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Abstract: A multi-criteria decision-making (MCDM) method with single-valued neutrosophic
information is developed based on the Partitioned Heronian Mean (PHM) operator and the Shapley
fuzzy measure, which recognizes correlation among the selection criteria. Motivated by the PHM
operator and Shapley fuzzy measure, two new aggregation operators, namely the single-valued
neutrosophic PHM operator and the weighted single-valued neutrosophic Shapley PHM operator,
are defined, and their corresponding properties and some special cases are investigated. An MCDM
model is applied to solve the single-valued neutrosophic problem where weight information is not
completely known. An example is provided to validate the proposed method.

Keywords: single-valued neutrosophic sets; MCDM; partitioned heronian mean; shapley
fuzzy measure

1. Introduction

Zadeh first put forward the notion of fuzzy sets (FSs) [1]. Since then, multi-criteria decision-making
(MCDM) methods based on FSs have been well developed and applied to hotel selection [2], investment
project selection [3], supplier selection [4], solar power station site selection [5], recycling waste resource
evaluation [6], and others [7–13]. However, due to the inherent subjectivity in the preferences of the
decision makers (DMs), a single membership degree of FSs cannot adequately capture the subjectivity
and uncertainty in the decision-making process. In view of this, Atanassov [14] introduced intuitionistic
fuzzy sets (IFSs), including membership and non-membership degrees and a hesitation index, as an
extension of FSs. However, both FSs and IFSs are not adept at tackling problems involving information
uncertainty. For example, when we ask an expert about a certain statement, the expert may say the
probability that the statement is true, false, and unsure is 0.6, 0.5, and 0.1 respectively [15]. Clearly,
the solution to this problem is beyond the scope of FSs and IFSs. Smarandache et al. [16] constructed
neutrosophic sets (NSs) that involve three membership functions: truth, indeterminacy, and falsity. It is
noted that NSs lie on a non-standard unit interval ]0−, 1+[ [17], which is an extension of the standard
interval [0.1] of IFSs. The uncertainty presented here, i.e., the indeterminacy factor, depends on the truth
and falsity values while the incorporated uncertainty depends on the membership and non-membership
degrees of the IFSs [18]. Thus, the earlier example of NSs can be expressed as x(0.6, 0.1, 0.5). While some
MCDM methods with neutrosophic information have been investigated [19–21], their applicability is
restricted because of the non-standard unit interval. As such, single-valued neutrosophic sets (SVNSs)
were proposed, as a special case of NSs [22].
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SVNSs have recently become a popular method to describe the preference information of DMs,
and have attracted much research attention in areas such as aggregation operators [23–28], outranking
relations [29], and information measures [30–33].

Indeed, aggregation operators are significant in solving MCDM problems. Different functions
usually involve different aggregation operators such as the Heronian mean (HM) operator [34,
35], Hamacher operator [36,37], Muirhead mean operator [38,39], Maclaurin symmetric mean
operator [40,41], and Bonferroni mean operator [42–44]. These operators can reduce the effects
of abnormal data provided by DMs. For instance, the HM operator, defined by Sykora [34], takes
the interrelationship of the input arguments into account. Recently, many studies have examined
the HM operator and extended it to various decision-making contexts. For instance, based on the
HM operator, Liu and Shi [35] defined some neutrosophic linguistic operators and Peng et al. [45]
discussed the single-valued neutrosophic hesitant fuzzy geometric Choquet integral HM operator.
In addition, some other MCDM methods, including the analytic network process (ANP) [46], and the
analytic hierarchy process and interpretive structural modelling (AHP-ISM) [47,48], also consider the
interrelationship of criteria. However, the HM operator, ANP, and AHP-ISM presuppose that all the
selection criteria are interrelated. In reality, the criteria need not always be correlated with each other.
Hence, the criteria should be partitioned into distinct categories to improve decision-making accuracy.
Liu et al. [49] defined the partitioned HM (PHM) operator where all the criteria are partitioned into
categories, in which the criteria in the same category are correlated with each other. For example, if a
firm wishes to select a food supplier from several vendors using the criteria of cost (c1), quality (c2),
service performance (c3), risk (c4), and supplier profile (c5), then the criteria can be partitioned into the
categories P1 = {c1, c2, c4} and P2 = {c3, c5}. Criteria c1, c2 and c4 are correlated, placing them in the same
category, P1; likewise, for criteria c3 and c5 in set P2. It is noted that the Shapley fuzzy measure [50,51]
is adept at handling MCDM problems with correlated selection criteria, and has been extensively used
for the same reason [52,53].

From the analysis presented above, the motivations of this research can be concluded as:
(1) the existing single-valued neutrosophic aggregation operators only consider the importance
of assessment values or that of the ordered position, but ignore the complex interrelationship of the
criteria; (2) the existing methods are mostly constructed under complete weight information, and
cannot deal with MCDM problems where the weight information is incomplete. Thus, our study
makes two contributions. First, we propose two new partitioned aggregation operators, namely, the
single-valued neutrosophic PHM (SVNPHM) operator and the weighted single-valued neutrosophic
Shapley PHM (WSVNSPHM) operator, to avoid the first shortcoming. Next, we develop a method
to deal with the single-valued neutrosophic MCDM problem under incomplete weight information,
to handle the second shortcoming.

The rest of this paper is set as follows. In Section 2, some definitions are introduced. The SVNPHM
and WSVNSPHM operators are explained in Section 3. The single-valued MCDM method with
incomplete weight information is developed in Section 4. In Section 5, an example is provided to
validate the proposed method. Finally, conclusions are drawn in Section 6.

2. Preliminaries

Here, we introduce some definitions, namely, the Shapley fuzzy measure, PHM operator, NSs,
and SVNSs.

2.1. Shapley Fuzzy Measure

Definition 1 [50]. Let X = {x1, x2, . . . , xn} be a space of objects and P(x) be the power set of X. Then the
function µ : (P(x)→ [0, 1]) is defined as a fuzzy measure, satisfying

(1) µ(Φ) = 0 and µ(X) = 1;
(2) ∀α, β ∈ P(X) and α ⊆ β, then µ(α) ≤ µ(β).
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Definition 2 ([54]). Suppose µ is a fuzzy measure on X. The corresponding Möbius transformation can be
expressed as

β ⊂ X, m(β) =
∑
α⊂β

(−1)|β\α|µ(α) (1)

If
∣∣∣β∣∣∣ = k, m(β) = 0 and there exists at least one subset γ

(∣∣∣γ∣∣∣ = k
)

satisfying m(γ) , 0, then µ is called a
k-order additive fuzzy measure.

Definition 3 ([50]). Suppose µ is a fuzzy measure on X; the Shapley value to measure the average importance
degree of S is:

τS(µ, X) =
∑

M⊆X\S

(n− s−m)!m!
(n− s + 1)!

