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Abstract: A spatially-distributed continuous mathematical model of solid tumor growth and
treatment by fractionated radiotherapy is presented. The model explicitly accounts for three time and
space-dependent factors that influence the efficiency of radiotherapy fractionation schemes—tumor
cell repopulation, reoxygenation and redistribution of proliferative states. A special algorithm
is developed, aimed at finding the fractionation schemes that provide increased tumor cure
probability under the constraints of maximum normal tissue damage and maximum fractional
dose. The optimization procedure is performed for varied radiosensitivity of tumor cells under the
values of model parameters, corresponding to different degrees of tumor malignancy. The resulting
optimized schemes consist of two stages. The first stages are aimed to increase the radiosensitivity
of the tumor cells, remaining after their end, sparing the caused normal tissue damage. This allows
to increase the doses during the second stages and thus take advantage of the obtained increased
radiosensitivity. Such method leads to significant expansions in the curative ranges of the values of
tumor radiosensitivity parameters. Overall, the results of this study represent the theoretical proof of
concept that non-uniform radiotherapy fractionation schemes may be considerably more effective
that uniform ones, due to the time and space-dependent effects.

Keywords: mathematical oncology; spatially-distributed modeling; reaction-diffusion-convection
equations; computer experiment; gradient descent
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1. Introduction

Approximately half of the patients, diagnosed with cancer, undergo radiotherapy (RT) [1].
The effect of irradiation on cancer and normal cells can be mathematically expressed via classical
linear-quadratic model, which is known to fit experimental data well in a wide range of clinical
parameters [2]. According to this model, the fraction of cells, which survive after a single radiation
dose D, can be estimated as

S(D) = e−αD−βD2
, (1)

where α and β are radiosensitivity parameters of cells. Usually cancer cells have higher values of linear
radiosensitivity parameter α that corresponding normal cells. However, normal tissues as a rule have
greater α/β ratio, which restricts the use of high radiation doses [3]. One option to reduce normal
tissue damage is to concentrate the radiation dose within the tumor mass. However, such option
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carries significant risks even for tumors with clear boundaries, due to the leakage radiation [4].
Other option to spare normal tissues is to fractionate the total dose, that is, to divide it into much
smaller fractions, administered over a period of several weeks. The efficiency of a fractionation
scheme depends on the effects that are widely referred to as the four “R”s of radiotherapy [5]. Two of
the effects—reoxygenation and redistribution of cell cycle—indicate that the radiosensitivity of a
cell depends on the surrounding concentration of oxygen and on the current stage of its cell cycle.
In particular, hypoxic and non-proliferating cells are more radioresistant [6]. The third effect is the
repopulation of tumor cells that takes place between the irradiations. The fourth effect is the repair of
sublethal damage, which can be neglected, unless the time interval between irradiations is as short as
several hours [7].

The most typical RT fractionation schemes consist of fractions of 1.8 to 2.0 Gy, delivered once a day
on weekdays within the period of several weeks [3]. However, different fractionation protocols were
shown to lead to improvement in tumor cure and patient survival for most of the patients for some of
the tumor types [8]. Importantly, in clinical practice optimization of RT fractionation is significantly
complicated by a number of factors, including the great variability of tumors, belonging to the same
type, and related ethical problems, associated with the fact that alternative protocols may worsen
outcome for some of the patients. Of note, in the vast majority of the tested schemes the irradiation
doses are distributed equally between the fractions. At that, the varied parameters of the schemes
are the number of the fractions, the interval between them and the fractional dose, which are related
through the constraint on total normal tissue damage.

Given the practical difficulties, mathematical modeling can be a powerful tool, providing insights
into the problem of optimization of RT fractionation. Different approaches exist in this field that have
their pros and cons. The use of non-spatially distributed phenomenological models of tumor growth,
expressed in ordinary differential equations, often allows to obtain the globally optimal solutions for
the considered problems via analytical methods [9–11]. However, these methods become complicated
and even unsolvable under introduction of complex non-linear terms, aimed to account for time-
and space-dependent effects [12] or for tumor-specific features [13]. In such cases, various heuristic
approaches are used, ranging from direct comparison of the schemes [14] to more complex techniques
like simulated annealing [13], which can not guarantee the global optimality of the solution. However,
such methods can yield significant results, one of which has already been verified in a preclinical
study [13].

Crucially, the use of ordinary differential equations can allow for only phenomenological
consideration of the reoxygenation and redistribution of the cell cycle—the effects that result are
the spatiotemporal variability of tumor cells’ radiosensitivity [12,14]. Their explicit consideration is
possible in spatially-distributed models, which can be divided in two types—a continuous model,
expressed in partial differential equations (PDEs), and discrete models that usually treat every
tumor cell as a separate agent but use PDEs for the consideration of dynamics of nutrients and
other substances. However, to the best of our knowledge, the existing works on RT fractionation
optimization that use continuous spatially-distributed models, only account for homogeneous and
constant radiosensivity of tumor cells. That leads to the conclusion of optimality of standard radiation
fractionation schemes [15,16]. Reoxygenation and redistribution of cell cycle can be straightforwardly
incorporated into agent-based models. However, the complexity of such models and numerical costs
of their simulations lead to practical impossibility of solving optimization tasks via them, at least under
current level of computer technology. As a rule, in the corresponding works several fractionation
schemes are compared directly, moreover, the considered numbers of tumor cells are several orders of
magnitude less that the relevant numbers for the human tumors [17–19]. These factors significantly
limit the usefulness of such models.

In this work, we present a spatially-distributed continuous mathematical model of solid tumor
growth and treatment by fractionated RT that explicitly accounts for tumor cell repopulation,
reoxygenation and redistribution of proliferative states. With the use of a specially-developed
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algorithm, we find the optimized fractionation schemes for varied radiosensitivity of tumor cells
under the values of model parameters that correspond to different degrees of tumor malignancy.
The resulting schemes lead to significant expansions in the curative ranges of the values of tumor
radiosensitivity parameters.

