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Abstract: Many human virus infections including those with the human immunodeficiency virus
type 1 (HIV) are initiated by low numbers of founder viruses. Therefore, random effects have
a strong influence on the initial infection dynamics, e.g., extinction versus spread. In this study,
we considered the simplest (so-called, ‘consensus’) virus dynamics model and incorporated a delay
between infection of a cell and virus progeny release from the infected cell. We then developed
an equivalent stochastic virus dynamics model that accounts for this delay in the description of the
random interactions between the model components. The new model is used to study the statistical
characteristics of virus and target cell populations. It predicts the probability of infection spread
as a function of the number of transmitted viruses. A hybrid algorithm is suggested to compute
efficiently the system dynamics in state space domain characterized by the mix of small and large
species densities.

Keywords: virus dynamics modelling; Markov process with delay; Monte-Carlo method

1. Introduction

Since the mid 1990s, mathematical modelling of human virus infections has been intensively
developed for various infections including those with the human immunodeficiency virus type
1 (HIV) and the hepatitis B virus. Reviews on existing approaches are presented, i.e., in [1-4].
Mathematical modelling of virus-target cell interactions based on the understanding of the underlying
biological processes can provide deeper insights into the mechanisms of the infection dynamics,
see [3,5-7]. The majority of these studies are based on deterministic descriptions with continuous
populations of virus particles (virions) and target cells. This approximation is accurate when the
number of virions, infected cells and other interacting components are large enough that is typical
for the later stages of an infection process. However, this deterministic framework has its drawbacks
because an infection process is intrinsically stochastic. Populations of interacting species undergo
stochastic fluctuations that are more profound at the early stage of an infection when the number of
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virions and infected cells are still small. Furthermore, random fluctuations may lead to extinction of an
infection process. Such effects are well suited for being analyzed with methods of stochastic processes
theory.

The stochasticity of a virus infection may be accounted for in models using stochastic differential
equations (SDEs) governed by Brownian motions (BMs), i.e., [8-11]. This modelling approach seems
more realistic and can explain phenomena like virus extinction (cf. [12]). However, the applicability
of such an approach is restricted by the daunting task of parameter identification for processes like
volatility or the probability density function (PDF). For example, the volatility of the Brownian process
varies with the population size of interacting components and that is not easy to account for.

Another approach to model stochastic infection dynamics is the use of a discrete or continuous
Markov Chain (MC) in the framework of the Monte-Carlo method. This approach and algorithms for
numerical simulations have been developed first for chemical kinetics (cf. [13,14]). Pearson et al. [15]
considered a two-component model for early infections with the use of a MC. A similar simulation
of the ‘consensus’ three-component virus dynamics model (cf. [2]) was proposed and studied in [16].
In such an approach, there is no necessity to work out parameters of Brownian motion or other
processes because the transition rates (propensities) for the Markov chain are determined directly from
parameters of the deterministic equations. A comparison between the SDE approach and the discrete
and continuous MC approach for a simple population dynamics model can be found in [17].

Insightful models of virus infections may take the intracellular phase of the virus life-cycle
into account and thus, the time delay between infection of a cell and the production of new virus
progeny (cf. [18]). A deterministic model with a fixed time delay has been proposed by Herz et al. [19]
(see also [20,21]). A more sophisticated model accounting for two distributed time delays was
developed in [22]. Stochastic modelling of infection dynamics with fixed and distributed time delays
based on the SDE approach can be found in [11,23,24].

In our present work we generalized the ideas of [16] on a model with time delay and used
a Markov Process (MP) with a fixed delay instead of a Markov Chain (MC) considered in [16].
This complicates computation but makes the model more realistic. We also propose a hybrid model for
effective computation of statistical parameters of the stochastic virus dynamics.

In Section 2, we describe the well-known deterministic model of virus infection dynamics with
delay. The related stochastic model is presented in Section 3. In Section 4, the hybrid modelling
algorithm is developed. We summarize the results in Section 5.

2. Deterministic Model

The standard and classic ODE system for the three species virus dynamics has been introduced
in [25,26] (see also [1,2,19]):

¥=A—dx—pBxv (1a)
y = pBxo—ay (1b)
0=ky—uv (1c)

where x, y and v are, respectively, the numbers of uninfected cells, infected cells and the number of free
virus particles (virions) in a fixed volume compartment. The authors suppose that uninfected cells are
produced at a constant rate, A, and die at a rate dx; virions infect uninfected cells at a rate proportional
to the product of their numbers, fxv; infected cells produce free virus at a rate ky; infected cells die at
a rate ay; free virus particles are removed from the system at a rate uv.
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Herz et al. [19] have modified ODEs (1) by including the delay accounting for a latent period
between the time when target cells are contacted with virions and the time when proviral DNA
integrates into the cellular genome and proposed the following DDE system

X=A—dx—pxv (2a)
y=pBpx(t—1)o(t—T)e " —ay (2b)
0 =ky—uv (2¢0)

where T is the time lag between the fusion of the virion with the cell membrane and integration of
proviral HIV DNA in the cell genome. The term Bx(t — T)v(t — 7)e " indicates that the secretion
rate for infected cells is proportional to the number of uninfected cells and virions at the time t — T
decreased by factor e~ because of natural and immune-mediated death infected cells with the rate a
in time 7. Variables in all other terms are considered at time ¢.