(µ(S∪ {M}) − µ(M)),∀S ⊆ X (2)

where n, m, and s denote the cardinalities of X, M, and S, respectively. As noted in [54], τS(µ, X) ≥ 0 and∑
S⊆X

τS(µ, X) = 1. τS(µ, X) is called Shapley fuzzy measures [53].

In this paper, the Shapley fuzzy measures are additive fuzzy measures unless otherwise stated.

Example 1. Suppose X =
{
d, e, f

}
, and µ is a fuzzy measure, with µ(∅) = 0, µ({d}) = 0.1, µ({e}) = 0.2,

µ(
{
f
}
) = 0.5, µ({d, e}) = 0.5, µ(

{
e, f

}
) = 0.9, µ(

{
d, f

}
) = 0.8, and µ({X}) = 1. If S = {d, e}, then X\S =

{
f
}
.

The following results can be obtained:

φS(µ, X) =
(3− 2− 1)!1!
(3− 2 + 1)!

(µ({d, e} ∪
{
f
}
) − µ(

{
f
}
)) +

(3− 2− 0)!0!
(3− 2 + 1)!

(µ({d, e} ∪ {∅}) − µ(
{
f
}
))

=
1
2
(µ(d, e, f ) − µ( f )) +

1
2
(µ(d, e) − µ(∅))

=
1
2
(1− 0.5) +

1
2
(0.5− 0) = 0.5.

2.2. PHM

Definition 4 ([34]). Let χi(i = 1, 2, . . . , n) be a set of real numbers. The HM operator is defined as:

HMp,q(χ1,χ2, . . . ,χn) =

 2
n(n + 1)

n∑
i=1, j=i

χi
pχ j

q


1

p+q

(3)

where p, q ≥ 0, and the HM operator satisfies the following properties:

(1) Idempotency: If χi = χ(i = 1, 2, . . . , n), then HMp,q(χ,χ, . . . ,χ) = χ.
(2) Permutability: If χi

′(i = 1, 2, . . . , n) is a permutation of χi(i = 1, 2, . . . , n), then
HMp,q(χ1

′,χ2
′, . . . ,χn

′) = HMp,q(χ1,χ2, . . . ,χn).
(3) Boundedness: If χ+ = max{χ1,χ2, . . . ,χn} and χ− = min{χ1,χ2, . . . ,χn}, then χ− ≤

HMp,q(χ1,χ2, . . . ,χn) ≤ χ+.

Definition 5 ([49]). Let χi(i = 1, 2, . . . , n) be a set of inputs that can be partitioned into t categories
Pl(l = 1, 2, . . . , t). The PHM operator is defined as:

PHMp,q(χ1,χ2, . . . ,χn) =
1
t


t∑

l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

χ
p
i χ

q
j


1

p+q
 (4)
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where p, q ≥ 0, p + q > 0,
t∑

l=1
|Pl| = n, and Pi ∩ P j = ∅, and |Pl| denotes the cardinality of Pl.

Example 2. If C = {c1, c2, c3, c4, c5} is a set of criteria that can be partitioned into two categories P1 = {c1, c2, c3}
and P2 = {c4, c5}, and the assessment values provided by the DMs are χ = {0.7, 0.5, 0.4, 0.6, 0.8} (for convenience,
let p = q = 1), then, the aggregated results using the PHM operator are written as:

PHM1,1(χ1,χ2, . . . ,χ5) =
1
2


 2
|P1|(|P1 |+1 )

|P1 |∑
i=1, j=i

χ1
i χ

1
j


1
2

+

 2
|P2|(|P2 |+1 )

|P2 |∑
i=4, j=i

χ1
i χ

1
j


1
2


= 1
2

((
2

3×4 (0.7× 0.7 + 0.7× 0.5 + 0.7× 0.4 + 0.5× 0.5 + 0.5× 0.4 + 0.4× 0.4)
) 1

2 +(
2

2×3 (0.6× 0.6 + 0.6× 0.8 + 0.8× 0.8)
) 1

2

)
= 1

2 (0.5369 + 0.7024) = 0.6197.

Moreover,

HM1,1(χ1,χ2, . . . ,χ5) =

 2
5×6

m∑
i=1, j=i

χi
1χ j

1


1
2

=
2

5× 6
(0.7× 0.7 + 0.7× 0.5 + 0.7× 0.4 + 0.7× 0.6 + 0.7× 0.8 + 0.5× 0.5 + 0.5× 0.4 + 0.5× 0.6

+0.5× 0.8 + 0.4× 0.4 + 0.4× 0.6 + 0.4× 0.8 + 0.6× 0.6 + 0.6× 0.8 + 0.8× 0.8)

=
(

4.81
15

) 1
2 = 0.5663.

The reason for the difference in the results obtained by the PHM operator and those obtained
by the HM operator is that the PHM operator partitions the input values into categories based on
the relationship of the values, whereas the HM operator presupposes the condition that each input
value is correlated with the other values. Therefore, the PHM operator is more reasonable than the
HM operator.

2.3. NSs and SVNSs

Definition 6 [16]. An NS S̃ in X = {x1, x2, . . . , xn} can be characterized as S̃ ={〈
x, T̃S̃(x), ĨS̃(x), F̃S̃(x)

〉∣∣∣∣x ∈ X
}
, where T̃S̃(x), ĨS̃(x), and F̃S̃(x) denote the truth, indeterminacy, and falsity

memberships respectively. Furthermore, T̃S̃(x), ĨS̃(x), and F̃S̃(x) are subsets of ]0−, 1+[, that is,
T̃S̃(x) : X→]0−, 1+[ , ĨS̃(x) : X→]0−, 1+[ , and F̃S̃(x) : X→]0−, 1+[ satisfy the condition 0− ≤ supT̃S̃(x)+
supĨS̃(x) + supF̃S̃(x) ≤ 3+.

Since it is impractical for NSs to tackle real-life problems because of their nonstandard intervals,
Majumdar and Samant [18] defined SVNSs based on standard intervals, and Ye [19] developed the
corresponding properties for SVNSs.

Definition 7 ([22]). An SVNS S in X = {x1, x2, . . . , xn} is defined as S =
{ 〈

x, TS(x), IS(x), FS(x)
〉∣∣∣x ∈ X

}
,

where TS(x), IS(x), and FS(x) are subsets in the standard interval [0, 1], i.e., TS(x) : X→ [0, 1] ,
IS(x) : X→ [0, 1] , and FS(x) : X→ [0, 1] . If X has only one element, then S is a single-valued neutrosophic
number (SVNN). For convenience, we denote the SVNN by S = 〈TS, IS, FS〉.

Definition 8 ([22]). Let S = 〈TS, IS, FS〉, S1 =
〈
TS1 , IS1 , FS1

〉
, and S2 =

〈
TS2 , IS2 , FS2

〉
be three SVNNs.