2. Model

2.1. Equations for Tumor Growth

The mathematical model of tumor growth, considered herein, was based on our models,
previously used for the investigation of various aspects of tumor growth and treatment [20–23].
There were five variables in this version of the model, which were the functions of space and time
coordinates, r and t: the density of tumor cells n(r, t), the density of normal cells h(r, t), the fraction
of necrotic tissue m(r, t), the concentration of glucose g(r, t) and the concentration of oxygen ω(r, t).
The main simplification of this version of the model was the absence of an explicit variable for the
capillaries, from which the nutrients flow into the tissue. Instead it was assumed that their local density
was proportional to the local fraction of the normal cells in the tissue.

The following set of equations governed the dynamics of the model variables under the absence
of radiotherapy:

tumor cells:
∂n
∂t

=

proliferation︷ ︸︸ ︷
Bn

g
g + g∗

death︷ ︸︸ ︷
−εMh(ω)n

migration︷ ︸︸ ︷
+Dn∆n

convection︷ ︸︸ ︷
−∇(In);

normal cells:
∂h
∂t

=

death︷ ︸︸ ︷
−[Mh(ω) + Mn]h

convection︷ ︸︸ ︷
−∇(Ih);

necrotic tissue:
∂m
∂t

=

cell death︷ ︸︸ ︷
εMh(ω)n + [Mh(ω) + Mn]h

convection︷ ︸︸ ︷
−∇(Im);

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
Pgh[1− g]

consumption︷ ︸︸ ︷
−[Qg

nn + Qg
hh]

g
g + g∗

diffusion︷ ︸︸ ︷
+Dg∆g;

oxygen:
∂ω

∂t
=

inflow︷ ︸︸ ︷
Pωh[S(ωA)− S(ω)]

consumption︷ ︸︸ ︷
−[{Qω

n
g

g + g∗
+ Qω

h
g∗

g + g∗
}n + Qω

h h]
ω

ω + ω∗

diffusion︷ ︸︸ ︷
+Dω∆ω;

where n + m + h = 1;

Mh(ω) =

{
0 i f ω ≥ ω∗;

M[{ω/ω∗}2 − 2{ω/ω∗}+ 1] i f ω < ω∗;
S(ω) = 1/[1 + {ω0.5/ω}χ].

(2)

2.1.1. Dynamics of Cells and Necrotic Tissue

The term of tumor cells proliferation implied that the rate of this process was proportional to
the rate of glucose consumption by tumor cells. This assumption was made on the basis that glucose
is indispensable nutrient for biosynthesis [24]. Glucose is also a crucial energetic nutrient for tumor
cells [25]; however, they are known to obtain energy under its depletion via multiple ways in order
to increase their survival [26–28]. Therefore, the limiting nutrient in the model for the cell survival
was oxygen, tumor cells being more or at least equally resistant to its depletion that the normal cells,
that is, ε ≤ 1. The function of cell death rate Mh(ω) was chosen to be smooth, tending to its maximum
value under the full absence of oxygen, and equal to zero for the levels of oxygen which exceed the
critical value ω∗. Normal cells also died in the presence of tumor cells, which was introduced in the



Mathematics 2020, 8, 1204 4 of 20

model to coarsely reflect two processes: the inability of normal cells to remain viable in acidic tumor
microenvironment [29] and the degradation of capillary network inside the tumor [30].

Tumor cells were able to migrate throughout the tissue, which was governed by a diffusion-like
term. Directed migration of tumor cells was neglected [31]. The convective terms described the bulk
motion of the tissue elements, the velocity field I being determined by the dynamics of tumor cells.
The drainage of necrotic tissue was neglected. Due to the assumption of the constancy of the total
density of tumor cells, necrotic tissue, and normal cells, which was normalized to unity, the following
expression for the gradient of I was obtained:

∇I = Bn
g

g + g∗
+ Dn∆n. (3)

2.1.2. Dynamics of Nutrients

Model dynamics of both nutrients accounted for the same physiological processes—inflow of
nutrients from the capillary network into the tissue, their consumption by tumor and normal cells and
their diffusion within the tissue, the latter being much faster for oxygen. The form of the terms for the
inflow of oxygen and glucose differed due to significant distinctions in the mechanisms of their blood
and transvascular transport. The inflow of glucose is governed primarily by the process of passive
diffusion through the pores in the walls of capillaries [32]. Therefore, the rate of the glucose inflow
was taken to be proportional to the difference in glucose concentrations in blood and in tissue, and to
the capillaries density, which, as it was mentioned above, was assumed to be in linear relationship
with the density of normal cells. Glucose concentration in blood was considered to be constant and
was normalized to unity.

Oxygen, as lipid-soluble substance with low molecular weight, passes directly through the
capillary walls and flows into the tissue at much greater rate that glucose. Oxygen levels in arterial and
venous blood differ more than twice even under normal conditions [33], which implies that its blood
concentration should not be treated as constant. Moreover, the inflow of oxygen into the tissue is not
proportional to the difference of its concentrations in capillary blood and tissue due to the complicated
blood transport of oxygen, which molecules are carried in blood in two forms—bound to hemoglobin
and unbound from it. Overall, the used term for the oxygen inflow assumed that the rate of this
process is proportional to the difference between the fraction of oxygen-saturated hemoglobin under
two values of unbound oxygen concentration—the one in arterial blood, which enters the capillaries,
and the one in tissue. The function S(ω) represented oxygen-hemoglobin dissociation curve, the form
of which is well-known in physiology [34]. For more detailed explanation of the assumptions, which
underpinned the term of oxygen inflow, we refer the readers to our previous work [35].

The nutrient consumption was described via the terms of the classical Michaelis-Menten type.
Tumor cells are known to consume nutrients much faster that normal cells, in order to support their
proliferative activity, therefore, Qg

n > Qg
h, Qω

n > Qω
h . The rate of oxygen consumption by tumor

cells fell down to the rate of oxygen consumption by normal cells under the decrease in tumor cells
proliferation rate, caused by the glucose shortage [36].