Ciupe et al. [27] have proposed a four species model with account for the second type delay:
the time lag between virion’s DNA penetrates the cell and new virions are produced and released.
We present here a similar, three species DDE version:

X =A—dx— pxv (3a)
y = pxo—ay (3b)
0 =ky(t—T)e " —uo. (3¢c)

Here, T is the time delay between penetration of a virion into a cell and release of new virions.
Term ky(t — T)e~"" indicates that the growth rate for virions is proportional to the number of cells
infected by virus at the time f — T decreased by a factor e~** because of natural and immune-mediated
death of infected cells with the rate a in time 7.

A more general model accounting of four species interaction for the both types of delay has been
proposed by Pawelek et al. [22]. Its three species version is studied in [28].
Applying results obtained in [28] to DDEs (3), we can show that the basic reproduction number
of the model is
Ry = ﬁ—/\ke_”.

0= 4)

The model has two equilibrium states: the infection-free equilibrium {x = x9,y = 0,v = 0} where
xo = A/d and the infection equilibrium {x = X, ¥ = Yoo, ¥ = Voo } Where
X0 du - d
o OOZiRO_le ’ vOO:*RO_]-' (5)
The infection equilibrium exists and is asymptotically stable if Ry > 1.

Let vy virions arrive at instant t = 0. It is natural to take xg = A/d as an initial number of
uninfected cells in the virus dynamics and to assume that there were no infected cells before first

Xoo =

virions arrived. Then we have the following initial conditions
x(0) = xo, y(0) =0, v(0) = v. (6)
For DDE:s it is necessary to set also the history function defined in the interval [—7,0):
x(t) =x9, y(t)=0, v(t) =0, t € [—1,0). (7)

Equation (3) with initial conditions (6) and history (7) form a complete initial value problem (sometimes
called the initial data problem) for the DDEs and uniquely define the virus dynamics for t > 0. They
can be numerically integrated, for example, with the use of Matlab function dde23().
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Nowak and May [2] have elaborated typical parameters for a typical HIV virus infection process:
A=10°,d=01,a=05 B=2x10"7, k=100, u = 5. 8)

These parameters have units of inverse days: d~!. These values have been used in a number of works
including our previous work [16].

Examples of computations of the DDEs with parameters (8) and different types of delay are
shown in Figure 1. The same value T = 1d is used in both cases: for the first (2) and the second (3)
types of delay. We denote the solution for the first case as x1(t), y1(t), v1(t) and for the second case as

x2(t), y2(t), va(t).

Populations

Time (days)

Figure 1. Dynamics of all species involving only the first type delay: variables x1, 1, v1 (solid) and only
the second type delay: variables x5, 1>, v; (dashed). In both cases T = 1d. The dotted line indicates
time-shifted and scaled number of infected cells: y, (¢ 4+ T)e™** which coincides with 1.

Observe that for the same delay, the dynamics in both cases is identical for the number of
uninfected cells x1 (t) = x,(#) and the number of virions vy (t) = v,(t) for all t, whereas the dynamics
of infected cells differs by time shifting and scaling: y1 (t) = y2(t + 7)e™“". This means that contribution
of both delays is similar into the virus dynamics.

This fact motivates a detailed study of the model with the second type delay (3) to build
an equivalent stochastic model. Building of a stochastic model with the first type delay (2) is more
involved and will be considered in the subsequent works.

3. Stochastic Model

3.1. Markov Process Approach

Now we account for a discrete nature of the populations and random interactions between
different species. We consider an approach based on Markov process formulation extending directly
DDE:s (3).

Let X,Y,V € Z" be non-negative integer numbers of uninfected, infected cells and virions,
respectively. Then we assume that their dynamics obeys the following time continuous Markov
process (MP) with delay (Table 1).
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Table 1. Markov Process with Delay.

#  Transition Propensity = Description
1 X)) — X(tH)+1 A Uninfected cell birth
2 X)) - X)) -1 dX(t) Uninfected cell death
X(t) = X(t)—1 . .
3 Y%t; = Ygt 11 BX(H)V(t)  Cellinfection
4 Y()—=Y(H) -1 aY(t) Infected cell death
5 V@E#)—-V(i)+1 k:Y(t—71)  Virion birth
6 ViH)—-V(EH) -1 uV(t) Virion death
Where
ky = ke % )

is an effective (cell-death adjusted) free virus production rate (per cell).
The initial conditions for MP (Table 1) are

X(0) = Xo, Y(0) =0, V(0) = Vo, Xo, Vo € Z* (10)

where X\ has the Poisson distribution with the rate xo = A/d

X0 ,—x
P(Xo=mn)= e 0, (11)
in line with [16]. For large x it can be approximated by the Gaussian distribution with mean and
variance equal to xg. Therefore the coefficient of variation (CV), defined as the standard deviation over
the mean, equals x /2 that gives 1073 for xo = 10°. Thus the probability density function (PDF) is
very narrow for realistic numbers of uninfected cells x, so the effect of the stochasticity is negligible
and Xy can be approximated by the integer closest to xo = A/d.
A Markov process with delay also should include history at time t € [—7,0). Obviously for the
virus dynamics we have absence of infected cells before the infection started:

Y(t)=0, te[-1,0). (12)

Relation (Table 1) implies that variables X, Y, V are non-negative as the propensity of transitions 2,
3,4, 6, in which the number of one of the species decreases, vanishes as soon as X = 0 (transitions 2
and 3) or Y = 0 (transition 4) or V = 0 (transition 6).

