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Abstract: We introduce a new tensor norm (σ-tensor norm) and show that it is associated with the
ideal of σ-nuclear operators. In this paper, we investigate the ideal of σ-nuclear operators and the
σ-tensor norm.
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1. Introduction

Let X ⊗ Y be the algebraic tensor product of Banach spaces X and Y. One may refer
to [1] (Section 1) for tensor products and their elementary properties. If α is a norm on the tensor
product, then the normed space (X⊗Y, α) is denoted by X⊗α Y and X⊗̂αY is the completion of X⊗α Y.
The most classical two norms ε and π on X⊗Y are the injective norm and projective norm, respectively.
For u ∈ X⊗Y,

ε(u; X, Y) := sup
{∣∣∣ l

∑
n=1

x∗(xn)y∗(yn)
∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
,

where ∑l
n=1 xn ⊗ yn is any representation of u and BZ is the closed unit ball of a Banach space Z, and

π(u; X, Y) := inf
{ l

∑
n=1
‖xn‖‖yn‖ : u =

l

∑
n=1

xn ⊗ yn, l ∈ N
}

.

We refer to [1,2] for ε and π. Our main notion is the following concept.

Definition 1. For ∑l
n=1 xn ⊗ yn ∈ X⊗Y, let

∣∣∣ l

∑
n=1

xn ⊗ yn

∣∣∣
σ

:= sup
{ l

∑
n=1
|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
.

For u ∈ X⊗Y, let

ασ(u; X, Y) := inf
{∣∣∣ l

∑
n=1

xn ⊗ yn

∣∣∣
σ

: u =
l

∑
n=1

xn ⊗ yn, l ∈ N
}

.

We call ασ the σ-tensor norm.

A Banach operator ideal [A, ‖ · ‖A] is said to be associated with a tensor norm α if the natural
map from A(M, N) to M∗ ⊗α N is an isometry for both finite-dimensional normed spaces M and N.
Let ‖ · ‖ be the operator norm on the ideal L of all operators and let F be the ideal of all finite rank
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operators. A linear map T : X → Y is called approximable if there exists a sequence (Tn)n in F (X, Y)
such that limn→∞ ‖Tn − T‖ = 0. We denote by F (X, Y) the space of all approximable operators from
X to Y. Then the ideal [F , ‖ · ‖] of approximable operators is a Banach operator ideal.

A linear map T : X → Y is nuclear if there exists sequences (x∗n)n in X∗ and (yn)n in Y with

∞

∑
n=1
‖x∗n‖‖yn‖ < ∞

such that

T =
∞

∑
n=1

x∗n⊗yn,

where x∗n⊗yn is an operator from X to Y defined by (x∗n⊗yn)(x) = x∗n(x)yn. The space of all nuclear
operators from X to Y is denoted by N (X, Y) with the norm

‖T‖N := inf
{ ∞

∑
n=1
‖x∗n‖‖yn‖ : T =

∞

∑
n=1

x∗n⊗yn

}
,

where the infimum is taken over all such representations. It is well known that [F , ‖ · ‖] is associated
with ε and [N , ‖ · ‖N ] is associated with π (cf. [2] (Section 17.12)).

Pietsch [3] introduced a natural extended notion of the nuclear operator. A linear map T : X → Y
is called σ-nuclear if there exists sequences (x∗n)n in X∗ and (yn)n in Y such that

T =
∞

∑
n=1

x∗n⊗yn

unconditionally converges in the operator norm. We denote by Nσ(X, Y) the space of all σ-nuclear
operators from X to Y and for T ∈ Nσ(X, Y), let

‖T‖Nσ
:= inf

{∣∣∣ ∞

∑
n=1

x∗n⊗yn

∣∣∣
σ

: T =
∞

∑
n=1

x∗n⊗yn

}
,

where |∑∞
n=1 x∗n⊗yn|σ := sup{∑∞

n=1 |x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗} and the infimum is taken over
all σ-nuclear representations. Then [Nσ, ‖ · ‖Nσ

] is a Banach operator ideal [3] (Theorem 23.2.2).
In this paper, we study the Banach operator idealNσ of σ-nuclear operators and the corresponding

σ-tensor norm ασ. In Section 2, we obtain a factorization of operators belonging to Nσ and show that
the surjective hull and the injective hull ofNσ coincide with the ideal of compact operators. It turns out
that [Nσ, ‖ · ‖Nσ

] is associated with ασ. In Section 3, we show that ασ is a finitely generated tensor norm
and the completion X⊗̂ασ Y is identified. An isometric representation of the dual space (X⊗ασ Y)∗ is
established. In Section 4, we show that

X⊗ε Y = X⊗ασ Y

holds isometrically when X or Y has a hyperorthogonal basis. As a consequence, we show that ασ is
neither injective nor projective.

2. The Ideal of σ-Nuclear Operators

For Banach spaces X and Y, we denote by

`σ(X∗, Y)

the collection of sequences (x∗n, yn)n in X∗ ×Y satisfying
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lim
l→∞

sup
{

∑
n≥l
|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
= 0

and let

|(x∗n, yn)n|`σ = sup
{ ∞

∑
n=1
|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
for (x∗n, yn)n ∈ `σ(X∗, Y).

