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Abstract: Let A(p, n) be the class of f(z) which are analytic p-valent functions in the closed unit disk
U= {z € C:|z| <1}. The expression B_,, _,f(z) is defined by using fractional integrals of order A
for f(z) € A(p,n). Whenm = 1and A = 0, B_; f(z) becomes Bernardi integral operator. Using the
fractional integral B_,,_, f(z), the subclass T}, , (as, B, 0;m, A) of A(p,n) is introduced. In the present
paper, we discuss some interesting properties for f(z) concerning with the class T}, (as, B, 0; 1, A) .
Also, some interesting examples for our results will be considered.

Keywords: analytic p-valent function; Bernardi integral operator; Libera integral operator; fractional
integral; gamma function; Miller-Mocanu lemma

1. Introduction

Let A(p, n) be the class of functions f(z) of the form

f(z) =2 + Z akzk , neN={1,2,3.} (1)
k=p+n

that are analytic p-valent functions in the closed unit disk U = {z € C: |z| < 1}. For functions
f(z) € A(p,n), we consider

B_1f(2) P+"// L (Hdt = 2P + ) Zizakzk , v€N. )

If p=1,for f(z) € A(1,n)

1+’y/ s S
B_if tr z+ az" , vyeN 3
k:;1k+’yk ! ®

is considered by Bernardi [1]. Therefore, B_1f(z) in (3) is said to be the Bernardi integral operator.
Further, if p = 1and v = 1, for f(z) € A(1,n)

:%/Ozf(t) =z+ Z kilakzk 4)

k=n+1

is defined by Libera [2]. Therefore, L_1f(z) in (4) is called the Libera integral operator.
For B_;f(z) in (2), we consider

_ _ R AR
Baf(2) = B1 (Baf(2) =2 +k§+n(k+ 1) ©)
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and

B_mf(z) = Bo1 (Bomi1f(2)) =2 + 2 <ZIY> az" (6)
k=p+n v
with m € Nand Byf(z) = f(2).
From the various definitions of fractional calculus of f(z) € A(p, n) (that is, fractional integrals
and fractional derivatives) given in the literature, we would like to recall here the following definitions
for fractional calculus which were used by Owa [3] and Owa and Srivastava [4].

Definition 1. The fractional integral of order A for f(z) € A(p,n) is defined by

D f(z) = F(l)\) /O'Z ; f(:))l_Adt L A>0 @)

where the multiplicity of (z — t)*~1 is removed by requiring log(z — t) to be real when z — t > 0 and T is the
Gamma function.

With the above definitions, we know that

D;Af(z): r(p—l—l) p+)\+ Z - (k+1) kA (8)

T(p+1+A) L TR+ T )™

for A > 0and f(z) € A(p,n). Using the fractional integral operator over A(p,n), we consider

T(p+7r+A) 1grye - _ NI(p+7+A)
B_2f(z) = W 217 ADZ/\(ZAX 1f ) Zp—i-k%_ F(k+7+)\) Zk )

where 0 < A < 1.If A = 0in (9), then Byf(z) = f(z) and if A = 1in (9), then we see that
B .f P+7/ (8 (10)

With the operator B_, f(z) given by (9), we know

_ P\ " Tk+NI(p+r+A)
Bfmfftf(z) - ( /\f _Zp—l—k%n (k+')/) T(p+'y)l”(k+'y+)\)akz ’ (11)

where 0 < A < 1and m € N. The operator B_,,_, f(z) is a generalization of the Bernardi integral
operator B_1 f(z). From the definition of B_,, , f(z), we know that

By f(2) = Bow (B_af(2) = By (B-uf(2)). (12)
From s different boundary points z; (I =1,2,3,...,s) with |z;| = 1, we consider
S
752 Bomoaf() (13)

l

where a5 € ePB_, 3f(U),as #1, —F < B < Fand U = {z € C: |z| < 1} is the open unit disk.
For such as, if f(z) € A(p, n) satisfies

eiﬁ B—nz;;’\f(z) _

eif — o

s

-1l<p, z€U (14)

for some real p > 0, we say that the function f(z) belongs to the class Ty, (s, B, 0,11, A) .
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It is clear that a function f(z) € A(p,n) belongs to the class Ty, (a5, B, 0;m, A) provided that
the condition
‘ B,m,)\f(Z) _ 1

ip
e'P —u
zP s

, z€T, (15)