2.1.3. Numerical Solving of Tumor Growth Model

The set of Equations (2) was solved numerically with assumption of the spherical symmetry of
the tumor. The size of the computational region L was adjusted in order to be sufficiently small to
spare computational time without imposing noticeable edge effects. The convective flow speed was
set to zero at the left boundary, which represented the center of the tumor, where initially r = 0. For all
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the variables, the zero-derivative boundary conditions were used at both edges. The following initial
conditions were used for tumor cells, normal cells and necrotic tissue:

n = 0.1,
m = 0,
h = 0.9

f or r <= 0.1;


n = 0,
m = 0,
h = 1

f or r > 0.1. (4)

Equations for glucose and oxygen were considered in the quasi-stationary approximation,
due to the fast dynamics of these variables, and were solved using the tridiagonal matrix algorithm.
The equation for normal cells was not solved explicitly, the relation h = 1− n− m being used for
determining their density. For tumor cells and necrotic tissue the method of splitting into physical
processes was used, that is, kinetic equations, migration equation and convective equations were solved
successively during each time step. The implicit Crank-Nicholson scheme was used for the tumor cells
migration equation. Convective equations were solved using the flux-corrected transport algorithm
with the implicit anti-diffusion stage. The kinetic equations were solved by the simple explicit Euler
method, which was justified by the relative smallness of the used time steps, adjusted for the solution of
the transport equations. The flux-corrected transport algorithm was introduced in Reference [37], while
other classical methods were described in many books (see, for example, Reference [38]). The choice of
the time and space steps for different simulations is justified in Appendix A.

The computational code was implemented in C++ and can be found in the Supplementary Materials.

2.2. Equations for Radiotherapy

For the description of radiotherapy (RT), we relied on the classical linear-quadratic model, which
was discussed in Section 1. We accounted for two effects that lead to spatiotemporal heterogeneity of
the radiosensitivity of tumor cells. The first one is oxygen enhancement effect, which was introduced
herein in the form presented in Reference [39], where the corresponding terms were deduced from the
experimental data. The second effect is the decrease in radiosensitivity of quiescent cells, which was
considered herein with the assumption that it fell along with the decrease in the cells’ proliferation rate.
We neglected the duration of each irradiation and assumed that the number of cells and the density of
necrotic tissue changed in result of it instantaneously, which was realized in a code in a straightforward
manner. We did not consider explicitly the death of normal cells due to RT, however, the total damage
of the normal tissue was the crucial parameter for the optimization of RT fractionation, which is
discussed in Section 2.3. Overall, the equations that expressed the densities of tumor cells and necrotic
tissue after a single irradiation with the dose D through their values before it were as follows:

n1|postRT = n1|preRT · exp({−α [OERα(ω) · γ(g) · D]− β
[
OERβ(ω) · γ(g) · D

]2}),
m|postRT = m|preRT + [n1|preRT − n1|postRT ];

where OERi(ω) =
ω ∗OERi,m + Km

ω + Km
, i = α, β; γ(g) =

g + kg∗

g + g∗
.

(5)

2.3. Optimization of Radiotherapy Fractionation

The task of finding the optimized fractionation of RT was formalized the following way. During all
the simulations, the first irradiation was performed at the moment t = t0, when tumor radius,
evaluated as the maximum space coordinate, at which n + m ≥ 0.1, reached 1 cm. We considered
the RT schemes, which consisted of 42 doses of radiation, some of which could be zero, which were
administered successively at 24 h interval. Therefore, each scheme D could be expressed as a vector
of non-negative numbers, representing the values of doses, expressed in grays: D = (Di), i ∈ [1, 42].
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As the standard reference scheme we used the following vector that corresponded to one of the typical
courses in clinical practice, consisting of 30 doses of 2 Gy, delivered every weekday over six weeks [3]:

Dst = (Dst
i ), Dst

i =

{
0 i f i = 6 + 7[k− 1] ∨ i = 7k, k ∈ N;

2 otherwise;
i ∈ [1, 42]. (6)

However, we did not impose the condition of the obligatory presence of days-off in the tested
fractionation schemes. All the considered schemes had to satisfy two constraints, related to the normal
tissue damage:

NTDh(D) ≡
42
∑

i=1
[(α/β)h · Di + D2

i ] ≤ NTDmax ≡ NTDh(Dst); (7)

Di < Dmax ∀i. (8)

The first inequality was analogical to the condition that the biologically effective dose, delivered to
the normal tissue, could not exceed its value for the standard fractionation scheme. The second
inequality corresponded to the acute reactions and indicated that each dose could not exceed a certain
threshold. The aim of the search was to find the scheme D, which would decrease the value of the
following objective function F(D) as much as possible:

F(D) = min
t
(lgN(D, t)), where N(D, t) ≡ n̂r̂3 · 4π

∫ X
0 n(D, r, t)r2dr, (9)

where n̂ and r̂ are the normalization parameters of the model for the number of tumor cells and length.
Thus, the aim of the optimization procedure was to find the fractionation scheme, leading to the
most efficient eradication of tumor cells, which should correspond to the increase in the tumor cure
probability (TCP). The following formula was used for the estimation of TCP:

TCP(D) = e
−min

t
(N(D,t))

, (10)

which can be interpreted as the fraction of eradicated tumors among the identical tumors that have
undergone the same treatment, under the assumption that the number of surviving cells throughout
these tumors at the end of the treatment follows a Poisson distribution with the average of N.

For the search of the optimized RT fractionation schemes and the optimized values of the objective
functions, Algorithm 1 was developed and implemented in the program code. Its repeating steps 2
and 3 represented an adaptation of the classical gradient descent method for the considered problem.
Like the classical method, these steps could find only local optimum, and the aim of step 4 was to try
to further optimize this result. The meaning of the actions, performed during step 4, is explained in
Section 3.3. By themselves, steps 2–4 could yield different results depending on the initial scheme.
By testing different initial schemes under various model parameters, we found out that these steps
most often produced the best results with the use of the most optimal uniform fractionation scheme
as the initial. The search for such scheme was performed during the step 1. The procedures of
normalization of the schemes, with the aim of their compliance with the above-mentioned restrictions,
were performed iteratively.
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Algorithm 1: Optimization of dose fractionation for radiotherapy.
Data: Distribution of variables of tumor growth model, governed by Equations (2), at t = t0.
Run simulation of radiotherapy (RT), governed by Equations (5), with fractional doses Dst;
Remember the value of the objective function Fst;
Step 1. Search for the optimal uniform fractionation scheme: j = 42;
while j = 42∨ (DUFj