A basis (en)n for a Banach space X is called hyperorthogonal if for every n ∈ N |αn| ≤ |βn| implies

∥∥∥ ∞

∑
n=1

αnen

∥∥∥ ≤ ∥∥∥ ∞

∑
n=1

βnen

∥∥∥.

Using a standard argument, we have the following lemma.

Lemma 1. Let K be a collection of sequences of positive numbers.
If sup(kn)n∈K ∑∞

n=1 kn < ∞ and liml→∞ sup(kn)n∈K ∑n≥l kn = 0, then for every ε > 0, there exists an
increasing sequence (βn)n with βn > 1 and limn→∞ βn = ∞ such that

lim
l→∞

sup
(kn)n∈K

∑
n≥l

knβn = 0 and sup
(kn)n∈K

∞

∑
n=1

knβn ≤ (1 + ε) sup
(kn)n∈K

∞

∑
n=1

kn.

It is well known that a nuclear operator T : X → Y has the following factorization.

X T //

R
��

Y

c0 D
// `1,

S

OO

where R and S are compact operators, and D is a diagonal operator which is nuclear. From a
modification of [3] (Theorem 23.2.5), we have a similar form for σ-nuclear operators.

Theorem 1. Let X and Y be Banach spaces and let T : X → Y be a linear map. Then the following statements
are equivalent.

(a) T ∈ Nσ(X, Y).
(b) There exists (x∗n, yn)n ∈ `σ(X∗, Y) such that

T =
∞

∑
n=1

x∗n⊗yn.

(c) There exist Banach spaces Z and W having hyperorthogonal bases, R ∈ Nσ(X, Z), a diagonal operator
D ∈ Nσ(Z, W) with ‖D‖Nσ

≤ 1, and S ∈ Nσ(W, Y) with ‖S‖Nσ
≤ 1 such that the following

diagram is commutative.

X T //

R
��

Y

Z
D
// W.

S

OO

In this case,
‖T‖Nσ

= inf |(x∗n, yn)n|`σ = inf ‖R‖Nσ
,

where the first infimum is taken over all such representations of T in (b) and the second infimum is taken
over all such factorizations of T in (c).
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Proof. (c)⇒(a) is trivial and ‖T‖Nσ
is less than or equal to the infimum for factorizations of T in (c).

(a)⇒(b): This part is a well known result. For the sake of the completeness of presentation,
we provide an explicit proof. Let T ∈ Nσ(X, Y) and let ε > 0 be given. Then there exists a representation

T =
∞

∑
n=1

x∗n⊗yn,

which unconditionally converges in (L(X, Y), ‖ · ‖), such that

∣∣∣ ∞

∑
n=1

x∗n⊗yn

∣∣∣
σ
≤ (1 + ε)‖T‖Nσ

.

It is well known that a series ∑∞
n=1 zn in a Banach space Z unconditionally converges if and only if

lim
l→∞

sup
z∗∈BZ∗

∑
n≥l
|z∗(zn)| = 0.

Thus,

lim
l→∞

sup
{

∑
n≥l
|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
≤ lim

l→∞
sup

{
∑
n≥l
|ϕ(x∗n⊗yn)| : ϕ ∈ B(L(X,Y),‖·‖)∗

}
= 0.

Hence (b) follows and the first infimum

inf | · |`σ ≤ |(x∗n, yn)n|`σ =
∣∣∣ ∞

∑
n=1

x∗n⊗yn

∣∣∣
σ
≤ (1 + ε)‖T‖Nσ

.

Since ε > 0 was arbitrary, inf | · |`σ ≤ ‖T‖Nσ
.

(b)⇒(c): Let ε > 0 be given. By (b), there exists (x∗n, yn)n ∈ `σ(X∗, Y) such that

T =
∞

∑
n=1

x∗n⊗yn

and
|(x∗n, yn)n|`σ ≤ (1 + ε) inf | · |`σ .

By Lemma 1, there exists a sequence (βn)n with βn > 1 and limn→∞ βn = ∞ such that

(β2
nx∗n, yn)n ∈ `σ(X∗, Y)

and
|(β2

nx∗n, yn)n|`σ ≤ (1 + ε)|(x∗n, yn)n|`σ .

Let

Z :=
{
(αn)n in C :

∞

∑
n=1

αnβ2
nyn unconditionally converges in Y

}
and

‖(αn)n‖Z := sup
y∗∈BY∗

∞

∑
n=1

β2
n|αny∗(yn)|.

Then (Z, ‖ · ‖Z) is a Banach space and the sequence (en)n of standard unit vectors forms a
hyperorthogonal basis in Z. Let
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W :=
{
(γn)n in CN :

∞

∑
n=1

γnyn unconditionally converges in Y
}

and

‖(γn)n‖W := sup
y∗∈BY∗

∞

∑
n=1
|γny∗(yn)|.

Then (W, ‖ · ‖W) is a Banach space and the sequence ( fn)n of standard unit vectors forms a
hyperorthogonal basis in W.

