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Abstract: The tail value at risk at level p, with p ∈ (0, 1), is a risk measure that captures the tail risk
of losses and asset return distributions beyond the p quantile. Given two distributions, it can be
used to decide which is riskier. When the tail values at risk of both distributions agree, whenever the
probability level p ∈ (0, 1), about which of them is riskier, then the distributions are ordered in terms
of the increasing convex order. The price to pay for such a unanimous agreement is that it is possible
that two distributions cannot be compared despite our intuition that one is less risky than the other.
In this paper, we introduce a family of stochastic orders, indexed by confidence levels p0 ∈ (0, 1),
that require agreement of tail values at risk only for levels p > p0. We study its main properties
and compare it with other families of stochastic orders that have been proposed in the literature to
compare tail risks. We illustrate the results with a real data example.

Keywords: value at risk; tail value at risk; stochastic orders; financial risk

1. Motivation and Preliminaries

In actuarial and financial sciences, risk managers and investors dealing with insurance losses
and asset returns are often concerned with the right-tail risk of distributions, which is related to
large deviations due to the right-tail losses or right-tail returns (see Wang [1]). To compare the risk
associated to different models, they use risk measures typically based on quantiles, such as the value
at risk, the tail value at risk and some generalizations of these measures (see the book by Guégan and
Hassani [2] for a recent review on the topic of risk measurement). Comparisons of two quantile-based
risk measures made for a particular confidence level p are not very informative (they are based
on two single numbers) and a change in the confidence level may produce different conclusions.
An alternative method to compare two risks X and Y is to use stochastic orderings, which conclude
that X is smaller than Y when a family of risk measures (rather than a single risk measure) agrees
in the conclusion that X is less risky than Y. For example, the increasing convex order (which is
formally defined below) requires agreement of tail values at risk for any confidence level p ∈ (0, 1).
An advantage of this method is, obviously, its robustness toward changes in the confidence level,
which can be interpreted in terms of a common agreement of different decision-maker’s attitudes.
By robustness, we understand how sensitive the comparison procedure to different values of p is.
For other interpretations of robustness in risk measurement, see Zhelonkin and Chavez-Demoulin [3].
However, this approach has the drawback that some distributions cannot be compared despite our
intuition that one is less risky than the other.

One way to increase the number of distributions that can be compared without losing robustness
is to reduce the range of values of the confidence level p required to reach an agreement. For example,
an investor concerned with right-tail risks may think that X is less risky than Y if the respective tail
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values at risk agree in the conclusion that X is less risky than Y for any confidence level p such that
p > p0, where p0 ∈ (0, 1) is chosen to suit his/her specific preferences. The aim of this paper is
precisely to study a family of stochastic orders based on such an agreement.

Let X be a random variable describing losses of a financial asset and let F be its distribution
function (as usual, negative losses are gains). The value at risk of X at level p ∈ (0, 1), or p-quantile, is
defined by

VaRp[X] = F−1(p) = inf{x : F(x) ≥ p}, for all p ∈ (0, 1). (1)

For a given p ∈ (0, 1), VaRp[X] represents the maximum loss the investor can suffer with 100p%
confidence over a certain period of time. Despite being widely used in practice, VaR has two major
drawbacks. First, it does not describe the tail behavior beyond the confidence level. Second, VaR is not,
in general, subadditive (except in some special cases; for example, when the underlying distribution
belongs to the elliptical family of distributions, the estimator of VaR is subadditive). The literature offers
different possible alternatives to overcome the limitations of VaR (see, for example, Ahmadi-Javid [4]).
One of the most important is the tail value at risk or TVaR, defined by

TVaRp[X] =
1

1− p

∫ 1

p
F−1(u)du, for all p ∈ [0, 1).

TVaR is subadditive (that is, TVaRp[X + Y] ≤ TVaRp[X] + TVaRp[Y] for all losses X and
Y). Given p ∈ (0, 1) and X continuous, TVaRp[X] represents the average loss when losses
exceed TVaRp[X].

In this paper, we study the following family of stochastic orders indexed by confidence levels
p0 ∈ [0, 1).

