

Article

New Applications of the Bernardi Integral Operator

Shigeyoshi Owa ^{1,*} and H. Özlem Güney ²

- ¹ "1 Decembrie 1918" University Alba Iulia, 510009 Alba-Iulia, Romania
- Department of Mathematics, Faculty of Science Dicle University, 21280 Diyarbakır, Turkey; ozlemg@dicle.edu.tr
- * Correspondence: shige21@ican.zaq.ne.jp

Received: 30 June 2020; Accepted: 16 July 2020; Published: 17 July 2020

Abstract: Let A(p,n) be the class of f(z) which are analytic p-valent functions in the closed unit disk $\overline{\mathbb{U}}=\{z\in\mathbb{C}:|z|\leq 1\}$. The expression $B_{-m-\lambda}f(z)$ is defined by using fractional integrals of order λ for $f(z)\in A(p,n)$. When m=1 and $\lambda=0$, $B_{-1}f(z)$ becomes Bernardi integral operator. Using the fractional integral $B_{-m-\lambda}f(z)$, the subclass $T_{p,n}\left(\alpha_s,\beta,\rho;m,\lambda\right)$ of A(p,n) is introduced. In the present paper, we discuss some interesting properties for f(z) concerning with the class $T_{p,n}\left(\alpha_s,\beta,\rho;m,\lambda\right)$. Also, some interesting examples for our results will be considered.

Keywords: analytic *p*-valent function; Bernardi integral operator; Libera integral operator; fractional integral; gamma function; Miller–Mocanu lemma

1. Introduction

Let A(p, n) be the class of functions f(z) of the form

$$f(z) = z^p + \sum_{k=p+n}^{\infty} a_k z^k$$
, $n \in \mathbb{N} = \{1, 2, 3, ...\}$ (1)

that are analytic *p*-valent functions in the closed unit disk $\overline{\mathbb{U}} = \{z \in \mathbb{C} : |z| \leq 1\}$. For functions $f(z) \in A(p,n)$, we consider

$$B_{-1}f(z) = \frac{p+\gamma}{z^{\gamma}} \int_0^z t^{\gamma-1} f(t) dt = z^p + \sum_{k=p+n}^{\infty} \frac{p+\gamma}{k+\gamma} a_k z^k \quad , \quad \gamma \in \mathbb{N}.$$
 (2)

If p = 1, for $f(z) \in A(1, n)$

$$B_{-1}f(z) = \frac{1+\gamma}{z^{\gamma}} \int_0^z t^{\gamma-1} f(t) dt = z + \sum_{k=n+1}^{\infty} \frac{1+\gamma}{k+\gamma} a_k z^k \quad , \quad \gamma \in \mathbb{N}$$
 (3)

is considered by Bernardi [1]. Therefore, $B_{-1}f(z)$ in (3) is said to be the Bernardi integral operator. Further, if p=1 and $\gamma=1$, for $f(z)\in A(1,n)$

$$L_{-1}f(z) = \frac{2}{z} \int_0^z f(t)dt = z + \sum_{k=n+1}^\infty \frac{2}{k+1} a_k z^k$$
 (4)

is defined by Libera [2]. Therefore, $L_{-1}f(z)$ in (4) is called the Libera integral operator. For $B_{-1}f(z)$ in (2), we consider

$$B_{-2}f(z) = B_{-1}(B_{-1}f(z)) = z^p + \sum_{k=n+n}^{\infty} \left(\frac{p+\gamma}{k+\gamma}\right)^2 a_k z^k$$
 (5)

Mathematics 2020, 8, 1180 2 of 12

and

$$B_{-m}f(z) = B_{-1}(B_{-m+1}f(z)) = z^p + \sum_{k=n+n}^{\infty} \left(\frac{p+\gamma}{k+\gamma}\right)^m a_k z^k$$
 (6)

with $m \in \mathbb{N}$ and $B_0 f(z) = f(z)$.

From the various definitions of fractional calculus of $f(z) \in A(p, n)$ (that is, fractional integrals and fractional derivatives) given in the literature, we would like to recall here the following definitions for fractional calculus which were used by Owa [3] and Owa and Srivastava [4].

Definition 1. *The fractional integral of order* λ *for* $f(z) \in A(p,n)$ *is defined by*

$$D_z^{-\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{f(t)}{(z-t)^{1-\lambda}} dt , \lambda > 0$$
 (7)

where the multiplicity of $(z-t)^{\lambda-1}$ is removed by requiring $\log(z-t)$ to be real when z-t>0 and Γ is the Gamma function.