1 ≤ Dmax ∧ j ≥ 1) do

DUFj
i = {0.5[

√
(α/β)2

h + 4 · NTDmax/j− (α/β)h] f or i ∈ [1, j]; 0 f or i ∈ [j + 1, 42]};

if DUFj
1 ≤ Dmax then Simulate RT with the scheme DUFj, remember FUFj, j = j− 1;

Choose jUF
opt : FUFjUF

opt =
42

min
i=j

FUFi;

if FUFjUF
opt < Fst then Dopt = DUFjUF

opt , Fopt = FUFjUF
opt , jmax = jUF

opt ;

else Dopt = Dst, Fopt = Fst, jmax = 42;
Stop = 0;
while Stop = 0 do

kn = 1;
while kn > kmin

n do
Step 2. Search for the “gradient”:
for j = 1, 2, ..., jmax do

Dj = Dopt; Dj
j = Dopt

j + δS; Normalize Dj according to Equation (7), not altering
the doses, equal to Dmax;

Simulate RT with the scheme Dj; Remember Fj;
Step 3. Going down the “gradient”: n = 1; kn = 1; F0

D = Fopt; StopS3 = 0;
while (Fn

D < Fn−1
D ∨ (n = 1∧ kn > kmin

n )) ∧ StopS3 = 0 do
Dn

j = {Dopt
j + knnδD · [Fopt − Fj] f or j ∈ [1, jmax]; Dn

j = 0 f or j ∈ [jmax + 1, 42]};
Normalize Dn according to Equations (7) and (8);
Simulate RT with the scheme Dn; Remember Fn

D;
if Fn

D < Fn−1
D then

if kn = 1 then n = n + 1;
else Dopt = Dn, Fopt = Fn

D, , StopS3 = 1;

else if n > 1 then Dopt = Dn−1, Fopt = Fn−1
D ;

else kn = kn/2. ;

Step 4. Trying to improve the final part of the scheme:
if Dopt

jmax
< Dmax then

j f in =
jmax
min
j=1

j : Dopt
j > k f in · D

opt
jmax

; NTDbeg ≡
j f in−1

∑
i=1

[(α/β)h · D
opt
i + {Dopt

i }
2]; j = jmax;

while j = jmax ∨ (DSFj
j ≤ Dmax ∧ j ≥ j f in) do

DSFj
i = {Dopt

i f or i ∈ [1, j f in − 1]; 0 f or i ∈ [j + 1, 42];

0.5[
√
(α/β)2

h + 4 · (NTDmax − NTDbeg)/(j− j f in + 1)− (α/β)h] f or i ∈ [j f in, j]};

if DSFj
j ≤ Dmax then Simulate RT with DSFj, remember FSFj, j = j− 1;

Choose jSF
opt : FSFjSF

opt =
jmax
min
i=j

FSFj;

if FSFjSF
opt < Fopt then Dopt = DSFjSF

opt , Fopt = FSFjSF
opt , jmax = jSF

opt;

else Stop = 1;

else Stop = 1;

Result: Dopt, Fopt.
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2.4. Parameters

The values of the model parameters, with which the simulations were performed, are listed
in Table 1. For some parameters, three values are designated, which belonged to the parameter
sets that were assumed to correspond to different levels of tumor malignancy—high, intermediate
and low. The way the values of these parameters changed with the increase in tumor malignancy
reflected the stronger manifestation of some of the hallmarks of cancer: self-sufficiency in growth
signals and insensitivity to anti-growth signals, evading apoptosis, stimulating growth of new vessels
and invasion into normal tissue [40]. The dimensionless model values of the parameters were the
approximations of their normalized values, which were obtained with the use of the following
normalization parameters—t̂ = 1 h for time, r̂ = 10−2 cm for length, D̂ = 1 Gy for radiation dose,
ĝ = 1 mg/mL for glucose concentration, ω̂ = 1 mM for oxygen concentration, n̂ = 3× 108 cells/mL
for maximum density of cells. The latter value was taken from the experimental work on the in vitro
growth of multicellular tumor spheroids [36]. The values of the proliferation rate of tumor cells B
and their nutrients consumption rates Qg

n and Qω
n were also estimated according to the data of this

work with the assumption that these values should be proportionally diminished during the growth
of a relevant tumor in tissue. Furthermore, it was assumed that B, Qg

n and Qω
n should proportionally

increase with tumor malignancy.

Table 1. Model parameters. Different values are designated for: HM—high malignant tumor,
IM—intermediate malignant tumor, LM—low malignant tumor.

Parameter Description Model Value Based on

Cells:

B tumor cells’ proliferation rate HM: 0.01 [36] + see the text
IM: 0.005

LM: 0.0025

M normal cells’ death rate parameter 0.01 [41]

ε ratio of death rates of tumor and normal cells HM: 0.3 [41] + see the text
due to the lack of oxygen IM: 0.7

LM: 1

Dn tumor cells’ motility HM: 0.01 [42] + see the text
IM: 0.001

LM: 0

Nutrients:

Pg glucose inflow parameter HM: 20 [32]
IM: 10
LM: 4

Qg
n tumor cells’ glucose consumption rate HM: 12 [36] + see the text

IM: 6
LM: 3

Qg
h normal cells’ glucose consumption rate 0.3 [43]

g∗ Michaelis constant for glucose consumption rate 0.007 [44]

Dg glucose diffusion coefficient 100 [45]

Pω oxygen inflow parameter HM: 50.8 [46] + see the text
IM: 35.8
LM: 25.4

ωA oxygen concentration in artery 5.87 [47]

ω0.5 oxygen concentration, at which 1.56 [48]
hemoglobin saturation is 50%
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Table 1. Cont.