With λ > 0, the following properties hold:

(1) λS =
〈
1− (1− TS)

λ, 1− (1− IS)
λ, 1− (1− FS)

λ
〉
,λ > 0;
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(2) Sλ =
〈
TλS , IλS , FλS

〉
,λ > 0;

(3) S1 ⊕ S2 =
〈
TS1 + TS2 − TS1 · TS2 , IS1 + IS2 − IS1 · IS2 , FS1 + FS2 − FS1 · FS2

〉
;

(4) S1 ⊗ S2 =
〈
TS1 · TS2 , IS1 · IS2 , FS1 · FS2

〉
.

However, as stated in [19], the above operations are unreasonable. In view of this, Peng et al. [20]
improved the properties of SVNNs as well as the corresponding comparison method.

Definition 9 ([23]). Let S = 〈TS, IS, FS〉, S1 =
〈
TS1 , IS1 , FS1

〉
, and S2 =

〈
TS2 , IS2 , FS2

〉
be three SVNNs.

With λ > 0, the properties of the SVNNs are defined as follows:

(1) λS =
〈
1− (1− TS)

λ, IS
λ, FS

λ
〉
;

(2) Sλ =
〈
TS

λ, 1− (1− IS)
λ, 1− (1− FS)

λ
〉
;

(3) S1 ⊕ S2 =
〈
TS1 + TS2 − TS1 · TS2 , IS1 · IS2 , FS1 · FS2

〉
;

(4) S1 ⊗ S2 =
〈
TS1 · TS2 , IS1 + IS2 − IS1 · IS2 , FS1 + FS2 − FS1 · FS2

〉
.

Definition 10 ([23]). Let S1 =
〈
TS1 , IS1 , FS1

〉
and S2 =

〈
TS2 , IS2 , FS2

〉
be two SVNNs. The comparison

method is defined as:

(1) If s(S1) > s(S2), then S1 is preferable to S2, which is represented as S1 � S2;
(2) If s(S1) = s(S2) and a(S1) > a(S2), then S1 is preferable to S2, which is denoted by S1 � S2;
(3) If s(S1) = s(S2), a(S1) = a(S2) and c(S1) > c(S2), then S1 is preferable to S2, which is denoted by

S1 � S2;
(4) If s(S1) = s(S2), a(S1) = a(S2) and c(S1) = c(S2), then S1 is indifferent to S2, which is represented by

S1 ∼ S2.

In this definition, s(Si) =
(
TSi + 1− ISi + 1− FSi

)
/3, a(Si) = TSi − FSi , and c(Si) = TSi(i = 1, 2)

denote the score, accuracy, and certainty functions of the SVNNs, respectively.

Example 3. Let S1 = 〈0.5, 0.6, 0.4〉 and S2 = 〈0.5, 0.5, 0.4〉 be two SVNNs. From the comparison method
presented in Definition 10, we obtain s(S1) =

1.5
3 < 1.6

3 = s(S2). Thus, S2 is preferable to S1, i.e., S2 � S1,
which is consistent with our definition.

Definition 11 ([18]). Let S1 =
〈
TS1 , IS1 , FS1

〉
and S2 =

〈
TS2 , IS2 , FS2

〉
be two SVNNs. The normalized

Euclidean distance between S1 and S2 can be defined as:

dned(S1, S2) =
(1

3

(∣∣∣TS1 − TS2

∣∣∣2 + ∣∣∣IS1 − IS2

∣∣∣2 + ∣∣∣FS1 − FS2

∣∣∣2) ) 1
2

(5)

Example 4. Let S1 = 〈0.5, 0.6, 0.4〉 and S2 = 〈0.4, 0.3, 0.2〉 be two SVNNs. From Definition 11, we have

dned(S1, S2) =
(

1
3

(
|0.5− 0.4|2 + |0.6− 0.3|2 + |0.4− 0.2|2

) ) 1
2 = 0.216.

3. Single-Valued Neutrosophic PHM Operators

Through the PHM operator and Shapley fuzzy measure, the SVNPHM and WSVNSPHM operators
are, respectively, defined, and their corresponding properties are discussed in this section.
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3.1. SVNPHM Operator

Definition 12. Let Si = (Ti, Ii, Fi)(i = 1, 2, . . . , n) be a set of SVNNs that can be partitioned into categories
Pl(l = 1, 2, . . . , t). The SVNPHM operator is defined as

SVNPHMp,q(S1, S2, . . . , Sn) =
1
t


t∑

l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

Sp
i ⊗ Sq

j


1

p+q
 (6)

where p, q ≥ 0, p + q > 0,
t∑

l=1
|Pl| = n, and Pi ∩ P j = ∅. |Pl| represents the cardinality of Pl.

Theorem 1. Let Si = (Ti, Ii, Fi)(i = 1, 2, . . . , n) be a set of SVNNs. Then, the results under the SVNPHM
operator also produce an SVNN, i.e.,

SVNPHMp,q(S1, S2, . . . , Sn) =

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t 〉

(7)

Proof. Based on Definition 9, we have Sp
i =

〈
Tp

i , 1− (1− Ii)
p, 1− (1− Fi)

p
〉

and Sq
j =〈

Tq
j , 1−

(
1− I j

)q
, 1−

(
1− F j

)q
〉
.

Then Sp
i ⊗ Sq

j =
〈
Tp

i · T
q
j , 1− (1− Ii)

p
(
1− I j

)q
, 1− (1− Fi)

p
(
1− F j

)q
〉
.

So
|Pl |∑

i=1, j=i
Sp

i ⊗ Sq
j =

〈
1−

|Pl |∏
i=1, j=i

(
1− Ti

pT j
q
)

,
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q)
,
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q)〉
.

2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

Sp
i ⊗ Sq

j =

〈
1−

|Pl |∏
i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1) ,

|Pl |∏
i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1) ,

|Pl |∏
i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)

〉
. 2∣∣∣Pl

∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

Sp
i ⊗ Sq

j


1

p+q

=

〈1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q

, 1 −1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q 〉
.

Moreover,
t∑

l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

Sp
i ⊗ Sq

j


1

p+q

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q
 ,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q
,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q

〉
.
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Thus, 1
t

 t∑
l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

Sp
i ⊗ Sq

j


1

p+q
 =

〈
1−

 t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q



1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,
t∏

l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t 〉

.

Next, we present some special cases with regard to the parameters.

