𝑔 = 𝜕ℋ𝜕𝑝 ≡ 𝐽(𝑔 , ℋ), 𝑝 = − 𝜕ℋ𝜕𝑔 ≡ 𝐽(𝑝 , ℋ), 𝑚 = 1, 2, 3;  𝑛 = 1, 2, … , 𝑁  (2) 

In addition to the Hamiltonian (1), the system has integral invariants: 

𝑃 ; 𝑃 ; 𝑀 = ℎ 𝜅 𝑥 ; 𝑦 ; ((𝑥 )  +  (𝑦 ) ) , (3) 

i.e., the linear impulses 𝑃 , 𝑃  and the angular momentum 𝑀. 
In Cartesian coordinates, the equations of motion of the vortices have the form 

𝑥 = − 12𝜋 ⎣⎢⎢
⎡ 𝑞 𝑠 𝜅 𝑦 − 𝑦𝑟 𝛾 𝑟  K 𝛾 𝑟 − 1   ⎦⎥⎥

⎤
 (4) 

𝑦 =  12𝜋 ⎣⎢⎢
⎡ 𝑞 𝑠 𝜅 𝑥 − 𝑥𝑟 𝛾 𝑟  K 𝛾 𝑟 − 1   ⎦⎥⎥

⎤
 (5) 

3. Numerical Modeling of Vortex Interaction 

In all numerical experiments, which solve Equations (2) and (3), we will assume that one cyclonic 
vortex is located in the upper layer (𝑁 = 1, 𝜅 >0) and either one anticyclonic lens can be located in the 
middle layer (𝑁 = 1, 𝜅 < 0),or two vortices of opposite signs (𝑁 = 2, 𝜅 < 0, 𝜅 > 0) . We also 
introduce the notation for the effective intensity of a point vortex 𝛬 = ℎ 𝜅 . 
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3.1. Cyclonic Surfer Vortex and Anticyclonic Intrathermocline Lenses 

Let us consider now 𝛬 = −𝛬 ; this is an analogue of a heton (a two-layer dipolar structure) [33]. 
We assume that the upper and middle layer vortices lie initially on the x axis and are separated by a distance 

L. We obtain from (3) 𝑦 = 𝑦 ≡ 𝑉 = 𝛬2𝜋𝐿 𝑞 𝑠𝑠 (𝛾 𝐿K (𝛾 𝐿) − 1) − 𝑞 𝑠𝑠 (𝛾 𝐿K (𝛾 𝐿) − 1)  (6) 

i.e., (1) at 𝐿 = 0, the structure will remain in place; (2) at 𝐿 > 0, the translational velocity of this two-layer vortex 
is a non-monotonic function of L, and its maximum is achieved at 𝐿 ≈ 1.75 ∙ 𝑅𝑑  (green line in Figure 1). 

If 𝛬 ≠ −𝛬 , then the vortices always rotate with angular velocity 𝜔 = 12𝜋𝐿 𝑞 𝑠𝑠 𝛬 (𝛾 𝐿K (𝛾 𝐿) − 1)  +  𝑞 𝑠𝑠 𝛬 (𝛾 𝐿K (𝛾 𝐿) − 1)   (7) 

relative to the center of vorticity with coordinates (𝑥 , 𝑦 ) = 𝛬 (𝑥 , 𝑦 )  +  𝛬 (𝑥 , 𝑦 )𝛬  +  𝛬  (8) 

Figure 1 demonstrates the numerically obtained function V(L) for pointwise vortices in both the upper and 
middle layers (4) of the three-layer model. 

 
Figure 1. The translational velocity 𝑉 vs. 𝐿 of the vortex structure composed of the point 
vortices (4) in the upper and middle layers. The coordinates of the markers correspond to 
the parameters of the numerical experiments shown in Figure 2a. 

