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Abstract: In this paper, we establish some conditions for the existence and uniqueness of the
monotonic solutions for nonhomogeneous systems of first-order linear differential equations, by using
a result of the fixed points theory for sequentially complete gauge spaces.
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1. Introduction

Demidovich [1] proved an important result regarding the boundedness property of the monotonic
solutions for homogeneous systems of linear differential equations of first order. Iseki [2] extended this
result for nonhomogeneous systems and showed that under certain conditions any monotonic solution
is bounded and its limit exists to +∞. The weak point of the papers of Demidovich and Iseki consists of
the fact that they demonstrate the boundedness of monotonous solutions, without specifying whether
such solutions exist. Regarding the existence of monotonic solutions of differential equations, important
results were obtained by Rovderová [3], Tóthová and Palumbíny [4], Rovder [5], Li and Fan [6], Yin [7],
Ertem and Zafer [8], Aslanov [9], Chu [10], and Sanhan et al. [11].

The purpose of this article is to study the existence and uniqueness of the monotonic solutions
for nonhomogeneous systems of first-order linear differential equations with variable coefficients.
The novelty and originality of our article consists of us proving the existence and uniqueness of the
monotonic solution, and finding the conditions under which these properties take place. To prove the
theorem of existence and uniqueness of a monotonic solution we rely on the theory of gauge spaces.
Dugundji [12] showed that any family of pseudometrics (gauge structure) on a nonempty set induces
a uniform structure on that set, and conversely, any uniform structure on a nonempty set is generated
by a family of pseudometrics. Moreover, the uniform structure is separating (Hausdorff) if and only if
the gauge structure is separating. In this way, the gauge spaces (separating gauge structures) can be
identified with Hausdorff uniform spaces. Colojoara [13] and Gheorghiu [14] extended the Banach
contraction principle to the gauge spaces. Similar fixed point results were obtained by Knill [15] and
Tarafdar [16] in the case of Hausdorff uniform spaces.

2. Preliminaries

Throughout this paper we follow the standard terminology and notation for systems of ordinary
differential equations.

Further, we denote by R+ the real interval [0,+∞).

Mathematics 2020, 8, 1183; doi:10.3390/math8071183 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7065-6759
http://dx.doi.org/10.3390/math8071183
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/7/1183?type=check_update&version=2


Mathematics 2020, 8, 1183 2 of 8

Let us consider a nonhomogeneous system of first-order linear differential equations with
variable coefficients:

x′(t) = A(t)x(t) + b(t), t ∈ R+, (1)

where x(t) = (xi(t))i=1,n ∈ Mn×1(R), A(t) = (aij(t))i,j=1,n ∈ Mn×n(R) and b(t) = (bi(t))i=1,n ∈
Mn×1(R).

Definition 1. ([12]) Let X be a nonempty set. A map p : X× X → R+ is called a pseudometric (gauge) on X
if the following conditions are satisfied:

(1) p(x, x) = 0, for all x ∈ X;
(2) p(x, y) = p(y, x), for all x, y ∈ X;
(3) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X.

Definition 2. ([12]) Let X be a nonempty set. We say that:

(i) A family P = (pk)k∈I of pseudometrics on X is named a gauge structure on X;
(ii) A gauge structure P = (pk)k∈I on X is called separating if for each pair of points x, y ∈ X, with x 6= y,

there is pk ∈ P such that pk(x, y) 6= 0;
(iii) A pair (X,P) of a nonempty set X and a separating gauge structure P on X is named a gauge space.

Definition 3. ([12]) Let (X,P) be a gauge space, where P = (pk)k∈I . We say that:

(i) A sequence (xn)n∈N ⊂ X is called convergent in X if: there exists a point x ∈ X with the property that for
every ε > 0 and k ∈ I there is a number n(ε, k) ∈ N such that for all n ≥ n(ε, k) we have pk(xn, x) < ε;

(ii) A sequence (xn)n∈N ⊂ X is named a Cauchy sequence if: for every ε > 0 and k ∈ I there is a number
n(ε, k) ∈ N such that for all n ≥ n(ε, k) and p ∈ N we have pk(xn, xn+p) < ε;

(iii) The gauge space (X,P) is called sequentially complete if: any Cauchy sequence of points in X is convergent
in X.