(1) As q→ 0 , then Equation (7) reduces to:

SVNPHMp,0(S1, S2, . . . , Sn) =

〈
1−

t∏
l=1

1−

1−
|Pl |∏
i=1

(1− Ti
p)

2
|Pl |(|Pl |+1)


1
p


1
t

,

t∏
l=1

1−

1−
|Pl |∏
i=1

(
1− (1− Ii)

p
) 2
|Pl |(|Pl |+1)


1
p


1
t

,

t∏
l=1

1−

1−
|Pl |∏
i=1

(
1− (1− Fi)

p
) 2
|Pl |(|Pl |+1)


1
p


1
t 〉

;

(8)

(2) When p = 1 and q→ 0 , Equation (7) reduces to:

SVNPHM1,0(S1, S2, . . . , Sn)

=

〈
1−

(
t∏

l=1

|Pl |∏
i=1

(1− Ti)
2

|Pl |(|Pl |+1)

) 1
t

,
(

t∏
l=1

|Pl |∏
i=1

Ii
2

|Pl |(|Pl |+1)

) 1
t

,
(

t∏
l=1

|Pl |∏
i=1

Fi
2

|Pl |(|Pl |+1)

) 1
t 〉

;
(9)

(3) When p = q = 1, Equation (7) becomes:

SVNPHM1,1(S1, S2, . . . , Sn) =

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− TiT j

) 2
|Pl |(|Pl |+1)


1
2


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
Ii + I j − IiI j

) 2
|Pl |(|Pl |+1)


1
2


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
Fi + F j − FiF j

) 2
|Pl |(|Pl |+1)


1
2


1
t 〉

.

(10)

According to the operations presented in Definition 9 and Theorem 1, some properties of the
SVNPHM operator are investigated in the following. �

Theorem 2. Idempotency: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs. If S1 = S2 = . . . = Sn =

S = 〈T, I, F〉, then SVNPHMp,q(S1, S2, . . . , Sn) = S.
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Proof. Since S j = S( j = 1, 2, . . . , n), we have

SVNPHMp,q(S1, S2, . . . , Sn)

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i
(1− Tp+q)

2
|Pl |(|Pl |+1)


1

p+q


1
t

,
t∏

l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− I)p+q

) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− F)p+q

) 2
|Pl |(|Pl |+1)


1

p+q


1
t 〉

=

〈
1−

t∏
l=1

(
1− (1− (1− Tp+q))

1
p+q

) 1
t

,
t∏

l=1

(
1−

(
1−

(
1− (1− I)p+q

)) 1
p+q

) 1
t

,
t∏

l=1

(
1−

(
1−

(
1− (1− F)p+q

)) 1
p+q

) 1
t
〉

=

〈
1−

t∏
l=1

(
1− (Tp+q)

1
p+q

) 1
t

,
t∏

l=1

(
1−

(
(1− I)p+q

) 1
p+q

) 1
t

,
t∏

l=1

(
1−

(
(1− F)p+q

) 1
p+q

) 1
t
〉

=

〈
1−

t∏
l=1

(1− T)
1
t ,

t∏
l=1

(I)
1
t ,

t∏
l=1

(F)
1
t

〉
=

〈
1− (1− T), I, F

〉
= 〈T, I, F〉.

�

Theorem 3. Permutability: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs. If S̃ j =(

T̃ j, Ĩ j, F̃ j
)
( j = 1, 2, . . . , n) accompanies any permutation of S j =

〈
T j, I j, F j

〉
( j = 1, 2, . . . , n), then,

SVNPHMp,q
(
S̃1, S̃2, . . . , S̃n

)
= SVNPHMp,q(S1, S2, . . . , Sn)

Proof. Since S̃ j =
(
T̃ j, Ĩ j, F̃ j

)
( j = 1, 2, . . . , n) is any permutation of S j =

〈
T j, I j, F j

〉
( j = 1, 2, . . . , n),

we have

SVNPHMp,q
(
S̃1, S̃2, . . . , S̃n

)
=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− T̃i

pT̃ j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1−

(
1− Ĩi

)p(
1− Ĩ j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,
t∏

l=1

1−

1−
|Pl |∏

i=1, j=i

(
1−

(
1− F̃i

)p(
1− F̃ j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t 〉

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,
t∏

l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t 〉

= SVNPHMp,q(S1, S2, . . . , Sn).

�

Theorem 4. Boundedness: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs.

If S− =

〈
min

j

{
T j

}
, max

j

{
I j
}
, max

j

{
F j

}〉
and S+ =

〈
max

j

{
T j

}
, min

j

{
I j
}
, min

j

{
F j

}〉
, then S− ≤

SVNPHMp,q(S1, S2, . . . , Sn) ≤ S+.

Proof. Since min
j

{
T j

}
≤ T j ≤ max

j

{
T j

}
, we have

(
min

j

{
T j

})p+q

≤ Ti
pT j

q
≤

(
max

j

{
T j

})p+q

⇔ 1−
(
max

j

{
T j

})p+q

≤ 1− Ti
pT j

q
≤ 1−

(
min

j

{
T j

})p+q
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⇔

|Pl |∏
i=1, j=i

1−
(
max

j

{
T j

})p+q
2

|Pl |(|Pl |+1)

≤

|Pl |∏
i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)

≤

|Pl |∏
i=1, j=i

1−
(
min

j

{
T j

})p+q
2

|Pl |(|Pl |+1)

⇔ 1−
(
max

j

{
T j

})p+q

≤

|Pl |∏
i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)

≤ 1−
(
min

j

{
T j

})p+q

⇔

(
min

j

{
T j

})p+q

= 1− 1 +
(
min

j

{
T j

})p+q

≤ 1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)

≤ 1− 1 +
(
max

j

{
T j

})p+q

=

(
max

j

{
T j

})p+q

⇔ min
j

{
T j

}
=

(min
j

{
T j

})p+q
1

p+q

≤

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q

≤

(max
j

{
T j

})p+q
1

p+q

= max
j

{
T j

}
⇔ 1−max

j

{
T j

}
≤ 1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q

≤ 1−min
j

{
T j

}
⇔

t∏
l=1

(
1−max

j

{
T j

}) 1
t

≤

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤

t∏
l=1

(
1−min

j

{
T j

}) 1
t

⇔ 1−max
j

{
T j

}
≤

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤ 1−min
j

{
T j

}
⇔ min

j

{
T j

}
≤ 1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− Ti

pT j
q
) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤ max
j

{
T j

}
Moreover, since min

j

{
I j
}
≤ I j ≤ max

j

{
I j
}
, we have 1−max

j

{
I j
}
≤ 1− I j ≤ 1−min

j

{
I j
}

(
1−max

j

{
I j
})p

≤

(
1− I j

)p
≤

(
1−min

j

{
I j
})p

⇔

(
1−max

j

{
I j
})p+q

≤ (1− Ii)
p
(
1− I j

)q
≤

(
1−min

j

{
I j
})p+q

⇔ 1−
(
1−min

j

{
I j
})p+q

≤ 1− (1− Ii)
p
(
1− I j

)q
≤ 1−

(
1−max

j

{
I j
})p+q

⇔

|Pl |∏
i=1, j=i

1−
(
1−min

j

{
I j
})p+q

2
|Pl |(|Pl |+1)

≤

|Pl |∏
i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)