Parameter Description Model Value Based on

χ Hill coefficient 2.55 [48]
for oxygen-hemoglobin dissociation curve

Qω
n tumor cells’ oxygen consumption rate HM: 63 [36] + see the text

IM: 31.5
LM: 15.75

Qω
h normal cells’ oxygen consumption rate 8 [43]

ω∗ Michaelis constant for oxygen consumption rate 0.005 [44]

Dω oxygen diffusion coefficient 720 [49]

Radiotherapy:

α tumor cells’ linear radiosensitivity parameter 0.07–0.21 see the text

β tumor cells’ quadratic radiosensitivity parameter α/10 see the text

OERα,m maximum OERα under aerobic conditions 2.5 [39]

OERβ,m maximum OERβ under aerobic conditions 3 [39]

Km Michaelis constant for oxygen enhancement effect 0.193 [39]

k ratio of radiosensitivity of quiescent HM: 1 see the text
and proliferating tumor cells IM: 0.5

LM: 0.2

Optimization procedure:

(α/β)h alpha-beta ratio for normal tissue 3 [3]

Dmax maximum fractional dose 5 [11]

δS the amount of radiation dose added to each fraction 0.2 see the text
during the search for the “gradient”

δD the coefficient of fractions alteration during the “descent” 4 see the text

kmin
n minimum parameter of fractions alteration 0.001 see the text

during the “descent”

k f in the threshold coefficient for determining 0.98 see the text
the second stage of the scheme

The death rates parameters M and ε were assessed based on experimental data on cell behavior
under extreme nutrient deprivation [41]. The death rate of tumor cells fell with the increase in tumor
malignancy, reflecting the increased tolerance of malignant cells to nutrient deprivation. The coefficient
of high malignant tumor cells’ motility Dn was an order of magnitude lower than the value which
corresponds to high malignant glioma, one of the most invasive types of cancer [42]. The parameter of
glucose inflow Pg was estimated as the product of the experimental values of permeability of capillaries
to glucose and normal capillary surface area density for human muscle [32]. The values of normal cells’
rates of nutrients consumption for human muscle at rest were also used. The oxygen inflow parameter
Pω was adjusted so that the initial oxygen concentration lied within its normal range for human muscle
at rest [46]. The values of Pg and Pω for low malignant tumor were obtained under the assumption of
absence of tumor-induced angiogenesis, that is, the formation of new blood vessels. Their increase
with tumor malignancy reflected the stimulation of angiogenesis by tumor, and followed different
trends due to the following reasoning (see our previous work [35] for details). As was mentioned in
Section 2.1.2, the inflow of glucose should be proportional to the density of capillaries and to their
permeability, both of these parameters increasing due to the tumor-induced angiogenesis. On the
contrary, oxygen inflow in tissue is not affected by the alterations in the number and sizes of capillaries’
pores. Moreover, it should be at first approximation proportional to the blood flow rather than to the
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capillaries’ density. Therefore, the inflow of oxygen should increase much slower than the inflow of
glucose, in the result of angiogenesis.

Radiosensitivity parameters are known to vary dramatically between various tumor cell lines [50]
and, moreover, can significantly differ even for tumors of the same type [51]. Therefore, the parameters
of tumor cells’ radiosensitivity were varied within a physiologically justified range in order to
investigate the potential for optimization of RT fractionation under various response of tumor to
the treatment. At that, the alpha-beta ratio for tumor cells was kept constant and equal to 10 [3].
The alpha-beta ratio for normal tissue (α/β)h was close to its experimental value for human muscle [3].
The value of the ratio of radiosensitivity of quiescent and proliferating tumor cells k for low malignant
tumor was selected based on the fact that the radiosensitivity of quiescent and proliferating normal
cells can differ five or more times [52]. Experimental data suggests that such difference should be
leveled with the increase in tumor malignancy [53,54], therefore, the value of k increased up to unity
with the increase in tumor malignancy. Other parameters of the optimization algorithm were adjusted
manually in order to decrease the computational time as much as possible without noticeable distortion
of the solution.

3. Results

3.1. Simulation of Tumor Growth and Radiotherapy

Figure 1 illustrates the single numerical simulation of the intermediate malignant tumor growth
and radiotherapy (RT) with standard fractionation scheme Dst (see Equation (6)) and the values of
tumor cells’ radiosensitivity α = 10β = 0.1. In the same way as it happened under other parameter
values as well, after initial phase of exponential growth the living tumor cells concentrated at the tumor
rim, closer to the source of nutrients, which in this model was considered to be proportional to the
density of normal cells h = 1− n−m. Due to the active consumption of glucose and oxygen by tumor
cells, the proliferation rate of deeper located cells declined, and more deeper located cells began to die.
Therefore, most of the volume of sufficiently large tumors was occupied by necrotic tissue, as Figure 1a
demonstrates. Figure 1b corresponds to the day of the first irradiation. The radiosensitivity of tumor
cells increased from the center of the tumor to its rim, where the most actively proliferating cells were
situated and the concentration of oxygen was the highest throughout the tumor. During the first
irradiation, approximately 79% of tumor cells survived in the nutrient-depleted regions, while only
12% of tumor cells survived in the outer layers of the tumor rim. The death of tumor cells due to this
and following irradiations led to the gradual rise of the levels of nutrients that, in its turn, resulted in
increase of radiosensitivity of tumor cells. Figure 1c demonstrates the 10th day of RT, by which eight
irradiations were performed, the number of tumor cells decreased by 20 times and the levels of glucose
and oxygen in the tumor center reached correspondingly 32% and 74% of their values in the normal
tissue. Therefore, the effective radiosensivity of tumor cells sufficiently increased and became almost
constant throughout the tumor. During the next irradiation, ≈10.8% of tumor cells died in the outer
layers of the tumor rim, and ≈11.5%—in the deeply located regions.

Figure 1d shows the dynamics of the total number of tumor cells N(t) and the number of
proliferating tumor cells Np(t), estimated by the following formulas:

N(t) ≡ n̂r̂3 · 4π
∫ X

0
n(r, t)r2dr;

Np(t) ≡ n̂r̂3 · 4π
∫ X

0
n(r, t)

g(r, t)
g(r, t) + g∗

r2dr.
(11)

In the considered simulation, the total number of tumor cells decreased during the RT course
from ≈0.43 billion to ≈18 cells, at that the fraction of proliferating cells Np(t)/N(t) increased from
≈26% to ≈99.3%. Due to the nature of the model, tumor regrowth always happened after treatment,
even if the total number of tumor cells that remained after RT, was less than one. Figure 1e shows
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the dynamics of the average oxygen pressure within the viable tumor rim, expressed in mmHg and
estimated as