With the above definitions, we know that

$$D_z^{-\lambda} f(z) = \frac{\Gamma(p+1)}{\Gamma(p+1+\lambda)} z^{p+\lambda} + \sum_{k=n+n}^{\infty} \frac{\Gamma(k+1)}{\Gamma(k+1+\lambda)} a_k z^{k+\lambda}$$
 (8)

for $\lambda > 0$ and $f(z) \in A(p, n)$. Using the fractional integral operator over A(p, n), we consider

$$B_{-\lambda}f(z) = \frac{\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)} z^{1-\gamma-\lambda} D_z^{-\lambda} \left(z^{\gamma-1} f(z) \right) = z^p + \sum_{k=p+n}^{\infty} \frac{\Gamma(k+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(k+\gamma+\lambda)} a_k z^k, \quad (9)$$

where $0 \le \lambda \le 1$. If $\lambda = 0$ in (9), then $B_0 f(z) = f(z)$ and if $\lambda = 1$ in (9), then we see that

$$B_{-1}f(z) = \frac{p+\gamma}{z^{\gamma}} \int_0^z t^{\gamma-1} f(t) dt.$$
 (10)

With the operator $B_{-\lambda} f(z)$ given by (9), we know

$$B_{-m-\lambda}f(z) = B_{-m}\left(B_{-\lambda}f(z)\right) = z^p + \sum_{k=n+m}^{\infty} \left(\frac{p+\gamma}{k+\gamma}\right)^m \frac{\Gamma(k+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(k+\gamma+\lambda)} a_k z^k,\tag{11}$$

where $0 \le \lambda \le 1$ and $m \in \mathbb{N}$. The operator $B_{-m-\lambda}f(z)$ is a generalization of the Bernardi integral operator $B_{-1}f(z)$. From the definition of $B_{-m-\lambda}f(z)$, we know that

$$B_{-m-\lambda}f(z) = B_{-m}(B_{-\lambda}f(z)) = B_{-\lambda}(B_{-m}f(z)). \tag{12}$$

From *s* different boundary points z_l (l = 1, 2, 3, ..., s) with $|z_l| = 1$, we consider

$$\alpha_s = \frac{1}{s} \sum_{l=1}^s \frac{B_{-m-\lambda} f(z_l)}{z_l^p},\tag{13}$$

where $\alpha_s \in e^{i\beta}B_{-m-\lambda}f(\mathbb{U})$, $\alpha_s \neq 1$, $-\frac{\pi}{2} \leq \beta \leq \frac{\pi}{2}$ and $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ is the open unit disk. For such α_s , if $f(z) \in A(p,n)$ satisfies

$$\left| \frac{e^{i\beta} \frac{B_{-m-\lambda} f(z)}{z^p} - \alpha_s}{e^{i\beta} - \alpha_s} - 1 \right| < \rho \quad , \quad z \in \mathbb{U}$$
 (14)

for some real $\rho > 0$, we say that the function f(z) belongs to the class $T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$.

Mathematics 2020, 8, 1180 3 of 12

It is clear that a function $f(z) \in A(p,n)$ belongs to the class $T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$ provided that the condition

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}, \tag{15}$$

is satisfied. If we consider the function $f(z) \in A(p, n)$ given by

$$f(z) = z^{p} + \left(\frac{p+n+\gamma}{p+\gamma}\right)^{m} \frac{\Gamma(p+\gamma)\Gamma(p+n+\gamma+\lambda)}{\Gamma(p+n+\gamma)\Gamma(p+\gamma+\lambda)} \rho(e^{i\beta} - \alpha_{s}) z^{p+n}$$
(16)

then f(z) satisfies

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| = \rho \left| e^{i\beta} - \alpha_s \right| |z|^m < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}.$$
 (17)

Therefore, f(z) given by (16) is in the class $T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$.

Discussing our problems for $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$, we have to recall here the following lemma due to Miller and Mocanu [5,6] (refining the old one in Jack [7].)

Lemma 1. Let the function w(z) given by

$$w(z) = a_n z^n + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \dots , n \in \mathbb{N}$$
(18)

be analytic in \mathbb{U} with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point z_0 , $(0 < |z_0| < 1)$ then there exists a real number $k \ge n$ such that

$$\frac{z_0 w'(z_0)}{w(z_0)} = k \tag{19}$$

and

$$Re\left(1 + \frac{z_0 w''(z_0)}{w'(z_0)}\right) \ge k. \tag{20}$$

2. Properties of Functions Concerning with the Class $T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$

We begin with a sufficient condition on a function $f(z) \in A(p,n)$ which makes it a member of $T_{p,n}(\alpha_s,\beta,\rho;m,\lambda)$.

Theorem 1. *If* $f(z) \in A(p, n)$ *satisfies*

$$\left| \frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right| < \frac{\left| e^{i\beta} - \alpha_s \right| n\rho}{(p+\gamma)(1 + \left| e^{i\beta} - \alpha_s \right| \rho)} \quad , z \in \mathbb{U}$$
 (21)

for some α_s given by (13) with $\alpha_s \neq 1$ such that $z_g \in \partial \mathbb{U}$ (g = 1, 2, 3, ..., s), and for some real $\rho > 1$, then

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \ z \in \mathbb{U}$$
 (22)

that is, $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$.