Theorem 1. ([13,14]) Let (X,P) be a sequentially complete gauge space, where P = (pk)k∈I , and T : X → X
is an operator. We suppose that: for every k ∈ I there exists αk ∈ (0, 1) such that

pk(T(x), T(y)) ≤ αk pk(x, y), for all x, y ∈ X, for all k ∈ I.

Then, T has a unique fixed point on X.

Theorem 2. ([17]) Let X be a nonempty set, (Y, ρ) a metric space, and fn : X → Y, n ∈ N, a sequence of
functions. Then, the following statements are true:

(i) If fn, n ∈ N is uniformly convergent on X to a function f : X → Y, then fn, n ∈ N, is a uniformly
Cauchy sequence;

(ii) If fn, n ∈ N, is a uniformly Cauchy sequence and (Y, ρ) is complete, then there is a function f : X → Y
such that fn, n ∈ N, is uniformly convergent on X to f .

Theorem 3. ([17]) Let (X, τ) be a topological space, (Y, ρ) a complete metric space, and fn : X → Y, n ∈ N,
a sequence of functions. If fn, n ∈ N, is uniformly convergent on X to a function f : X → Y, and every function
fn, n ∈ N, is continuous on X, then f is continuous on X.

Theorem 4. ([17]) Let us consider Rn = {x = (x1, ..., xn) | xi ∈ R, i = 1, n}. The following properties
are valid:

(i) (Rn, ‖ · ‖1) is a complete normed linear space, where ‖ · ‖1 : Rn → R+, ‖x‖1 =
n

∑
i=1
|xi|;

(ii) (Rn, ρ1) is a complete metric space, where ρ1 : Rn ×Rn → R+, ρ1(x, y) = ‖x− y‖1.
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3. The Existence and Uniqueness of the Monotonic Solutions

Theorem 5. Let us consider C(R+,Rn) = {x : R+ → Rn | x is continuous on R+}. Then the following
statements are valid:

(i) The maps pk : C(R+,Rn) × C(R+,Rn) → R+, pk(x, y) = sup
t∈[0,k]

‖x(t) − y(t)‖1e−τt, k ∈ N∗,

are pseudometrics on C(R+,Rn), where τ > 0;
(ii) (C(R+,Rn),P) is a sequentially complete gauge space, where P = (pk)k∈N∗ ;
(iii) If the functions A : R+ →Mn×n(R), b : R+ →Mn×1(R) are continuous on R+ and there is a number

L > 0 such that |ai,j(t)| ≤ L, i, j = 1, n, t ∈ R+ (A is bounded on R+), then the system of first-order
linear differential equations ((Equation 1)), with initial condition x(0) = x0 ∈ Rn, has a unique solution
for C(R+,Rn).

Proof. (i) Let k ∈ N∗ be an arbitrary number.
We choose x, y ∈ C(R+,Rn) arbitrary elements. We deduce that x − y : R+ → Rn is a

continuous function on R+. On the other hand, the norm ‖ · ‖1 : Rn → R+ is a continuous map
on Rn. Consequently, the function ϕ1 : R+ → R+, ϕ1(t) = ‖x(t) − y(t)‖1 is continuous on R+.
Additionally, the function ϕ2 : R+ → R+, ϕ2(t) = e−τt is continuous on R+. Therefore, the function
ϕ : R+ → R+, ϕ(t) = ϕ1(t)ϕ2(t) = ‖x(t) − y(t)‖1e−τt is continuous on R+. It follows that ϕ is
a continuous function on [0, k]. Applying the Weierstrass extreme value theorem we find that ϕ is
bounded on [0, k] and there exists t ∈ [0, k] such that ϕ(t) = sup

t∈[0,k]
ϕ(t) = sup

t∈[0,k]
‖x(t)− y(t)‖1e−τt ∈ R+

(ϕ attains its supremum in [0, k]). Therefore, the map pk is well-defined.
We now prove that the function pk verifies the properties of a pseudometric. Let x, y, z ∈

C(R+,Rn) be arbitrary functions. By using the properties of the norm ‖ · ‖1 we get

pk(x, x) = sup
t∈[0,k]

‖x(t)− x(t)‖1e−τt = sup
t∈[0,k]

‖0‖1e−τt = 0,

pk(x, y) = sup
t∈[0,k]

‖x(t)− y(t)‖1e−τt = sup
t∈[0,k]