Process (Table 1) can be re-written in terms of Poisson processes [29]:

X(£) = X(0) + Poy (At) — Poy (d /Ot X(s)ds) —Pos (p /Ot X(s)V/(s) ds) (13)

Y(t) = Y(0) +Pos (p /0 X)WV (s) ds) — Pos (o /O Y (s) ds) (14)

t

V(t) = V(0) + Pos (ke_m /O(tT)VO Y(s) ds) — Pog (u/o

where Po;(-),i = 1,...,6 are independent Poisson processes.

A~ A

Consider the scaled MP (X(¢), Y (t), V(t))

V(s) ds) (15)

X(t) = ATIX(AL),  Y() =AY (AL, V()= ATIV(AL (16)
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described by the following equations

R(#) = R(0) + A~ "Poy (AAt) — A" Poz( Ad/ tX(S) ) (17a)
i
7(t) = ¥(0) + A~ "Pos (AB [ X(s t
0 (17b)
— A~'Poy(Aa /O ¥(s) ds)
) X - . (t—7)VO0
V(t) = V(0) + A 'Pos (Ake /o Y(s) ds) (17¢)

— A 'Pog (Au /Ot V(s) ds)

were X(0) = X(0),Y(0) = Y(0), V(0) = V(0) and parameters A, d, B, a, k, u and T are properly scaled.
Proposition 1. If (X(0),Y(0),V(0)) — (xo,Y0,v0) then for any T > 0 the scaled process (17) weakly
converges as A — oo to the solution of the system (3) with the initial condition (xo, Yo, vo)

(X(0), Y (1), V(1)) — (x(t),y(t),0(t)) (18)
on the interval 0 < t < T.

The proof is presented in Appendix A.

Algorithm for numerical simulation of this model is proposed by Anderson [30] (namely,
Algorithm 7 in this work) and based on the next reaction method due to Gibson and Bruck [31].
It is also described and studied by Banks et al. [29] (namely, Algorithm 2 in this work) .

3.2. Direct Numerical Simulation

We will study the virus dynamics described by MP (Table 1) numerically. The simulation algorithm
is a slightly modified Algorithm 2 described in [29].

To describe the numerical algorithm modelling MP (Table 1) we introduce the state vector
X = [X(t),Y(t),V(t)]" and the N x M matrix of transitions

1 -1 -1 0 0 0
T=| 0 0 41 -1 0 0 (19)
0 0 0 0 +1 -1

where N = 3 is the number of variables, M = 6 is the number of transitions in the process. If the mth
transition occurs at a certain instant, then the mth column of matrix T should be added to the state
vector X.

For the MP with delay we have to arrange two arrays: tto store the instants when Y has been
changed and YY to store the number of infected cells Y at those instances. These arrays contain
a history for the Y component of the MP.

To handle arrays t¥ and YY, we use two counters i; and i, where i; indicates the position of the
the earliest event to be accounted in t¥,YY while ip indicates the position of the last event stored in
those arrays. The set of events to be accounted is not empty if ip > ij.

The process dies out at instant ¢ if V(t) = 0 and Y(t) = 0 and the set of events to be accounted
is empty, i.e., ip < 71. This is a difference from the process without delay for which the condition of
extinction is simply Y (t) = V(t) = 0.
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To model the process, we introduce a propensity vector v = [v,...,Vp], a vector of integrals
J=1J1,.--,Jm], and also vector R = [Ry, ..., Ry] where Ry, = — In(ry,) with r,,, be random numbers
uniformly distributed on [0, 1] .

In view of Table 1 the calculation of the propensity vector v depends on four components:
X(t),Y(t),V(t),Y(t — ), therefore it is convenient to introduce the augmented state vector
X = [X(1),Y(t),V(t),Y(t—1)]

We also introduce an augmented vector of expected timesteps for all the transitions t =
[t1,...,tm+1] which contains an additional component ty,1. Time tp;.1 — T indicates an instant
when the number of infected cells Y has been changed, thus ¢, is the instant when this change
affects the dynamics.

3.3. Full Stochastic Numerical Simulations Results

Algorithm 1 for the direct numerical simulations of MP (Table 1) has been implemented in the C
language with the use of the PCG library [32] for the random number generator. The script calling the
program in loop to obtain N, = 10° non-extinct realizations (see below) for various V; is written in the
GNU Bash. It utilizes the GNU parallel tool [33] to parallelize executions of different realizations on
a maximum available number of threads.

Algorithm 1 Implementation of the Markov process with delay.

1. Set the current time ¢ = 0 and the final time of the process t;

2. Initialise the augmented state vector X = [X0,0, Vo, O]T andset]: [, =0m=1,...,M;
3. Compute the propensity vector v(X) using values of propensity indicated in Table 1;
4. Generate M random numbers r,,, and compute vector R: R;, = —In(ry,), m=1,..., M;
5. Compute the time steps to next event in all the transitions: At;, = Ry, /vy, m =1,..., M and set
Aty = 00;
6. Allocate arrays t¥ and y¥, set t{ = 0, y} = 0; set counters iy = 1, i = 0 for these arrays;
7. Find transition p with the minifnal time step Aty = min{Aty,..., Aty };
8. Update vector J: [y = i + v Aty, m=1,..., M;
9. Update the current time t = t + At);
10. If p < M +1then

(a) wupdate the state vector X: X, =X, + Typ,n=1,2,3

(b) set],=0
(c) if p =3 or p = 4 (transition in which Y has been changed) then seti, =i, + 1, YY (i)=Y,
th=v
2