Proof. We introduce the function w(z) defined by

$$w(z) = \frac{e^{i\beta \frac{B_{-m-\lambda}f(z)}{z^p} - \alpha_s}}{e^{i\beta} - \alpha_s} - 1 = \frac{e^{i\beta}}{e^{i\beta} - \alpha_s} \left\{ \sum_{k=p+n}^{\infty} \left(\frac{p+\gamma}{k+\gamma} \right)^m \frac{\Gamma(k+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(k+\gamma+\lambda)} a_k z^{k-p} \right\}. \tag{23}$$

Mathematics 2020, 8, 1180 4 of 12

Then, w(z) is analytic in \mathbb{U} with w(0) = 0 and

$$\frac{B_{-m-\lambda}f(z)}{z^p} = 1 + (1 - e^{-i\beta}\alpha_s)w(z).$$
 (24)

Noting that

$$B_{-m-\lambda+1}f(z) = \frac{\gamma}{p+\gamma} B_{-m-\lambda}f(z) + \frac{1}{p+\gamma} z (B_{-m-\lambda}f(z))', \tag{25}$$

we obtain that

$$\frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 = \frac{(1 - e^{-i\beta}\alpha_s)zw'(z)}{(p+\gamma)(1 + (1 - e^{-i\beta}\alpha_s)w(z))}$$
(26)

and that

$$\left| \frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right| = \frac{1}{p+\gamma} \left| \frac{(1 - e^{-i\beta}\alpha_s)zw'(z)}{1 + (1 - e^{-i\beta}\alpha_s)w(z)} \right| < \frac{|e^{i\beta} - \alpha_s|n\rho}{(p+\gamma)(1 + |e^{i\beta} - \alpha_s|\rho)}. \tag{27}$$

by employing (21). Assume, to arrive at a contradiction, that there exists a point z_0 , $(0 < |z_0| < 1)$ such that

$$\max\{|w(z)|; |z| \le |z_0|\} = |w(z_0)| = \rho > 1. \tag{28}$$

Then, we can write that $w(z_0) = \rho e^{i\theta}$, $(0 \le \theta \le 2\pi)$ and $z_0 w'(z_0) = k w(z_0)$, $(k \ge n)$ by Lemma 1. For such a point $z_0 \in \mathbb{U}$, f(z) satisfies

$$\left| \frac{B_{-m-\lambda+1}f(z_0)}{B_{-m-\lambda}f(z_0)} - 1 \right| = \frac{1}{p+\gamma} \left| \frac{(1-e^{-i\beta}\alpha_s)z_0w'(z_0)}{1+(1-e^{-i\beta}\alpha_s)w(z_0)} \right|
= \frac{1}{p+\gamma} \left| \frac{(1-e^{-i\beta}\alpha_s)k\rho}{1+(1-e^{-i\beta}\alpha_s)\rho e^{i\theta}} \right|
\geq \frac{|1-e^{-i\beta}\alpha_s|n\rho}{(p+\gamma)(1+|1-e^{-i\beta}\alpha_s|\rho)}
= \frac{|e^{i\beta}-\alpha_s|n\rho}{(p+\gamma)(1+|e^{i\beta}-\alpha_s|\rho)}.$$
(29)

Since this contradicts our condition (21), we see that there is no z_0 , $(0 < |z_0| < 1)$ such that $|w(z_0)| = \rho > 1$. This shows us that

$$|w(z)| = \left| \frac{e^{i\beta} \left(\frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right)}{e^{i\beta} - \alpha_s} \right| < \rho \quad , \quad z \in \mathbb{U}, \tag{30}$$

that is, that

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}.$$
 (31)

This completes the proof of the theorem. \Box

Example 1. We consider a function $f(z) \in A(p,n)$ given by

$$f(z) = z^p + a_{p+n}z^{p+n} , z \in \mathbb{U}$$
(32)

with $0 < |a_{p+n}| < \frac{1}{20}$, where

$$Q = \left(\frac{p+\gamma}{p+n+\gamma}\right)^m \frac{\Gamma(p+n+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(p+n+\gamma+\lambda)}.$$
 (33)

Mathematics 2020, 8, 1180 5 of 12

For such f(z), we have

$$\frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} = \frac{z^p + \left(\frac{p+n+\gamma}{p+\gamma}\right)Qa_{p+n}z^{p+n}}{z^p + Qa_{p+n}z^{p+n}} = \frac{1 + \left(\frac{p+n+\gamma}{p+\gamma}\right)Qa_{p+n}z^n}{1 + Qa_{p+n}z^n}$$
(34)

that is, that

$$\left| \frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right| = \left| \frac{\left(\frac{n}{p+\gamma}\right)Qa_{p+n}z^n}{1 + Qa_{p+n}z^n} \right| < \frac{\left(\frac{n}{p+\gamma}\right)Q|a_{p+n}|}{1 - Q|a_{p+n}|} \quad , \quad z \in \mathbb{U}. \tag{35}$$