Definition 1. Let X and Y be two random variables and p0 ∈ [0, 1). Then, X is said to be smaller than Y in
the p0-tail value at risk order, denoted by X ≤p0-tvar Y, if

TVaRp(X) ≤ TVaRp(Y), for all p > p0. (2)

When (2) holds for p0 = 0, then we have the usual increasing convex order (see Lemma 2.1 in
Sordo and Ramos [5]) and we denote X ≤icx Y. The books by Shaked and Shanthikumar [6] and
Belzunce et al. [7] collect many properties and applications of the increasing convex order. If X ≤icx Y,
then X is both smaller (in fact, X ≤icx Y implies E[X] ≤ E[Y]) and less variable than Y. In finance and
insurance, the increasing convex order is often interpreted in terms of stop-loss contracts and it is also
called stop-loss order. Specifically, it holds that X ≤icx Y if, and only if,

E[(X− x)+] ≤ E[(Y− x)+], for all x ∈ R, (3)

where (x)+ = x, if x ≥ 0 and (x)+ = 0, if x < 0, or, equivalently, if

∫ +∞

x
F(t)dt ≤

∫ +∞

x
G(t)dt, for all x ∈ R, (4)

provided the integrals exist, where F = 1 − F and G = 1 − G are the tail functions of X and Y,
respectively. One purpose of this paper is to study how these characterizations change when the order
X ≤icx Y is replaced by the weaker X ≤p0-tvar Y, for some p0 > 0.

We provide an analytical example to motivate the study of the new family of stochastic orders.
Let us consider two Pareto loss distributions X ∼ P(7, 3) and Y ∼ P(3, 2). The value at risk of a Pareto
distribution Z ∼ P(a, k), with shape parameter a > 0 and scale parameter k ∈ R, is given by

F−1
Z (p) =

k

(1− p)
1
a

, for all p ∈ (0, 1),
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and, if a > 1, the expectation is E[Z] = ak/(a− 1). Figure 1 shows the plot of the quantile functions
for X and Y. Since E[X] = 3.5 > 3 = E[Y], then X �icx Y.
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Figure 1. Quantile functions for X ∼ P(7, 3) and Y ∼ P(3, 2).

However, it can be checked that TVaRp(X) ≤ TVaRp(Y), for all p ≥ 0.55482 where here
p0 = 0.55482 is the minimum value such that X ≤p0-tvar Y (p0 is represented with a dashed line
in Figure 1). An investor concerned with large deviations due to the right-tail losses may make
decisions based on the tail value at risk for large values of p. If this is the case, he/she will evaluate X
as less dangerous than Y, despite E[X] > E[Y] and X �icx Y.

The idea of limiting the number of comparisons to weaken the increasing convex order is not new.
Given two random variables X and Y with the same mean, Cheung and Vanduffel [8] say that X is
smaller than Y in the tail convex order with index x0 ∈ R (denoted by X ≤tcx(x0)

Y) if

E[(X− x)+] ≤ E[(Y− x)+], for all x ≥ x0. (5)

According to (3), if X and Y have the same mean, then X ≤tcx(−∞) Y is the same as X ≤icx Y. It is
natural to wonder, when E[X] = E[Y], about the relationship between X ≤p0-tvar Y and X ≤tcx(x0)

Y.
We address this issue below.

For other recent studies of orders based on tail comparisons see Sordo et al. [9], Mulero et al. [10]
and Belzunce et al. [11].

The rest of the work is organized as follows. In Section 2, we study the main properties
of the order ≤p0-tvar and find sufficient conditions under which it holds. We also investigate its
relationships with other well-known stochastic orders and compare parametric families of distributions.
In particular, we relate the order ≤p0−tvar to the notion of pure tail order as considered by Rojo [12].
In Section 3 we illustrate the applicability of the new family of orders using a real dataset. Section 4
contains conclusions.

Throughout the paper, “increasing” means “non-decreasing” and “decreasing” means
“non-increasing”. Random variables are assumed to have finite means. Given a function h, S−(h)
denotes the number of sign changes of h on its support, where zero terms are discarded.

