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Abstract: The aim of this study is to propose the analytical method associated with Laplace 
transforms and experimental verification to estimate thermal damages and temperature due to laser 
irradiation by utilizing measurement information of skin surface. The thermal damages to the 
tissues are totally estimated by denatured protein ranges using the formulations of Arrhenius. By 
using Laplace transformations, the exact solution of all physical variables is obtained. Numerical 
results for the temperature and thermal damage are presented graphically. Furthermore, the 
comparisons between the numerical calculations with experimental verification show that the three-
phase lag bioheat mathematical model is an efficient tool for estimating the bioheat transfer in skin 
tissue. 
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1. Introduction 

Thermal ablation is a minimally invasive energy-based thermal therapy. It uses extreme 
temperatures, either high or low, to treat many types of tumors, particularly unresectable tumors, 
such as liver, kidney, sinus, and lung neoplasms. The heat therapy method has been vastly used in 
modern medicine, such as in laser tissue soldering [1], laser operations [2], hyperthermia [3], cardiac 
ablation [4–6], laser angioplasty [7,8] and thermal-assisted drug delivery [9,10]. In the field of 
biomedicine, thermal therapy is used to kill cancerous cells by increasing their temperature to a 
specific level while avoiding causing damage to the healthy tissues. In thermal therapy, the 
ultrasound or laser energy passes into the target tissue through triple-layered skin tissue from in vitro 
to in vivo. It is easy to causes triple-layered skin damage with the heat produced during thermal 
therapy. Therefore, obtaining the transient temperature field of the triple-layered skin tissue is the 
key to studying the safety of thermal therapy. Pennes [11] investigated the thermal behavior in 
forearm skin temperatures, which means that the relation is analyzed by the presented deferment 
techniques that are used to obtain the solutions of models of heat transfers for infinite thermal 
propagations, which depend on the Fourier heat conductions. The biological tissue contains many 
phenomenological mechanizations, such as heating conduction, metabolic heating generation, 
radiation and the perfusion of blood. In the living tissues, the phase changes occur in wide ranges. 
Since the variations in temperature in the biological tissues depend on complex phenomena such as 
blood circulations and metabolic heat generations, authors improved some basic equations. Charny 
[12] presented the mathematical models of bioheat transfer. Nakayama and Kuwahara [13] studied a 
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general bio-heat transfer model based on the theory of porous media, while Andreozzi et al. [14] 
presented a modeling heat transfer in tumors: a review of thermal therapies. The dual-phase delay 
presented by [15] is similar to the modifications of the classical thermoelasticity theory, in which the 
Fourier law is exchanged by approximations for an improved Fourier law with two differences times: 
a phase lag of the heat flux, 𝜏  and a phase lag of the temperature gradient, 𝜏 . According to this 
theory, the classical law of Fourier, −𝑘∇𝑇 = 𝑞, has been replaced by 𝒒 𝑐, 𝑡 + 𝜏 = −𝑘∇𝑇(𝑐, 𝑡 + 𝜏 ) (1) 

where 𝑘  is the material thermal conductive, the temperature gradient, ∇𝑇 , at a point 𝑐  of the 
medium at time 𝑡 + 𝜏 , corresponds to the vectors of heat flux, 𝒒, in time 𝑡 + 𝜏  at the same point. 
This theory is improved rationally to produce a completely consistent theory that is able to 
commingling heating pulse transmission in very logical ways. Zhu et al. [16] established the 
sedimentations of lighting energy in tissue and the rate process models for the resulting thermal 
injuries by using the theorem of diffusions. The bioheat conduction equation upon the dual-phase 
lag (DPL) was analytically solved, and its results were compared to experimental data, subsequently 
proving the capability of the proposed DPL model. Additionally, the results of the Fourier model 
were compared to experimental data, showing that the diffusion model cannot consider 
microstructural interactions between two phases as well as the local thermal nonequilibrium 
condition. The generalization is known as the three-phase lag(TPL) thermoelasticity theory, which is 
given by [17]. According to this theory, 𝒒 𝑐, 𝑡 + 𝜏 = − +𝑘∗∇𝑣(𝑐, 𝑡 + 𝜏 ) + 𝑘∇𝑇(𝑐, 𝑡 + 𝜏 )  (2) 