≤

|Pl |∏
i=1, j=i

1−
(
1−max

j

{
I j
})p+q

2
|Pl |(|Pl |+1)

⇔ 1−
(
1−min

j

{
I j
})p+q

≤

|Pl |∏
i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)

≤ 1−
(
1−max

j

{
I j
})p+q

⇔

(
1−max

j

{
I j
})p+q

≤ 1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)

≤

(
1−min

j

{
I j
})p+q

⇔

(1−max
j

{
I j
})p+q

1
p+q

≤

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

≤

(1−min
j

{
I j
})p+q

1
p+q

⇔ 1−max
j

{
I j
}
≤

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

≤ 1−min
j

{
I j
}

⇔ min
j

{
I j
}
≤ 1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

≤ max
j

{
I j
}

⇔ 1−max
j

{
I j
}
≤

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

≤ 1−min
j

{
I j
}

⇔ min
j

{
I j
}
≤ 1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q

≤ max
j

{
I j
}

⇔

t∏
l=1

(
min

j

{
I j
}) 1

t

≤

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤

t∏
l=1

(
max

j

{
I j
}) 1

t

⇔ min
j

{
I j
}
≤

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Ii)

p
(
1− I j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤ max
j

{
I j
}
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Similarly, we can get min
j

{
F j

}
≤

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1− (1− Fi)

p
(
1− F j

)q) 2
|Pl |(|Pl |+1)


1

p+q


1
t

≤ max
j

{
F j

}
.

Based on the comparison method in Definition 10, the following results can be obtained as:
min

j

{
T j

}
+1−max

j

{
I j
}
+1−max

j

{
F j

}
3 ≤ s

(
SVNPHMp,q(S1, S2, . . . , Sn)

)
≤

max
j

{
T j

}
+1−min

j

{
I j
}
+1−min

j

{
F j

}
3 , i.e., s(S−) ≤

s
(
SVNPHMp,q(S1, S2, . . . , Sn)

)
≤ s(S+).

Thus, S− ≤ SVNPHMp,q(S1, S2, . . . , Sn) ≤ S+ holds. �

3.2. WSVNSPHM Operator

Since the importance of each input value varies according to the decision-making situation,
we propose a WSVNSPHM operator in this subsection.

Definition 13. Suppose Si = (Ti, Ii, Fi)(i = 1, 2, . . . , n) is a set of SVNNs that can be divided into categories
Pl(l = 1, 2, . . . , t), and τi(µ, Pl) is the Shapley fuzzy measure on Pl for Si = (Ti, Ii, Fi)(i = 1, 2, . . . , n) in the
l-th partition. The WSVNSPHM operator is defined as:

WSVNSPHMp,q(S1, S2, . . . , Sn) =
1
t


t∑

l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

(τi(µ, Pl)Si)
p
⊗

(
τ j(µ, Pl)

1− τi(µ, Pl)
S j

)q


1
p+q

 (11)

where p, q ≥ 0, p + q > 0,
t∑

l=1
|Pl| = n, and Pi ∩ P j = ∅. |Pl| represents the cardinality of Pl.

Theorem 5. Let Si = (Ti, Ii, Fi)(i = 1, 2, . . . , n) be a set of SVNNs. The results derived from the WSVNSPHM
operator also produce an SVNN, i.e.,

WSVNSPHMp,q(S1, S2, . . . , Sn)

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− (1− Ti)

τi(µ,Pl)
)p

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)


q

2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Ii

τi(µ,Pl)
)p

1− I j

τ j(µ,Pl)

1−τi(µ,Pl)

q
2

|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Fi

τi(µ,Pl)
)p

1− F j

τ j(µ,Pl)

1−τi(µ,Pl)

q
2

|Pl |(|Pl |+1)


1

p+q


1
t 〉

.

(12)

Proof. Since τi(µ, Pl)Si =
〈
1− (1− Ti)

τi(µ,Pl), Iτi(µ,Pl)
i , Fτi(µ,Pl)

i

〉
and

τ j(µ,Pl)

1−τi(µ,Pl)
S j =〈

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl) , I

τ j(µ,Pl)

1−τi(µ,Pl)

j , F

τ j(µ,Pl)

1−τi(µ,Pl)

j

〉
, then (τi(µ, Pl)Si)

p
⊗

(
τ j(µ,Pl)

1−τi(µ,Pl)
S j

)q
=〈(

1− (1− Ti)
τi(µ,Pl)

)p
·

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)


q

, 1 −

(
1− Iτi(µ,Pl)

i

)p
·

1− I

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

,

1−
(
1− Fτi(µ,Pl)

i

)p
·

1− F

τ j(µ,Pl)

1−τi(µ,Pl)

j


q〉

, and
|Pl |∑

i=1, j=i
(τi(µ, Pl)Si)

p
⊗

(
τ j(µ,Pl)

1−τi(µ,Pl)
S j

)q
=
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〈
1−

|Pl |∏
i=1, j=i

1−
(
1− (1− Ti)

τi(µ,Pl)
)p
·

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)


q ,

|P|∏
i=1, j=i

1−
(
1− Iτi(µ,Pl)

i

)p
·

1− I

τ j(µ,Pl)

1−τi(µ,Pl)

j


q,

|P|∏
i=1, j=i

1−
(
1− Fτi(µ,Pl)

i

)p
·

1− F

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

〉
.

So 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl|∑
i=1,j=i

(τi(µ, Pl)Si)
p
⊗

(
τj(µ,Pl)

1−τi(µ,Pl)
Sj

)q
=

〈
1−

|Pl|∏
i=1,j=i

1− (
1− (1−Ti)

τi(µ,Pl)
)p
·

1− (
1−Tj

) τj(µ,Pl)

1−τi(µ,Pl)


q

2
|Pl |(|Pl |+1)

,

|P|∏
i=1, j=i

1−
(
1− Iτi(µ,Pl)

i

)p
·

1− I

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1)

,
|P|∏

i=1, j=i

1−
(
1− Fτi(µ,Pl)

i

)p
·

1− F

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1) 〉

.

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl|∑
i=1,j=i

(τi(µ, Pl)Si)
p
⊗

(
τj(µ,Pl)

1−τi(µ,Pl)
Sj

)q


1
p+q

=

〈1− |Pl|∏
i=1,j=i

1− (
1− (1−Ti)

τi(µ,Pl)
)p
·

1− (
1−Tj

) τj(µ,Pl)

1−τi(µ,Pl)


q

2
|Pl |(|Pl |+1)


1

p+q

,

1−

1−
|P|∏

i=1,j=i

1− (
1− Iτi(µ,Pl)

i

)p
·

1− I

τj(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1)


1

p+q

, 1−

1−
|P|∏

i=1,j=i

1− (
1−Fτi(µ,Pl)

i

)p
·

1−F

τj(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1)


1

p+q 〉
.