2. Properties and Relationships with Other Stochastic Orders

It is trivially verified that X ≤p0-tvar X for all p0 ∈ (0, 1) and that X ≤p0-tvar Y for p0 ∈ (0, 1)
implies X ≤q0-tvar Y, for all q0 ∈ [p0, 1). It is also obvious that if X, Y and Z are three random variables
such that X ≤p0-tvar Y and Y ≤p1-tvar Z with p0, p1 ∈ (0, 1), then X ≤p3-tvar Z with p3 = max{p0, p1}.
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Finally, if X ≤p0-tvar Y and Y ≤p1-tvar X, with p0, p1 ∈ (0, 1), then TVaRp(X) = TVaRp(Y), for all
p ∈ [p3, 1], where p3 is defined as before.

Next, we provide some closure properties. In particular, we point out the closure under
convergence in distribution and under increasing convex transformations. First of all, recall that given
a sequence of random variables {Xn : n = 1, 2, . . . } with distribution functions Fn and F, respectively,

then Xn is said to converge in distribution to X, denoted by Xn
d−→ X, if limn→+∞ Fn(x) = F(x) for all

x at which F is continuous.

Proposition 1. Let {Xn : n = 1, 2, . . . } and {Yn : n = 1, 2, . . . } be two sequences of positive continuous

random variables such that Xn
d−→ X and Yn

d−→ Y. Assume that Xn and X have a common interval
support for all n ∈ N and limn→∞ E[Xn] = E[X] (and, analogously, for Yn and Y and their expectations).
If Xn ≤p0-tvar Yn for p0 ∈ (0, 1), then X ≤p0-tvar Y.

Proof. From Definition 1, it is clear that X ≤p0-tvar Y if, and only if,

∫ 1

p
F−1(u)du ≤

∫ 1

p
G−1(u)du, for all p ≥ p0. (6)

Integration by parts in (6) shows that

X ≤p0-tvar Y ⇐⇒
∫ +∞

F−1(p)
F(t)dt + F−1(p)(1− p) ≤

∫ +∞

G−1(p)
G(t)dt + G−1(p)(1− p), p ≥ p0. (7)

Now, from Xn
d−→ X, we have that

lim
n→+∞

F−1
n (p) = F−1(p), (8)

for all point p where F−1 is continuous, where Fn and F are the distribution functions of Xn and X,
respectively (see, for example, Chapter 21 in Van der Vaart [13]). Moreover, from Theorem 2.3 in
Müller [14], it holds that

lim
n→+∞

∫ +∞

x
Fn(t)dt =

∫ +∞

x
F(t)dt, for all x ∈ R. (9)

Using the dominated convergence theorem, it follows from (8) and (9) that

lim
n→+∞

[∫ +∞

F−1
n (p)

Fn(t)dt + F−1
n (p)(1− p)

]
=
∫ +∞

F−1(p)
F(t)dt + F−1(p)(1− p). (10)

From Yn
d−→ Y we see that (10) also holds when G and Gn replace, respectively, F and Fn. Now the

result follows from (7).

The closure under strictly increasing convex transformations require the following lemma taken
from page 120 in Barlow and Proschan [15].

Lemma 1. Let W be a measure on the interval (a, b), not necessarily nonnegative. Let h be a nonnegative
function defined on (a, b). If

∫ b
t dW(x) ≥ 0 for all t ∈ (a, b) and if h is increasing, then

∫ b
a h(x)dW(x) ≥ 0.

Proposition 2. Let X and Y be two random variables and let φ be a strictly increasing and convex function.
If X ≤p0-tvar Y for p0 ∈ (0, 1), then φ(X) ≤p0-tvar φ(Y).

Proof. Let Fφ and Gφ denote the distribution functions of φ(X) and φ(Y), respectively. Since φ is
strictly increasing we see that F−1

φ (p) = φ(F−1(p)) and G−1
φ (p) = φ(G−1(p)), for all p ∈ (0, 1). Since φ
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is convex, we know (see, for example, Theorem 10.11 in Zygmund [16]) that there exists an increasing
function ϕ such that

φ(G−1(u))− φ(F−1(u)) =
∫ G−1(u)

F−1(u)
ϕ(v)dv.