where ∇𝑣(𝑣 = 𝑇) is the gradient of thermal displacement, 𝜏  is the thermal displacement phase lag 
for the slope and 𝑘∗ is the material constant characteristic of the model. To study some pertinent and 
feasible problems, we have found that in heating transfer problems, including very short intervals 
and in very high heating flux problems, the hyperbolic equation safely provides different outcomes 
to a greater extent than the parabolic equation. Kumar et al. [18] presented a comparative study of 
classical Fourier single-phase lag and DPL bio-heat transfer models in tissues. Saeed and Abbas [19] 
have studied the non-linear DPL bioheat transfer model in a spherical coordinate system. The 
fractional order bioheat transfer model was studied by Hobiny and Abbas [20]. Mondal et al. [21] 
studied the effect of the memory-dependent derivatives in the thermal problem in the context of Lord 
and Shulman (LS) models. Kumar and Chawla [22] studied the three-phase lag for thermoelastic 
media. Hobiny et al. [23] studied the TPL model of thermo-elastic interactions in the two-dimensional 
porous mediums due to pulse heat flux. Quintanilla and Racke [24] discussed the stability in the 
three-phase lag thermal conduction equation and the relationship between the parameters. Abbas 
and Zenkour [25] studied the effect of dual-phase lag models on the thermo-elastic interaction in 
semi-infinite media. Abbas and Abbas et al. [26–29] applied the finite element approach to solve linear 
and nonlinear thermoelastic problems. Marin [30] studied the Cesaro means in a thermoelastic 
dipolar body. Marin and Craciun [31] presented the uniqueness result for the boundary value 
problems in a bipolar thermoelastic model. Hassan et al. [32] investigated the explorations of the 
convective heating transfer and flow characteristic synthesis. 

The aim of this paper is to study the analytical solutions of the temperature and thermal injures 
of biologicals tissues under TPL models. The numerical outcome can be used as a demonstration 
division for skin tissues interactions, such as continuous scanning laser interactions. Furthermore, 
the comparisons among the numerical calculations and the experimental verification indicate that the 
current three-phase lag bioheat mathematical models is an efficient tool for estimating the bioheat 
transfer in skin tissue. 

2. Mathematical Model 

The problem consists of semi-infinite living tissues that are thermally insulated. The bioheat 
equation in biological tissues is expressed as [33–35]: 
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𝐾∗ + (𝐾 + 𝐾∗𝜏 ) 𝜕𝜕𝑡 + 𝐾𝜏 𝜕𝜕𝑡 𝜕 𝑇𝜕𝑥= 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 + 𝜏2 𝜕𝜕𝑡 𝜌𝑐 𝜕𝑇𝜕𝑡 − 𝑄 − 𝑄 − 𝑄  
(3) 

where 𝑇 is the temperature of tissues; 𝐾∗ is the material constant characteristic of the model; 𝑘 is 
the thermal conductivity of tissue; 𝜏 ,  𝜏  and 𝜏  denote the delay times, where the delay time  𝜏  
is the phase lag of the heating flux, the phase lag for the gradient of thermal displacement is  𝜏  and 
the delay time 𝜏  is the phase lag of the temperature gradient; 𝑡 is the time; 𝑐 is the heating specific 
of tissue; 𝜌 is the tissues mass density; and 𝑄  point to the thermal source of blood perfusion which 
is defined as 𝑄 = 𝜔 𝜌 𝑐 (𝑇 − 𝑇) (4) 

where  𝑐  is the blood-specific heat, 𝑇  is the temperature of blood,  𝜔  is the rate of blood 
perfusions, 𝜌  is the blood mass density, 𝑄  is the heat generated by metabolic processes due to 
various physiological procedures involved in the rest of the body. Mitchell et al. [36] noted that 
metabolic thermal productions are functions of local tissue temperatures and can be given as: 𝑄 = 𝑄 × 2  (5) 

