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Abstract: The development of agriculture and ecology, and the construction of water conservancy
facilities are seriously hindered by the salinization of seasonal frozen soil. Unfrozen water exists in
the freezing and thawing of frozen soil. This unfrozen water is the core and foundation for studying
the process of seasonal frozen soil salinization. However, it is difficult to obtain the unfrozen water
content (UW) in routine experiments, and it shows nonlinear characteristics under the action of the
main factors contained: salt content, water content, and temperature. In this paper, a new model
is proposed to predict the UW of saline soil based on the combined weighting method and the
adaptive neuro-fuzzy inference system (ANFIS). Firstly, the distance function was used to combine
the analytic hierarchy process (AHP) with the entropy weight method (the combined weighting
method) to determine the importance of the influencing factors (temperature, initial water content,
and salt content) on UW. On this basis, the AHP, entropy weight method, and adaptive neuro-fuzzy
inference system (AHP-entropy-ANFIS) ensemble model was established. Secondly, the five-fold
cross-validation method and statistical factors (coefficient of determination, mean squared error,
mean absolute percent error, and mean absolute error) were applied to evaluate and compare the
AHP-entropy-ANFIS ensemble model, the ANFIS model, the support vector machine (SVM) model,
and the AHP, entropy weight method, and support vector machine (AHP-entropy-SVM) ensemble
model. In addition, the prediction values of the four models and the experimental values were
also compared. The results show that the AHP-entropy-ANFIS model had the strongest prediction
capability and the best stability, and so is more suitable for predicting the UW of saline soil. This study
provides useful guidance for preventing and mitigating salinization hazards in seasonally frozen areas.

Keywords: unfrozen water; AHP; entropy; SVM; ANFIS; saline soil; frozen soil

1. Introduction

Jilin province is one of the major agricultural provinces in China. It has abundant arable land
and pasture resources. However, in the west of Jilin province, there is a large area of carbonate saline
soil [1,2]. As a result of the influence of factors such as the climatic environment and soil material
composition in western Jilin, the saline soil in the area not only has salinization characteristics, but also
shows the typical characteristics of seasonal frozen soil [3,4]; therefore, the saline soil in the western
area of Jilin province has complex engineering geological properties, which lead to the expansion of
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the area of saline soil year by year [5]. The agriculture, the ecological environment and the water
conservancy facilities in Jilin province are being eroded increasingly more seriously by the saline soil.

In winter, when the temperature is lower than 0 ◦C, the saline soil freezes. The ground surface
freezes first, and in this process, the water in the soil moves towards the ground surface. On the one
hand, this leads to frost heaving of the soil, which causes various engineering problems, such as slope
instability of the water channels, dykes and dams in hydraulic irrigation engineering [6]. On the other
hand, the salt dissolved in the water and the water together converge toward the direction (the ground
surface) of the soil freezing, which leads to more and more soil becoming saline soil. Soil salinization
causes a lot of agricultural, ecological, and engineering problems, such as grassland and farmland
degeneration, and the corrosion of civil engineering [7,8].

The above problems are closely related to the unfrozen water content (UW) of saline soil. During
the freezing process of saline soil, the content of unfrozen water determines the amount of water
migration in the frozen soil. The amount of the frost heaving of saline soil and the occurrence of
salinization are directly determined by the amount of water migration [6,7]. The UW in saline soil
is the core and foundation of the soil frost heaving mechanism and the water and salt transport
mechanism [9]. Therefore, research into the UW of saline soil in western Jilin is needed.

In the past few decades, in research on UW, scholars have mainly used direct measurement
methods—that is, different pieces of testing equipment and methods were used to test the UW of
the soil during the freezing process. After many years of research and practice, some macro- and
micro methods have been used to study UW, such as the time domain reflection method [10,11],
the test box method [12], infrared spectroscopy technology [13], the calorimetry method [14], computed
tomography (CT) technology [15], nuclear magnetic resonance technology (NMR) [16,17], etc.

On the basis of experiments, and after analyzing a large amount of experimental data, various
scholars have proposed empirical formulas for predicting the UW. For example, a prediction formula
based on a calorimetric method experiment was proposed in [18]; for remolded soil, a prediction
formula based on the liquid limit of soil was proposed in [19]; and empirical formulas for clay were
proposed in [20]. In addition, various scholars have proposed a prediction model based on the theory
of thermodynamics of continuous media [21], and a prediction model of UW based on the principle of
the electric double layer of soil particles [22].

However, each prediction model has its own applicable conditions and limitations. In addition,
because the UW is the result of a process combining multiple factors, such as temperature and water
content, it often shows strong nonlinearity. Therefore, traditional empirical models have difficulty in
predicting the UW. In recent years, with the continuous progress in science and technology, artificial
intelligence technology has developed rapidly. Hybrid models based on machine learning algorithms
have received increasingly more attention, research, and applications. Because hybrid models have
been shown to perform well at solving nonlinear problems, we expected to be able to build a hybrid
model to solve the nonlinear problem caused by the UW.