11. If p = M+ 1 then
(a) update the state vector X: Xpe1 = =Y
(b) seti; =1i1+1
(c) ifip <ijand X, = X3 = 0 then flag the realisation as extinct;

12.  Update the propensity vector v = v(X);

13. If p < M then generate random number 7 and compute R, = — In(r);
14. Update the time step vector Atm =Ry —Jm)/vm,m=1,...,M;

15. If iy > iy thenset Atprq = tY(i7) — t else set Aty = oo;

16. Store the current state and time;

17. Ift <ty then go to 7 otherwise terminate the computation.

Two examples of the MP numerical simulation are presented in Figure 2. The left plot represents
an established viral infection process. A realization in which numbers of virions and infected cells
can reach their peak values is a non-degenerate realization and corresponds to a developed infection
disease. We observe relatively high stochastic fluctuations in the number of virions and infected cells
at the very earlier stage of infection when those numbers are not large. Those fluctuations become
relatively low at later stages with increase of the numbers of all species. To make the fluctuations more
visible parameter A is decreased and parameter f is increased by a factor of 10. Such scaling does not
change the deterministic dynamics for the same ratio v/ xo.



Mathematics 2020, 8, 1207 8 of 21

102 P -
- e
7z -
a a _ - e
2 8 .-
= ki .-
& 210"} A
& m -
—X--=z
— Y --y
—V ==
10°
3 4 5 6
Time (days) Time (days)
@ (b)

Figure 2. Examples of non-degenerated (a) and extinct (b) realizations X(t), Y(t), V(t) obtained by the
MP direct numerical simulation (solid curves). The dashed lines indicate the deterministic solution of
virus dynamics x(t),y(t), v(t). The time delay is taken T = 1d. To make the fluctuations more visible
parameter A is decreased and parameter f§ is increased by a factor of 10.

The plot in Figure 2b represents the degenerated (extinct) realization. In contrast to the
deterministic case, if the infection is modelled via Markov process the infection dynamics can extinct
in some realizations, i.e., it can reach the state V(t,) =0, Y(t € [t. — T, t.]) = 0 at a certain time f, after
which the viral dynamics is terminated. As usual this occurs at the eclipse phase when numbers of
virions and uninfected cells are still not too large.

The probability of infection establishment, P;, and the extinction probability, P, = 1 — P;, strongly
depend on the initial number of virions V{ but also on the delay time 7. The described above numerical
simulation enables computation of these probabilities and their dependance on parameters of the
model by counting the number of non-degenerated (infection) realization N; and degenerated (extinct)
realizations:

P= dm (N/N),  P= lm (N/N) (20)
where N = N; + N, is the number of all realizations.

For finite N, the N;/N and N./N ratios are distributed as the sum Zjl\il ¢j where ¢; are
independent and identically distributed (iid) Bernoulli random variables with the success probability
P; and P, respectively. We can show that, if P; and P, are not close to zero or unity then the
probability density function (PDF) of N;/N and N./N for N — oo tend to the Gaussian law with the
standard deviation

op, = 0p, = \/NP,Pe =~ /N;N./N (21)
Equation (21) enables estimation of the accuracy of computation of P;, for given number of realizations.
The accuracy within two-three significant digits can be guaranteed for N = 10° taken in our
modelling study.

The computed dependence of P; on 7 for different Vj and fixed other parameters (8) is shown in
Figure 3a.
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Figure 3. The infection probability P; (20) versus time delay 7 for different initial number of initial
virions V (indicated in the legend). (a) for the scenario k¢, Rg & e~%T. (b) for the scenario k¢, Ry = const.
Open circles indicate the same values computed with the use of the hybrid method described in
Section 4. The vertical dot-dashed line on the left plot indicates T = 4.16 d at which Ry = 1.

As it is seen in the figure, the infection probability P; decays fast when the time delay T approaches
four days. Remind that in virtue of Equation (4), the basic reproduction number exponentially depends
on T decreasing from Ry = 8 at T = 0 down to unity at T = 4.16d. For this reason one can expect
that the infection probability P; vanishes at T > 4.16 d. However, the plots in Figure 3a show that P;
remains finite even T > 4.16 d.

To explain this phenomenon we recall that a formally non-degenerated process does not represent
a developed infection dynamics when Ry is close to unity. The infection peak is developing very slow:
hundreds of days (that is not typical for HIV infection), the number of virions is smaller than the
number of uninfected cells, the number of uninfected cells varies insignificantly. Therefore, when the
time delay 7 exceeds four days, the process with the fixed parameters (8) does not reproduce the
observed HIV viral infection dynamics, and the parameters (8) should be adjusted.

Note that if we keep the parameter k to be fixed then the effective free virions production rate
kr = ke™*" decays exponentially with the growth of time delay 7. Remember that the free virions
production rate k = 100 d~! has been elaborated by Nowak and May [2] from the available HIV
viral dynamics data (although without delay). Therefore the essential reduction in the actual virus
producing rate with the growth of time delay looks unnatural. It seems more reasonable to consider
another scenario to study the effect of the time delay variation on the system dynamics: to keep the
actual free virus producing rate k; to be constant while varying the time delay 7. In the model studied
here we can set k; = 100 d ! as it is found in [2]. Thus, instead of relation (9), we employ

kr = ki—g = const. (22)

This is equivalent to that we increase parameter k multiplying it by ¢ in DDE (3) and in MP
(Table 1). Note that keeping k; constant we also keep constant the basic reproduction number
Ro(t) = (BAkc)/ (adu) defined by (4).