〈pO2〉 = 17.024 ·Ω(t), where Ω(t) ≡ [n̂r̂3 · 4π
∫ L

0
ω(r, t)n(r, t)r2dr]/N(t); (12)

along with the dynamics of the oxygen pressure at the tumor center, that is, at the point r = 0.
The former quantity cannot be straightforwardly measured in experiment, however, it can give a
better estimation of the efficiency of the first irradiations. The latter quantity was up to five orders of
magnitude smaller during the free tumor growth that 〈pO2〉, but their values became almost equal
during RT.

mm mm mm(a) (b)

(d)
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2  pO

2
|
r=0  

n

n+m
g

ω/3

n

n+m
g

ω/3

N
p

mmHg

Figure 1. (a–c) The distributions of the variables, obtained in the numerical simulations of tumor
growth with radiotherapy, administered by the standard scheme under the values of the model
parameters, corresponding to intermediate malignant tumor and values of tumor cells’ radiosensitivity
α = 10β = 0.1 on the 325th day, 326th day (the day when the first irradiation was performed) and
335th day of tumor growth. (d) The total number of tumor cells (solid line) and the estimated number
of proliferating tumor cells (dashed line) during the same simulation. (e) The average oxygen pressure
within the viable tumor rim (solid line) and the oxygen pressure in the tumor center (dashed line)
during the same simulation.

3.2. Optimization of Radiotherapy Fractionation

Figure 2 shows the numerically obtained values of tumor control probability (TCP), estimated by
Equation (10), for standard and optimized fractionation schemes for different types of tumor. Some of
the optimized schemes are also shown, which were obtained under the designated values of tumor
radiosensitivity α = 10β. The solid lines interpolate the graphs of TCPs by the functions of the
following form:

TCP(α) = 0.5[1 + tanh(γ{α− αcr})], (13)

where γ and αcr are the fitting parameters. Let us introduce the following quantity as a high-level
estimate of the effectiveness of RT fractionation optimization for different tumor types:

∆α = αst
cr − α

opt
cr ,

where αst
cr and α

opt
cr are the fitting parameters in Equation (13) for standard and optimized RT

fractionation schemes of the considered tumor type. Roughly speaking, this quantity denotes the
increase in the curative range of the values of tumor radiosensitivity parameters due to the RT
fractionation optimization.
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TCP
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High-grade tumor

Intermediate-grade

tumor

TCP

α, Gy(c)

TCP

α, Gy(b)
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α, Gy(d)

Low-grade tumor

High-grade tumor

with k=0.2

α=0.07 α=0.1 α=0.13

α=0.16 α=0.19 α=0.22

α=0.07 α=0.13

α=0.16 α=0.22

α=0.07 α=0.13

α=0.16 α=0.22

α=0.07 α=0.13

α=0.16 α=0.22

Figure 2. The tumor cure probability for fractionated radiotherapy of (a) high malignant tumor
(b) intermediate malignant tumor (c) low malignant tumor and (d) high malignant tumor with
decreased radiosensitivity of quiescent cells, under varied tumor radiosensitivity parameters α = 10β

for standard fractionation scheme (red dots) and schemes, found by optimization procedures with
Algorithm 1 (green dots). The solid lines are interpolations of data points. Inlets show the optimized
schemes under designated values of tumor radiosensitivity. Some of the schemes, obtained without the
use of step 4 of the algorithm, are denoted by gray dots.
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Figure 2a–c correspond to high malignant (HM), intermediate malignant (IM) and low malignant
(LM) tumors, the values of model parameters for which are listed in Table 1. The proliferation rates of
these tumors’ cells related as 4:2:1. This fact by itself stimulated increase in tumor cell number with
the tumor malignancy. Other factors that contributed to the same effect were the decrease in tumor
cells’ death rate and the enhancement of nutrient inflow. However, at the moment, when these tumors
reached the radii of 1 cm—at which the beginning of RT took place—their numbers of cells did not
differ drastically and were equal to ≈0.51 billion, ≈0.43 billion and ≈0.43 billion correspondingly.
This was due to the fact that tumor cells’ rates of nutrients consumption also increased with the tumor
malignancy, significantly reducing the pools of proliferating and alive cells. The presence of tumor cell
motility in the cases of IM and HM tumors also led to a slight decrease in their numbers of tumor cells.
However, it should be noted that in general case the variation of this parameter may have ambiguous
effect on the total amount of tumor cells, which was discussed in our previous work [55].

The most prominent feature of all of the optimized RT fractionation schemes, obtained for these
tumors for all values of α, is the fact that they could be clearly divided into two stages. The first stages
were comprised of non-equal doses, which were noticeably less that the maximum fractional dose of
Dmax = 5 Gy. In every case they lasted until the following two quantities became smaller than one by
no more than several percent: the first quantity was the ratio of the oxygen level inside the tumor to its
value for the normal tissue Ω(t)/ω(L, t) (see Equation (12)); the second quantity was the fraction of
proliferating tumor cells Np(t)/N(t) (see Equation (11)). Thus, to the end of the first stages tumor cells
radiosensitivity became close to its maximum level throughout all the pool of tumor cells. The aim
of the second stages was to get advantage of the increased radiosensitivity of tumor cells. Therefore
they represented a uniform sequence of doses, which were equal or close to the maximum fractional
dose. The aim of the first stages was, therefore, to reach close to maximum sensitivity of tumor cells,
reducing both the effective dose, delivered to normal tissues during the first stages (see Equation (7)),
and their duration. The first aspect is crucial for the opportunity of increasing the number of more
efficient irradiations during the second stage. The decrease of duration of the first stages, as well as of
the whole courses, is crucial due to the process of tumor cells repopulation—that is, the shorter the
treatment, the more effective it should be under the same amount of eradicated cells, since fewer acts
of cell division should take place during its course.