Now, we consider five boundary points such that

$$z_1 = e^{-i\frac{arg(a_{p+n})}{n}} \tag{36}$$

$$z_2 = e^{i\frac{\pi - 6arg(a_{p+n})}{6n}} \tag{37}$$

$$z_3 = e^{i\frac{\pi - 4arg(a_{p+n})}{4n}} \tag{38}$$

$$z_4 = e^{i\frac{\pi - 3arg(a_{p+n})}{3n}} \tag{39}$$

and

$$z_5 = e^{i\frac{\pi - 2arg(a_{p+n})}{2n}}. (40)$$

For these five boundary points, we know that

$$\frac{B_{-m-\lambda}f(z_1)}{z_1^p} = 1 + Qa_{p+n}e^{-iarg(a_{p+n})} = 1 + Q|a_{p+n}|,\tag{41}$$

$$\frac{B_{-m-\lambda}f(z_2)}{z_2^p} = 1 + Qa_{p+n}e^{i\left(\frac{\pi}{6} - arg(a_{p+n})\right)} = 1 + \frac{\sqrt{3} + i}{2}Q|a_{p+n}|,\tag{42}$$

$$\frac{B_{-m-\lambda}f(z_3)}{z_3^p} = 1 + Qa_{p+n}e^{i\left(\frac{\pi}{4} - arg(a_{p+n})\right)} = 1 + \frac{\sqrt{2}(1+i)}{2}Q|a_{p+n}|,\tag{43}$$

$$\frac{B_{-m-\lambda}f(z_4)}{z_4^p} = 1 + Qa_{p+n}e^{i\left(\frac{\pi}{3} - arg(a_{p+n})\right)} = 1 + \frac{1 + \sqrt{3}i}{2}Q|a_{p+n}|,\tag{44}$$

and

$$\frac{B_{-m-\lambda}f(z_5)}{z_5^p} = 1 + Qa_{p+n}e^{i\left(\frac{\pi}{2} - arg(a_{p+n})\right)} = 1 + iQ|a_{p+n}|.$$
(45)

Thus α_5 is given by

$$\alpha_5 = \frac{1}{5} \sum_{l=1}^{5} \frac{B_{-m-\lambda} f(z_l)}{z_l^p} = 1 + \frac{(3 + \sqrt{2} + \sqrt{3})(1+i)}{10} Q|a_{p+n}|. \tag{46}$$

This gives us that

$$\left|1 - e^{-i\beta}\alpha_5\right| = \frac{\sqrt{2}(3 + \sqrt{2} + \sqrt{3})}{10}Q|a_{p+n}|\tag{47}$$

with $\beta = 0$. For such α_5 and β , we take $\rho > 1$ with

$$\frac{\left(\frac{n}{p+\gamma}\right)Q|a_{p+n}|}{1-Q|a_{p+n}|} \le \frac{|e^{i\beta} - \alpha_5|n\rho}{(p+\gamma)(1+|e^{i\beta} - \alpha_5|\rho)}.$$
(48)

Mathematics 2020, 8, 1180 6 of 12

It follows from the above that

$$\rho \ge \frac{10}{\sqrt{2}(3+\sqrt{2}+\sqrt{3})(1-2Q|a_{p+n}|)} > \frac{10}{\sqrt{2}(3+\sqrt{2}+\sqrt{3})} > 1.$$
 (49)

For such α_5 and $\rho > 1$, f(z) satisfies

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < Q|a_{p+n}| \le \rho|e^{i\beta} - \alpha_5| \quad , \quad z \in \mathbb{U}.$$
 (50)

Our next result reads as follows.

Theorem 2. *If* $f(z) \in A(p, n)$ *satisfies*

$$\left| \left(\frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right) \left(\frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right) \right| < \frac{\left| e^{i\beta} - \alpha_s \right|^2 n\rho^2}{(p+\gamma)(1 + \left| e^{i\beta} - \alpha_s \right| \rho)} \quad , \quad z \in \mathbb{U}$$
 (51)

for some α_s defined by (13) with $\alpha_s \neq 1$ such that $z_g \in \partial \mathbb{U}$ (g=1,2,3,...,s), and for some real $\rho > 1$, then

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}$$
 (52)

that is, $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$.