In this paper, remodeled soil samples of saline soil in the Zhenlai county of western Jilin were
selected as the research object, and the UW of saline soil during the freezing process was analyzed and
studied. Firstly, the remolded soil samples were measured using NMR equipment in the laboratory,
and the UW needed for the study was obtained. Secondly, on the basis of the experimental data, the
degree of influence of the influencing factors on the UW was analyzed using the analytic hierarchy
process (subjective) and the entropy weight method (objective). Furthermore, we combined subjective
and objective methods through a combination with the weighting method, to assign a reasonable
weight to each influencing factor. Finally, the analytic hierarchy process, entropy weight method,
and adaptive neuro-fuzzy inference system (AHP-entropy-ANFIS) ensemble model was established.
This model was compared with the neuro-fuzzy inference system (ANFIS) model, the support vector
machine (SVM) model, and the analytic hierarchy process, entropy weight method, and support vector
machine (AHP-entropy-SVM) ensemble model. Through comparison, a model suitable for the Zhenlai
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area was selected and applied to the prediction of UW. In addition, for the process of model training
and testing, a five-fold cross-validation method was adopted.

2. Materials

2.1. Test Soil Materials

According to an investigation and research into the saline soil in the west of Jilin province,
compared with other depth areas, salt is more active at a depth of 40 cm below the ground surface,
and the depth of 40 cm is the salt concentration area. In order to study the UW of saline soil, it was
planned to collect soil samples from Zhenlai county. These soil samples were collected from below
the surface at a depth of 0.4 m. The collected soil samples were remolded to the samples needed
for the study. Before remolding the soil samples, the particle size composition (Figure 1) and the
clay mineral composition (Figure 2) of the soil were analyzed. As shown in Figure 1, the proportion
of clay and silt was the highest. The mass percentages of the clay and silt were 42.5% and 49.5%,
respectively. As shown in Figure 2, the clay minerals in the saline soil mainly contained illite and
illite/smectite mixed layer. The relative contents of the illite and illite/smectite mixed layer were 23%
and 59%, respectively.
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Figure 2. The clay mineral composition percentage of saline soil in Zhenlai.

2.2. Design for the Remodeling Samples

The UW of the saline soil is influenced by multiple factors: salt content, initial water content,
temperature, and so on. Therefore, it was necessary to decide upon the salt content, moisture content,
and temperature before preparing the remolded soil samples of salinized soil. According to the
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definition of saline soil in the specification of the saline soil to be considered, the soluble salt content
cannot be less than 0.3%. In addition, the maximum value of soluble salt content in the soil of western
Jilin was once higher than 1.5%. Thus, the salt content of the remodeled samples was artificially
designed to be 0%, 0.3% and 1.5%. The optimum water content is the corresponding water content
when the soil samples reach the maximum dry density. When the collected soil samples were tested, it
was found that the optimum moisture content was about 20%. Therefore, 19%, 21%, and 24% were
artificially chosen as the initial water content of the reshaped soil samples. Combined with the actual
temperature during winter in western Jilin (the lowest value of monthly average temperature was
lower than −20 ◦C), the test temperatures of the samples were artificially designed to have seven
temperature points: −1, −3, −5, −7, −10, −15 and −20 ◦C. During the test, the UW corresponding to
each temperature point was tested. Moreover, western Jilin province is a concentrated area of sodium
bicarbonate type saline soil. This soil has a high content of sodium ions, so when remodeling the soil
sample, a certain amount of sodium bicarbonate was added. Table 1 shows the design parameters of
the samples. The salt content, water content, and test temperatures of the remolded soil samples were
used as the input variables of the models.

Table 1. The parameter design of the samples.

Salt Content/% Temperature/◦C Initial Water Content/%

−1
−3

0 −5 19
0.3 −7 21
1.5 −10 24

−15
−20

Type of salt Sodium bicarbonate

2.3. Test Remodeling Samples

After the design of the remolded soil samples was completed, remolded soil samples with a
diameter of 2.5 cm and a height of 5 cm were obtained. In this paper, the nuclear magnetic resonance
(NMR) method was selected to study the remolded soil samples, with the expectation of obtaining the
UW of the soil samples in the process of freezing. During the test, the soil samples were placed in the
NMR experimental equipment. The temperature was controlled and gradually reduced from −1 to
−20 ◦C. At each temperature point, the UW of the soil sample was obtained. A total of 35 groups of
UW data were obtained from the NMR experiment, as shown in Table 2. The UW data were then used
as the output variables of the models.

Table 2. The unfrozen water content (UW) of the samples in nuclear magnetic resonance experiment.

Initial Water
Content/%

Salt Content/%
Temperature Reduction Process/◦C

−1 −3 −5 −7 −10 −15 −20

19 0 16.92 14.96 9.58 8.90 8.33 7.78 7.49

The UW/%
19 0.3 16.12 14.86 9.78 8.64 8.24 7.48 7.22
19 1.5 18.31 18.85 11.47 10.65 9.09 7.91 7.63
21 1.5 20.40 20.79 12.12 10.56 9.05 8.31 7.42
24 1.5 23.23 23.15 11.79 10.32 9.45 7.94 7.72

3. Methodology

3.1. Predictive Model Development

This paper intends to establish a hybrid model based on the combination weighting method
and machine learning algorithm. In the model, temperature, salt content and initial water content
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were selected as the input factors, and the output was the UW. The previous showed that the UW can
be obtained under the control of three factors: temperature, salt content, and initial water content.
However, the degree of influence of the three influencing factors on the UW is not clear.