Then
t∑

l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

(τi(µ, Pl)Si)
p
⊗

(
τ j(µ,Pl)

1−τi(µ,Pl)
S j

)q


1
p+q

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− (1− Ti)

τi(µ,Pl)
)p
·

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)


q

2
|Pl |(|Pl |+1)


1

p+q
 ,

t∏
l=1

1−

1−
|P|∏

i=1, j=i

1−
(
1− Iτi(µ,Pl)

i

)p
·

1− I

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1)


1

p+q
,

t∏
l=1

1−

1−
|P|∏

i=1, j=i

1−
(
1− Fτi(µ,Pl)

i

)p
·

1− F

τ j(µ,Pl)

1−τi(µ,Pl)

j


q

2
|Pl |(|Pl |+1)


1

p+q

〉
.

Thus,

1
t

 t∑
l=1

 2∣∣∣Pl
∣∣∣(|Pl|+1 )

|Pl |∑
i=1, j=i

(τi(µ, Pl)Si)
p
⊗

(
τ j(µ,Pl)

1−τi(µ,Pl)
S j

)q


1
p+q


=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− (1− Ti)

τi(µ,Pl)
)p

1−
(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)


q

2
|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Ii

τi(µ,Pl)
)p

1− I j

τ j(µ,Pl)

1−τi(µ,Pl)

q
2

|Pl |(|Pl |+1)


1

p+q


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Fi

τi(µ,Pl)
)p

1− F j

τ j(µ,Pl)

1−τi(µ,Pl)

q
2

|Pl |(|Pl |+1)


1

p+q


1
t 〉

.

Some special cases of the WSVNSPHM operator are presented below:
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(1) As q→ 0 , Equation (12) reduces to:

WSVNSPHMp,0(S1, S2, . . . , Sn)

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1−

(
1− (1− Ti)

τi(µ,Pl)
)p) 2

|Pl |(|Pl |+1)


1
p


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1−

(
1− Ii

τi(µ,Pl)
)p) 2

|Pl |(|Pl |+1)


1
p


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

(
1−

(
1− Fi

τi(µ,Pl)
)p) 2

|Pl |(|Pl |+1)


1
p


1
t 〉

;

(13)

(2) When p = 1 and q→ 0 , Equation (12) reduces to

WSVNSPHM1,0(S1, S2, . . . , Sn)

=

〈
1−

t∏
l=1

|Pl |∏
i=1, j=i

(1− Ti)
2τi(µ,Pl)

t|Pl |(|Pl |+1) ,
t∏

l=1

|Pl |∏
i=1, j=i

Ii

2τi(µ,Pl)
t|Pl |(|Pl |+1) ,

t∏
l=1

|Pl |∏
i=1, j=i

Fi

2τi(µ,Pl)
t|Pl |(|Pl |+1)

〉
;

(14)

(3) When p = q = 1, Equation (12) becomes

WSVNSPHM1,1(S1, S2, . . . , Sn)

=

〈
1−

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− (1− Ti)

τi(µ,Pl)
)1−

(
1− T j

) τ j(µ,Pl)

1−τi(µ,Pl)




2
|Pl |(|Pl |+1)


1
2


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Ii

τi(µ,Pl)
)1− I j

τ j(µ,Pl)

1−τi(µ,Pl)


2

|Pl |(|Pl |+1)


1
2


1
t

,

t∏
l=1

1−

1−
|Pl |∏

i=1, j=i

1−
(
1− Fi

τi(µ,Pl)
)1− F j

τ j(µ,Pl)

1−τi(µ,Pl)


2

|Pl |(|Pl |+1)


1
2


1
t 〉

.

(15)

�

The properties of the WSVNSPHM operator can be obtained using the following theorems.

Theorem 6. Idempotency: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs. If S1 = S2 = . . . = Sn =

S = 〈T, I, F〉, then WSVNSPHMp,q(S1, S2, . . . , Sn) = S.

Theorem 7. Permutability: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs. If

S̃ j =
(
T̃ j, Ĩ j, F̃ j

)
( j = 1, 2, . . . , n) accompanies any permutation of S j =

〈
T j, I j, F j

〉
( j = 1, 2, . . . , n),

then,WSVNSPHMp,q
(
S̃1, S̃2, . . . , S̃n

)
= WSVNSPHMp,q(S1, S2, . . . , Sn).

Theorem 8. Boundedness: Let S j =
〈
T j, I j, F j

〉
( j = 1, 2, . . . , n) be a set of SVNNs.

If S− =

〈
min

j

{
T j

}
, max

j

{
I j
}
, max

j

{
F j

}〉
and S+ =

〈
max

j

{
T j

}
, min

j

{
I j
}
, min

j

{
F j

}〉
, then S− ≤

WSVNSPHMp,q(S1, S2, . . . , Sn) ≤ S+.
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4. Single-Valued Neutrosophic MCDM Method with Incomplete Weight Information

Suppose S = {S1, S2, . . . , Sn} is a group of candidates and C = {c1, c2, . . . , cm} is the set of the
corresponding selection criteria. Then R =

(
Si j

)
n×m

is the single-valued neutrosophic decision matrix,

whereby Si j =
〈
Ti j, Ii j, Fi j

〉
(i = 1, 2, . . . , n; j = 1, 2, . . . , m) can be provided by DMs with respect to Si

for the criterion c j in the form of SVNNs. Based on the relationships among the criteria, Sij can be
partitioned into t categories Pl(l = 1, 2, . . . , t) where Pi ∩ P j = ∅. If the criteria are correlated with each
other, then the Shapley fuzzy measure is the weight of the criteria and t = 1. Further, if the Shapley
fuzzy measure of the criteria is known, the corresponding aggregation operators can be used directly
to obtain the aggregated values. If it is partly or fully unknown, then the Shapley fuzzy measure of the
criteria should be found first.

The flowchart of the proposed method is shown in Figure 1 and the steps to finding the optimal
candidate(s) are as follows.Mathematics 2020, 8, x FOR PEER REVIEW 16 of 25 
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Step 1. Construct and normalize decision matrix

The DMs evaluate the criteria for each candidate and construct the decision-matrix. As the
selection criteria will always involve the benefit type and cost type in MCDM problems, if the criteria
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belong to the benefit type, then it is not necessary to normalize the decision matrix. The cost type
criteria should be transformed into the associated benefit type criteria as:

S̃i j =

 Si j, for benefit criterion c j(
Si j

)c
, for cost criterion c j

, (i = 1, 2, . . . , n; j = 1, 2, . . . , m), (16)

where
(
Si j

)c
=

〈
Fi j, 1− Ii j, Ti j

〉
is the complement of Si j.

Then, the normalized decision matrix R̃ =
(
S̃i j

)
n×m

can be obtained.