Proof. Define a function w(z) by (23). Using (24) and (26), we have

$$\left| \left(\frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right) \left(\frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right) \right| = \left| \frac{\left(1 - e^{-i\beta}\alpha_s \right)^2 zw(z)w'(z)}{(p+\gamma)(1 + \left(1 - e^{-i\beta}\alpha_s \right)w(z))} \right|. \tag{53}$$

We suppose that there exists a point z_0 , $(0 < |z_0| < 1)$ such that

$$\max\{|w(z)|; |z| \le |z_0|\} = |w(z_0)| = \rho > 1. \tag{54}$$

Then, Lemma 1 leads us that $w(z_0)=\rho e^{i\theta}$, $(0\leq\theta\leq 2\pi)$ and $z_0w'(z_0)=kw(z_0)$, $(k\geq n)$. It follows from the above that

$$\left| \left(\frac{B_{-m-\lambda+1}f(z_0)}{B_{-m-\lambda}f(z_0)} - 1 \right) \left(\frac{B_{-m-\lambda}f(z_0)}{z_0^p} - 1 \right) \right| = \left| \frac{\left(1 - e^{-i\beta}\alpha_s \right)^2 z_0 w(z_0) w'(z_0)}{(p+\gamma)(1+(1-e^{-i\beta}\alpha_s))w(z_0))} \right|$$

$$= \frac{\left| e^{i\beta} - \alpha_s \right|^2 \rho^2 k}{(p+\gamma)\left| 1 + (1-e^{-i\beta}\alpha_s)\rho e^{i\theta} \right|}$$

$$\geq \frac{\left| e^{i\beta} - \alpha_s \right|^2 n\rho^2}{(p+\gamma)(1+|e^{i\beta} - \alpha_s|\rho)}. \tag{55}$$

This contradicts our condition (51) for f(z). Therefore, there is no z_0 , $(0 < |z_0| < 1)$ such that $|w(z_0)| = \rho > 1$. This means that

$$\left| \left(\frac{B_{-m-\lambda} f(z)}{z^p} - 1 \right) \right| < \rho |e^{i\beta} - \alpha_s| \quad , \quad z \in \mathbb{U}.$$
 (56)

Mathematics 2020, 8, 1180 7 of 12

Example 2. Consider a function f(z) given by (32) with $0 < |a_{p+n}| < \frac{1}{Q}$, where Q is given by (33). For this function f(z), we have

$$\left| \left(\frac{B_{-m-\lambda+1}f(z)}{B_{-m-\lambda}f(z)} - 1 \right) \left(\frac{B_{-m-\lambda}f(z)}{z^{p}} - 1 \right) \right| = \left| \frac{nQ^{2}a_{p+n}^{2}z^{2n}}{(p+\gamma)(1+Qa_{p+n}z^{n})} \right|$$

$$< \frac{nQ^{2}|a_{p+n}|^{2}}{(p+\gamma)(1-Q|a_{p+n}|)} , z \in \mathbb{U}.$$
 (57)

Consider five boundary points z_1 , z_2 , z_3 , z_4 and z_5 in Example 1. Then, we have

$$\left|1 - e^{-i\beta}\alpha_5\right| = \frac{\sqrt{2}(3 + \sqrt{2} + \sqrt{3})}{10}Q|a_{p+n}|\tag{58}$$

with $\beta = 0$. With such α_5 and β , we take $\rho > 1$ by

$$\frac{nQ^2|a_{p+n}|^2}{(p+\gamma)(1-Q|a_{p+n}|)} \le \frac{|e^{i\beta} - \alpha_5|^2 n\rho^2}{(p+\gamma)(1+|e^{i\beta} - \alpha_5|\rho)}.$$
 (59)

Then, this ρ satisfies

$$\rho \ge \frac{10}{\sqrt{2}(3+\sqrt{2}+\sqrt{3})Q|a_{\nu+n}|} > 1. \tag{60}$$

For such α_5 and ρ , we know that

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho |e^{i\beta} - \alpha_5| \quad , \quad z \in \mathbb{U}.$$
 (61)

Next, we derive the following result.

Theorem 3. *If* $f(z) \in A(p, n)$ *satisfies*

$$\left| \frac{B_{-m-\lambda+g}f(z)}{z^p} - 1 \right| < \rho |e^{i\beta} - \alpha_s| \left(\frac{p+n+\gamma}{p+\gamma} \right) \quad , \quad z \in \mathbb{U}$$
 (62)

for some α_s defined by (13) with $\alpha_s \neq 1$, g = 1, 2, 3, ..., m, and for some real $\rho > 1$, then

$$\left| \frac{B_{-m-\lambda+g-1}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}.$$
 (63)

Proof. Define the function w(z) by

$$w(z) = rac{e^{ietarac{B_{-m-\lambda+g-1}f(z)}{z^p}} - lpha_s}{e^{ieta} - lpha_c} - 1$$

$$= \frac{e^{i\beta}}{e^{i\beta} - \alpha_s} \left\{ \sum_{k=n+n}^{\infty} \left(\frac{p+\gamma}{k+\gamma} \right)^{m-g} \frac{\Gamma(k+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(k+\gamma+\lambda)} a_k z^{k-p} \right\}. \tag{64}$$

It follows from the above that

$$B_{-m-\lambda+g-1}f(z) = z^p + (1 - e^{-i\beta}\alpha_s)z^p w(z).$$
(65)