The scenario corresponding to the constant parameter k reflects the following extreme situation
when a productively infected cell does not die until a certain quantity of the virions is produced and
released. For example, the productively infected cell entering the cell cycle could be considered
as escaping the cell death before the division cycle is completed. In addition, some cells can
keep producing the virions in oscillatory ways without dying for time periods larger then the
considered delays [34]. Hence, the case of a constant k is instructive. We would prefer to keep
it in our consideration.
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This is an alternative approach to study dependence of the viral infection process on the time
delay which is more appropriate for large 7. Dependance of the extinction probability on T for different
W is plotted in Figure 3b. It demonstrates that P; is independent of T in this approach at least within
the accuracy of computation.

From here an important and non-obvious result follows: the probability of infection development
P; depends on parameters of a stochastic system combined in Ry (4) which rigorously speaking is the
basic reproduction number of the equivalent deterministic system.

To study statistical characteristics: the average trajectories and deviation caused by random
fluctuations we should note that the current PDF of species populations can be significantly asymmetric
and have more than one peak, i.e., strongly non-Gaussian. This is clearly seen from Figure 4 where
examples of histograms of uninfected cells numbers are shown for selected instances.

For example in the second scenario k: = const the standard deviation exceeds the mean value
of uninfected cells in the interval 18.18 < t < 18.74 d. In this case it is more correct to deal with
quantiles and median than with mean value and standard deviation. First of all it has sense to consider
statistics of extinct and non-extinct realizations separetely. In the extinct realizations, the number of
uninfected cells is close to the initial number of cells xg = 10° that gives a high peak visible in both
plots in Figure 4.

The plots of the current median and interdecimal range (IDR), for all the species in non-extinct
realizations are shown in Figures 5 and 6 for T = 1d and different number of initial number of virions
Wo. The coloured patches indicate the regions where 80% of all realizations are located. The mean
values, X, Y, V, are also plotted by dot-dashed curves. They are close to the median lines in the most
parts. The maximum discrepancy between mean, median and deterministic trajectories takes place in
the time interval of the fast decrease of the uninfected cells.

2500 2500 |
2000 2000 |
1500 1500
1000 1000 ¢
500 500
0 ol
10° 10°

X
(a) (b)

Figure 4. Histograms of the number of infected cells X for V) = 20 and 7 = 1 d at time instances
indicated in the legend. (a) first scenario kr, Ry « exp{—at}. (b) second scenario k¢, Ry = const.
The dashed lines are drawn at the infection-free equilibrium value: xg = A/d = 10°. The histograms in
red correspond to the maximal standard deviation of X in non-extinct realizations.

The plots show that the IDR regions width remains approximately the same for various number
of V getting slightly thinner with the growth of V. Observe also that the smaller number of virions
the greater the mean/median number of virions in non-extinct realizations exceeds the deterministic
values. Furthermore, the peak of mean/median number of virions in non-extinct realizations appears
slightly earlier than peak in the deterministic solution: the smaller number of V}, the greater is the shift.
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Figure 5. Results of the simulations in the first scenario: k;y = ke " for T = 1d and Vj = 100 (a),
Vo =20 (b), Vo = 5 (c). Dashed and dashed-dot lines represent, respectively, the current median (med)
and mean values (with bars) of numbers virions (red) and uninfected (blue) and infected (green) cells
in infection realizations. Patches represent the interdecimal range (IDR) for the same variables. Solid
lines represent results of deterministic process x, y, v with the same parameters.
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Figure 6. Results of the simulations in the second scenario: k; = k for T = 1d and V = 100 (a), Vj = 20
(b), Vo = 5 (c). Dashed and dashed-dot lines represent, respectively, the current median (med) and
mean values (with bars) of numbers virions (red) and uninfected (blue) and infected (green) cells in
infection realizations. Patches represent the interdecimal range (IDR) for the same variables. Solid lines
represent results of deterministic process x, y, v with the same parameters.

4. The Hybrid Stochastic Model

The direct numerical simulation is rather time consuming because of a large number of species
to be accounted: X = O(Xj) ~ 10, Vimax > Xo. This causes the time steps between events to be very
small. To compute statistical characteristics of the infection process, it is required to run a huge number
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of realizations especially for evaluation of the infection/extinction probability. Therefore one needs to
consider methods to accelerate the computation process.

Plots in Figure 2a show that the randomness in realizations appears mainly due to the relatively
high fluctuations at the beginning of viral dynamics while the numbers of virions and infected cells are
not large. The curves become rather smooth at a later time, the numbers of all dynamic participants
are large (several orders), and the fluid dynamics limit works rather well. This dynamics is typical
for an infection process with small initial number of virions (Vy < Xj): see [16] for viral dynamics
and [35-38] for an epidemic outbreak. Therefore, we can employ the hybrid modelling approach
developed in [16,35,37] in which the stochastic dynamics is to be split into two main phases: a genuine
stochastic and quasi-deterministic ones.

Phase 1 is the time interval, at which the numbers of virions and infected cells are not large,
and hence, the stochasticity of interaction between species has to be taken into account. The number
of uninfected cells is large enough and its randomness is not essential in all the phases. Its global
variation remains also small for long time after infection starts. The last fact enabled the authors of [16]
(similar to what is done in [35-38]) to simplify description of the earlier phase model by excluding the
uninfected cells dynamics from the total process approximating the number of uninfected cell by its
initial value: X =~ xg.