Therefore, in order to establish a combined model, it was necessary to clarify the degree of
influence of the three influencing factors on the UW—that is, to determine reasonable weights for the
three influencing factors. To prevent the results from being too subjective or objective, and analytical
method combining both subjective and objective methods, was applied to provide more reasonable
weights for the influencing factors. This helped to improve the prediction accuracy of the model.

3.1.1. Weighting Method

• Subjective Evaluation Method

In the mid-1970s, the American scholar Saaty [23] proposed a method for subjective
decision-making: the analytic hierarchy process (AHP). This method can quantitatively analyze
and solve problems. The analytic hierarchy process is good at dealing with complex problems featuring
multiple levels and factors, and offers good applicability. For solving practical problems, the AHP
method can be based on the following process [24,25]:

1. According to the needs of the practical problem, construct a hierarchical structure model to
achieve the purpose of decomposing the target layer. The impact factors are then compared and
evaluated for selecting suitable candidate objects;

2. According to the method described by Saaty, the values from 1 to 9 and their reciprocals are used
as scoring criteria to assess the relative importance of the influencing factors [23–25]. The importance
of the influencing factors is evaluated for the target factors. The degree of importance of any two
influencing factors on the target factors is determined by comparing them. The degree of importance is
scored by experts, and a judgment matrix is built using the obtained scores. The judgment matrix is
shown in Equation (1):

A =
(
Ei j

)
=


e11 e12 · · · e1m
e21 e22 · · · e2m

...
...

...
...

em1 em2 · · · emm

, (1)

where m is the number of influencing factors.
The judgment matrix and its maximum eigenvalue, as well as the eigenvector corresponding to

the maximum eigenvalue need to satisfy the following relationship:

Aw = λmaxw, (2)

where λmax is the maximum eigenvalue and w is the eigenvector.
3. When the AHP is used to deal with practical problems, it is necessary to determine whether

the judgment matrix meets the consistency principle. The consistency of the judgment matrix can
be measured using the consistency ratio. In general, when the consistency ratio is less than 0.1, the
matrix passes the consistency test. This proves that the results obtained from the matrix are reliable.
The consistency ratio can be obtained by Equation (3):

CR = CI/RI, (3)

where CR is the consistency ratio, RI is the average random consistency index, and CI is the
consistency index.

The average random consistency index can be obtained as shown in Table 3 [25].
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Table 3. The value of the random consistency index (RI).

m 2 3 4 5 6 7 8 9 10

RI 0 0.52 0.90 1.12 1.26 1.36 1.41 1.46 1.49

The consistency index can be determined by the maximum characteristic root corresponding to
the discrimination matrix, as shown in Equation (4):

CI =
λmax −m

m− 1
, (4)

• Objective Evaluation Methods

The entropy weight method uses the entropy values of the influencing factors to determine
the weights of the influencing factors [26,27]. It is an objective evaluation method. This method
mainly determines the importance (weight) of each factor by evaluating the discrete degree of each
factor in the system. The higher the degree of dispersion, the smaller the entropy and the greater the
importance of the factor. The process that the entropy weight method uses to deal with the problem is
as follows [26,27]:

1. Assuming that the system contains n samples and m influence factors, and construct them to
matrix B, as shown in Equation (5). In addition, the matrix B is normalized according to Equation (6),
thus obtaining Ci j.

B =


b11 b12 · · · b1m
b21 b22 · · · b2m

...
...

...
...

bn1 bn2 · · · bnm

(i = 1, 2, 3, · · · , n; j = 1, 2, 3, · · · , m), (5)

Ci j =
bi j −min

{
b1 j, · · · , bnj

}
max

{
b1 j, · · · , bnj

}
−min

{
b1 j, · · · , bnj

} , (6)

where bi j is the jth influencing factor of the ith sample; min
{
b1 j, · · · , bnj

}
is the minimum value of the jth

influencing factor; and max
{
b1 j, · · · , bnj

}
is the maximum value of the jth influencing factor.

After the data are normalized, the entropy value can be determined using Equation (7):

E j = −k
∑n

i=1
ui j ln ui j, (7)

where k is related to the sample size n, as shown in Equation (8); and ui j is the frequency of the jth
factor, which can be calculated by Equation (9):

k =
1

ln(n)
, (8)

ui j =
Ci j∑n

i=1 Ci j
, (9)

where Ci j is the value obtained after normalizing matrix B.
2. The difference coefficient of the entropy can be determined by the entropy value, as shown in

Equation (10):
R j = 1− E j , (10)

where R j is the difference coefficient of the entropy.