For every considered value of α, the optimized RT schemes became longer with the decrease
of tumor malignancy. This was due to the fact that quiescent tumor cells were more radioresistant
in IM and especially LM tumors, because of the smaller value of the parameter k, which was equal
to 1, 0.5 and 0.2 for HM, IM and LM tumors. Consequently, with the decrease of tumor malignancy
it took longer time for radiation to eradicate enough tumor cells for the necessary increase in the
level of glucose that would convert the remaining tumor cells into proliferative state, thus increasing
their radiosensitivity. Therefore, the durations of the optimized RT courses were the shortest for HM
tumors, which allowed to significantly decrease the influence of cell repopulation on the outcome of the
treatments. Overall, the efficiency of RT fractionation optimization increased with tumor malignancy:
the values of ∆α for LM, IM and HM tumors were ≈0.008, ≈0.014 and ≈0.028 correspondingly.
Quite surprisingly, the three interpolated functions of optimized TCPs turned out to be very close to
each other. For every value of α the optimized treatments for each of the three tumor types yielded
very close TCP values, differing by no more than 7%, and the corresponding values of αcr for these
tumors differed by less than 1%. On contrary, the efficiency of standard RT schemes significantly
declined with the increase in tumor malignancy for every value of α. Of note, this happened despite
the fact of greater radiosensitivity of HM tumor cells under glucose deficiency, and was due to their
increased repopulation rate under normal level of glucose. It should be noted, however, that such
qualitative outcome might change under different parameter values.

Since the presence of a radioresistant population within a malignant tumor may be of significant
practical interest [56], we performed an analogical set of simulations for the fourth set of parameters,
which corresponded to HM tumor with the only modification of decreased radiosensitivity of quiescent
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cells k = 0.2. The corresponding results are shown in Figure 2d. Expectedly, the standard fractionation
schemes were the less effective for this case among the four considered parameter sets under any value
of α. The length of the first stages of the schemes were significantly increased. Moreover, for the lowest
values of α there were no second stages in the optimized schemes, since such weak therapies could not
eradicate enough tumor cells for sufficient increase in the level of nutrients. The second stages became
well-pronounced at α = 0.1 and their lengths increased with the increase of α, as it happened under
another parameter sets as well. However, the optimization procedures led to the value of ∆α ≈ 0.028,
close to its value for HM tumor with k = 1.

3.3. Efficiency of the Optimization Algorithm

As was already mentioned, Algorithm 1 can provide at best the local optimal schemes. It should
be noted that for some of the parameter values slightly more effective schemes that the ones, shown in
Figure 2, were obtained by manual manipulations or by replacing the scheme, produced by step 1,
with other initial schemes for the following steps. Of especial importance is the fact that these
manipulations did not lead to any noticeable change of the TCP graphs. However, such cases, in which
further optimizations can be provided, are worth being noticed. The simplest case is removing of initial
zero fractions produced by the algorithm, like in the depicted optimized scheme for LM tumor with
α = 0.07. Less trivial case took place when the search for the optimal uniform fractionation scheme,
performed during step 1, yielded a bimodal distribution. In such case, setting another initial scheme
for the following steps could optimize the result. For example, the optimized scheme for HM tumor
with α = 0.19 is obtained with the initial uniform scheme with 9 irradiations of ≈4.47 Gy, produced by
step 1. Its replacement by the uniform scheme with 13 irradiations of ≈3.53 Gy, which by itself results
in 30% greater minimum number of tumor cells that the previous uniform scheme, allowed to produce
an optimized scheme, resulting in halved minimum number of tumor cells, compared to the depicted
optimized scheme. It did not lead to a noticeable change of TCP, since it was already close to 100%,
however, it should be noted that such manipulation might turn out to be important under some other
used parameter values.

Another possibility for the slight optimization of some of the schemes is the increase of several
doses in the second stage of the scheme, if they are less than Dmax, by the expense of another doses.
Such manipulation was not included in the algorithm for simplicity, since it was checked to provide
only very slight improvements. However, the closeness of the doses of the second stages to the
maximum fractional dose was by itself significant. For IM and LM tumors with sufficiently high
values of α the first three steps of the algorithm by themselves yielded the schemes with doses of
the second stage, equal to each other, but significantly less than Dmax. Further slight variations of
the fractionation, performed during steps 2 and 3, were ineffective. This result corresponds well to
the findings, described previously in other studies, which considered homogeneous and constant
radiosensivity of tumor cells [15,16]. The aim of step 4 was to redistribute the fractions of the second
stage, keeping them equal, which always resulted in close to maximum values of single doses. Two of
the schemes, produced for IM and LM tumors with α = 0.22 without the use of step 4, are shown in
Figure 2 via gray dots. The improvements, introduced by step 4, allowed to decrease the minimum
number of tumor cells more than threefold in both cases.

Of note, under neglect of the constraint on the maximum fractional dose (see Equation (8)),
Algorithm 1 generally produced the optimized schemes, consisting of longer first stages with smaller
doses and second stages, consisting of a few strong irradiations, which most frequently were a couple
of doses close to 10 Gy. Furthermore, easing the constraint on normal tissue damage (see Equation (7))
by increasing the value of (α/β)h resulted in more and more shorter optimized schemes with greater
doses. These results are not surprising; moreover, Equation (1) immediately suggests that under
absence of any time-dependent effects and any constraints increasing a single fraction should always
be more efficient that its fractionation. Thus, in agreement with the clinical concepts, discussed in
Section 1, the presented model indicates that dose fractionation is dictated by the constraints on
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normal tissue damage and by the alterations of tumor cells’ radioresistance (which involves both
reoxygenation and redistribution of proliferative states), while cell repopulation restricts the efficiency
of the fractionation scheme.

4. Discussion

In this work, we presented a spatially-distributed continuous mathematical model of solid
tumor growth and treatment by fractionated radiotherapy (RT). The model explicitly accounted
for three factors that influence the efficiency of RT fractionation schemes—tumor cell repopulation,
reoxygenation and redistribution of proliferative states. The main goal of this study was the search for
optimized fractionation protocols that would increase the tumor cure probability under the constraints
of maximum normal tissue damage and maximum fractional dose. For this goal, a special algorithm
was developed. Its first step compared different uniformly fractionated RT schemes. By itself it showed
that the length of an optimal treatment should grow with the decrease of the relative radiosensitivity
of non-proliferating tumor cells, which occupied the main part of tumor at the beginning of RT. The
next two steps of the algorithm represented an adaptation of the classical gradient descent method.
They suggested dividing all the fractionation schemes in two stages. Fractionation during the first
stages followed different trends, but their aim was always to spare the doses for the second stage,
at that eradicating enough tumor cells for the levels of nutrients to increase close to their normal levels.
Such approach brought the radiosensitivity of the remaining tumor cells close to the maximum level.
If this goal was possible to achieve, the second stages began, which consisted of large equal doses.
Of note, the qualitatively similar recommendation of a dose boost during the final part of the therapy
was suggested in a previous theoretical study, which used another constitutive assumptions and
considered treatment regimens, in which a patient is treated in several sessions, separated by weeks or
months [57]. The aim of the fourth step of the algorithm was to optimize the number of fractions and
the doses during the second stage, which previous steps could not do. Optimized RT fractionation
schemes did not contain days-off, unlike standard clinical schemes. It should be noted that the current
model neglected the change of radiosensitivity during the cell cycle for the proliferating cells, as well as
the fact that cells do not die immediately due to irradiation [58]. The introduction of these aspects into
the model may somehow alter the appearance of the optimized schemes, found by the used algorithm.
However, they would hardly affect the main qualitative findings of this study.