-

is satisfied. If we consider the function f(z) € A(p, n) given by

_ P p+n+7)’"F(p+7)F(p+n+7+)\) B _ g )P +n 16
f(z) =z +( iy F(p+n+7)l’(p+’7+)\)p(e os)z (16)
then f(z) satisfies

’wl‘zp eiﬁ—zxs’|2|m<P eP—ns| , zel. (17)

Therefore, f(z) given by (16) is in the class T}, (as, B, 0;m, A) .
Discussing our problems for f(z) € Ty (as, B, 0;m,A), we have to recall here the following
lemma due to Miller and Mocanu [5,6] (refining the old one in Jack [7].)

Lemma 1. Let the function w(z) given by
w(z) = apz" + ay 12" 4 a,02" 2 4., neN (18)

be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r at a point
20, (0 < |zo| < 1) then there exists a real number k > n such that

zow'(z0) _

TEN )
and " z0)
Zow (29

2. Properties of Functions Concerning with the Class T}, ,, («s, 8, p;m, L)

We begin with a sufficient condition on a function f(z) € A(p, n) which makes it a member of
Tp,l’l (aS/ ,B/ Pr mr /\) .

Theorem 1. If f(z) € A(p,n) satisfies

‘ Son=iiifie) | — as| np zeU (21)

B_y_rf(z) ‘< (p+7) A+ [P —as|p)

for some as given by (13) with as # 1 such that z; € U (¢ =1,2,3,..,s),and for some real p > 1, then

‘Bngf(Z) _1' <olf—a| , zeU (22)
thatis, f(z) € Ty (as, B, 0;m, A).
Proof. We introduce the function w(z) defined by
eipBuaf B _ o ¢if e pry\"Tk+)T(p+y+A)
w(z) = . 1= —— az"F 5. (23)
elf — g P —as | i, \k+7/) T(p+nT(k+7+4)
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Then, w(z) is analytic in U with w(0) = 0 and

B_m;igf(z) =1+ (1—e Pas)w(z). (24)
Noting that
s 1
B_m-r+1f(z) = P B_m-af(z) + p+'y( —m-af(2)), (25)
we obtain that 4
Bomanf(z) | _ (1 —e Pas)aw' (z) (26)
B_-2f(2) (P+7) 1+ 1 —ePus)w(z))
and that
Bowa1f(z) 1‘ _ 1 ’ (1 — e Pag)zw' (2) e — as|np 27)
B_m-af(2) Py i1+ A —ePasu(z)| ~ (p+7)1+ ef —aslp)’

by employing (21). Assume, to arrive at a contradiction, that there exists a point zg, (0 < |zg] < 1)
such that
max{|w(z)];|z] < |zo[} = |w(z0)[ = p > 1. (28)

Then, we can write that w(zg) = pe®®, (0 < 8 < 27) and zow'(z9) = kw(zp), (k > n) by Lemma 1.
For such a point zg € U, f(z) satisfies

B_—a+1f(20) B 1’ _ 1 ‘ (1- e—iﬂpcs')ZQw’(Zo)
B_m-af(20) P+ i1+ (1—ePag)w(zo)
1 (1— e Pag)kp
CpHy |14+ (1 — e Pag)pe®
11— e Pag|np
(P41 = e Paslp)
e — as|np

_ , . 29
(p+7)(1+ e —aso) 9

Since this contradicts our condition (21), we see that there is no zg, (0 < |zp| < 1) such that |w(zp)| =
p > 1. This shows us that

1ﬁ< - /\f( ) 1)
w(z)| = . ” <p ,z€l, (30)
that is, that
‘Bmzé‘f(z)—ll<peiﬁ—ocs , ze . (31)
This completes the proof of the theorem. O
Example 1. We consider a function f(z) € A(p, n) given by
flz) =2 +apinzP™ ,z€U (32)

with 0 < |apin| < ﬁ, where

Q

:< Pt >’”F(p+n+v>r<p+v+A> (33)

p+n+vy) T(p+1Tp+nt+y+A)
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For such f(z), we have

p+n+y p+n+y
Bowanflz)  #7F ( Py ) Qapnzl™" 14 ( P ) Qap-+nz"
B_w-af(z) zP + QapqnzP " B 1+ Qapynz"