Mathematics 2020, 8, 1209 7 of 20

3. According to the difference coefficient, the weight of the factor can be calculated, as shown in
Equation (11):

w j =
R j∑m

j=1 R j
, (0 ≤ w j ≤ 1,

m∑
j=1

w j = 1) (11)

where w j is the weight of the factor.

• Comprehensive Evaluation Methods

When the subjective method (AHP) or the objective method (entropy weight method) are used to
analyze the degree of influence of the influencing factors on UW, the weights obtained are too subjective
or too objective, respectively. Reasonable weights will help to build a model with better performance.
Therefore, in order to get reasonable weights, the subjective method (AHP) and the objective method
(entropy weight method) should be used in combination when weighting the influence factors. In this
paper, the concept of the distance function is introduced, and the distance function is used to combine
the subjective and objective methods, and to construct a combined weighting method. Using the
combination weighting method to evaluate the importance of influencing factors and obtain reasonable
weights of influencing factors [28], the subjective weight coefficient and the objective weight coefficient
can be determined by the Equation (12) related to the distance function, and the combination weight
can be determined by Equation (13).

D
(
w1

j , w2
j

)
=

√
1
2

n∑
j=1

(
w1

j −w2
j

)2

D
(
w1

j , w2
j

)2
= (a− b)2

a + b = 1(a, b > 0)

, (12)

where w1
j and w2

j are the weights, they should be calculated by the subjective method (AHP) and

the objective method (the entropy weight method), respectively; D
(
w1

j , w2
j

)
is the distance function

of the subjective weight (w1
j ) and objective weight (w2

j ); and a and b are the weight coefficients of the
subjective weight and objective weight coefficients, respectively, a and b are real numbers.

By substituting the weighting coefficients (a and b) into Equation (13), the combination weight of
the subjective and objective weights can be obtained:

wcj = aw1
j + bw2

j , (0 ≤ wcj ≤ 1) (13)

where wcj is the combination weight.

3.1.2. The Adaptive Network-Based Fuzzy Inference System

In the early 1990s, a new algorithm, the adaptive neuro-fuzzy inference system (ANFIS),
was proposed [29]. It applies the back-gradient method and the least squares algorithm, and uses the
“If–Then” rule for management and constraints. In addition, with the help of the membership function,
it completes nonlinear mapping of the data from the input to the output [30,31]. The structure of the
ANFIS model is shown in Figure 3. ANFIS inherited the advantages of neural networks and fuzzy
reasoning theory, and is good at solving nonlinear and other related complex problems. Therefore,
ANFIS has been applied to practical engineering, for example, to evaluate concrete performance [32],
and to study soil chemical properties [33]. In this paper, the process of establishing ANFIS for the UW
prediction model is shown in Figure 4.
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3.1.3. The Support Vector Machine

The Support Vector Machine (SVM) algorithm was created in the mid-1990s [34]. The most
prominent feature of the support vector machine is that it has a strong generalization adaptability [35–37],
and it can deal with complex problems caused by nonlinearities. When encountering a nonlinear
problem, it first processes the complex nonlinear data. After these data are transformed, they are
projected into a high-dimensional space, and then a suitable linear function is found to solve the
complex nonlinear problem [35,36]. As a result of the excellent performance of the SVM, it has been
applied to deal with matters of landslide sensitivity analysis [37], slope stability research [38], and
surrounding rock deformations estimation [39]. The principle of the SVM to deal with problems is as
follows [35,40,41]:

Assuming that the input data is xi (i = 1, 2, ..., k) and the output data is yi (i = 1, 2, ..., k), then the
data set consisting of input data and output data is xi, yi.

Assuming µ(x) is a nonlinear mapping, it can map the input data from low-dimensional
space to high-dimensional space. Turn complex nonlinear problems into simple linear problems of
high-dimensional space. It can be expressed by Equation (14):

g(x) = wµ(x) + b, (14)

where w is weight vector, as shown in Equation (15); and b is bias value.

w =
∑k

i=1

(
αi − α

∗

i

)
xi, (15)

where αi and α∗i are Lagrange multipliers, which can be calculated by Equation (16):
max− 1

2

k∑
i=1

k∑
j=1

(
αi − α

∗

i

)(
α j − α

∗

j

)
k
(
xi, x j

)
− ε

k∑
i=1

(
αi + α∗i

)
+

k∑
i=1

yi
(
αi − α

∗

i

)
s.t.

k∑
i=1

yi
(
αi − α

∗

i

)
= 0

0 ≤ αi,α∗i ≤ C,

, (16)

According to Equations (14)–(16), the regression function can be determined as shown in
Equation (17):

H(x) =
∑k

i=1

(
αi − α

∗

i

)
K(xi, x) + b, (17)

where K(xi, x) represents kernel function that meets Mercer’s conditions.