Let
R : X → Z, Rx = (x∗n(x))n,

D : Z →W, D(αn)n = (βnαn)n,

S : W → Y, S(γn)n =
∞

∑
n=1

γn

βn
yn.

To show that R = ∑∞
n=1 x∗n⊗en unconditionally converges in L(X, Z), let δ > 0. Choose an lδ ∈ N

such that
sup

{
∑

n≥lδ

β2
n|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
≤ δ.

Then for every finite subset F of N with min F > lδ,∥∥∥ ∑
n∈F

x∗n⊗en

∥∥∥ = sup
x∈BX

∥∥∥ ∑
n∈F

x∗n(x)en

∥∥∥
Z

= sup
{

∑
n∈F

β2
n|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
≤ δ.

Hence R ∈ Nσ(X, Z). Since for every x ∈ BX and z∗ ∈ BZ∗ ,

∞

∑
n=1
|x∗n(x)z∗(en)| =

∞

∑
n=1

λnx∗n(x)z∗(en) (|λn| = 1)

≤
∥∥∥ ∞

∑
n=1

λnx∗n(x)en

∥∥∥
Z

= sup
y∗∈BY∗

∞

∑
n=1

β2
n|x∗n(x)y∗(yn)| ≤ |(β2

nx∗n, yn)n|`σ ,

‖R‖Nσ
≤ |(β2

nx∗n, yn)n|`σ ≤ (1 + ε)|(x∗n, yn)n|`σ ≤ (1 + ε)2 inf | · |`σ .
To show that D = ∑∞

n=1 βne∗n⊗ fn unconditionally converges in L(Z, W), where each e∗n ∈ Z∗ is
the n-th coordinate functional, let δ > 0. Choose an Nδ ∈ N such that 1/βn ≤ δ for every n ≥ Nδ.
Then for every finite subset F of N with min F > Nδ,∥∥∥ ∑

n∈F
βne∗n⊗ fn

∥∥∥ = sup
(αn)n∈BZ

∥∥∥ ∑
n∈F

βnαn fn

∥∥∥
W

= sup
{

∑
n∈F

βn|αny∗(yn)| : (αn)n ∈ BZ, y∗ ∈ BY∗
}

≤ δ sup
{

∑
n∈F

β2
n|αny∗(yn)| : (αn)n ∈ BZ, y∗ ∈ BY∗

}
≤ δ sup

(αn)n∈BZ

‖(αn)n‖Z ≤ δ.

Hence D ∈ Nσ(Z, W) and ‖D‖Nσ
≤ 1, indeed, for every (αk)k ∈ BZ and w∗ ∈ BW∗ ,
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∞

∑
n=1
|βne∗n((αk)k)w∗( fn)| =

∞

∑
n=1
|βnαnw∗( fn)|

=
∞

∑
n=1

δnβnαnw∗( fn) (|δn| = 1)

≤
∥∥∥ ∞

∑
n=1

δnβnαn fn

∥∥∥
W

= sup
y∗∈BY∗

∞

∑
n=1

βn|αny∗(yn)|

≤ sup
y∗∈BY∗

∞

∑
n=1

β2
n|αny∗(yn)| = ‖(αk)k‖Z ≤ 1.

Let f ∗n ∈ W∗ be the n-th coordinate functional. In order to show that S = ∑∞
n=1(1/βn) f ∗n⊗yn

converges unconditionally in L(W, Y), we take δ > 0. Choose an Nδ ∈ N such that 1/βn ≤ δ for every
n ≥ Nδ. Then for every finite subset F of N with min F > Nδ,∥∥∥ ∑

n∈F
(1/βn) f ∗n⊗yn

∥∥∥ = sup
(γn)n∈BW

∥∥∥ ∑
n∈F

γn

βn
yn

∥∥∥
Y

= sup
{∣∣∣ ∑

n∈F

γn

βn
y∗(yn)

∣∣∣ : (γn)n ∈ BW , y∗ ∈ BY∗
}

≤ δ sup
{∣∣∣ ∑

n∈F
γny∗(yn)

∣∣∣ : (γn)n ∈ BW , y∗ ∈ BY∗
}

≤ δ sup
(γn)n∈BW

‖(γn)n‖W ≤ δ.

Hence S ∈ Nσ(W, Y) and ‖S‖Nσ
≤ 1, indeed, for every (γk)k ∈ BW and y∗ ∈ BY∗ ,

∞

∑
n=1
|(1/βn) f ∗n ((γk)k)y∗(yn)| ≤

∞

∑
n=1
|γny∗(yn)| ≤ ‖(γn)n‖W ≤ 1.

Clearly, T = SDR and the second infimum inf ‖ · ‖Nσ
≤ ‖R‖Nσ

≤ (1 + ε)2 inf | · |`σ . Since ε > 0
was arbitrary, inf ‖ · ‖Nσ

≤ inf | · |`σ .

The surjective hull [A, ‖ · ‖A]sur of an operator ideal [A, ‖ · ‖A] is defined as follows;

Asur(X, Y) := {T ∈ L(X, Y) : TqX ∈ A(`1(BX), Y)},

where qX : `1(BX) → X is the natural quotient operator, and ‖T‖Asur := ‖TqX‖A for T ∈ Asur(X, Y)
(see [2] (p. 113) and [3] (Section 8.5)).