Markers on the green line in Figure 1 correspond to the values 𝐿 = 0.56 (where the maximum 
translational velocity of a point dipole takes place) and 𝐿 = 0.28and 𝐿 = 0.84 (which are equidistant 
points from the maximum). For these values of 𝐿, the trajectories are presented in Figure 2a. 
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Figure 2. The initial portions of trajectories of two-layer point vortex structures. The red 
and blue lines depict the trajectories of cyclonic eddies of the upper layer and anticyclonic 
eddies of the middle layer, respectively. (a) Translations with velocity (2) at 𝐿 = 0.56 (middle 
pair), 𝐿 = 0.28  (inner pair) and 𝐿 = 0.84  (outer pair) for the same duration (cf. the three 
markers on the green curve in Figure 1); (b) rotations with angular velocity (4) relative to 
the center of vorticity (6) for 𝐿 = 2.00 and 𝛬 𝛬⁄  =  −1 2⁄ ; (c) same as (b) but for 𝛬 𝛬⁄  = −1 4⁄ . Red and blue markers identify the initial positions of the vortices of the upper and 
middle layers, respectively. 

Figure 2a shows the initial sections of the vortex trajectories of two-layer dipoles calculated by 
Formulas (2) and (3) on the same time interval. Obviously, the end points of the straight segments 
repeat the profile of the green line in Figure 1. Note, that the non-monotonic character of 𝑉(𝐿) 
expresses the fundamental difference between baroclinic and barotropic dipoles, which have a 
singularity in velocity at 𝐿 = 0. Panels (b,c) show the initial trajectories of vortices at the same initial 
location but with a stronger cyclonic vortex in the upper layer. When the ratio 𝛬 𝛬⁄  is changed, the 
position of the center of vorticity changes, according to (6). 

3.2. Interaction of a Surface Vortex with Two Middle Layer Vortices 

3.2.1. Collinear Initial Configuration 

Let us consider the simplest case when three vortices (one in the upper layer and two in the 
middle layer) initially form a symmetric collinear structure. The cyclonic vortex with effective 
intensity 𝛬 > 0 is still located in the upper layer; in the middle layer there are two vortices of 
opposite signs on opposite sides of the surface vortex, with 𝛬  = −𝛬 > 0. In such a situation two 
main interactions can govern the motion of the vortices of the middle layer: (a) an intralayer 
interaction, leading to uniform and rectilinear motion; (b) an interlayer interaction, leading to 
counterclockwise rotation under the influence of the surface cyclone. Obviously, the upper layer 
vortex does not undergo intralayer interaction; the pair of middle layer vortices advects it in the 
direction of its self-propagation. All these mechanisms act simultaneously and contribute to the 
observed motion of the vortex structure. 

Figure 3 shows examples of trajectories of such a three-vortex structure. Here, as before, 𝐿 is the 
horizontal distance between the upper layer vortex and one of the middle layer vortices. Thus, the 
initial distance between the vortices of the middle layer is 2𝐿. The figure shows a change in regimes 
as the distance 𝐿 is increased, from a predominant intralayer interaction to a dominance of interlayer 
interaction. 

 
Figure 3. The trajectories of the initial collinear tripolar two-layer point vortex structures at 𝛬 𝛬⁄ = 1 2⁄ : (a) 𝐿 = 1.00 , (b) 𝐿 = 1.19,  (c) 𝐿 = 1.20,  and (d) 2.00 . The green/blue line is the 
trajectory of the cyclonic/anticyclonic vortex in the middle layer. The red line is the trajectory of the 
upper layer cyclone. Markers indicate the initial positions of the vortices. All vortices begin their 
motion from the initial positions in the cyclonic direction. 
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In panel (a), for 𝐿 = 1.00, the middle layer vortices perform an incomplete counterclockwise 
rotation under the action of the surface cyclone, and then they pair up and leave the central region. 
The upper layer vortex performs an incomplete rotation with the middle layer vortices and stops. In 
panel (b), for 𝐿 = 1.19, the interlayer interaction is much stronger: all three vortices make seven 
incomplete rotations before the middle layer vortex pair leaves the central domain. In panel (c), where 𝐿 = 1.20, a spatially finite evolution takes place: all vortices follow a quasiperiodic counterclockwise 
trajectory inside a compact region. In the middle layer, the cyclonic vortex trajectory fills the central 
domain; the trajectories of the surface cyclone and the middle layer anticyclone are annular regions—
intermediate and external, respectively. During this simulation, each vortex made about 778 rotations 
in the cyclonic direction. Thus, we can conclude that the boundary between the unbounded and 
bounded regimes lies in the interval 𝐿 ∈ 1.19; 1.20 . Finally, with 𝐿 = 2 (panel (d)), in the same time 
period, the number of rotations of each vortex is about 280. 