In a developed infection process, populations Y, V reach large numbers at a certain instant ,.
Thus all the populations become large enough that the total process can be switched to a deterministic
behaviour described by DDE (3) (phase 2).

Here we propose a modified method for phase 1 in which the number of uninfected cells x(t)
is not approximated by the constant xy but can vary obeying a differential equation. This makes
the algorithm more flexible as at the switching point the number of uninfected cells can be differ
significantly from it initial value x( (remaining X > 1).

This coupled deterministic-stochastic process can be described as follows

dx(t)

5 = A—dx(t) = pV(H)x(b) (23)

Process (Table 2) is a reduced MP with delay. Differential Equation (23) has a stochastic
parameter V (f).

Table 2. Hybrid Markov Process with Delay.

# Transition Rate Description

1 Y(t) = Y(#)+1 Bx(t) V(t) Cell infection

2 Y(#) = Y() -1 aY(t) Infected cell death
3 V() = V() +1 krY(t—1) Virion birth

4 V()= V() -1 uV(t) Virion death

In this approach switching from simplified stochastic process (23) to deterministic process (3)
occures at the time ¢ = ¢, at which the following weaker condition should be fulfilled:

min{Y,V} > X, > 1, (24)

and, therefore, x(t,) can be essentially different from xy. Here X, is a threshold—the minimum
number of a component at which its dynamics can be accurately approximated by a deterministic
model. For example, in the computations below, we use X, = 10°.

The initial conditions for process (23) are similar to (10):

x(0)=xg=A/d, Y(0)=0, V(0)=V, VyeZ (25)
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The history is also described by (12).

The convergence of MP (23)—(25)—(12) to the deterministic process described by (3)-(6)—(7) is
similar to that for MP (Table 1)—(10)—(12).

Stochastic process (Table 2) has been implemented in the same way as MP (Table 1) and described
in Algorithm 2. The state vector becomes X = [Y(t), V(t)]” and the matrix of events has the size
NxM=2x4:

T = (26)

0 0 +1 -1

41 -1 0 0]

The augmented vector for this process is X = [Y(t), V(t),Y(t — 7)]. The propensity vector v =
[v1,...,vm]T now depends on x and X. The dependence is indicated in Table 2. All other vectors
J="U1-- JuT, R=[Ry,...,Ru]T, t = [t1,...,tpms1)T used in Algorithm 1 are the same with the
new M = 4.

The two-step predictor-corrector method is implemented to integrate ODE (23)

X =x;+ At ()\ —dx; — ,BVZ'XZ') (27a)
Xip1 = X+ 50t (20 —dx; — d% — BVix; — BVij1 %) (27b)

where At; = tj;q — t; is the time interval between two subsequent events in process (Table 2); x; =

x(t;), Vi = V(t;).

Algorithm 2 Implementation of the hybrid Markov process with delay.

1. Set the current time t = 0 and the final time of the process ¢ 1z
2. Setx(0) = xg and initialise the augmented state vector X = [0, Vj,0]” and vector J: J,, = 0,m =

1,...,M;

3. Compute the propensity vector v(x, X) using values of propensity indicated in Table 2;

4. Generate M random numbers r,,, and compute vector R: R,, = —In(ry,), m=1,..., M;

5. Compute the time steps to the next event in all the transitions: At,;, = Ry, /vy, m=1,...,M and
set Atpry1 = oo;

6. Allocate arrays t¥ and y¥, set tf = 0, y} = 0; set counters i; = 1, iy = 0 for these arrays;

7. Find transition p with the mlmmal time step Aty = min{Aty,..., Aty };

8. Update vector J: [y = J +vm Atp, m=1,..., M;

9. Update the current time t = t + At);

10. If p < M +1then

(a) setAx=A—dx— /S)V(Nx (recall Xy = V,N = 2)
(b) setx =x+ AtyAx

(c) update the state vector X: X, = X, + Typ,n=1,2
(d) setx =x+ 1At (Ax+ (A —dx— BXNE))

(e) set],=0 5
(f) if p = 1or p = 2 (transition in which Y has been changed) then set iy = i, +1, YY(io) = X1,
(i) =t+T;

11. If p= M+ 1then
(a) update the state vector X: X M+1 =Yy
(b) seti; =1i1+1;
12. Ifip < ijand X; = X, = 0 then flag the realisation as extinct and terminate the computation.
13. Update the propensity vector v = v(x, X);
14. If p < M then generate random number r and compute R, = —In(r);
15. Update the time step vector Atm =Rm—Jm)/vm,m=1,...,M;
16. Ifip > iy then set Aty 1 = tY (i) — t else set Aty 1 = o;
17. Store the current state and time;
18. If t > t; then terminate the computation.

19. If min{}vﬁ, 5(2} > X, then set t, = t and switch to phase 2 otherwise go to 7.
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If the process has not died out, the computation is continued till time f, when condition (24) is
satisfied. For t > t, the process can be switched to a deterministic one described by DDE (3) with the
initial conditions

x = x(ty), y=Y(t), v="V(t) (28)

at time t = t, where x(t,), Y(t.), V(t«) are the final results of computation (23).

For DDE (3) we have to define also the history y(t), t € [t. — T, t«). Itis complicated to employ the
computed stochastic piece-wise function Y () as it contains too many parameters and its use requires
elaborate search within intervals between its discontinuities. Instead we employ an approximate
solution of DDEs (3) valid at early stage of viral dynamics with x(t) = const = xq.