We performed the optimization procedures using the objective function of minimum number
of tumor cells during the treatment. Certainly, other objective functions can be incorporated within
the introduced algorithm. One of them, which we implemented as well during the study, is the delay
in tumor regrowth, which always happened during the simulations (see Section 3.1). The model
simulations showed that only a rather moderate increase of it can be achieved for the considered
parameter values under the restriction of maximum treatment duration of 6 weeks. However,
the results suggested that sufficient tumor growth delays might be obtained for much longer treatments
of slowly-proliferating tumors, which is in agreement with other theoretical studies [59,60]. Moreover,
the presented model did not account for the drainage of necrotic tissue, which should be crucial for
such problem. Furthermore, in this light, a very interesting augmentation of the model may be an
introduction of concurrent antiangiogenic therapy, which not only influences the drainage of necrotic
tissue [61], but also affects the intratumoral oxygen level in a complicated manner [62]. These factors
should influence the outcome of combined radiotherapy and antiangiogenic therapy. Therefore,
their consideration should provide insights into the ways of optimization of such treatment. This task
lies within the scope of our future plans.

We tried to incorporate in the model the most basic features of malignant tumors, relevant for the
considered task, and we varied the model parameters, assuming that some hallmarks of cancer should
manifest themselves stronger with the increase in tumor malignancy. Certainly, this was a very general
approach, and the results of this work are of purely qualitative nature. In our opinion, an important
outcome of this study is the theoretical proof of concept that non-uniform RT fractionation schemes
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may be significantly more effective that uniform ones, due to the time and space-dependent effects.
We hope that the presented algorithm would be useful for further, more specific, tasks. At that, one of
the important aspects to be focused on is the consideration of a separate radioresistant population of
cancer stem cells. Its determining role in optimization of RT treatment was already noticed in previous
studies on mathematical modeling [18,63].
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RT radiotherapy
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HM high malignant
IM intermediate malignant
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Appendix A. Choice of Discretization

The choice of discretization for the numerical simulations was dictated by two goals. The first
goal was sparing computing resources, the importance of which was increased due to the fact that a
lot of simulations of different treatment courses should have been preformed for a single optimization
task. Namely, the optimization tasks, discussed in Section 3.2, required an average of ≈882 treatment
simulations, with their minimum and maximum numbers of 66 and 3560. The second goal was
providing sufficient accuracy of the solution. Since the model described biological objects, for which
significant variability is natural, there was no need to pursue the degree of accuracy that would be
necessary for solving, for example, physical problems, and the main aim was to capture the qualitative
behavior of the model properly.

The considered low malignant tumor had zero cell motility, therefore, the only transport term
for the tumor cells was the convective term in its case. As it was mentioned in Section 2.1.3,
the corresponding equation was solved by the flux-corrected transport algorithm [37]. This algorithm
is of indeterminate order, and the crucial condition for its workability is

|I(r, t)
dt
dr
| < 1

2
∀r ∀t,

where I is the field of the convective flow speed, dt and dr are the time and space steps.
The flux-corrected transport algorithm consists of two stages. The first stage solves the convective
equation, maintaining the total number of tumor cells and the non-negativity of their density profile.
However, it introduces erroneous diffusion, reduction of which is the aim of the second stage.
The simulations for the intermediate malignant and high malignant tumors included Crank-Nicholson
method for the solution of tumor cell migration equation. Its main deficiency is the introduction of the
spurious oscillations, which amplitude increases with the increase of Dndt/dr2, where Dn is tumor
cell motility. Obviously, the decrease of the time step under constant space step should increase the
accuracy of the Crank-Nicholson method. However, such action would play an ambiguous role on the

http://www.mdpi.com/2227-7390/8/8/1204/s1
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accuracy of the flux-corrected transport algorithm, since more frequent calculations within a single
unit of time should amplify its total erroneous diffusion.

Figure A1 shows the dependence of the low malignant, intermediate malignant and high
malignant tumor growth speeds V, expressed in mm/week (which implies its multiplication by
the factor of 16.8), on the time and space steps, equal to each other. The tumor growth speed was
estimated via the method, described in our previous work [55], as the asymptotic value of the rate
of change of the tumor radius, which was evaluated as the maximum space coordinate, at which
n + m ≥ 0.1. The low malignant tumor growth speed changed non-monotonically with the refinement
of discretization, reflecting the increase of the erroneous diffusion, introduced by the flux-corrected
transport algorithm. This effect was not pronounced for the intermediate malignant tumor. This tumor
had non-zero cell motility, therefore, the migration equation was solved in its case, and its accuracy
fell under such refinement of discretization. Nevertheless, the tumor cell motility was sufficiently
low in this case for this effect to remain unnoticed on this graph. However, this effect was strongly
pronounced for the high malignant tumor with sufficiently high cell motility. Moreover, the utilized
numerical approach turned out to be unstable for high malignant tumor under dr = dt = 0.01.
Overall, based on these graphs and on the amount of computing resources, spent under different
discretizations, time and space steps dr = dt = 0.1 were chosen to be used for all the simulations.

(a) (b) (c)dr,dt dr,dt dr,dt

V, mm/week V, mm/week V, mm/week

Figure A1. The values of the tumor growth speeds V, obtained numerically in the simulations
of Equation (2) under designated space steps dr and time steps dt and the values of the model
parameters, corresponding to: (a) low malignant tumor, (b) intermediate malignant tumor and (c) high
malignant tumor.
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