3.2.2. Impact of the Two External Intrathermocline Vortices on the Surface Cyclone 

Now, let two intrathermocline vortices of opposite signs be initially located relatively far from 
the surface vortex (in all the examples considered below, 𝑦 = 𝑦 ≡ 𝐵 = −16 and 𝑥 = −𝑥 = 𝐿 are 
assumed) and move towards it. 

First, we consider the case of intrathermocline dipole, a particular case where the middle layer 
vortices form a dipolar structure, i.e., 𝛬 𝛬⁄ = −1. Let us start with the simplest case when the 
vortices of the middle layer form a pair, symmetric with respect to the y axis; we consider different 
distances (2𝐿) between the vortices in the pair. 

In this case, for any value of 𝐿, the middle layer vortex motion deviates to the right of a straight 
trajectory due to the action of the upper layer cyclone. The cyclone itself, initially stationary, begins 
to move counterclockwise locally due to the action of the middle layer vortex pair. Numerical 
simulations show that for 𝐿 ≤ 0.6, the dipole rotates around the surface cyclone and escapes to the 
left, while the cyclone slows down and stops over time without having performed a complete 
revolution. For 𝐿 ≥ 0.7, the surface vortex always traps the middle layer dipole, and the entire vortex 
structure rotates counterclockwise near the center of the domain for a finite duration. The middle 
layer cyclone trajectory lies inside the trajectory of the surface cyclone, and the anticyclonic lens 
rotates along an outer orbit. After this duration, the middle layer dipole moves away, and the surface 
cyclone stops. 

Figure 4 shows a gallery of the vortex trajectories at different time intervals (in the different 
panels) until the dipole structure leaves the central region (which is defined by 𝑅 ≤ 20 around the 
origin). During the stage of bounded motion, the global vortex structure is composed of a two-layer 
cyclone with a “tilted axis” and a peripheral anticyclonic lens, all performing a counterclockwise 
rotation. 
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Figure 4. The trajectories of the two-layer point vortex structures when an intrathermocline 
pair runs into a surface cyclone at 𝐵 = −16; 𝛬 𝛬⁄  =  1 2⁄ ; and (a) 𝐿 = 1.0, (b) 𝐿 = 2.0, (c) 𝐿 =2.4, (d) 𝐿 = 3.0, (e) 𝐿 = 4.0, (f) 𝐿 = 4.3, (g) 𝐿 = 5.0, and (h) 𝐿 = 6.0. 
Figure 5a shows that the period of rotation 𝑇 of the vortex structure inside the bounded region 

monotonically increases with 𝐿, while the number of full revolutions 𝑁 is an irregular function of 𝐿. 
Note that this effect, known as “chattering” [9], is observed in other problems of vortex dynamics (for 
example, [68]). Two examples with surprisingly large values of 𝑁 are shown in panels (c) and (f) of 
Figure 4. 

  
Figure 5. Some properties of the finite motion of vortices at 𝛬 𝛬⁄  =  1 2⁄ : (a) The average period T 
(violet line) of the vortex structure rotation and the number of rotations N (brown line) of the vortices 
in the closed region vs. the distance L. The curves are plotted according to calculations carried out at 
values of L with a step of 0.1 inside the interval [0.1; 6.0]. (b) Dependences of y-coordinates for the 
cyclone of the upper layer (red line) and for the cyclone of the middle layer (green line) at 𝐿 = 4.8 in 
a time interval slightly exceeding the interval of finite motion of the vortices 𝑡 ∈ 17.54; 373.12 . 