where 𝑇  is the local tissue initial temperature, 𝑄  is the reference metabolic heating resource and 𝛽 is the constant-associated metabolic. For all practical objectives, the dependences on metabolic 
heating generation can be approximated as linear functions of local tissue temperature by the 
following 𝑄 = 𝑄 1 + 𝛽 𝑇 − 𝑇10  (6) 

where 𝑄  is the thermal generated per unit volume of tissue, which is presented by [37] as a laser 
heating source by: 𝑄 (𝑥, 𝑡) = 𝐼 𝜇 𝑈(𝑡) − 𝑈 𝑡 − 𝜏 𝐶 𝑒 − 𝐶 𝑒  (7) 

where 𝜇  is the coefficients of absorption; 𝜏  is the exposure time of laser; 𝐼  is the laser intensity; 𝛿 is penetrations depth; 𝑘 , 𝐶 , 𝑘  and 𝐶  are the diffuse reflectance function of 𝑅 , which is given 
in [37]; and 𝑈(𝑡) is the unit step functions. The penetrations depth was denied by [37]: 𝛿 = 13𝜇 𝜇 + 𝜇 (1 − 𝑔)  (8) 

where 𝑔  is the anisotropy factor and 𝜇  is the scattering coefficient. We consider a semi-finite 
domain of biological tissues with a thickness 𝐿 , and both of its directions are proposed to be 
thermally isolated, as in Figure 1 [38]: 
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Figure 1. One-dimensional schematic geometry of skin. 

Now, initial and boundary conditions can be defined by 

𝑇(𝑥, 0) = 𝑇 , 𝜕𝑇(𝑥, 0)𝜕𝑡 = 0 (9) 

− 𝐾∗ + (𝐾 + 𝐾∗𝜏 ) 𝜕𝜕𝑡 + 𝐾𝜏 𝜕𝜕𝑡 𝜕𝑇(𝐿, 𝑡)𝜕𝑥= 0, − 𝐾∗ + (𝐾 + 𝐾∗𝜏 ) 𝜕𝜕𝑡 + 𝐾𝜏 𝜕𝜕𝑡 𝜕𝑇(0, 𝑡)𝜕𝑥 = 0 
(10) 

For convenience, the non-dimension variables can be expressed as 

T = T − T𝑇 , 𝑇 = T − 𝑇𝑇 , 𝑡 , 𝜏 , 𝜏 , 𝜏 , 𝜏 = 𝑘𝜌𝑐𝐿 𝑡, 𝜏 , 𝜏 , 𝜏 , 𝜏 , 𝑥 = 𝑥𝐿 , 𝑓 = 𝐿𝐾𝑇 ,(𝑘 , 𝑘 ) = 𝐿𝛿 (𝑘 , 𝑘 ), (𝑄 , 𝑄 , 𝑄 ) = 𝑓(𝑄 , 𝑄 , 𝑄 ), 𝑓 = 𝑓𝐾∗.  (11) 

In terms of these non-dimension forms of variables in (11), the governing equation (3) with the 
initial (9) and the boundary (10) conditions is presented by (the dashes are neglected for its 
appropriateness) 

𝑓 + (1 + 𝑓 𝜏 ) 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝜕 𝑇𝜕𝑥 = 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 + 𝜏2 𝜕𝜕𝑡 𝜕𝑇𝜕𝑡 − 𝑄 − 𝑄 − 𝑄  (12) 

𝑇(𝑥, 0) = 0, 𝜕𝑇(𝑥, 0)𝜕𝑡 = 0 (13) 

𝑓 + (1 + 𝑓 𝜏 ) 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝜕𝑇(0, 𝑡)𝜕𝑥 = 0, 𝑓 + (1 + 𝑓 𝜏 ) 𝜕𝜕𝑡 + 𝜏 𝜕𝜕𝑡 𝜕𝑇(𝐿, 𝑡)𝜕𝑥 = 0 (14) 

3. Laplace Transforms 

The transform of Laplace for any function of 𝑀(𝑥, 𝑡) can be given as 

𝑀(𝑥, 𝑠) = 𝐿 𝑀(𝑥, 𝑡) = 𝑀(𝑥, 𝑡)𝑒 𝑑𝑡 (15) 