By the definition of $B_{-m-\lambda+g}f(z)$, we know that

$$B_{-m-\lambda+g}f(z) = \frac{z^{1-\gamma}}{p+\gamma} \left(z^{\gamma} B_{-m-\lambda+g-1}f(z) \right)' = z^{p} \left\{ 1 + (1 - e^{-i\beta}\alpha_{s})w(z) \left(1 + \frac{zw'(z)}{(p+\gamma)w(z)} \right) \right\}. \tag{66}$$

Mathematics 2020, 8, 1180 8 of 12

Our condition implies that

$$\left| \frac{B_{-m-\lambda+g}f(z)}{z^p} - 1 \right| = \left| (1 - e^{-i\beta}\alpha_s)w(z) \left(1 + \frac{zw'(z)}{(p+\gamma)w(z)} \right) \right| < \rho \left| e^{i\beta} - \alpha_s \right| \left(\frac{p+n+\gamma}{p+\gamma} \right)$$
 (67)

for all $z \in \mathbb{U}$. Suppose that there exists a point z_0 , $(0 < |z_0| < 1)$ such that

$$\max\{|w(z)|; |z| \le |z_0|\} = |w(z_0)| = \rho > 1. \tag{68}$$

Then, Lemma 1 says that $w(z_0) = \rho e^{i\theta}$, $(0 \le \theta \le 2\pi)$ and $z_0 w'(z_0) = k w(z_0)$, $(k \ge n)$. Therefore, we have

$$\left| \frac{B_{-m-\lambda+g}f(z_0)}{z_0^p} - 1 \right| = \left| (1 - e^{-i\beta}\alpha_s)w(z_0) \left(1 + \frac{z_0w'(z_0)}{(p+\gamma)w(z_0)} \right) \right|$$

$$= \rho \left| e^{i\beta} - \alpha_s \right| \left(1 + \frac{k}{p+\gamma} \right) \ge \rho \left| e^{i\beta} - \alpha_s \right| \left(\frac{p+n+\gamma}{p+\gamma} \right)$$
(69)

which contradicts the inequality (67). This means that there is no $z_0 \in \mathbb{U}$ such that $|w(z_0)| = \rho > 1$. Thus we know that

$$|w(z)| = \left| \frac{e^{i\beta} \frac{B_{-m-\lambda+g-1}f(z)}{z^p} - \alpha_s}{e^{i\beta} - \alpha_s} - 1 \right| = \left| \frac{e^{i\beta}}{e^{i\beta} - \alpha_s} \left(\frac{B_{-m-\lambda+g-1}f(z)}{z^p} - 1 \right) \right| < \rho. \tag{70}$$

This completes the proof of the theorem. \Box

Theorem 3 implies the following one.

Theorem 4. *If* $f(z) \in A(p, n)$ *satisfies*

$$\left| \frac{B_{-m-\lambda+g}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \left(\frac{p+n+\gamma}{p+\gamma} \right)^g \quad , \quad z \in \mathbb{U}$$
 (71)

for some α_s given by (13) with $\alpha_s \neq 1, \ g=1,2,3,...,m$, and for some real $\rho>1$, then

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}$$
 (72)

or, equivalently, $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$.

Proof. By means of Theorem 3, we see that if f(z) satisfies the inequality (71), then

$$\left| \frac{B_{-m-\lambda+g-1}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \left(\frac{p+n+\gamma}{p+\gamma} \right)^{g-1} \quad , \quad z \in \mathbb{U}$$
 (73)

Similarly, we have

$$\left| \frac{B_{-m-\lambda+g-2}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \left(\frac{p+n+\gamma}{p+\gamma} \right)^{g-2} , \ z \in \mathbb{U}. \tag{74}$$

Continuing this consideration, we obtain that

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < \rho \left| e^{i\beta} - \alpha_s \right| \quad , \quad z \in \mathbb{U}. \tag{75}$$

Mathematics 2020, 8, 1180 9 of 12

Example 3. Consider the function

$$f(z) = z^p + a_{p+n}z^{p+n} \quad , \quad z \in \mathbb{U}$$
 (76)

which satisfies

$$B_{-m-\lambda+g}f(z) = z^p + \frac{\Gamma(p+n+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(p+n+\gamma+\lambda)} \left(\frac{p+\gamma}{p+n+\gamma}\right)^{m-g} a_{p+n}z^{p+n}. \tag{77}$$

It follows from (77) that

$$\left| \frac{B_{-m-\lambda+g}f(z)}{z^p} - 1 \right| = \frac{\Gamma(p+n+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(p+n+\gamma+\lambda)} \left(\frac{p+\gamma}{p+n+\gamma} \right)^{m-g} |a_{p+n}||z|^n$$

$$< Q\left(\frac{p+n+\gamma}{p+\gamma} \right)^g |a_{p+n}| \quad , \quad z \in \mathbb{U}, \tag{78}$$

where Q is given by (33). Now, we consider the five boundary points z_1, z_2, z_3, z_4 and z_5 as in Example 1. Then we see

$$|e^{i\beta} - \alpha_5| = \frac{\sqrt{2}(3 + \sqrt{2} + \sqrt{3})}{10} Q|a_{p+n}| \tag{79}$$

where $\beta = 0$. With the above relation (79), we consider $\rho > 1$ such that

$$Q\left(\frac{p+n+\gamma}{p+\gamma}\right)^g|a_{p+n}| \le \rho|e^{i\beta} - \alpha_5|,\tag{80}$$

that is, ρ satisfies

$$\rho \geq \frac{10}{\sqrt{2}(3+\sqrt{2}+\sqrt{3})} \left(\frac{p+n+\gamma}{p+\gamma}\right)^g > 1.$$