Lemma 2. (see Proposition 8.5.4 in [3]) Let [A, ‖ · ‖A] be a Banach operator ideal and let X and Y be Banach
spaces. A linear map T ∈ Asur(X, Y) if and only if there exists a Banach space Z and an S ∈ A(Z, Y) such
that T(BX) ⊂ S(BZ). In this case,

‖T‖Asur = inf ‖S‖A,

where the infimum is taken over all the above inclusions.

Lemma 3. [4] A subset K of a Banach space X is relatively compact if and only if for every ε > 0, there exists a
null sequence (xn)n in X with supn∈N ‖xn‖ ≤ (1 + ε) supx∈K ‖x‖ such that

K ⊂
{ ∞

∑
n=1

αnxn : (αn)n ∈ B`1

}
.
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The surjective hull of the ideal of nuclear operators is identified in [3] (Proposition 8.5.5).

Theorem 2. The surjective hull [Nσ, ‖ · ‖Nσ
]sur of the ideal of σ-nuclear operators can be identified with the

ideal [K, ‖ · ‖] of compact operators.

Proof. Since [Nσ, ‖ · ‖Nσ
] ⊂ [F , ‖ · ‖] and [F , ‖ · ‖]sur = [K, ‖ · ‖],

[Nσ, ‖ · ‖Nσ
]sur ⊂ [K, ‖ · ‖].

To show the opposite inclusion, let X and Y be Banach spaces. Let T ∈ K(Y, X) and let ε > 0.
Then by Lemma 3, there exists a null sequence (xn)n in X with supn∈N ‖xn‖ ≤ (1 + ε)‖T‖ such that

T(BY) ⊂
{ ∞

∑
n=1

αnxn : (αn)n ∈ B`1

}
.

Let us consider the map

E : `1 → X, E =
∞

∑
n=1

en⊗xn,

where each en is the standard unit vector in c0. Since

lim
l→∞

sup
{

∑
n≥l
|αnx∗(xn)| : (αn)n ∈ B`1 , x∗ ∈ BX∗

}
≤ lim

l→∞
sup

(αn)n∈B`1

∑
n≥l
|αn|‖xn‖ = 0,

in view of Theorem 1, E ∈ Nσ(`1, X) and

‖E‖Nσ
≤ |(en, xn)n|`σ

= sup
{ ∞

∑
n=1
|αnx∗(xn)| : (αn)n ∈ B`1 , x∗ ∈ BX∗

}
≤ sup

n∈N
‖xn‖ ≤ (1 + ε)‖T‖.

Since T(BY) ⊂ E(B`1), by Lemma 2, T ∈ N sur
σ (Y, X) and

‖T‖N sur
σ
≤ ‖E‖Nσ

≤ (1 + ε)‖T‖.

The injective hull [A, ‖ · ‖A]inj of an operator ideal [A, ‖ · ‖A] is defined as follows;

Ainj(X, Y) := {T ∈ L(X, Y) : IYT ∈ A(X, `∞(BY∗))},

where IY : Y → `∞(BY∗) is the natural isometry, and ‖T‖Ainj := ‖IYT‖A for T ∈ Ainj(X, Y)
(see [2] (p. 112) and [3] (Section 8.4)).

Lemma 4. If [A, ‖ · ‖A] is a symmetric Banach operator ideal, then

[A, ‖ · ‖A]inj = ([A, ‖ · ‖A]sur)dual .

Proof. The symmetric operator ideal means that [A, ‖ · ‖A] ⊂ [A, ‖ · ‖A]dual . Then
by [3] (Theorem 8.5.9),

[A, ‖ · ‖A]inj ⊂ ([A, ‖ · ‖A]dual)inj ⊂ ([A, ‖ · ‖A]sur)dual .
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Additionally, since [A, ‖ · ‖A]sur ⊂ ([A, ‖ · ‖A]dual)sur, by [3] (Theorem 8.5.9),

([A, ‖ · ‖A]sur)dual ⊂ (([A, ‖ · ‖A]dual)sur)dual = (([A, ‖ · ‖A]inj)dual)dual .

Note that (([B, ‖ · ‖B ]inj)dual)dual ⊂ [B, ‖ · ‖B ]inj for every Banach operator ideal B. Hence the
assertion follows.

The injective hull of the ideal of nuclear operators is identified in [3] (Proposition 8.4.5).
The following theorem is a consequence of the fact that the ideal [Nσ, ‖ · ‖Nσ

] is symmetric (cf. [3]
(Theorem 23.2.7)).

Theorem 3. For the ideal of σ-nuclear operators, the following equality is valid:

[Nσ, ‖ · ‖Nσ
]inj = [K, ‖ · ‖].

Proof. Since [Nσ, ‖ · ‖Nσ
] is symmetric, by Theorem 2 and Lemma 4,

[Nσ, ‖ · ‖Nσ
]inj = ([Nσ, ‖ · ‖Nσ

]sur)dual = [K, ‖ · ‖]dual = [K, ‖ · ‖].