The transition between bounded and unbounded trajectories occurs when two velocity 
contributions become similar in magnitude: the first is the vortex velocity due to intralayer 
interaction, proportional to the singular function 1 𝐿⁄ , and the second is the velocity of vortices due 
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to interlayer interaction, proportional to the regular non-monotonic function 1 𝐿⁄ − K (𝐿) . During 
the evolution of the vortex structure, the ratio between these contributions constantly changes; the 
prevalence of the first one leads to a transition towards unbounded trajectories, whereas the 
prevalence of the second one leads to bounded trajectories. The behavior of the vortices during such 
evolutions is illustrated in Figure 4b, which shows the time changes in the y-coordinates of the 
cyclones of the middle and upper layers at 𝐿 = 4.8, when 𝑁 = 8: initially the unbounded motion 
becomes bounded when 𝑦  decreases below 𝑦 ; then the amplitude of 𝑦  in the first half of the finite 
cycle initially increases to a maximum value, and 𝑦  decreases to a minimum; in the second half of 
the cycle, the changes in these functions are reversed; finally, 𝑦  reaches a limit value at which the 
subsurface vortex breaks out of the closed region, and the motion becomes unbounded again. 

For large values of 𝑁 (for example, when 𝐿 = 4.3 and 𝑁 = 241, Figure 4f), there are several such 
subcycles, but at the end of each of them (except of the last one), the amplitude of 𝑦  has not yet 
reached its limit value. 

Another interesting property in the case of large 𝑁  is that before reaching the unbounded 
regime, the annular regions filled by the trajectories of the surface cyclone and middle layer 
anticyclone expand significantly (as shown by the red and blue rings in Figure 4c,f). 

Thus, when an intrathermocline pair runs into a surface cyclone, starting from a certain value of 𝐿 (here, at 𝐵 = −16, this value is 𝐿 ≈ 1.7) a temporary trapping occurs, followed by an expulsion of 
the dipole. Note that stationary localized regimes, observed for initially collinear vortices, as in 
Figure 3c,d, do not occur when a middle layer dipole runs into a surface cyclone. 

Next, we consider the case of asymmetric middle layer vortices. Up to now, it has been assumed 
everywhere that the two middle layer vortices have the same effective intensity. However, 
observations [66,67] show that cyclones at intermediate depths are generally weaker than 
anticyclones. Such an asymmetry in the distribution of potential vorticity is now studied: we assume 
that 𝛬 𝛬⁄ = −1 2⁄ . 

The interaction with the surface cyclone changes dramatically since the weak subsurface cyclone 
now rotates around the stronger anticyclone in the middle layer. In the general case, this weak 
subsurface cyclone follows a cycloidal trajectory both around the surface cyclone and around its 
anticyclonic partner. An example of this is shown in Figure 6. The trajectory of the middle layer 
cyclone (in green) is much wider than that of the anticyclonic vortex (in blue). 

 
Figure 6. The trajectories of the two-layer point vortex structure when an two middle layer 
vortices run into a surface cyclone in the time intervals equal to about 4 loop-like rotations (a) and 
about 40 loop-like rotations (b) at 𝐿 = 5, 𝐵 = −16, 𝛬 𝛬⁄ = 1 8⁄ , and 𝛬 𝛬⁄ = −1 2⁄ . All vortices 
begin their motion from the initial positions in the cyclonic direction. 

Depending on the value of parameter 𝐿, there is a countable number of periodic motions of the 
three vortices along closed trajectories, called “absolute choreographies” [69]. Examples of the first 
six choreographies are presented in Figure 7. 
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Figure 7. Examples of the choreographies at 𝐵 = −16; 𝛬 𝛬⁄ = 1 4⁄ ; 𝛬 𝛬⁄ = −1 2⁄ ; and (a) 𝐿 = 10.7250,  (b) 𝐿 = 6.1786,  (c) 𝐿 = 4.4957,  (d) 𝐿 = 3.6150,  (e) 𝐿 = 3.0708,  and (f) 𝐿 =2.6490. All vortices begin their motion from the initial positions in the cyclonic direction. 