L X Skin tissue 

−𝑘 𝜕𝑇𝜕𝑥 = 0 

−𝑘 𝜕𝑇𝜕𝑥 = 0 
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where 𝑠 is the parameter of Laplace transforms. Therefore, by using the definitions (15) and the 
initial conditions (13), the basic equation (12) and the boundary conditions (15) can be replaced by 𝑑 𝑇𝑑𝑥 − 𝑛 𝑇 = −𝑛 𝑒 − 𝑛 𝑒  (16) 𝜕𝑇(0, 𝑡)𝜕𝑥 = 0, 𝜕𝑇(𝐿, 𝑡)𝜕𝑥 = 0 (17) 

where 𝑛 = ( ) , 𝑛 = ( )  and 𝑛 = − ( ) . 

The general solution 𝑇 of the non-homogeneous equation (16) is the total of two solutions, that 
is, the particular solution 𝑇  of the non-homogeneous equation with the complementary solution 𝑇  
of the associated homogeneous equation. Subsequently, the general solution can be written as 

𝑇(𝑥, 𝑠) = 𝐵 𝑒 + 𝐵 𝑒 + 𝑛𝑛 − 𝑘 𝑒 + 𝑛𝑛 − 𝑘 𝑒  (18) 

To complete the solution, the constants 𝐵 and 𝐵  should be determined by using the problem 
boundary conditions (17) as 

B = e (e (−1 + e ( ))k n−n + k + e (−1 + e ( ))k n−n + k )(−1 + e )n  𝐵 = 𝑒 ( )(𝑒 (𝑒 − 𝑒 )𝑘 (𝑛 − 𝑘 )𝑛 + 𝑒 (𝑒 − 𝑒 )𝑛 𝑘 𝑛 − 𝑒 (𝑒 − 𝑒 )𝑘 𝑘 𝑛 )(−1 + 𝑒 )𝑛(𝑛 − 𝑘 )(𝑛 − 𝑘 )  

For final solutions of temperature distributions, a numerically inverse approach adopted which 
depends on the approximations approach of the Riemann sum is applied to study the numerical 
calculations. According to this approach, in the Laplace domain, any function can be converted into 
the time domain as in [39]: 

𝑀(𝑥, 𝑡) = 𝑅𝑒 (−1) 𝑀 𝑥, 𝑚 + 𝑖𝑛𝜋𝑡 + 12 𝑅𝑒 𝑀(𝑥, 𝑚) 𝑒𝑡  (19) 

where 𝑅𝑒 is the actual part and 𝑖 is the imagery unit number. 

4. Numerical Results and Discussion 

For numerical computations, the living tissues were the selections for the purpose of numerical 
estimation to test the performance of the proposed bio-heat transfer under the three-phase lag model. 
The values of parameters for biological tissue-like materials are taken as [40] 𝜌 = 1060(𝑘𝑔)(𝑚 ), 𝑐 = 3860 (𝐽)(𝑘𝑔 )(𝑘 ), 𝜔 = 1.87 × 10 (𝑠 ), 𝑇 = 36.5 ℃, 𝐼 = 3 × 10 (𝑊)(𝑚 ), 𝜏 = 15(𝑠), 𝐿 = 0.03(𝑚), 𝑄 = 1.19 × 10 (𝑊)(𝑚 ), 𝑔 = 0.9, 𝐶 = 3.09 + 5.44𝑅 − 2.12𝑒 . , 𝐾 = 1.63𝑒 . , 𝐶 = 2.09 − 1.47𝑅 − 2.12𝑒 . , 𝐾 = 1 − 1 − √ 𝑒 . , 𝑅 = 0.05, 𝜇 = 12000 (𝑚 ), 𝜇 = 40(𝑚 ), 𝑇 = 36.5 ℃, 𝜌 = 1000(𝑘𝑔)(𝑚 ), 𝑐 = 4187 (𝐽)(𝑘𝑔 )(𝑘 ), 𝑘 = 0.628 (𝑊)(𝑚 )(𝑘 ), 𝐸 = 6.28 × 10  (J)(mol ), R =  8.313 (J)(mol )(𝑘 ), B = 3.1 × 10 (𝑠 ). 