For T ∈ F (X, Y), let

‖T‖N 0
σ

:= inf
{∣∣∣ l

∑
n=1

x∗n⊗yn

∣∣∣
σ

: T =
l

∑
n=1

x∗n⊗yn, l ∈ N
}

.

Then ‖ · ‖N 0
σ

is a norm on F [3] (Proposition 23.2.10).

Proposition 1. Suppose that X or Y is a finite-dimensional normed space. Then

‖T‖N 0
σ
= ‖T‖Nσ

for every T ∈ L(X, Y).

Proof. Let T ∈ L(X, Y) and let δ > 0 be given. Let

T =
∞

∑
n=1

x∗n⊗yn,

be a σ-nuclear representation in Theorem 1(b) such that

|(x∗n, yn)n|`σ ≤ (1 + δ)‖T‖Nσ
.

If X is finite-dimensional, then there exists an l ∈ N such that

sup
{

∑
n≥l+1

|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗
}
≤ δ‖T‖Nσ

/‖idX‖N 0
σ

,

where idX is the identity operator on X. We have

‖T‖N 0
σ
≤
∥∥∥ l

∑
n=1

x∗n⊗yn

∥∥∥
N 0

σ

+
∥∥∥ ∑

n≥l+1
x∗n⊗yn

∥∥∥
N 0

σ

≤ |(x∗n, yn)n|`σ +
∥∥∥ ∑

n≥l+1
x∗n⊗yn

∥∥∥
Nσ

‖idX‖N 0
σ

≤ (1 + 2δ)‖T‖Nσ
.
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If Y is finite-dimensional, then idX can be replaced by idY in the above proof.

Corollary 1. [Nσ, ‖ · ‖Nσ
] is associated with ασ.

Proof. Let X and Y be Banach spaces. Let ∑l
n=1 x∗n ⊗ yn ∈ X∗ ⊗ Y. The by an application of

Helly’s lemma,

∣∣∣ l

∑
n=1

x∗n ⊗ yn

∣∣∣
σ
= sup

{ l

∑
n=1
|x∗n(x)y∗(yn)| : x ∈ BX , y∗ ∈ BY∗

}
=
∣∣∣ l

∑
n=1

x∗n⊗yn

∣∣∣
σ
.

Consequently, for every u ∈ X∗ ⊗Y, we have

ασ(u; X∗, Y) = inf
{∣∣∣ l

∑
n=1

x∗n⊗yn

∣∣∣
σ

: u =
l

∑
n=1

x∗n ⊗ yn, l ∈ N
}

.

Hence the assertion follows from Proposition 1.

3. The σ-Tensor Norm

Let us recall that a tensor norm α is a norm on X ⊗ Y for each pair of Banach spaces X and Y
such that

(TN1) ε ≤ α ≤ π.
(TN2) for operators T1 : X1 → Y1 and T2 : X2 → Y2,

‖T1 ⊗ T2 : X1 ⊗α X2 → Y1 ⊗α Y2‖ ≤ ‖T1‖‖T2‖.

A tensor norm α is said to be finitely generated if

α(u; X, Y) = inf{α(u; M, N) : u ∈ M⊗ N, dim M, dim N < ∞}

for every u ∈ X⊗Y. The transposed tensor norm αt of α is defined by

αt(u; X, Y) := α(ut; Y, X)

for u ∈ X⊗Y.

Proposition 2. ασ is a finitely generated tensor norm and αt = α.

Proof. We see that ασ is a norm and satisfies (TN1) on X⊗Y for each pair of Banach spaces X and Y.
To check (TN2), let T1 : X1 → Y1 and T2 : X2 → Y2 be operators. Let u ∈ X1 ⊗ X2 and let

u = ∑l
n=1 x1

n ⊗ x2
n be an arbitrary representation. Then

ασ((T1 ⊗ T2)(u); Y1, Y2) = ασ

( l

∑
n=1

T1x1
n ⊗ T2x2

n; Y1, Y2

)
≤
∣∣∣ l

∑
n=1

T1x1
n ⊗ T2x2

n

∣∣∣
σ

= ‖T1‖‖T2‖
∣∣∣ l

∑
n=1

(T1/‖T1‖)(x1
n)⊗ (T2/‖T2‖)(x2

n)
∣∣∣
σ

≤ ‖T1‖‖T2‖
∣∣∣ l

∑
n=1

x1
n ⊗ x2

n

∣∣∣
σ
.
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Hence
ασ((T1 ⊗ T2)(u); Y1, Y2) ≤ ‖T1‖‖T2‖ασ(u; X1, X2).

To show that ασ is finitely generated, let u ∈ X ⊗ Y and let u = ∑l
n=1 xn ⊗ yn be an arbitrary

representation. Let M0 = span{xn}l
n=1 and N0 = span{yn}l

n=1. Using the Hahn–Banach extension
theorem, we have

inf{ασ(u; M, N) : u ∈ M⊗ N, dim M, dim N < ∞}
≤ ασ(u; M0, N0)

≤ sup
{ l

∑
n=1
|m∗(xn)n∗(yn)| : m∗ ∈ BM∗0

, n∗ ∈ BN∗0

}
= sup

{ l

∑
n=1
|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
.