Step 2. Determine closeness coefficients

Let S̃+ =
(
S̃+

1 , S̃+
2 , . . . , S̃+

n

)
and S̃− =

(
S̃−1 , S̃−2 , . . . , S̃−n

)
be the positive and negative ideal

solutions respectively, S̃+
j =

(
max

i
T̃i j, min

i
Ĩi j, min

i
F̃i j

)
and S̃−j =

(
min

i
T̃i j, max

i
Ĩi j, max

i
F̃i j

)
(i = 1, 2, . . . , n;

j = 1, 2, . . . , m). The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [55]
is one of the key techniques in dealing with MCDM problems and it is very intuitive and simple.
It can provide a ranking method by the shortest distance from the positive ideal solution (PIS) and the
farthest distance from the negative ideal solution (NIS). Then the closeness coefficient of the candidate
from the PIS can be found as follows:

Di j
+
(
S̃i j, S̃+

)
=

di j
(
S̃i j, S̃+

)
di j

(
S̃i j, S̃+

)
+ di j

(
S̃i j, S̃−

) (i = 1, 2, . . . , n; j = 1, 2, . . . , m), (17)

where di j
(
S̃i j, S̃+

)
can be obtained by using Equation (5).

Step 3. Determine Shapley fuzzy measures

According to TOPSIS [55], the smaller the value of Di j
+
(
S̃i j, S̃+

)
, the better S̃i j is. If the weight of

the criteria is partly known, then a model based on the fuzzy measure can be constructed as:

min
n∑

j=1
Di j

+
(
S̃i j, S̃+

)
τc j(µ, C)

s.t.


µ(C) = 1
µ(M) ≤ µ(N), ∀M, N ∈ C and M ⊆ N
µ
(
C j

)
∈ G j, µ

(
C j

)
≥ 0, j = 1, 2, . . . , n

(18)

where τc j(µ, C) denotes the weight of criterion c j, and G j represents the weight information.
Next, the fuzzy measure and the corresponding Shapley fuzzy measure are obtained by solving

linear programming model (18).

Step 4. Compute global aggregation values

Using the WSVNSPHM operator, i.e., Equation (12), the global aggregation value ςi(i = 1, 2, . . . , n)
of candidate Si(i = 1, 2, . . . , n) can be obtained.

Step 5. Find values of score, accuracy, and certainty
Based on Definition 10, the values of score s(ςi), accuracy a(ςi), and certainty c(ςi) of

Si (i = 1, 2, . . . , n) can be achieved.

Step 6. Rank candidates

According to Step 5, all candidates Si (i = 1, 2, . . . , n) are ranked, and the best selected.
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5. Example

Hww is a large telecommunication technology player based in China. Hww produces and
sells telecommunication equipment. To enhance the competitiveness of its products, the company
intends to replace an existing electronic components supplier to improve the product quality. Thus,
the decision-making department has to choose a suitable supplier from several candidates. Following
preliminary surveys, five suppliers are considered, denoted by Si(i = 1, 2, . . . , 5). The assessment
values are provided in the form of SVNNs with respect to five factors, namely: c1: cost, c2: quality,
c3: service performance, c4: supplier’s profile, and c5: risk. From the relationship amongst the
five criteria, these criteria can be partitioned into two categories: P1 = {c1, c2, c5} and P2 = {c3, c4}.
Only the range of the weights of these criteria are known, with H = {0.35 ≤ w1 ≤ 0.40, 0.30 ≤ w2 ≤ 0.50,
0.25 ≤ w3 ≤ 0.50, 0.4 ≤ w4 ≤ 0.60, 0.25 ≤ w5 ≤ 0.35, }. The single-valued neutrosophic decision matrix
R =

(
Si j

)
5×5

is constructed as presented in Table 1.

Table 1. Decision matrix.

c1 c2 c3 c4 c5

S1 <0.2,0.9,0.6> <0.5,0.5,0.4> <0.5,0.3,0.4> <0.5,0.3,0.3> <0.6,0.6,0.5>
S2 <0.2,0.7,0.5> <0.6,0.6,0.3> <0.4,0.2,0.6> <0.6,0.1,0.2> <0.5,0.4,0.4>
S3 <0.2,0.8,0.5> <0.4,0.6,0.5> <0.5,0.2,0.4> <0.4,0.1,0.3> <0.6,0.7,0.5>
S4 <0.2,0.9,0.6> <0.4,0.5,0.4> <0.5,0.4,0.3> <0.5,0.2,0.2> <0.3,0.8,0.6>
S5 <0.1,0.9,0.6> <0.3,0.7,0.6> <0.4,0.6,0.5> <0.5,0.1,0.2> <0.5,0.4,0.4>

5.1. Decision-Making Process

The decision-making process, using the proposed method, is as follows.

Step 1. Construct and normalize decision matrix

The DMs assess the values as SVNNs, and criteria c1, c2, and c5 belong to the cost type.
The normalized decision matrix R̃ =

(
S̃i j

)
n×m

is obtained as shown in Table 2.

Table 2. Normalized decision matrix.

c1 c2 c3 c4 c5

S̃1 <0.6,0.1,0.2> <0.4,0.5,0.5> <0.5,0.3,0.4> <0.5,0.3,0.3> <0.5,0.4,0.6>
S̃2 <0.5,0.3,0.2> <0.3,0.4,0.6> <0.4,0.2,0.6> <0.6,0.1,0.2> <0.4,0.6,0.5>
S̃3 <0.5,0.2,0.2> <0.5,0.4,0.4> <0.5,0.2,0.4> <0.4,0.1,0.3> <0.5,0.3,0.6>
S̃4 <0.6,0.1,0.2> <0.4,0.5,0.4> <0.5,0.4,0.3> <0.5,0.2,0.2> <0.6,0.2,0.3>
S̃5 <0.6,0.1,0.1> <0.6,0.3,0.3> <0.4,0.6,0.5> <0.5,0.1,0.2> <0.4,0.6,0.5>

Step 2. Compute closeness coefficients

Using Equation (17), the closeness coefficients of the candidates from the positive ideal solution
are determined as given in Table 3.

Table 3. Closeness coefficients of candidates.

c1 c2 c3 c4 c5

S̃1 0.6259 0.7101 0.3090 0.2743 0.7101
S̃2 0.8305 0.8334 1 0.4415 0
S̃3 0.5119 0.3660 0.6340 0.1791 0.5279
S̃4 0 0.5729 0.3090 0.3483 0.4495
S̃5 0.8305 0 0 0.8209 0.2899
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Step 3. Determine Shapley fuzzy measures

Since the five criteria are partitioned into two categories, P1 = {c1, c2, c5} and P2 = {c3, c4},
their optimal Shapley fuzzy measures can be determined separately. For P1 = {c1, c2, c5}, we have:

min− 0.1262µ(c1) + 0.1262µ(c2, c5) + 0.0210µ(c1, c5) − 0.0210µ(c2) − 0.1472µ(c1, c2)

0.1472µ(c5) + 2.5044

s.t.