3.2. Data Collection and Collation

The UW prediction model not only needs to determine the intelligent algorithm for establishing
the model, but also needs to obtain a certain amount of reasonable data as support. Therefore, before
the prediction model was established, it was necessary to achieve the collection and arrangement
of data. In this paper, the inputs of the models are temperature, salinity and water content, and the
output of the models are the unfrozen water content. After the UW test experiment was completed,
a total of 35 sets of experimental data were obtained, as shown in Table 2. The data were divided as
follows: about 80% of the experimental data were taken out and applied as training data; about 20% of
the remaining experimental data were allocated as testing prediction model data [42]. In other words,
out of the 35 sets of experimental data, 28 sets of experimental data were randomly taken for training,
and the remaining seven sets of experimental data were used to test the prediction model. The models
were trained and tested with the same data. Furthermore, the model was trained and tested using the
five-fold cross-validation method.
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3.3. Models Comparison Method

In order to accurately predict the UW of the soil samples, it was necessary to compare the
predictive ability of the models. In this paper, four statistical factors were introduced to assess the
predictive power of the two models. The four evaluation factors are the coefficient of determination
(R2), the mean squared error (MSE), the mean absolute percent error (MAPE) and the mean absolute
error (MAE) [31,43]. These factors can be calculated using Equations (18)–(21).

The coefficient of determination is:

R2 = 1−

∑M
i=1

(
UWpredict −UWexperiment

)2

∑M
i=1

(
UWpredict −UWexperiment−a

)2 , (18)

The mean squared error is:

MSE =
1
M

∑M

i=1

(
UWpredict −UWexperiment

)2
, (19)

The mean absolute percent error is:

MAPE =
1
M

∑M

i=1

∣∣∣UWpredict −UWexperiment
∣∣∣

UWexperiment
× 100%, (20)

The mean absolute error is:

MAE =
1
M

∑M

i=1

∣∣∣UWpredict −UWexperiment
∣∣∣, (21)

where UWpredict is the prediction data of the model, UWexperiment is the result of the NMR experiment,
and UWexperiment-a is the average of the experimental results.

The MAPE, MSE and MAE reflect the predictive capabilities of the model for the expected values,
where the value range is from 0 to positive infinity. The smaller the values are, the closer the prediction
result of the model is to the experimental values, which indicates that the predictive ability of the
model is better. The value range of R2 is between 0 and 1. This reflects the degree of closeness between
the predicted result of the model and the test value. The larger the value of R2 is, the better the data fit.
At the same time, this also shows that the model has a better predictive ability.

4. Results and Discussion

4.1. Mechanisms Affecting Unfrozen Water Content

The relatively high clay content in the soil, close to 50% (Figure 1), showed that the specific surface
area of the soil was relatively large, and the soil particles had a strong adsorption capacity for the
water molecules. The water molecules were gathered around the soil particles through the adsorption
capacity of the soil particles, thus forming a water film. The higher the initial water content was, the
thicker the water film. At the same temperature, this phenomenon led to higher initial water content, a
higher UW, and the same change trend for UW and water content, as shown in Figure 5a. In Figure 5a,
the green bar, blue bar, and red bar represent the UW of the soil samples with water content of 19%,
21%, and 24%.
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Figure 5. At −3 ◦C, the relationship between water content, salt content, and UW; (a) at −3 ◦C,
the relationship between water content and UW; (b) at −3 ◦C, the relationship between salt content
and UW.

The soil mainly contained sodium bicarbonate, so the content of sodium ions was relatively
high. The clay minerals in the soil contained some highly hydrophilic minerals, such as illite and
illite/smectite mixed layer minerals (Figure 2). When the highly hydrophilic minerals interacted with
the sodium ions in the sodium salt, a large amount of thin film water (weakly bound water) gathered
around the soil particles. With an increase in sodium ions, the water film gradually thickened (Figure 6),
showing the UW to increase as with the water film thickened. Therefore, at the same temperature,
the salt content increased, which indirectly inhibited the freezing of the soil, resulting in an increased
UW. The UW and the salt content also maintained the same change trend, as shown in Figure 5b. In the
Figure 5b, the green bar and red bar represent the UW of the soil sample with salt content of 0.3%
and 1.5%.
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When the outside temperature is less than 0 ◦C and continues to decrease, unfrozen water appears
in the soil, and as a whole, the UW decreases as the temperature decreases [44]. Therefore, it is
self-evident that temperature is the main factor affecting changes in UW.

4.2. Analysis of the Degree of Importance of the Factors Affecting the Unfrozen Water Content

In this paper, the AHP and entropy weight methods were used to study the influencing factors
of UW, and the subjective and objective weights of the influencing factors were thus determined.
The distance function was introduced to combine the subjective weights with the objective weights,
and reasonable weights were thereby redetermined.

4.2.1. The Analytic Hierarchy Process

The UW is mainly controlled by three influencing factors: temperature, salt content and initial
water content. Before applying the AHP to determine the weights of the three influencing factors,
the judgment matrix should be constructed first. By comparing the three factors, the importance of
each influencing factor relative to the other influencing factors was obtained. In Table 4, the first three
columns of data present the results of the comparison. According to Formula (2), the weights of the
three influencing factors can thus be calculated. The fourth column in Table 4 shows the weights of the
three influencing factors.

Table 4. The judgment matrix elements and weights of the influence factors.