that is, that

araf) ) (517) Qopsnz" | (t7) Qlapenl

< , z€U.
B_ . Af(2) 1+ Qapqnz" 1—Qlapyal
Now, we consider five boundary points such that
_l.’”g(“p+n)
zZ1=¢€ n
—6arg(apyn)
Zp = el
.”*4’1’8(”p+n)
Z3 = A TE—
. ”*3“78(’1p+n)
zg=¢e~ m
and
i”*2“78(“p+n)
Z5 =€ 2n
For these five boundary points, we know that
B_-aAf(z —i
m Z/}]f( l) -1+ Qap+n€ iarg(apyn) _ 1+ Q|ap+n|/
1
B__Af(z (o 3+i
mz+f(2) =1+ Qﬂp+n€l(6 urg(ﬂp+n)) =14+ \f Q|ﬂp+n|/
2
B_,_Af(z (T V2(1+i
mz+f(3) =1+ Qﬂp+n€l(4 arg(@pin)) — 1+ (2 )Q’”P-&-nl/
3
B_u_2f(z (7 1+V3i
mz+f<4> = 14+ Qapenel(Forstarmn)) =14 25V 0pa,
4
and B F(z5)
—m-)J (25 (X — .
mj =14+ Qﬂp+nel( 2 arg(ap+n)) =1+ 1Q|up+n|_

Thus as is given by

5 .
1 ZB*’”*Zi/;f(ZZ) =14+ (3+\/§+18/§)(1+1)Q|’1p+n|~
1

This gives us that

V2(3+V2+V/3)
10

‘1—37#}0‘5‘ = Qlap+nl

with B = 0. For such as and B, we take p > 1 with

(#) Q|“p+n| < |eiﬁ — a5|np
1=Qlaptnl = (p+7)(1+ e —as|p)’

50f12

(34)

(35)

(36)

(37)
(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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It follows from the above that

10 10

zP

> 1. 49
0= 2B+ V2+ V3 (- 2Qlapal) V2B V2H3) )

For such as and p > 1, f(z) satisfies
‘w—l‘wmmlsmiﬁ—%l , zeU. (50)

Our next result reads as follows.

Theorem 2. If f(z) € A(p,n) satisfies

KB_m_Mf(z)_l) (B_m_Af<z>_1>‘<( ol e

B_p-1f(2) zF p+7)(1+ |ef —as|p)
for some as defined by (13) with as # 1 such that z; € U (¢=1,2,3,..,s), and for some real p > 1, then
‘Bmz;‘f(z)—l'<p P —wn| , z€eU (52)

that iS, f(Z) E Tp,n (‘XS/ ,B/ P/ ml /\) .

Proof. Define a function w(z) by (23). Using (24) and (26), we have

Bowariif(2) ) (Boweaf(x) || (1—eu)’zo()w/(2)
Gt (5 1)“‘(p+v>(1+<le—fﬂas)w@))' 9

We suppose that there exists a point zg, (0 < |zg| < 1) such that

max{[w(z)|; |z| < |zo[} = |w(z0)| = p > 1. (54)

Then, Lemma 1 leads us that w(zy) = pe'®, (0 < 0 < 27) and zow'(z0) = kw(zo), (k > n). It follows
from the above that

|<B_m_A+1f<zo> ~ 1) (B_m_mzo) - 1) | B | (1 — e~ Bas)? zgu0(z0)e0 (z0)

B_y-rf(20) z} (p+7) 1+ (1 —ePas) w(z))

_ | — | 0%k
S (pty) [T+ (1 — e Pag)pe?|

- |eP —acsfnpz .
T (P (A e —as|p)

This contradicts our condition (51) for f(z). Therefore, there is no zp, (0 < |zg| < 1) such that
|w(zg)| = p > 1. This means that

(55)

‘(W_1>’<Pleiﬁ—ws , z€U. (56)



Mathematics 2020, 8, 1180 7 of 12

Example 2. Consider a function f(z) given by (32) with 0 < |api,| < é, where Q is given by (33). For this
function f(z), we have