Thus, we have a discrete set of values 𝐿 , decreasing with 𝑛, which corresponds to a family of 𝑛-
fold symmetric configurations. Figure 8 shows 𝐿(𝑛) = 𝐿  for various values of 𝛬 𝛬⁄ . 

 
Figure 8. The values of 𝐿 (𝑛 = 1, 2, … , 6) for the choreographies of Figure 7 (blue markers), i.e., at 𝛬 𝛬⁄ = 1 4,⁄  and the same at 𝛬 𝛬⁄ = 1 8⁄  (brown markers) and 𝛬 𝛬⁄ = 1 2⁄  (green markers). 

Figure 8 shows that values 𝐿  decrease with increasing 𝑛 and with decreasing of intensity of 
subsurface vortices. 

Finally, Figure 9 shows how the transition between one-mode to two-mode choreography occurs 
when the distance 𝐿 changes with a constant step ∆ =  (𝐿 − 𝐿 ) 5⁄ . In order not to confuse the picture 
when each trajectory fills its annular region, panels (b–e) show only the first four loops (in time), and 
the number indicates the order of their formation. For 𝐿 → 𝐿 , the loops thicken in the vicinity of the 
stationary position so that they coincide completely when the limit is reached. 
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Figure 9 additionally shows that, for any 𝐿 ≠ 𝐿 , for large times, all three trajectories fill the 
annular regions, as in Figure 6. Only a countable number of stationary periodic solutions 
(choreographies) exist at 𝐿 = 𝐿  and 𝛬 𝛬⁄ ≠ −1. 

 
Figure 9. Illustration of the transition from one-mode to two-mode choreography of the Figure 7 with 
increasing of distance 𝐿 = 𝑖 ∙ ∆: 𝑖 = 0, 1, … , 5 for panels (a), (b), …, (f). Numerals indicate the numbers 
of successively formed loops. All vortices begin their motion from the initial positions in the cyclonic 
direction. 

4. Discussion and Conclusions 

We recapitulate the main results of this work and provide their oceanographic interpretation. 

• If the cyclone of the upper layer and the anticyclonic lens of the middle layer are separated by 
some distance, then such a two-layer vortex can either move forward (when its total effective 
vorticity is zero) or rotate relative to the center of vorticity (when its total effective vorticity is 
nonzero). In any case, both vortices can move far enough from the original location (Section 3.1). 

• If two middle layer (intrathermocline) vortices of opposite signs are initially located on different 
sides relative to the central surface vortex, then (a) if they are separated far enough, all three 
vortices move inside individual coaxial annular regions; (b) if the distance between them is 
small, after a temporary bounded stage of movement, they leave the vicinity of the surface vortex 
(Section 3.2.1). 

• If the intrathermocline vortices make up a pair running into the surface vortex, then two regimes 
are possible: (a) the pair passes under the surface vortex, changing its direction in its vicinity; (b) 
the dipole is delayed in the vicinity of the surface vortex, and at this intermediate stage, all three 
vortices move within a bounded region, after which it is freed from the influence of the cyclone 
and carried away from it. Such intermediate stages can have different durations which do not 
regularly depend on the initial distance between the vortices of the pair (Section 3.2.2). 

• If the intrathermocline vortices have different intensities (which is a more realistic situation), 
then the vortices of the middle layer always move along loop-like trajectories in the vicinity of 
the surface vortex. For certain initial distances between the intrathermocline vortices, their 
movements have a periodic character (Section 3.2.2). 
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Note that loop-like motions of SOFAR floats seeded in lenses are often observed in the ocean 
(for example, see [70–72]). This loop-like float motion can be explained by the position of the float on 
the periphery of the lens. It can also be explained by the lens describing loops when interacting with 
a weak cyclonic partner; this is difficult to determine experimentally. 

We believe that the results obtained here can be useful in analyzing experimental measurements 
of surface and subsurface vortices in the ocean. 
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