µ(c1, c2, c5) = 1
µ(E) ≤ µ(F), ∀E, F ∈ C and E ⊆ F
0.35 ≤ µ(c1) ≤ 0.40
0.30 ≤ µ(c2) ≤ 0.50
0.25 ≤ µ(c5) ≤ 0.35

The above model can be solved using MATLAB software, and the fuzzy measures on the basis
of the criteria are µ(c1) = µ(c1, c5) = 0.4, µ(c1, c2) = µ(c1, c2, c5) = 1, µ(c2) = µ(c2, c5) = 0.30,
and µ(c5) = 0.25. From Equation (1), the Shapley fuzzy measures are found to be τ1(µ, P1) = 0.5083,
τ2(µ, P1) = 0.4083, and τ3(µ, P1) = 0.0833.

Similarly, the optimal Shapley fuzzy measures based on the criteria partition P2 = {c3, c4} can be
determined as τ4(µ, P2) = 0.325 and τ5(µ, P2) = 0.675.

Step 4. Find global aggregation values

By using the WSVNSPHM operator, i.e., Equation (12), when p = q = 1, the global aggregation
value ςi(i = 1, 2, . . . , n) of candidate Si(i = 1, 2, . . . , n) can be obtained as:

ς1 =〈0.1572, 0.7223, 0.7720〉; ς2 = 〈0.1186, 0.7795, 0.7869〉; ς3 = 〈0.1558, 0.7403, 0.7500〉; ς4 = 〈0.1602,

0.7130, 0.7403〉; ς5 = 〈0.1973, 0.6796, 0.6771〉.

Step 5. Compute values of score, accuracy, and certainty

Using Definition 10, the values of score s(ςi) are obtained as s(ς1) = 0.2210;s(ς2) = 0.1841; s(ς3) =

0.2218; s(ς4) = 0.2356; s(ς5) = 0.2802. Since the values are not identical to each other, it is not necessary
to calculate the values of the accuracy a(ςi), and certainty c(ςi).

Step 6. Rank candidates
Since s(ς5) > s(ς4) > s(ς3) > s(ς1) > s(ς2), the final rank order is S5 � S4 � S3 � S1 � S2 and the

highest ranked is S5.

5.2. Sensitivity Analysis

Next, a sensitivity analysis can be conducted to investigate the influence of the values of p and
q on the final rankings. Table 4 shows the score values of the five candidates using the WSVNPHM
operator. As can be seen, if p = q = 1, the final rank order is S5 � S4 � S3 � S1 � S2. However, when p
and q are equal to the other values, the final rank order is S5 � S4 � S1 � S3 � S2. Although the rank
positions of S1 and S3 will change with p and q, the best candidate is always S5 while the worst is
S2. Table 4 shows that the gap between the first and second rank positions increases with p and q,
demonstrating the choice of candidate S5 as an optimal scheme. Figures 2–6 show how the score values
of the five candidates change with p and q in the interval [0, 1] under the WSVNPHM operator.
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Table 4. Score values using WSVNPHM operator.

Parameter
Score Value

Final Rank Order
S1 S2 S3 S4 S5

p = q = 1 0.2210 0.1841 0.2218 0.2354 0.2802 S5 � S4 � S3 � S1 � S2
p = q = 2 0.2741 0.2288 0.2654 0.2823 0.3371 S5 � S4 � S1 � S3 � S2
p = q = 4 0.3333 0.2759 0.3120 0.3388 0.3939 S5 � S4 � S1 � S3 � S2
p = q = 6 0.3627 0.2986 0.3357 0.3679 0.4232 S5 � S4 � S1 � S3 � S2
p = q = 8 0.3796 0.3116 0.3497 0.3848 0.4410 S5 � S4 � S1 � S3 � S2
p = q = 10 0.3905 0.3200 0.3588 0.3957 0.4528 S5 � S4 � S1 � S3 � S2
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5.3. Comparison Analysis

To further validate the proposed MCDM method, we compared it against some of the
existing methods based on aggregation operators. Since most methods cannot handle cases when
there is only partial information on the weights of the criteria, the weights were first set as
w = (0.5083, 0.4083, 0.3250, 0.6750, 0.0833)T using the optimal Shapley fuzzy measure found in
Section 5.1.

For the proposed MCDM method, the weights found can be used to aggregate the preference
information in Step 4 with p = q = 1. For the MCDM methods based on the Frank aggregation [24],
Hamacher [25], and Bonferroni mean [27,28] operators, the corresponding parameters are determined
as λ = 2 and p = q = 1, respectively. Table 5 shows the comparison results of the different methods
used. Clearly, the final results found through the proposed method are the same as those by the
methods employed in [24,27,28], and the best candidate is S5. However, for the methods employed
in [22,23,25], the best candidate is S4. Notably, while the methods in [24,27,28] yield reasonable
results, they do not factor in the correlation or the categories of the selection criteria. Furthermore,
as discussed in [23], the rules of the corresponding operations in [22] are unreasonable, which leads
to unreasonable algebraic operators. In actual decision-making instances, not all selection criteria
correlate with each other. Our method can partition the criteria into distinct categories, considering
not only the interrelationship of the criteria but also the independence of the criteria.

Table 5. Comparison results.

Source Aggregation Operator Interrelationship Partition Rank Order

Ye [22] Algebraic No No S4 � S5 � S3 � S2 � S1
Peng et al. [23] Einstein No No S4 � S5 � S3 � S1 � S2

Garg [24] Frank (λ = 2) No No S5 � S4 � S3 � S1 � S2
Liu et al. [25] Hamacher (λ = 2) No No S4 � S5 � S3 � S1 � S2

Liu and Wang [27]
Weighted Bonferroni

mean (p = q = 1) Yes No S5 � S4 � S3 � S2 � S1

Ji et al. [28]
Frank prioritized
Bonferroni mean
(p = q = 1,λ = 2)

Yes No S5 � S4 � S3 � S1 � S2

Our method
WSVNSPHM

(p = q = 1) Yes Yes S5 � S4 � S3 � S1 � S2

6. Conclusions

A single-valued neutrosophic MCDM problem with interdependent characteristics was
investigated in this paper. Through the PHM operator and Shapley fuzzy measure, the SVNPHM and
WSVNSPHM aggregation operators were defined, and their corresponding properties were discussed.
An integrated MCDM method was then developed to solve single-valued neutrosophic problems
where the weights of the selection criteria may not be completely known a priori. A mathematical
programming model based on fuzzy measures was formed to obtain the optimal Shapley fuzzy
measure. Next, the aggregation operators were used to aggregate DMs’ preference information. Finally,
an example was presented to validate the proposed method, yielding reasonable outcomes. Thus,
our proposed aggregation operators recognize the correlation of the selection criteria, unlike previous
techniques. In future, other aggregation operators of SVNNs based on the Shapley fuzzy measure can
be studied.
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