Moreover, since φ is strictly increasing, the function ϕ is positive (in fact, it is the derivative of φ

except, perhaps, at some singular points). Observe that if F−1(u) ≤ G−1(u), then

∫ G−1(u)

F−1(u)
ϕ(v)dv ≥ ϕ(F−1(u))

[
G−1(u)− F−1(u)

]
,

and, if F−1(u) > G−1(u), then

∫ G−1(u)

F−1(u)
ϕ(v)dv = −

∫ F−1(u)

G−1(u)
ϕ(v)dv ≥ ϕ(F−1(u))

[
G−1(u)− F−1(u)

]
.

Therefore, we have that

∫ 1

p

[
φ(G−1(u))− φ(F−1(u))

]
du =

∫ 1

p

(∫ G−1(u)

F−1(u)
ϕ(v)dv

)
du

≥
∫ 1

p
ϕ(F−1(u))

[
G−1(u)− F−1(u)

]
du ≥ 0,

where the last inequality follows from (6) and Lemma 1 using the fact that the function ϕ(F−1(u))I(p <

u) is positive and increasing. Consequently,

∫ 1

p
φ(F−1(u)) ≤

∫ 1

p
φ(F−1(u))du,

for all p ≥ p0, which means φ(X) ≤p0-tvar φ(Y).

Next, we give the following relationship among the new order and the icx order of certain
random variables.

Proposition 3. Let X and Y be two random variables. If

max
{

X, F−1(p0)
}
≤icx max

{
Y, G−1(p0)

}
,

then X ≤p0-tvar Y.

Proof. Given a random variable X with distribution function F, let

X0 = max
{

X, F−1(p0)
}

, p0 ∈ (0, 1),

and let F−1
0 be its corresponding quantile function, given by

F−1
0 (p) =

{
F−1(p0), if 0 < p < p0,
F−1(p), if p0 ≤ p < 1.

(11)

A straightforward computation gives

TVaRp(X0) =

 1
1−p

(∫ 1
p0

F−1(u)du + F−1(p0)(p0 − p)
)

, if 0 < p < p0,
1

1−p
∫ 1

p F−1(u)du = TVaRp(X), if p0 ≤ p < 1.
(12)
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We obtain similarly TVaRp(Y0), where Y0 is analogously defined to X0. It is clear than
TVaRp(X0) ≤ TVaRp(Y0) for all p ∈ (0, 1) implies TVaRp(X) ≤ TVaRp(Y) for p0 ≤ p < 1,
which proves the result.

Remark 1. A stop-loss order is defined as the maximum loss that an investor assumes on a particular investment.
Given a loss random variable X, the random variable max

{
X, F−1(p0)

}
can be interpreted as a stop-loss order

at F−1(p0).

Next we discuss the connections between the p0-tail value at risk order and the tail convex order
defined by (5). Observe that X ≤tcx(x0)

Y if E[X] = E[Y] and

∫ +∞

x
F(t)dt ≤

∫ +∞

x
G(t)dt, ∀x ≥ x0. (13)

With our notation, given X and Y such that E[X] = E[Y], Theorem 4 of Cheung and Lo [17] shows
that X ≤p0-tvar Y for p0 ∈ (0, 1) implies X ≤tcx(F−1(p0))

Y and that X ≤tcx(x0)
Y for x0 ∈ R implies

X ≤G(x0)-tvar Y and X ≤tcx(F−1(G(x0))
Y.

Remark 2. Given X and Y with the same mean, a natural question is whether X ≤p0-tvar Y for p0 ∈ (0, 1)
implies X ≤tcx(x0)

Y for x0 < F−1(p0). In general, the answer is no. Let us assume that X ≤p0-tvar Y for
p0 ∈ (0, 1) such that G−1(p0) < F−1(p0) and

∫ 1

p0

F−1(u)du =
∫ 1

p0

G−1(u)du. (14)

Under these assumptions, p0 = {p ∈ (0, 1) : X ≤p-tvar Y} 6= ∅. Let us consider x0 ∈ (G−1(p0), F−1(p0))

such that ∫ p0

F(x0)
F−1(u)du− x0 (p0 − F(x0)) > x0 (G(x0)− p0)−

∫ p0

F(x0)
G−1(u)du. (15)

Then we have∫ +∞

x

(
F(t)− G(t)