‘(B—m—A+Lf@0__1) (B_m_kf@)__l>’__‘( WQA 2

B_y-1f(2) z° p+7)(1+ Qapinz")
”Q2|‘1p+n‘2
, zeU. 57
7+ 7)1~ Qlapra]) ©7
Consider five boundary points z1,zy,z3, z4 and zs in Example 1. Then, we have
i V23 +v2++3
1] = : 10 LQlay ol 8)
with B = 0. With such a5 and B, we take p > 1 by
; 2
nQay i — a5 np?
< - . (59)
(P+ 7)1 = Qlap+nl) = (p+ 7)1+ [P —as|p)
Then, this p satisfies
10
> > 1. 60
0= V2B V2+ V3 Qlapl ©0
For such as and p, we know that
‘B_"Z;\f(z)—ll<p|eiﬂ—a5| , zeU. (61)
Next, we derive the following result.
Theorem 3. If f(z) € A(p, n) satisfies
B_— z .
zP p+

for some ws defined by (13) with as #1, ¢ =1,2,3, ..., m, and for some real p > 1, then

B irie1f(z ,
‘mf;§”‘>_q<pem_% sl 63)
Proof. Define the function w(z) by
iBB_m— — f(Z)
ezﬁ A+g—1 —a
_ zP 5
w(z) = p 1
i 3 m—g
S <P+7> Lkt T(p+7+4) ) kep | 64)
elP — g i k+ T(p+y)T(k+v+A)
It follows from the above that
B marg1f(2) =2 + (1 — e Pas)2Pw(2). (65)

By the definition of B_,,_,¢f(z), we know that

B_pm-r+gf(z) = ?T_; (ZWBfmfAJrgflf(Z)), =zF {1 + (1 —ePas)uw(z) (1 + (pfi)(zzu)(z)> } : (66)
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Our condition implies that

B—m—/\+gf(z>

12 o2

(p+7)w(z)

em_“4<P+n+7) 67)
P+

for all z € U. Suppose that there exists a point zg, (0 < |zo| < 1) such that
max{|w(z)]; |z] < |zo|} = |w(z0)[ = p > 1. (68)

Then, Lemma 1 says that w(zg) = e, (0 < 6 < 2m) and zow'(z0) = kw(zo),(k > n).

Therefore, we have

B_u-at¢f(20) ’ _ < zow' (zo)
A 1 = (1 — e Pag)w(z 1—|—)‘
m ( e M ez
; k ; +n+q
=p e — ag <1+> > ol — g (p) 69
’ ptr) =F (5 )

which contradicts the inequality (67). This means that there is no zg € U such that |w(zy| = p > 1.
Thus we know that

ig B—m— - f(Z) 1
elp e Uy etP B_mavg-1f(2)
o zP s o m—A+g—1 .
lw(z)| = 7 a 1] = 7 o ( ~ 1> ‘ < p. (70)
This completes the proof of the theorem. [J
Theorem 3 implies the following one.

Theorem 4. If f(z) € A(p, n) satisfies

B_p— z ‘ 8

2 Pty

for some g given by (13) with ws # 1, § =1,2,3,...,m, and for some real p > 1, then

’B—m—Af(Z)__1‘<:p

ip
e —u
zP s

, z€eU (72)

or, equivalently, f(z) € Tyu (s, B, 0;m,A).

Proof. By means of Theorem 3, we see that if f(z) satisfies the inequality (71), then

B_mnio1f(z : i
‘W_1‘<p e — a, <P+”+7> , €U (73)
zP p+
Similarly, we have
B_mrioaf(z : s
‘mAﬂ;ﬂ<>1‘<p#¢“S(p+n+7> , zeU. (74)
zP p+
Continuing this consideration, we obtain that
’w—1’<p ef—u| , zeU. 75)
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Example 3. Consider the function

flz) =2\ +apizP™ , z€U (76)
which satisfies
T(p+n+)(p+r+A) ( Pty )’"g
B_,_ =z pEn, 77

It follows from (77) that

w_l‘_r(p+n+7)F(P+7+/\)( Pty >m_g|ap+n||z”

zP S T(p+T(p+n+v+A) \p+n+v
p+n+ ’y)g
< —_— , z€T, 78
Q < b+ |ap+n| 4 (78)
where Q is given by (33). Now, we consider the five boundary points z1,zp,z3,z4 and zs as in Example 1.
Then we see Y i3
; 23+ vV2++V3
|€lﬁ - 0(5| = ( 10 )Q|ﬂp+n| (79)
where B = 0. With the above relation (79), we consider p > 1 such that
ptn+ ’Y)g < plpif
— g, 80
Q () lapal < ple —as 0
that is, p satisfies
4
0> 10 (p+n+’y) o1
V23+V2+V3) \ Pt
Thus, we have that
B__Af(z
’m;ﬂ)—ﬂs@%m\ (81)
. 8
S p|elﬁ — aS‘ <p—|—’)/>
p+n+-y
<ple —uas| , zeU. (82)