Hence
inf{ασ(u; M, N) : u ∈ M⊗ N, dim M, dim N < ∞} ≤ ασ(u; X, Y).

The other part of the assertion follows from the definition of the σ-tensor norm.

We now consider the completion X⊗̂ασ Y of X ⊗ασ Y. When ∑∞
n=1 xn ⊗ yn converges in X⊗̂ασ Y

and sup{∑∞
n=1 |x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗} < ∞, we let

∣∣∣ ∞

∑
n=1

xn ⊗ yn

∣∣∣
σ

:= sup
{ ∞

∑
n=1
|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
.

Lemma 5. Let X and Y be Banach spaces and let (xn)n and (yn)n be sequences in X and Y, respectively. Then

lim
l→∞

sup
{

∑
n≥l
|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
= 0

if and only if the series ∑∞
n=1 xn ⊗ yn unconditionally converges in X⊗̂ασ Y.

Proof. Suppose that liml→∞ sup{∑n≥l |x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗} = 0. Let δ > 0 be given.
Choose an lδ ∈ N such that

sup
{

∑
n≥lδ

|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗
}
≤ δ.

Then for every finite subset F of N with min F > lδ,

ασ

(
∑
n∈F

xn ⊗ yn; X, Y
)
≤
∣∣∣ ∑

n∈F
xn ⊗ yn

∣∣∣
σ

≤ sup
{

∑
n≥lδ

|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗
}
≤ δ.

Suppose that ∑∞
n=1 xn ⊗ yn unconditionally converges in X⊗̂ασ Y. Then

lim
l→∞

sup
{

∑
n≥l
|x∗(xn)y∗(yn)| : x∗ ∈ BX∗ , y∗ ∈ BY∗

}
≤ lim

l→∞
sup

{
∑
n≥l
|ϕ(xn ⊗ yn)| : ϕ ∈ B(X⊗̂ασ Y)∗

}
= 0.



Mathematics 2020, 8, 1192 11 of 15

The following lemma is well known.

Lemma 6. Let (Z, ‖ · ‖) be a normed space and let (Ẑ, ‖ · ‖) be its completion. If z ∈ Ẑ, then for every δ > 0,
there exists a sequence (zn)n in Z such that

∞

∑
n=1
‖zn‖ ≤ (1 + δ)‖z‖

and z = ∑∞
n=1 zn converges in Ẑ.

Proposition 3. Let X and Y be Banach spaces. If u ∈ X⊗̂ασ Y, then there exists sequences (xn)n in X and
(yn)n in Y such that

u =
∞

∑
n=1

xn ⊗ yn

unconditionally converges in X⊗̂ασ Y and

ασ(u; X, Y) = inf
{∣∣∣ ∞

∑
n=1

xn ⊗ yn

∣∣∣
σ

: u =
∞

∑
n=1

xn ⊗ yn unconditionally converges in X⊗̂ασ Y
}

.

Proof. We use Lemma 5. Let u ∈ X⊗̂ασ Y and let δ > 0 be given. Then by Lemma 6, there exists a
sequence (un)n in X⊗Y such that

∞

∑
n=1

ασ(un; X, Y) ≤ (1 + δ)ασ(u; X, Y)

and u = ∑∞
n=1 un converges in X⊗̂ασ Y.

For every n ∈ N, let

un =
mn

∑
k=1

xn
k ⊗ yn

k

be such that ∣∣∣ mn

∑
k=1

xn
k ⊗ yn

k

∣∣∣
σ
≤ (1 + δ)ασ(un; X, Y).

Then for every γ > 0, there exists an Nγ ∈ N such that

sup
{

∑
n≥Nγ

mn

∑
k=1
|x∗(xn

k )y
∗(yn

k )|; x∗ ∈ BX∗ , y∗ ∈ BY∗
}
≤ ∑

n≥Nγ

∣∣∣ mn

∑
k=1

xn
k ⊗ yn

k

∣∣∣
σ
≤ γ.

This shows that

u =
∞

∑
n=1

mn

∑
k=1

xn
k ⊗ yn

k

unconditionally converges in X⊗̂ασ Y. In addition, the infimum

inf{·} ≤
∣∣∣ ∞

∑
n=1

mn

∑
k=1

xn
k ⊗ yn

k

∣∣∣
σ
≤

∞

∑
n=1

∣∣∣ mn

∑
k=1

xn
k ⊗ yn

k

∣∣∣
σ
≤ (1 + δ)2ασ(u; X, Y).

Since δ > 0 was arbitrary, inf{·} ≤ ασ(u; X, Y).
Since for every representation

u =
∞

∑
n=1

xn ⊗ yn
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unconditionally converging in X⊗̂ασ Y,

ασ(u; X, Y) = lim
l→∞

ασ

( l

∑
n=1

xn ⊗ yn

)
≤ lim

l→∞

∣∣∣ l

∑
n=1

xn ⊗ yn

∣∣∣
σ
=
∣∣∣ ∞

∑
n=1

xn ⊗ yn

∣∣∣
σ
,

ασ(u; X, Y) ≤ inf{·}.