Substituting x = x( into DDEs (3) we reduce it down to two equations

y=pxov—ay (29a)
0=kry(t—7)—uv (29b)

In contrast to the case T = 0 considered in [16], Equation (29) do not admit a solution in the closed

form for all times and should be integrated numerically. Nevertheless, in the interval [0, 7] the solution

is explicit: here the number of virions decreases exponentially: v(t < T) = voexp{—ut}, y(t < 1) =0.
DDEs (29) admit an exponential (self-similar) solution

v =Ce", y=C —D('Bioa et (30)

where C is a constant determined by vy, « is a positive solution to the equation
(a+ ) (o + ) = Brokee ™", (31)

Dependance of « on 7 for parameters (8) is shown in Figure 7.

2\ — &, = ke |
ky = k
a(d™h) Ll |
0 1 1 1
0 1 2 3 4

Time delay, 7 (d)

Figure 7. Growth rate a vesus 7 for k., Ry o< e 7 (black) and k¢, Ry = const (red).

Solution (30)—(31) describes an intermediate asymptotic behaviour in the interval between the
initial decreasing of the virions number and approaching the infection peak. This asymptotics is clearly
seen in Figure 1. Almost linear parts of the curves for y(t) and v(t) plotted in logarithmic scale indicate
an exponential growing function. An almost exponential infection growth is also seen in the plot of
a non-extinct realization in Figure 2a.

Therefore we approximate it by an exponential function utilising the self-similar solution (30) at
stage 2 by selecting time ¢, such that the instant of the history beginning, ¢, — 7, belongs to stage 2.
To this aim we solve Equation (31) with respect to parameter a and approximate function y(f),
necessary for the history, as

y(t) = Y(t)e* ), te (te — T, tx). (32)
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Computations show that the use of the hybrid model accelerates the process by several orders.
For example, the full model with xy = 10%,v9 = 8,7 = 0.4,t final = 20 d needs 32.2 s of the CPU
time on Intel@© Core™ i7-7500U CPU 2.70GHz x2 whereas the hybrid version is computed in 3 ms
on average.

An example of several non-extinct realizations computed by the hybrid method for V = 100,
7 = 1d and X, = 103 is shown in Figure 8. Deterministic part of the curves computed by integration
DDEs (3) (phase 2) are drawn by lighter colours. Switching from phase 1 to phase 2 is indicated
by circles on the curves for Y(t) and V(t). In these realizations, the switching occurs when Y =
min{Y,V} = X, = 10%. Value of V in these realizations is greater: V(t.) a5 x 10>. Thus, t, varies for
different realizations.

Figure 8 illustrates that the stochastic dynamics in phase 1 causes the scattering of the deterministic
curves depicting the infection dynamics in phase 2.

The statistical characteristics, median and interdecimal range, for non-extinct realizations obtained
by the hybrid method are shown in Figure 9 for all populations for V) = 20 and T = 1d. The notations
are the same as in Figure 5. Here for comparison, the same statistical characteristic obtained using the
direct simulations (see Figure 5b) are plotted by dash-dot (mean) and thin solid (IDR) lines by a darker
colour. Observe that both models give the same statistical characteristics with a high accuracy.

/” ————————
6 e
10 \;-SS\
4 \N~\
7 >
7 77
//
//
—X
—Y
—V
-_—
-—y
-_—
15 20 25 30
time, days

Figure 8. Non-extinct realizations X(t), Y(t), V(¢) obtained by the hybrid method for ;) = 100 and
T = 1d are shown by solid lines. Solution of the deterministic problem x(t),y(t), v(t) is shown by
dashed lines. The coloured dots indicate the switching from phase 1 to phase 2.

10’

Populations

102
med (X)) IDR(X)) —-—-med(X) —— IDR(X)
10t med(Y) IDR(Y;) —-—-med(Y) ——IDR(Y)
med(V}) IDR(V;) —-—-med(V) ——IDR(V)
10% T T T T T
0 5 10 15 20 25 30

Time (days)

Figure 9. Comparison of statistical characteristics for non-extinct realizations obtained by the direct
and hybrid models for Vj = 20 and T = 1d. Hybrid model: median X, Y},, Z;, (solid), IDR (coloured
patches). Direct model (darker lines): median X, Y, Z (dot-dash), IDR (thin solid).
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The infection probability P; computed by the hybrid method is shown in Figure 3 by open black
circles and black dashed lines. Here it is also seen that the hybrid method provides high enough
accuracy for computation of this important characteristic of infection process.

Another important characteristics of infection process is the time of infection development that
can be defined as the time lag between first virions arrived and peak of the infection. It is a challenging
problem to determine peak of a stochastic process as it can have high local fluctuations shifting the
global maximum from expected position. The paper [35] employs the Gaussian processes to fit the
model. The hybrid model allows computation the maximum of the number of infected cells, Ymax,
or the number of virions, Vinax, easily as the peak is located on the smooth deterministic part of the
curve (phase 2). The mean value and standard deviation (SD) of Yimax and Vmax versus time delay for
different initial number of virions Vj are shown in Figure 10. The averaging is performed over all
non-extinct realizations. For comparison, analogous curves obtained by deterministic modelling are
indicated as well. The second scenario: k¢, Ry = const is considered in these simulations. In the first
scenario: k1, Ry & =7 (9) we obtain very large peak time up to 10° d.