‖y(t)− x(t)‖1e−τt = pk(y, x),

‖x(t)− z(t)‖1e−τt = ‖x(t)− y(t) + y(t)− z(t)‖1e−τt ≤ ‖x(t)− y(t)‖1e−τt + ‖y(t)− z(t)‖1e−τt

≤ sup
t∈[0,k]

‖x(t)− y(t)‖1e−τt + sup
t∈[0,k]

‖y(t)− z(t)‖1e−τt = pk(x, y) + pk(y, z), for all t ∈ [0, k],

hence
pk(x, z) = sup

t∈[0,k]
‖x(t)− z(t)‖1e−τt ≤ pk(x, y) + pk(y, z).

(ii) The family P = (pk)k∈N∗ of pseudometrics defines on C(R+,Rn) a gauge structure. We remark
that this gauge structure is separating because for each pair of elements x, y ∈ C(R+,Rn), with x 6= y,
and every k ∈ N∗, we have pk(x, y) = sup

t∈[0,k]
‖x(t)− y(t)‖1e−τt 6= 0. Consequently, (C(R+,Rn),P) is a

gauge space.
We choose ε > 0 and k ∈ N∗ arbitrary elements.
We now show that the gauge space C(R+,Rn) is sequentially complete. Let us consider

(xm)m∈N ⊂ C(R+,Rn) an arbitrary Cauchy sequence. It follows that for εe−τk > 0 and k ∈ N∗ there
is a number m(ε, k) ∈ N such that for all m ≥ m(ε, k) and p ∈ N we have pk(xm, xm+p) < εe−τk,
i.e., sup

t∈[0,k]
‖xm(t) − xm+p(t)‖1e−τt < εe−τk. As e−τk ≤ e−τt for all t ∈ [0, k], we get ‖xm(t) −

xm+p(t)‖1e−τk ≤ ‖xm(t) − xm+p(t)‖1e−τt for all t ∈ [0, k]; hence, sup
t∈[0,k]

‖xm(t) − xm+p(t)‖1e−τk ≤
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sup
t∈[0,k]

‖xm(t)− xm+p(t)‖1e−τt. Consequently, for all m ≥ m(ε, k) and p ∈ N we have sup
t∈[0,k]

‖xm(t)−

xm+p(t)‖1e−τk < εe−τk, i.e., sup
t∈[0,k]

‖xm(t)− xm+p(t)‖1 < ε, which implies that ‖xm(t)− xm+p(t)‖1 < ε

for all t ∈ [0, k]. As the number ε > 0 was chosen arbitrarily, it follows that for every ε > 0 there is
a number m(ε, k) ∈ N such that for all m ≥ m(ε, k) and p ∈ N we have ρ1(xm(t), xm+p(t)) < ε for all
t ∈ [0, k]. Therefore, xm : [0, k]→ Rn, m ∈ N, is a uniformly Cauchy sequence. According to Theorem
4 (ii), (Rn, ρ1) is a complete metric space and using Theorem 2 (ii) we find that there is a function
x : [0, k] → Rn such that xm, m ∈ N, is uniformly convergent on [0, k] to x. Since every function xm,
m ∈ N, is continuous on [0, k] and (Rn, ρ1) is a complete metric space (Theorem 4 (ii)), by applying
Theorem 3 we deduce that x is continuous on [0, k]. Consequently, we proved that the sequence xm,
m ∈ N is uniformly convergent on [0, k] to a continuous function x : [0, k]→ Rn. As the number k ∈ N∗
was chosen arbitrarily, it follows that the sequence of continuous functions xm : R+ → Rn, m ∈ N, is
uniformly convergent on R+ to a continuous function x : R+ → Rn.

Since the sequence xm : [0, k] → Rn, m ∈ N, is uniformly convergent on [0, k] to a function

x : [0, k] → Rn, it follows that for
ε

2
> 0 there is a number m′(ε, k) ∈ N such that for all m ≥ m′(ε, k)

we have ρ1(xm(t), x(t)) <
ε

2
for all t ∈ [0, k], i.e., ‖xm(t)− x(t)‖1 <

ε

2
for all t ∈ [0, k]. Therefore,

for all m ≥ m′(ε, k) we get ‖xm(t) − x(t)‖1e−τt <
ε

2
e−τt ≤ ε

2
for all t ∈ [0, k], which implies that

sup
t∈[0,k]