Factors Temperature Initial Water Content Salt Content Weights

Temperature 1 3 5 0.6483
Water Content 1/3 1 2 0.2297
Salt Content 1/5 1/2 1 0.1220

In Table 4, the weight values of temperature, water content and salt content are 0.6483, 0.2297 and
0.1220, respectively. This shows that the temperature weight was the highest, while the salt content
weight was the lowest. The subjective analysis method tends to consider temperature as the main
factor affecting the UW. At the same time, the average consistency index (CR) and consistency index
(CI) were determined according to Equations (3) and (4), respectively. The CI value was 0.002, the CR
value was 0.0036, and the CR value was less than 0.1. These comparison results were consistent with
the rule of consistency, and the weights of the influencing factors determined by the AHP method
were reasonable.

4.2.2. The Entropy Weight Method

The entropy weight method (the objective method) was used to evaluate the degree of importance
of the three influencing factors of temperature, salt content, and initial water content. According to
Formula (6), the matrix of the three factors was normalized. The entropy value, difference coefficient,
and weight of influencing factors were determined by Equations (7)–(11), as shown in Table 5.

Table 5. The evaluation results of the entropy weight method.

Heading Temperature Salt Content Initial Water Content

Entropy 0.94 0.90 0.72
Difference coefficient 0.06 0.10 0.28

Weights 0.1416 0.2187 0.6397

In Table 5, the weights of the temperature, salt content and initial water content are 0.1416, 0.2187
and 0.6397 respectively. It can be seen that the weight of the initial water content is the largest, while
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the weight of the temperature is the smallest. The objective analysis method tends to consider the
initial water content as the main factor affecting the UW.

4.2.3. The Combined Weighting Method

In order to obtain a reasonable weight, and prevent the weights determined by the AHP and
entropy weight method from being too subjective or objective, thereby ensuring that the obtained
prediction model offers better performance, it is necessary to combine the AHP (subjective) with the
entropy weight method (objective) evaluation methods. Using Equations (12) and (13), the weight
coefficient and combination weight of the combination weighting method can be determined, as shown
in Table 6.

Table 6. The evaluation results of the combined weighting method.

Heading Temperature Salt Content Initial Water Content

AHP weight coefficient 0.7330
Entropy weight coefficient 0.2670

Combination weight 0.5130 0.1478 0.3392

In Table 6, the weight coefficient of AHP is 0.7330, and the weight coefficient of entropy is 0.2670.
The combined weights of temperature, salt content and initial water content are 0.5130, 0.1478 and
0.3392, respectively. Among them, the weight of temperature is the largest, and the weight of salt
content is the smallest. This shows that temperature had the strongest influence on UW, salt content
had the weakest influence on UW, and the initial water content was between both.

4.3. Compare and Select the Model

After determining the weights of the influencing factors, the AHP-entropy-ANFIS model was
established in combination with ANFIS. This model was compared with the ANFIS model, the SVM
model and the AHP-entropy-SVM model, and the model with the strongest predictive ability was
selected to predict the UW. In this paper, temperature, salt content, and initial water content were
input into the models, and the UW of saline soil was the output factor of the models. The training and
testing of the models were realized on the MATLAB software platform. In the ANFIS prediction model,
according to actual needs, a total of 27 different “If-Then” rules were formulated, and the “trimf”-type
function, with an improved training effect, was selected as the membership function [31,43]. In the
SVM prediction model, the “radial basis” function is an important part of the model. It is the main
method for the model to process data. The SVM model applies the grid search method, and combines
the penalty parameter and radial basis kernel factor to train the model [36].

In addition, in the process of training and testing, a five-fold cross-validation method was used to
avoid the problem of overfitting the model. Through this five-fold cross-validation, the coefficient
of determination, the mean squared error, and the p-value of each model was obtained, as shown in
Table 7.

The data in Table 7 were then analyzed. In the process of training, the mean R2 values of the four
models (AHP-entropy-ANFIS, ANFIS, SVM, and AHP-entropy-SVM models) were all greater than
0.8, and the mean R2 of the AHP-entropy-ANFIS model was the highest, reaching 0.9935. The mean
MSEs of the four models were 0.14, 0.19, 2.99, and 2.78, respectively. Clearly AHP-entropy-ANFIS
(0.14) was the smallest. For the stability of the model, the order from high to low was as follows:
the AHP-entropy-ANFIS model, the ANFIS model, the AHP-entropy-SVM model, and the SVM model.

In the process of testing, the four models were compared. The mean R2 the of the
AHP-entropy-ANFIS model was the largest, at 0.9692. The mean MSE of this model was 0.86,
making it the smallest. Compared to the training process, the stability of the AHP-entropy-ANFIS
model, the ANFIS model, the AHP-entropy-SVM model and the SVM model were slightly reduced,
but the AHP-entropy-ANFIS model remained the most stable. The AHP-entropy-ANFIS model thus
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performed the best. In addition, in the process of training and testing, the p-values of the models were
less than 0.05.

Table 7. The coefficient of determination, the mean squared error, and the p-value of each model.