)
dt =

∫ 1

F(x0)
F−1(u)du− x0 (G(x0)− F(x0))−

∫ 1

G(x0)
G−1(u)du

=
∫ 1

p0

F−1(u)du−
∫ 1

p0

G−1(u)du

+
∫ p0

F(x0)
F−1(u)du− x0 (p0 − F(x0))

+
∫ G(x0)

p0

G−1(u)du− x0 (G(x0)− p0) . (16)

From (14), (15) and (16), it holds that∫ +∞

x0

(
F(t)− G(t)

)
dt > 0,

and X 6≤tcx(x0)
Y. A similar reasoning shows that, in general, X ≤tcx(x0)

Y does not imply X ≤p0-tvar Y for
p0 < F(x0). Figure 2 illustrates this situation for X ∼W(3, 1) and Y ∼ P(3/2, 1), where X is Weibull and Y
Pareto with distribution functions F and G, respectively. Recall that if X ∼W(α, β) then

F−1(p) = α (− log(1− p))1/β ,
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for p ∈ (0, 1). Note that E[X] = E[Y]. It can be checked that X ≤p0-tvar Y with p0 = 0.68147 (vertical line in
Figure 2) and X ≤tcx(F−1(p0))

Y with F−1(p0) = 3.43711 (horizontal line). However, since G−1(p0) < F−1(p0)

and (14) holds, X 6≤tcx(x0)
Y for any x0 < F−1(p0).
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Figure 2. Quantile functions for X ∼W(3, 1) and Y ∼ P(3/2, 1).

Now consider two general random variables (not necessarily with the same mean). The following
result connects the p0-tail value at risk order and the stochastic order defined by (13).

Proposition 4. Let X and Y be two random variables with distribution functions F and G, respectively.

(i) If X ≤p0-tvar Y, then
∫ +∞

x F(t)dt ≤
∫ +∞

x G(t)dt, for all x ≥ F−1(p0).

(ii) If
∫ +∞

x F(t) dt ≤
∫ +∞

x G(t) dt, for all x ≥ x0, then X ≤G(x0)−tvar Y.

Proof. We prove (i) (the proof of (ii) is similar). Assume X ≤p0-tvar Y. From (7) we know that

(1− p)F−1(p) +
∫ +∞

F−1(p)
F(t)dt ≤ (1− p)G−1(p) +

∫ +∞

G−1(p)
G(t)dt, for all p ≥ p0. (17)

Fixed p ≥ p0, the function

gp(x) = (1− p)x +
∫ +∞

x
G(t)dt, for all x ∈ R,

reachs its minimum at G−1(p) (see Theorem 3.2 in Dhaene et al. [18]). From this fact and (17) it
follows that

(1− p)F−1(p) +
∫ +∞

F−1(p)
F(t)dt ≤ (1− p)F−1(p) +

∫ +∞

F−1(p)
G(t)dt, for all p ≥ p0,

or, equivalently, ∫ +∞

x
F(t)dt ≤

∫ +∞

x
G(t)dt, for all x ≥ F−1(x0), (18)

which concludes the proof.

Corollary 1. Let X and Y be two random variables with distribution functions F and G, respectively, and
p0 ∈ (0, 1) such that F−1(p0) ≤ G−1(p0). Then, X ≤p0−tvar Y if, and only if, one of the following equivalent
conditions holds:
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(i) E
[
(X− x)+

]
≤ E

[
(Y− x)+

]
, for all x ≥ F−1(p0).

(ii)
∫ +∞

x F(t)dt ≤
∫ +∞

x G(t)dt, for all x ≥ F−1(p0).

Proof. Clearly, (i) and (ii) are equivalent. From F−1(p0) ≤ G−1(p0) and (ii) we have

∫ +∞

x
F(t)dt ≤

∫ +∞

x
G(t)dt, ∀x ≥ G−1(p0).

Using Proposition 4(ii) it follows that X ≤p0-tvar Y. Conversely, if X ≤p0-tvar Y, (ii) follows from
Proposition 4(i).

The following result shows that two random variables, in which distribution functions cross a
finite number of times, are ordered in the p0-tail value at risk order for some p0 ∈ (0, 1). The proof is
straightforward and it is omitted.