‖xm(t) − x(t)‖1e−τt ≤ ε

2
< ε; i.e., pk(xm, x) < ε. As the elements ε > 0 and k ∈ N∗ were

arbitrarily selected, we deduce that for every ε > 0 and k ∈ N∗ there is a number m′(ε, k) ∈ N
such that for all m ≥ m′(ε, k) we have pk(xm, x) < ε. Consequently, we proved that there exists
a function x ∈ C(R+,Rn) with the property that for every ε > 0 and k ∈ N∗ there is a number
m′(ε, k) ∈ N such that for all m ≥ m′(ε, k) we have pk(xm, x) < ε. Therefore, the sequence of functions
(xm)m∈N ⊂ C(R+,Rn) is convergent in C(R+,Rn) to a function x ∈ C(R+,Rn). Since the Cauchy
sequence of functions (xm)m∈N ⊂ C(R+,Rn) was chosen arbitrarily, we find that any Cauchy sequence
of functions in C(R+,Rn) is convergent in C(R+,Rn). Consequently, the gauge space (C(R+,Rn),P)
is sequentially complete.

(iii) As the functions x : R+ → Mn×1(R), A : R+ → Mn×n(R), b : R+ → Mn×1(R) are
continuous for R+, we deduce that the system of first-order linear differential Equations (1), with initial
condition x(0) = x0 ∈ Rn, is equivalent to the system of integral equations

x(t) = x0 +

t∫
0

A(s)x(s)ds +
t∫

0

b(s)ds, t ∈ R+. (2)

Using relation (2), we can define an operator T : C(R+,Rn)→ C(R+,Rn),

T(x)(t) = x0 +

t∫
0

A(s)x(s)ds +
t∫

0

b(s)ds, t ∈ R+. (3)

For every k ∈ N∗, x, y ∈ C(R+,Rn), t ∈ [0, k], i = 1, n, we have, successively:

|pri(T(x)(t))− pri(T(y)(t))|

=

∣∣∣∣∣∣x0
i +

t∫
0

n

∑
j=1

ai,j(s)xj(s)ds +
t∫

0

bi(s)ds− x0
i −

t∫
0

n

∑
j=1

ai,j(s)yj(s)ds−
t∫

0

bi(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

n

∑
j=1

ai,j(s)xj(s)ds−
t∫

0

n

∑
j=1

ai,j(s)yj(s)ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
0

n

∑
j=1

ai,j(s)(xj(s)− yj(s))ds

∣∣∣∣∣∣
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≤
t∫

0

∣∣∣∣∣ n

∑
j=1

ai,j(s)(xj(s)− yj(s))

∣∣∣∣∣ ds ≤
t∫

0

n

∑
j=1
|ai,j(s)(xj(s)− yj(s))|ds

=

t∫
0

n

∑
j=1
|ai,j(s)| · |xj(s)− yj(s)|ds ≤

t∫
0

n

∑
j=1

L|xj(s)− yj(s)|ds

= L
t∫

0

n

∑
j=1
|xj(s)− yj(s)|ds = L

t∫
0

‖x(s)− y(s)‖1ds

= L
t∫

0

‖x(s)− y(s)‖1e−τseτsds = L
t∫

0

(‖x(s)− y(s)‖1e−τs)eτsds

≤ L
t∫

0

sup
s∈[0,k]

(‖x(s)− y(s)‖1e−τs)eτsds = L
t∫

0

pk(x, y)eτsds

= Lpk(x, y)
t∫

0

eτsds = Lpk(x, y)
eτs

τ

∣∣∣t
0

= Lpk(x, y)
(

eτt

τ
− 1

τ

)
=

L
τ

pk(x, y)(eτt − 1) ≤ L
τ

pk(x, y)eτt.

Hence, for every k ∈ N∗, x, y ∈ C(R+,Rn), t ∈ [0, k], we get

n

∑
i=1
|pri(T(x)(t))− pri(T(y)(t))| ≤

n

∑
i=1

L
τ

pk(x, y)eτt =
nL
τ

pk(x, y)eτt,

i.e.,

‖T(x)(t)− T(y)(t)‖1 ≤
nL
τ

pk(x, y)eτt,

which is equivalent to

‖T(x)(t)− T(y)(t)‖1e−τt ≤ nL
τ

pk(x, y).