Method Parameters
Coss-Validation

Mean Standard
Deviationk = 1 k = 2 k = 3 k = 4 k = 5

AHP-entropy-ANFIS R2 0.9962 0.9960 0.9922 0.9919 0.9914 0.9935 0.002
ANFIS (Training) 0.9873 0.9960 0.9923 0.9920 0.9917 0.9919 0.003
SVM 0.8867 0.8501 0.8693 0.8545 0.9248 0.8771 0.030

AHP-entropy-SVM 0.8813 0.8864 0.8721 0.8653 0.9236 0.8857 0.023
AHP-entropy-ANFIS MSE 0.10 0.10 0.17 0.18 0.17 0.14 0.040

ANFIS (Training) 0.33 0.10 0.17 0.18 0.17 0.19 0.085
SVM 3.00 3.95 3.00 3.41 1.59 2.99 0.874

AHP-entropy-SVM 3.15 2.97 2.94 3.28 1.58 2.78 0.687
AHP-entropy-ANFIS p-Value 6.20 × 10–33 1.06 × 10−32 6.51 × 10−29 9.61 × 10−29 2.07 × 10−28 - -

ANFIS (Training) 3.53 × 10−26 1.00 × 10−32 4.94 × 10−29 9.10 × 10−29 1.46 × 10−28 - -
SVM 8.26 × 10−14 3.22 × 10−12 5.39 × 10−13 2.19 × 10−12 3.96 × 10−16 - -

AHP-entropy-SVM 1.52 × 10−13 8.63 × 10−14 4.03 × 10−13 7.97 × 10−13 4.82 × 10−16 - -

AHP-entropy-ANFIS R2 0.9642 0.9236 0.9864 0.9881 0.9837 0.9692 0.027
ANFIS (Testing) 0.8488 0.9238 0.9819 0.9896 0.9857 0.9460 0.061
SVM 0.8685 0.7034 0.8817 0.9311 0.7786 0.8327 0.091

AHP-entropy-SVM 0.8706 0.5961 0.8964 0.9131 0.8001 0.8153 0.130
AHP-entropy-ANFIS MSE 1.18 0.96 0.91 0.42 0.83 0.86 0.278

ANFIS (Testing) 2.00 0.96 0.99 0.49 0.84 1.05 0.564
SVM 2.15 2.95 3.66 4.25 12.06 5.02 4.016

AHP-entropy-SVM 2.04 3.27 2.78 5.24 10.38 4.74 3.367
AHP-entropy-ANFIS p-Value 8.33 × 10−5 5.64 × 10−4 7.31 × 10−6 5.30 × 10−6 1.15 × 10−5 - -

ANFIS (Testing) 3.20 × 10−3 5.60 × 10−4 1.50 × 10−5 3.76 × 10−6 8.40 × 10−6 - -
SVM 2.24 × 10−3 1.84 × 10−2 1.71 × 10−3 4.34 × 10−4 8.54 × 10−3 - -

AHP-entropy-SVM 2.15 × 10−3 4.20 × 10−2 1.22 × 10−3 7.80 × 10−4 6.56 × 10−3 - -

Figure 7 describes the mean absolute percent errors (MAPEs) of the different models. Among
them, legend A is the AHP-entropy-ANFIS model, legend B is the ANFIS model, legend C is the SVM
model, and legend D is the AHP-entropy-SVM model. It can be seen from Figure 7 that in both the
training process and the testing process, the MAPE of the AHP-entropy-ANFIS model was less than
that of the other three models, and the MAPE of the AHP-entropy-ANFIS model was less than 10.
In the training process, the MAPE of the AHP-entropy-ANFIS model was about 1/1.5 that of the ANFIS
model, and the MAPE of the AHP-entropy-ANFIS model was about 1/5 that of the AHP-entropy-SVM
model. In the testing process, the MAPE of the AHP-entropy-ANFIS model was about 1/1.5 that of the
SVM model, and about 1/2 that of the ANFIS model.
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Figure 8 describes the mean absolute errors (MAEs) of the different models: legend A is the
AHP-entropy-ANFIS model, legend B is the ANFIS model, legend C is the SVM model, and legend
D is the AHP-entropy-SVM model. As shown in Figure 8, compared with the other three models,
the MAE of the AHP-entropy-ANFIS model was the smallest, at less than 1. During the training process,
the MAE of the AHP-entropy-ANFIS model was about 1/1.6 that of the ANFIS model, and about 1/6
that of the AHP-entropy-SVM model. During the testing process, the MAE of the AHP-entropy-ANFIS
model was about 1/1.3 that of the SVM model, and about 1/1.6 that of the ANFIS model.



Mathematics 2020, 8, 1209 15 of 20Mathematics 2020, 8, x FOR PEER REVIEW 15 of 20 

 

 

Figure 8. The mean absolute error of the different models. 

In addition, the predicted values and test values of the different models were compared, and the 

models’ ability to predict the UW of saline soil was judged by the conclusions obtained. 