Theorem 1. Let X and Y be two random variables with distribution functions F and G, respectively.
If S−(G−1 − F−1) is finite, nonzero and the last sign change occurs from − to +, then X ≤pn-tvar Y, where pn

denotes the last crossing point.

A random variable X is said to be smaller than Y in the univariate dispersive ordering (denoted by
X ≤disp Y) if F−1(q) − F−1(p) ≤ G−1(q) − G−1(p) for all 0 < p ≤ q < 1. It is well-known
(see Theorem 2.6.7 in Belzunce et al. [7]) that if X ≤disp Y and E[X] > E[Y] (which, in particular, implies
that X �icx Y ), then S−(G−1 − F−1) = 1. This observation, together with Theorem 1, allows to find
many parametric distributions such that X ≤p0-tvar Y for some p0 > 0 and X �icx Y. Next, we provide
some examples.

Example 1. The following examples follow from Theorem 1 using results that are well-known for the dispersive
order. Note that X �icx Y.

(i) Let X ∼ N(µ1, σ1) and Y ∼ N(µ2, σ2) be two normal random variables such that µ1 > µ2 and σ1 < σ2.
Then, X ≤p0-tvar Y, where p0 = FZ(

µ1−µ2
σ2−σ1

) and Z ∼ N(0, 1).
(ii) Let X ∼ Logistic(µ1, σ1) and Y ∼ Logistic(µ2, σ2) be two logistic random variables such that µ1 > µ2

and σ1 < σ2. Then, X ≤p0-tvar Y, where p0 = FZ(
µ1−µ2
σ2−σ1

) and Z ∼ Logistic(0, 1).
(iii) Let X ∼ W(λ1, k1) and Y ∼ W(λ2, k2) be two Weibull random variables such that E[X] > E[Y]

and k2 < k1. Then, X ≤p0-tvar Y, where p0 = FZ(ab0
0 ), a0 = λ1/λ2, b0 = k1k2/(k1 − k2) and

Z ∼W(1, 1).
(iv) Let X ∼ P(a1, k1) and P ∼ P(a2, k2) be two Pareto random variables such that E[X] > E[Y] and

k2 < k1. Then, X ≤p0-tvar Y, where p0 = FZ(ab0
0 ), a0 = a1/a2, b0 = k1k2/(k1− k2) and Z ∼ P(1, 1).

Remark 3. From Proposition 2 it is apparent that (i) and (ii) in Example 1 are also valid for the log-normal and
log-logistic distribution families, respectively.

Remark 4. The tail value at risk is a special case of distortion risk measure. Recall that a distortion function is
a continuous, and nondecreasing function h : [0, 1]→ [0, 1] such that h(0) = 0 and h(1) = 1. Given a random
variable X with finite mean, the distorted random variable Xh induced by h has a tail function given by

Fh(x) = h
(

F(x)
)

,

for all x in the support of X. It is known that given two random variables X and Y such that X ≤icx Y and a
concave distortion h, entonces Xh ≤icx Yh (see Theorem 13 in Sordo et al. [19]). It is straightforward to show
(although the proof is notationally cumbersome, so we omit it) that if X ≤p0-tvar Y for p0 ∈ (0, 1) and h is a
concave distortion function, then Xh ≤q0-tvar Yh where q0 = GYh

(
F−1(p0)

)
.
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Before ending this section, we emphasize that, given p0 ∈ (0, 1), the order ≤p0−tvar is a pure tail
order in the sense of Rojo [12]. This is shown in the following result, which shows that if X ≤p0−tvar Y,
then the density function f (x) of X decreases faster than the density function g(x) of Y.

Proposition 5. Let X and Y be two random variables with distribution functions F and G and density functions
f and g, respectively. Let p0 ∈ (0, 1). Then

X ≤p0−tvar Y implies lim
x→+∞

f (x)
g(x)

≤ 1.

Proof. Just applying the L’Hôpital’s rule and using Proposition 4(i), we see that

lim
x→+∞

f (x)
g(x)

= lim
x→+∞

∫ +∞
x F(t)∫ +∞
x G(t)

≤ 1.