Let α be a tensor norm and let M and N be finite-dimensional normed spaces. let

α′0(u; M, N) := sup{|〈v, u〉| : α(v; M∗, N∗) ≤ 1}

for u ∈ M⊗ N. Then the dual tensor norm is defined by

α′(u; X, Y) := inf{α′0(u; M, N) : u ∈ M⊗ N, dim M, dim N < ∞}

for u ∈ X⊗Y. The adjoint tensor norm is

α∗ := (α′)t = (αt)′.

If α is finitely generated, then α′, αt and α∗ are all finitely generated and (α′)′ = α

The adjoint ideal [Aadj, ‖ · ‖Aadj ] is the maximal Banach operator ideal associated with the adjoint
tensor norm α∗.

Lemma 7. (see Theorem 17.5 in [2]) Let A be the maximal Banach operator ideal associated with a finitely
generated tensor norm α. Then for all Banach spaces X and Y,

(X⊗α′ Y)
∗ = A(X, Y∗)

holds isometrically.

Pietsch [3] introduced a stronger notion of the absolutely p-summing operator. A linear map
T : X → Y is called absolutely τ-summing if there exists a C > 0 such that

l

∑
n=1
|y∗n(Txn)| ≤ C sup

{ l

∑
n=1
|x∗(xn)y∗n(y)| : x∗ ∈ BX∗ , y ∈ BY

}
for every x1, ..., xl ∈ X and y∗1 , ..., y∗l ∈ Y∗. We denote byPτ(X, Y) the space of all absolutely τ-summing
operators from X to Y and for T ∈ Pτ(X, Y), let

‖T‖Pτ
:= inf C,

where the infimum is taken over all such inequalities. Then it was shown
in [3] (Theorems 23.1.2 and 23.1.3) that [Pτ , ‖ · ‖Pτ

] is a maximal Banach operator ideal.
Pietsch [3] also introduced the ideal of σ-integral operators as follows;

[Iσ, ‖ · ‖Iσ
] := [Nσ, ‖ · ‖Nσ

]max.

It was shown that
I adj

σ = Pτ and P adj
τ = Iσ

hold isometrically [3] (Theorem 23.3.6).
We now have:
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Corollary 2. For all Banach spaces X and Y,

(X⊗ασ Y)∗ = Pτ(X, Y∗)

holds isometrically.

Proof. Since
α′σ = (αt

σ)
′ = α∗σ

is associated with I adj
σ = Pτ , by Lemma 7,

(X⊗ασ Y)∗ = (X⊗(α′σ)′ Y)
∗ = Pτ(X, Y∗)

holds isometrically.

4. Non-Injectiveness and Non-Projectiveness of the σ-Tensor Norm

Proposition 4. Let X and Y be Banach spaces. If X or Y has a hyperorthogonal basis, then

X⊗ε Y = X⊗ασ Y

holds isometrically.

Proof. Suppose that Y has a hyperorthogonal basis (ei)i. Let (e∗i )i be the sequence of coordinate
functionals for (ei)i. Let u = ∑l

n=1 xn ⊗ yn ∈ X ⊗ Y and let U be the corresponding weak∗ to weak
continuous finite rank operator for u, namely, U = ∑l

n=1 xn⊗yn : X∗ → Y. Then for every x∗ ∈ X∗,

Ux∗ =
∞

∑
i=1

(e∗i Ux∗)ei

and e∗i U ∈ X ↪→ X∗∗ for every i ∈ N. Moreover, since U(BX∗) is relatively compact,

lim
l→∞

ε
( l

∑
i=1

e∗i U ⊗ ei − u; X, Y
)
= lim

l→∞

∥∥∥ l

∑
i=1

e∗i U⊗ei −U
∥∥∥

= lim
l→∞

sup
x∗∈BX∗

∥∥∥ l

∑
i=1

(e∗i Ux∗)ei −Ux∗
∥∥∥ = 0.

Consequently,

u =
∞

∑
i=1

e∗i U ⊗ ei

converges in X⊗̂εY. We will use Lemma 5 to show that the series unconditionally converges in X⊗̂ασ Y.
Let η > 0 be given. Let {Ux∗k}

m
k=1 be an η/2-net for U(BX∗). Choose an l ∈ N so that∥∥∥∑

i≥l
(e∗i Ux∗k )ei

∥∥∥ ≤ η

2

for every k = 1, ..., m. Let x∗ ∈ BX∗ and y∗ ∈ BY∗ .
Let k0 ∈ {1, ..., m} be such that

‖Ux∗ −Ux∗k0
‖ ≤ η

2
.
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Then we have

∑
i≥l
|(e∗i Ux∗)y∗(ei)|

≤∑
i≥l
|(e∗i U(x∗ − x∗k0

))y∗(ei)|+ ∑
i≥l
|(e∗i Ux∗k0

)y∗(ei)|

≤∑
i≥l

γi(e∗i U(x∗ − x∗k0
))y∗(ei) + ∑

i≥l
δi(e∗i Ux∗k )y

∗(ei) (|γi| = 1 = |δi|)

≤
∥∥∥∑

i≥l
γi(e∗i U(x∗ − x∗k0

))ei

∥∥∥+ ∥∥∥∑
i≥l

δi(e∗i Ux∗k )ei

∥∥∥
≤
∥∥∥ ∞

∑
i=1

(e∗i U(x∗ − x∗k0
))ei

∥∥∥+ ∥∥∥∑
i≥l

(e∗i Ux∗k )ei

∥∥∥
≤ ‖Ux∗ −Ux∗k0

‖+ η

2
≤ η.