Observe that the mean peak is shifted to earlier time for small number of initial virions (1 and 10)
and not noticeable for larger numbers (10> and 10%). Especially this shift is large for V = 1, so that the
corresponding curve almost coincides with that for Vjy = 10, therefore the later one is drawn by the
dashed line. The coefficient of variation (SD over mean) is about 5%—6% for V = 1,10, 10 and about
1% for V = 10°. Therefore the SD patch is very thin and not visible for Vo = 103 in this scale.

——103

0 | . . . . . i ) 0 . . . . .
0 0.5 1 15 2 25 3 35 4 0 0.5 1 15 2 25 3 3.5 4

Time delay (d) Time delay (d)

(a) (b)

Figure 10. Mean peak time for the number of infected cells (a) and the number of virions (b) vs the time

delay for initial number of virions V) = 1, 10, 10%,10° (indicated in the legend) are shown by coloured
lines and circles. Their standard deviations (SD) are shown by coloured patches. Peak times in the
deterministic process are indicated by black dashed line for the same number of virions (indicated near
the correspondent line).

5. Conclusions

In this work, a stochastic viral dynamics model with the time lag between virions production and
infection of cells is developed on the base of a Markov process with a time delay. The model has been
computationally implemented and studied numerically. The model provides a useful tool to calculate
statistical characteristics of virus infection dynamics.

The key statistical characteristics of a virus infection process has been computed: variation
of the mean, median and interdecimal range (IDR) for all variables in time, the infection and
extinction probabilities and time of the infection development. The dependence of the infection
dynamics on the time delay between cell infection and virus progeny production has been studied.
Two approaches to incorporate time delays have been tested: (a) the fixed parameters approach in
which the reproduction number exponentially decays with the growth of the time delay, and (b) the
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constant reproduction number approach in which the parameters of the model are adjusted to preserve
a constant reproduction number. It is shown that with the second approach, the extinction probability
is independent of time delay but the infection peak-time grows non-linearly with the increase of the
time delay and differs from the peak-time predicted by the deterministic model for a small number of
initial virions. It is also shown that for a small number of initial virions, the number of virions during
the infection process, averaged over the non-extinct realizations, exceeds that number calculated via
the deterministic model.

A novel and fast computational algorithm to simulate the viral dynamics based on a Markov
process with time delay has been proposed, implemented and compared with the full stochastic MP
model. In this hybrid model, the dynamics of the components with large numbers of state variables is
computed by integration of the ODE/DDE. This essentially accelerates the simulation and computation
of the process statistics parameters. It is shown numerically that this hybrid modelling algorithm
provides appropriate accuracy in computation of the statistical parameters.

In subsequent work, the full and the hybrid scheme has to be generalized by accounting for
a greater number of interacting components (like in the model described in [39]), for a distributed
delay, and for more than one delay. This will enable to develop more realistic virus infection models
that shall help to better understand regulation and sensitivity of the underlying biological processes.
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Appendix A. Fluid Dynamic Limit Type Analysis

In the case of developed infection, when the populations of all species tend to infinity, the stochastic
dynamics described by MP (Table 1) been properly scaled tends (in probability) to a deterministic
dynamics with delay described by Equations (3), (6) and (7). This limiting transition is called fluid
dynamics limit [40] or mean field limit [41], and Proposition 1 provides the formal mathematical
framework.

Consider the MP (X(t),Y(t), V(t)) defined in Table 1 and subjected to initial conditions (10)
and history (12). The scaled MP (16) (X(t),Y(t), V(t)) described by (17) converges in distribution
as A — oo to the deterministic functions (x(t),y(t),v(t)) satisfying DDEs (3) subjected to initial
conditions (6) and history (7). Sketch of the proof is given below.

Proof of Proposition 1. The proof follows closely that of Theorem 2.1, Chapter 11 in [42].
Consider a process Z(t) = (X(t), Y(t), V(t)) with the transition rates as in (Table 1). Note that
this process becomes Markov by including the history {Y(s),s € [t,t — 7|} into the state space.

Anyway, in view of (17) the scaled process admits a representation

2(t) = 2(0) + AV EM, L, TuPoy (A fy vn(Z(5))ds)

+A~1T,Po, (A fo(t_T)vovy(Z(s))ds> . (A1)
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Here T, is the mth column of the transition matrix (19), and Po,, are independent Poisson processes of
rate 1, M = 6 is the number of transitions, u = 5 is a transition with delay. Transition propensities v;,
are defined in Table 1. Setting F(z) = M| T,,v;u(z) re-write this representation in the form

Z(t) = 2(0) + A~1yM 1m#miPom(Af0vm ))ds)

1 —~ (t—71) (AZ)
+ATIT,Po, (A 377V uu(2(5))ds) + o F(Z(s))ds
where Poy,(t) = Po,,(t) — t are compensated Poisson processes. Now write DDEs (3) in the
integral form
t
0) + / F(z(s)) ds. (A3)
0
Note that the Lipshitz condition holds in any compact domain for a fixed ¢ > 0:
[F(z1(8)) = F(z2(1))| < Cllz1(t) = z2(D)| + [z1(t = T) — 22(t = T)], (A
1Z(t) — 2()] < 1Z(0) — 2(0)| +en(t) + fo |2(s) — z(s)|ds.
Here "
ealt) :sup\Z(u)—Z(O)—/O F(Z(s))ds|. (A5)
u<t
Hence, by Gronwall’s inequality
1Z(t) = 2(1)] < 12(0) — 2(0)] +en(t)e". (A6)

It remains to note that e (f) — 0 in probability by the Law of Large Numbers. [
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