Thus, we have that

$$\left| \frac{B_{-m-\lambda}f(z)}{z^{p}} - 1 \right| \leq Q|a_{p+n}|$$

$$\leq \rho|e^{i\beta} - \alpha_{5}| \left(\frac{p+\gamma}{p+n+\gamma} \right)^{g}$$

$$< \rho|e^{i\beta} - \alpha_{5}| \quad , \quad z \in \mathbb{U}.$$

$$(81)$$

Remark 1. If we take $\gamma = 1$ in the results of this section, then these results correspond to applications of the Libera integral operator as introduced by Libera [2].

Let us write that

$$B_{-m-\lambda}f(z) = L_{-m-\lambda}f(z) = z^p + \sum_{k=p+n}^{\infty} \left(\frac{p+1}{k+1}\right)^m \frac{\Gamma(p+1+\lambda)k!}{\Gamma(k+1+\lambda)p!} a_k z^k$$
 (83)

for $\gamma = 1$ in (11). Then Theorem 1 says that if $f(z) \in A(p, n)$ satisfies

$$\left| \frac{L_{-m-\lambda+1}f(z)}{L_{-m-\lambda}f(z)} - 1 \right| < \frac{|e^{i\beta} - \alpha_s|n\rho}{(p+1)(1+|e^{i\beta} - \alpha_s|\rho)} \quad , z \in \mathbb{U}, \tag{84}$$

for some α_s given by

$$\alpha_s = \frac{1}{s} \sum_{l=1}^s \frac{L_{-m-\lambda} f(z_l)}{z_l^p} \quad , \quad z_l \in \overline{\mathbb{U}}, \tag{85}$$

Mathematics 2020, 8, 1180 10 of 12

where $-\frac{\pi}{2} \le \beta \le \frac{\pi}{2}$, and for some real $\rho > 1$, then

$$\left| \frac{L_{-m-\lambda}f(z)}{z^p} - 1 \right| < |e^{i\beta} - \alpha_s|\rho \quad , \quad z \in \mathbb{U}.$$
 (86)

For another result, we consider again the Libera integral operator with $\gamma = 1$.

3. Application of Carathéodory Lemma

In this section, we will apply Carathéodory Lemma for coefficients of functions $f(z) \in A(p, n)$. In 1907, Carathéodory [8] gave the following result.

Lemma 2. Let a function g(z) given by

$$g(z) = 1 + \sum_{k=1}^{\infty} c_k z^k \tag{87}$$

be analytic in \mathbb{U} and $Reg(z) > 0, z \in \mathbb{U}$. Then g(z) satisfies

$$|c_k| \le 2$$
 , $(k = 1, 2, 3, ...)$. (88)

The inequality (88) is sharp for each k.

Applying the above lemma, we derive the following thorem.

Theorem 5. *If* $f(z) \in A(p,n)$ *is in the class* $T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$ *, then*

$$|a_k| \le \frac{2|e^{i\beta} - \alpha_s|\rho}{R}$$
 , $(k = p + n, p + n + 1, ...)$, (89)

where

$$R = \left(\frac{p+\gamma}{k+\gamma}\right)^m \frac{\Gamma(k+\gamma)\Gamma(p+\gamma+\lambda)}{\Gamma(p+\gamma)\Gamma(k+\gamma+\lambda)}.$$
 (90)

The result is sharp for f(z) given by

$$B_{-m-\lambda}f(z) = z^p \frac{e^{i\theta} - (1+2|e^{i\beta} - \alpha_s|\rho)z}{e^{i\theta} - z}.$$
(91)

Proof. For $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$, we see that

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| < |e^{i\beta} - \alpha_s|\rho \quad , \quad z \in \mathbb{U}.$$
 (92)

If we define a function g(z) with $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$ by

$$g(z) = \frac{\frac{B_{-m-\lambda}f(z)}{z^p} - (1 - |e^{i\beta} - \alpha_s|\rho)}{|e^{i\beta} - \alpha_s|\rho} \quad , z \in \mathbb{U}, \tag{93}$$

then g(z) is analytic in \mathbb{U} with g(0)=1 and $Reg(z)>0, z\in \mathbb{U}$. Also, g(z) has the following power series expansion:

$$g(z) = 1 + \sum_{k=p+n}^{\infty} \frac{R}{|e^{i\beta} - \alpha_s|\rho} a_k z^{k-p}.$$