3. A Real Data Example

In this section, we provide a financial application with a real dataset, involving two random
variables of −log returns (recall that if pt denotes the price of an asset at day t, the corresponding
−log return is defined by rt = −log(pt/pt−1)). Data are of public access and can be obtained from the
Yahoo! Finance site. In order to eliminate the time dependent effect, data are related to the weekly
close of trading.

We consider two national stock market indexes: the Mexican S&P/BMV IPC, denoted by MXX,
that measures the performance of the largest and most liquid stocks listed on the Mexican Stock
Exchange, and the Hang Seng Index, denoted by HSI, which is the main indicator of the performance
of the 50 largest companies of the Hong Kong Stock Exchange. For each index, we have obtained
samples of size n = 104 corresponding to the weekly closings from 1st February 2016 until 31st January
2018. Let us denote by RMXX and RHSI the −log returns of MXX and HSI, respectively. We will
obtain empirical evidence to conclude that RMXX �icx RHSI but there exists p0 ∈ (0, 1) such that
RMXX ≤p0-tvar RHSI .

Before testing the orderings we test the randomness by a classic runs test to RMXX and RHSI and
we obtain the p-values 0.237 and 0.1149, respectively. At this point, we plot in Figure 3 the empirical
probability distributions of RMXX and RHSI .

From Theorem 1 it is apparent that Figure 3 shows reasonable empirical evidence that
RMXX ≤p0-tvar RHSI for a certain value p0 ∈ (0, 1). In order to see that RMXX �icx RHSI we just
need to check the expectations. For such a purpose, we first test the symmetry by performing the M,
CM and MMG tests described in the lawstat R package. The minimum p-value of the three tests is
greater than 0.05, therefore, we cannot reject the hypothesis that both distributions, RMXX and RHSI , are
symmetric. Next we compare the medians by a classical Wilcoxon signed-rank test for paired samples.
We obtain that the median of RMXX is greater than the corresponding of RHSI , p-value= 0.01. Therefore,
since data are assumed to be symmetric, we conclude that E[RMXX ] > E[RHSI ], which implies that
RMXX �icx RHSI .
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Figure 3. The empirical distribution functions of RMXX and RHSI .

The previous non-parametric study suggests to fit a distribution function to RHSI greater than
RMXX in terms of ≤p0-tvar order (with bigger tail risk). Two classical distributions for log returns are
the normal and logistic distributions, where the latter better reflects an excess of kurtosis. Table 1
summarizes the p-values of the classical K-S goodness of fit test for both distribution families and
Figure 4 provides the histograms of the log returns together with normal and logistic density estimates
using the maximum likelihood estimates (MLE) for the location and scale parameters given in Table 2.

Table 1. The p-values for fitting normal and logistic distributions.

K-S Goodness of Fit Test (p-Value)

Index Normal Logistic

MXX 0.0512 0.0347

HSI 0.0525 0.0557

Table 2. The maximum likelihood estimates (MLE) for normal and logistic distributions.

Normal Logistic

Index µ σ µ σ

MXX −0.001486327 0.01556418 −0.001226663 0.008706823

HSI −0.005058756 0.02017290 −0.005402021 0.011434130

Although Table 1 suggests than normal distributions fit better than logistics, both can be
appropriate. From Example 1 there is enough evidence to assume that RMXX ≤p0-tvar RHSI and
the crossing point can be computed from a parametric point of view. In conclusion, a decision maker
concerned by the tail value at risk for large values of p will evaluate RMXX as less dangerous than
RHSI despite E[RMXX ] > E[RHSI ] and RMXX �icx RHSI .
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Figure 4. Histograms of the log returns with a normal density estimate (solid line) and a logistic density
estimate (dashed line) superimposed. The left-hand panel corresponds to RMMX and right-hand panel
corresponds to RHSI .

4. Conclusions

In this paper, we have introduced a family of stochastic orders indexed by confidence levels
p0 ∈ (0, 1), which are useful when we are concerned with right-tail risks. Once p0 is fixed to suit our
preferences, we say that X is less risky than Y if the tail value at risk of X is smaller than the tail value
at risk of Y for any confidence levels p such that p > p0. We have studied the properties of this family
of orders as well as its relationships with other stochastic orders, in particular with the tail convex
order introduced by Cheung and Vandulfel [8]. We have illustrated the results with a real financial
dataset involving log returns.
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