Therefore, for every k ∈ N∗, x, y ∈ C(R+,Rn), we obtain

sup
t∈[0,k]

‖T(x)(t)− T(y)(t)‖1e−τt ≤ nL
τ

pk(x, y),

i.e.,

pk(T(x), T(y)) ≤ nL
τ

pk(x, y).

Consequently, for τ > nL and denoting αk :=
nL
τ
∈ (0, 1), we have

pk(T(x), T(y)) ≤ αk pk(x, y), for all x, y ∈ C(R+,Rn), for all k ∈ N∗.

Thus, (C(R+,Rn),P) is a sequentially complete gauge space, where P = (pk)k∈N∗ , and T :
C(R+,Rn)→ C(R+,Rn) an operator with the property that: for every k ∈ N∗ there exists αk ∈ (0, 1)
such that

pk(T(x), T(y)) ≤ αk pk(x, y), for all x, y ∈ C(R+,Rn), for all k ∈ N∗.

Applying Theorem 1 it follows that T has a unique fixed point in C(R+,Rn); i.e., there exists an
unique element x∗ ∈ C(R+,Rn) such that T(x∗) = x∗. Therefore, the system of integral Equation (2)
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has a unique solution for C(R+,Rn). Consequently, the system of first-order linear differential
Equations (1), with initial condition x(0) = x0 ∈ Rn, has a unique solution for C(R+,Rn).

Theorem 6. If the functions A : R+ →Mn×n(R), b : R+ →Mn×1(R) are continuous on R+ and there is
a number L > 0 such that 0 ≤ ai,j(t) ≤ L, i, j = 1, n, t ∈ R+, bi(t) ≥ 0, i = 1, n, t ∈ R+, then the system of
first-order linear differential Equations (1), with initial condition x(0) = x0 ∈ Rn

+, has a unique solution for
C(R+,Rn

+) and this solution is monotonic for t→ +∞.

Proof. Similarly to the proof of Theorem 5, the system of first-order linear differential Equations (1),
with initial condition x(0) = x0 ∈ Rn

+, has a unique solution for C(R+,Rn
+). Let us denote by

x∗ ∈ C(R+,Rn
+) this solution. Therefore,

x∗′(t) = A(t)x∗(t) + b(t) =



n

∑
j=1

a1,j(t)x∗j (t)

...
n

∑
j=1

an,j(t)x∗j (t)


+


b1(t)

...

bn(t)



=



n

∑
j=1

a1,j(t)x∗j (t) + b1(t)

...
n

∑
j=1

an,j(t)x∗j (t) + bn(t)


≥


0

...

0

 , for all t ∈ R+.

It follows that x∗ is a monotonically increasing function on R+. Consequently, each function x∗i (t),
i = 1, n, is monotonic on [0,+∞); i.e., x∗ is monotonic for t→ +∞.

Example 1. Let us consider the matrix function A : R+ →Mn×n(R),

A(t) =

(
t

2t+2
1
2 e−sint

1
2 e−cost 1

2

)
,

and the vector function b : R+ →Mn×1(R),

b(t) =

(
ln(1 + t)

et

)
.

We remark that the functions A, b are continuous on R+ and there is a number L :=
1
2

e > 0 such that

0 ≤ ai,j(t) ≤ L, i, j = 1, 2, t ∈ R+, bi(t) ≥ 0, i = 1, 2, t ∈ R+; therefore, the conditions of Theorem 6 are

fulfilled. Considering the vector x0 =

(
3
2

)
∈ R2

+ and applying Theorem 6 it follows that the system of

first-order linear differential equations

x′(t) = A(t)x(t) + b(t), t ∈ R+,

with initial condition x(0) = x0 ∈ R2
+, has a unique solution on C(R+,R2

+) and this solution is monotonic for
t→ +∞.
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4. Conclusions

In this article we studied the existence and uniqueness of the monotonic solutions for
nonhomogeneous systems of first-order linear differential equations with variable coefficients.
The novelty and originality of our article consists of us proving the existence and uniqueness of the
monotonic solution, and finding the conditions under which these properties take place. An example
was presented at the end of the paper which reinforces that our theory is correct. Additionally,
the paper established conditions for the existence and uniqueness of the solution of the systems of
first-order linear differential equations, with initial condition, defined over an unbounded interval (the
positive real axis).
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