Mathematics 2020, 8, 1180 11 of 12

Therefore, by applying Lemma 2 to g(z), we obtain

$$\frac{R}{|e^{i\beta} - \alpha_s|\rho} |a_k| \le 2 \quad , \quad (k = p + n, p + n + 1, \dots). \tag{94}$$

This shows the coefficient inequalities (89). Note that

$$g(z) = \frac{e^{i\theta} + z}{e^{i\theta} - z} = 1 + \sum_{k=1}^{\infty} 2e^{i\theta}z^k = 1 + \sum_{k=1}^{\infty} c_k z^k$$
 (95)

is analytic in \mathbb{U} , g(0)=1, Reg(z)>0, $(z\in\mathbb{U})$ and $|c_k|=2$, (k=1,2,3,...). Therefore, considering f(z) such that

$$g(z) = \frac{\frac{B_{-m-\lambda}f(z)}{z^p} - (1 - |e^{i\beta} - \alpha_s|\rho)}{|e^{i\beta} - \alpha_s|\rho} = \frac{e^{i\theta} + z}{e^{i\theta} - z},\tag{96}$$

we have

$$B_{-m-\lambda}f(z) = z^p \frac{e^{i\theta} - (1 + 2|e^{i\beta} - \alpha_s|\rho)z}{e^{i\theta} - z}.$$
(97)

This completes the proof of the theorem. \Box

Remark 2. If we take $\gamma = 1$ in Theorem 5, then we get the following result for the Libera integral operator. If $f(z) \in A(p, n)$ satisfies

$$\left|\frac{L_{-m-\lambda}f(z)}{z^p} - 1\right| < |e^{i\beta} - \alpha_s|\rho \quad , \quad z \in \mathbb{U}, \tag{98}$$

then

$$|a_k| \le \frac{2|e^{i\beta} - \alpha_s|\rho}{R_0}$$
 , $(k = p + n, p + n + 1, ...)$, (99)

where

$$R_0 = \left(\frac{p+1}{k+1}\right)^m \frac{\Gamma(p+1+\lambda)k!}{\Gamma(k+1+\lambda)p!}.$$
(100)

The result is sharp for f(z) given by

$$L_{-m-\lambda}f(z) = z^p \frac{e^{i\theta} - (1+2|e^{i\beta} - \alpha_s|\rho)z}{e^{i\theta} - z}.$$
(101)

Finally, we derive

Theorem 6. *If* $f(z) \in A(p, n)$ *satisfies*

$$\sum_{k=\nu+n}^{\infty} R|a_k| \le |e^{i\beta} - \alpha_s|\rho,\tag{102}$$

then $f(z) \in T_{p,n}(\alpha_s, \beta, \rho; m, \lambda)$, where R is given by (90).

Proof. For $f(z) \in A(p, n)$, we consider

$$\left| \frac{B_{-m-\lambda}f(z)}{z^p} - 1 \right| = \left| \sum_{k=p+n}^{\infty} Ra_k z^k \right|$$

$$< \sum_{k=n+n}^{\infty} R|a_k| \le |e^{i\beta} - \alpha_s|\rho \quad , \quad z \in \mathbb{U}.$$
(103)

Mathematics 2020, 8, 1180 12 of 12

Therefore, if $f(z) \in A(p,n)$ satisfies (102), then we know $f(z) \in T_{p,n}(\alpha_s,\beta,\rho;m,\lambda)$. \square

Remark 3. Letting $\gamma = 1$ in Theorem 6, we have the result concerning with the Libera integral operator $L_{-m-\lambda}f(z)$.

Author Contributions: Conceptualization, S.O.; Investigation, S.O. and H.Ö.G.; Methodology, S.O.; Writing—original draft, S.O.; Writing—review and editing, H.Ö.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to give our thanks to T. Bulboaca, Department of Mathematics, Faculty of Mathematics and Computer Sciences, Babes-Bolyai University, Romania for his kind support for our paper and also the reviewers for valuable remarks and suggestions in order to revise and improve of our paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [CrossRef]
- 2. Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [CrossRef]
- 3. Owa, S. On the distortion theorems I. *Kyungpook Math. J.* **1978**, *18*, 53–59.
- 4. Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. *Can. J. Math.* **1987**, 39, 1057–1077. [CrossRef]
- 5. Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. *J. Math. Anal. Appl.* **1978**, *65*, 289–305. [CrossRef]
- 6. Miller, S.S.; Mocanu, P.T. Differential Subordinations. In *Theory and Applications*; Marcel Dekker Inc.: New York, NY, USA, 2000.
- 7. Jack, I.S. Functions starlike and convex of order α. J. Lond. Math. Soc. 1971, 2, 469–474. [CrossRef]
- 8. Carathéodory, C. Über den Variabilitatsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. *Rend. Del Circ. Mat. Palermo (1884–1940)* **1911**, 32, 193–217. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).