The accurate prognosis of thermal injuries to living tissues are valuable for thermotherapy. The 
evaluation of burns is one of the greatest achievements in the area of science that focuses on the 
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bioengineering of biological tissues. To quantify thermal damage, the approach modified by Moritz–
Henriques [41,42] was employed. The non-dimension measure of the thermal damage index Ω can 
expressed as 

 Ω = 𝐵𝑒 𝑑𝑡, (20) 

where 𝐸  is the activation energy, R is the constant of universal gas and B is the frequency factor. 
Some experimental verifications indicate that there are significant similarities between human and 
pig skin, especially in the vascular organizations. Museux et al. [43] examine experimental data 
regarding the heating of pigskin with a laser. There are significant similarities between our analytical 
solution results and those obtained from the experimental study. Here, the results are based on the 
skin tissues with the above-mentioned properties, as well as the properties of the blood and the laser 
parameters. The calculations were made using MATLAB(R2018b) software and the results are 
graphically presented in Figures 2–7. In these figures, the calculation was carried out when 𝑇 = 𝑇 =36.5°𝐶. 

Figure 2 display the variations in temperature versus the distance 𝑥 for the three-phase lag 
(TPL) and the single-phase lag (SPL) bioheat transfer models when 𝑡 = 2 𝑚𝑒𝑛𝑢𝑡𝑒𝑠. It is observed that 
the temperatures are at their highest at the beginning; they then decrease permanently to 𝑇 = 36.6°𝐶 
after 𝑥 = 9 𝑚𝑚. The variations in surface temperature with time 𝑡 are displayed in Figure 3. It is 
clear that the temperature begins from the normal temperature 𝑇  and increases with time until the 
maximum values decrease to the normal temperature. Figure 4 show the variations in thermal 
damage with respect to the time 𝑡. Figures 2–4 display the differences between the three-phase lag 
and the single-phase lag models in the results of thermal damages and the variations in temperature. 
The solid lines represent the single-phase lag bioheat model, while the dotted lines represent the 
three-phase lag bioheat model. By comparing the graphs of results obtained under the three-phase 
lag bioheat model, important phenomena are noted. Figures 5–7 show the effects of the blood 
perfusion rate 𝜔 under the three-phase lag bioheat model on the variations in temperature and thermal 
damage. The maximum blood perfusions rate, the greatest connective heat loss due to faster blood 
flows and, subsequently, the smallest magnitude of thermal injury can be seen. From Figures 4 and 
7, it observed that initially (0 < 𝑡 < 12 𝑠), no such damages occur within the tissues, but with the 
time-lapse, (i.e., after 𝑡 > 12 s) an abrupt increase in damages (Ω) is prominently revealed within the 
tissues. 
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Figure 2. Variations in temperature versus the distance for the SPL and the TPL models. 

 

 
Figure 3. Temperature at the skin surface for the SPL and TPL models in relation to time. 

 
Figure 4. Variations in thermal damage for the SPL and TPL models at the skin surface 𝑥 = 0. 
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Figure 5. Variations in temperature versus the distance under the TPL model for several values of the rate 
of blood perfusion 𝜔 . 
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Figure 6. Temperature under the TPL model for several values of the rate of blood perfusion 𝜔  at 
the skin surface in relation to time. 
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Figure 7. Variations in thermal damage under the TPL model for several values of the rate of blood 
perfusion 𝜔  at the skin surface 𝑥 = 0. 

5. Conclusions 

Based on the theory of three-phase lag bio-heat, the variations in temperature and the thermal 
damage in a living tissue are presented. The non-dimensional outcomes have been solved, employing 
the semi-analytical approach using the Laplace transforms. The comparisons between the numerical 
calculations and the existing experimental studies indicate that the three-phase lag mathematical 
model is an effectives tool to estimate the bio-heat transfer in living tissues. 
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