Remark 1. If we take v = 1 in the results of this section, then these results correspond to applications of the
Libera integral operator as introduced by Libera [2].
Let us write that

<p+1>mF(p+1+/\)k! r ®3)

B,m,/\f(z) = L,m,/\f(z) =zl + Z k+1 I“(k+ 1+ )L)p!akz

k=p+n

for v = 1in (11). Then Theorem 1 says that if f(z) € A(p,n) satisfies

Lom-p+1f(2) ‘ e — as|np
—— — 1| < - ,z€ U, 84
Lwaf@ S )T [oF el o
for some ws given by
S
p=ty L&), (85)
Si=1 2]
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where —7 < B < T, and for some real p > 1, then

’ Low-rf(z) 1

5 ‘ <l|eP —aslp , zeU. (86)

For another result, we consider again the Libera integral operator with v = 1.

3. Application of Carathéodory Lemma
In this section, we will apply Carathéodory Lemma for coefficients of functions f(z) € A(p,n).

In 1907, Carathéodory [8] gave the following result.

Lemma 2. Let a function g(z) given by
g(z) =1+ i o2 (87)
k=1
be analytic in U and Reg(z) > 0,z € U. Then g(z) satisfies
leel <2, (k=1,2,3,..). (88)
The inequality (88) is sharp for each k.

Applying the above lemma, we derive the following thorem.

Theorem 5. If f(z) € A(p,n) is in the class Ty, (as, B, 0;m, \) , then

20t —
lag| < w , (k=p+np+n+1,.), (89)
where "
R (P+7> L(k+)I(p+7+A) 90)
k+v) Tp+y)Tk+v+A)

The result is sharp for f(z) given by

_ e — (1+2eP — as|p)z

B_m-1f(z) = e o1
Proof. For f(z) € Ty (as, B, 0;m, A), we see that
’Bmz;\f(z)—l‘<|eiﬁ—txs|p , zeU. 92)
If we define a function g(z) with f(z) € Ty (a5, B, ;m, A) by
8(z) = S i Ul bl X ) (93)

e — aslpo

then g(z) is analytic in U with ¢g(0) = 1 and Reg(z) > 0,z € U. Also, g(z) has the following power
series expansion:

R e
e —wlp™

g(z) =1+ i

k=p+n
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Therefore, by applying Lemma 2 to g(z), we obtain

— | <2, (k=p+n,p+n+1,..). 94
|elLMPIkI (k=p+np ) (94)

This shows the coefficient inequalities (89). Note that

e®+2 o 0k ok
gz)="—=1+Y 2% =1+ ) 2z (95)
er —z k=1 k=1

is analyticin U, g(0) =1, Reg(z) > 0,(z € U) and |cx| =2 , (k =1,2,3,...). Therefore, considering f(z)
such that By A f(2)
—m=AJ\2) 1— i _ i0
g(z) — zP ( ‘E ‘XS|P) — e’ +z (96)

|etP — as|p el —z’

we have ) )
e — (1+2eP — as|p)z
et —z '

By af(z) =2 (97)

This completes the proof of the theorem. [J

Remark 2. If we take v = 1 in Theorem 5, then we get the following result for the Libera integral operator.
If f(z) € A(p,n) satisfies

then 8
2|ef —
o < 25 e pmp ), ©9)
where " )k
B p+1 I p4—14-A !
R0_<k+1> T(k+14+A)p! Heo

The result is sharp for f(z) given by

e — (14206 — nglp)z

Loy-rf(z) =2" - (101)
Finally, we derive
Theorem 6. If f(z) € A(p,n) satisfies
Y Rlax| < [e —aslp, (102)
k=p+n
then f(z) € Ty (as, B, 0;m, A), where R is given by (90).
Proof. For f(z) € A(p,n), we consider
B_y-rf(2) = k
’mZp - 1 - Z Rakz
k=p+n
< Y Rgl <P —aslp , zeU. (103)

k=p+n
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Therefore, if f(z) € A(p, n) satisfies (102), then we know f(z) € Ty, (as, B,0;m,A). O

Remark 3. Letting v = 1 in Theorem 6, we have the result concerning with the Libera integral operator

L—m—/\f(z)'
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