Figure 9 describes the relationship between the data output by the different models during the 

training process and the real (experimental) data. As shown in Figure 9, compared with the ANFIS 

model, the prediction result of the AHP-entropy-ANFIS model was closest to the real experimental 

value. The changes in the blue curve and red curve are very similar; the difference between the two 

curves is very small, and the two curves basically coincide. The performance of t he SVM and AHP-

entropy-SVM models was slightly worse, as the blue and red curves are not completely coincident. 

Although the changes in the two curves are similar, they present some differences. This result reveals 

that, compared with the other three models, the AHP-entropy-ANFIS model provided a stronger 

fitting capability and better performance during the training process. 

 

 

Figure 8. The mean absolute error of the different models.

In addition, the predicted values and test values of the different models were compared, and the
models’ ability to predict the UW of saline soil was judged by the conclusions obtained.

Figure 9 describes the relationship between the data output by the different models during the
training process and the real (experimental) data. As shown in Figure 9, compared with the ANFIS
model, the prediction result of the AHP-entropy-ANFIS model was closest to the real experimental
value. The changes in the blue curve and red curve are very similar; the difference between the
two curves is very small, and the two curves basically coincide. The performance of the SVM and
AHP-entropy-SVM models was slightly worse, as the blue and red curves are not completely coincident.
Although the changes in the two curves are similar, they present some differences. This result reveals
that, compared with the other three models, the AHP-entropy-ANFIS model provided a stronger fitting
capability and better performance during the training process.
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Figure 9. The predicted data of the different models during the training process and the real
(experimental) data.

Figure 10 describes the relationship between the data output by the different models during
the testing process and the real data. As described in Figure 10a, the variations in the blue and red
curves are similar, and there is only a small difference. In the two curves, the curve corresponding to
data points 2 to 6 basically coincides. Thus, the error of the AHP-entropy-ANFIS model is smaller.
In Figure 10b–d, the data point corresponding to the red curve becomes larger or smaller, resulting in a
large difference between the red and blue curves. This shows that during the test process, compared
with the AHP-entropy-ANFIS model, the other three models provided a weaker fitting ability and
poorer performance.
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Figure 10. The relationship between the predicted data of the different models during the test process
and the real data: (a) the predicted data of the AHP-entropy-ANFIS model during the test process and
the real data; (b) the predicted data of the ANFIS model during the test process and the real data; (c) the
predicted data of the SVM model during the test process and the real data; (d) the predicted data of the
AHP-entropy-SVM model during the test process and the real data.

Xu [45], Anderson and Tice [46] studied the unfrozen water content. They built empirical models
on the basis of experiments to predict the unfrozen water content. The unfrozen water content is
obtained through empirical formulas, but only the unfrozen water content corresponding to the
freezing temperature can be obtained, and the complete unfrozen water content change characteristic
curve cannot be obtained. So, the models established in this paper can better predict the unfrozen
water content.

In short, through the comparative analysis of the statistical factors, the predicted values, and the
experimental values of the different models, it was found that, compared with the ANFIS, SVM and
AHP-entropy-SVM models, the AHP-entropy-ANFIS model can produce smaller prediction errors
and have a stronger fitting ability. Therefore, the AHP-entropy-ANFIS model offers better prediction
capability. Consequently, the AHP-entropy-ANFIS model is the best choice for predicting the UW of
saline soil in Zhenlai.

5. Conclusions

This article mainly focused on the UW of sodium-bicarbonate-type salinization frozen soil in
Zhenlai county, western Jilin province. The UW of the remodeled samples was obtained using a nuclear
magnetic resonance experiment. The combined weighting method was used to study the influence
of temperature, salinity and initial water content on the UW. On the basis of these results, combined
with the fuzzy neural inference system, the UW prediction model was established. The five-fold
cross-validation method was used to train and test the model. The following conclusions can be drawn:

1. The soil contains a great deal of clay and highly hydrophilic clay minerals, so a thick water film
forms around the soil particles. In addition, as the water content or salt content increase, the water film
around the soil particles becomes thicker. Therefore, under the same temperature, the higher the water
content or salt content is, the higher the UW;

2. The AHP (subjective) and entropy weight method (objective) were used to evaluate the degree
of influence of temperature, salt content, and water content on UW, and thus determine the subjective
and objective weights of temperature, salt content, and water content. The distance function was
introduced and applied to combine the subjective weight and objective weight, and the combined
weight of the three influencing factors was obtained.

3. On the basis of the combined weighting method and the ANFIS method, the AHP-
entropy-ANFIS ensemble model was proposed. In addition, this model was compared with the ANFIS
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model, the SVM model and the AHP-entropy-SVM model. It was found that the p-values of all models
were less than 0.05. Compared with the other three models, the R2 of the AHP-entropy-ANFIS model
was the largest, its MSE, MAPE, and MAE were the smallest; and its stability was the best. Moreover,
the difference between the predicted value and the experimental value of the AHP-entropy-ANFIS
model was relatively small. Therefore, the AHP-entropy-ANFIS model had the strongest prediction
capability, and thus is more suitable for predicting the UW of saline soil in the Zhenlai area than
other methods.
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