By Proposition 3 and the above argument,

ασ(u; X, Y) ≤
∣∣∣ ∞

∑
i=1

e∗i U ⊗ ei

∣∣∣
σ
= ‖U‖ = ε(u; X, Y).

The other part of the assertion follows from αt
σ = ασ and εt = ε.

A tensor norm α is called right-injective (respectively, right-projective) if for every isometry
I : Y → Z (respectively, quotient operator q : Y → Z), the operator

idX ⊗ I (respectively, idX ⊗ q) : X⊗α Y → X⊗α Z

is an isometry (respectively, a quotient operator) for all Banach spaces X, Y and Z. If αt is right-injective
(respectively, right-projective), then α is called left-injective (respectively, left-projective).

An operator ideal is said to be surjective if [A, ‖ · ‖A]sur = [A, ‖ · ‖A]. According
to [2] (Theorem 20.11), a maximal operator ideal is surjective if and only if its associated tensor norm
is left-injective.

Example 1 (Non-injectiveness of ασ). We show that

I sur
σ 6= Iσ.

For every separable Banach space X and every Banach space Y,

I sur
σ (X, Y) = L(X, Y).

Indeed, according to [3] (Theorem 23.3.4), an operator T : X → Y is σ-integral if and only if iYT is factored
through some Banach lattice, where iY : Y → Y∗∗ is the canonical isometry. Consequently, TqX ∈ Iσ(`1, Y)
for every T ∈ L(X, Y).

On the other hand, there exists a separable Banach space Z such that idZ 6∈ Iσ(Z, Z)
(cf. [5] (p. 364)). Hence

I sur
σ (Z, Z) = L(Z, Z) 6= Iσ(Z, Z).

Example 2. (Non-projectiveness of ασ) The following argument is due to the proof of [2] (Proposition 4.3). Let
q`2 : `1 → `2 be the canonical quotient operator. Consider the map

id`2 ⊗ q`2 : `2⊗̂ασ`1 → `2⊗̂ασ`2.
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By Proposition 4,

`2⊗̂ασ`1 = `2⊗̂ε`1 = K(`2, `1) and `2⊗̂ασ`2 = `2⊗̂ε`2 = K(`2, `2)

hold isometrically. Consequently, the map id`2 ⊗ q`2 can be viewed from K(`2, `1) from K(`2, `2).
Now, let T : `2 → `2 be a compact operator failed to be Hilbert–Schmidt. If id`2 ⊗ q`2 would be surjective,

then there exists an R ∈ K(`2, `1) such that

q`2 R = id`2 ⊗ q`2(R) = T.

This is a contradiction because q`2 R is Hilbert–Schmidt.

5. Discussion

We introduce a new tensor norm and associate it with an operator ideal. This work continues the
study of theory of tensor norms and we expect that several more results on tensor norms and operator
ideals can be developed. We introduce one of the important subjects. For a finitely generated tensor
norm α, a Banach space X is said to have the α-approximation property (α-AP) if for every Banach
space Y, the natural map

Jα : Y⊗̂αX −→ Y⊗̂εX

is injective (cf. [3] (Section 21.7)). We can consider the ασ-AP and the following problems.

Problem 1. Does every Banach space have the ασ-AP?

Problem 2. For every Banach space X, if X∗ has the ασ-AP, then does X have the ασ-AP?

Author Contributions: Conceptualization, J.M.K.; methodology, J.M.K. and K.Y.L.; software, J.M.K. and K.Y.L.;
validation, J.M.K. and K.Y.L.; formal analysis, J.M.K. and K.Y.L.; investigation, J.M.K. and K.Y.L.; resources, J.M.K.
and K.Y.L.; data curation, J.M.K. and K.Y.L.; writing—original draft preparation, J.M.K.; writing—review and
editing, J.M.K.; visualization, J.M.K.; supervision, J.M.K.; project administration, J.M.K.; funding acquisition,
J.M.K. All authors have read and agreed to the published version of the manuscript.

Funding: The first author was supported by NRF-2018R1D1A1B07043566 (Korea). The second author was
supported by NRF-2017R1C1B5017026 (Korea).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ryan, R. A. Introduction to Tensor Products of Banach Spaces; Springer: Berlin/Heidelberg, Germany, 2002.
2. Defant, A.; Floret, K. Tensor Norms and Operator Ideals; Elsevier: Amsterdam, The Netherlands, 1993.
3. Pietsch, A. Operator Ideals; Elsevier: Amsterdam, The Netherlands, 1980.
4. Grothendieck, A. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 1955, 16,
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