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Abstract: We consider pointwise rectangular Lipschitz regularity and pointwise level coordinate
axes Lipschitz regularities for continuous functions f on the unit cube I2 in R2. Firstly, we provide
characterizations by simple estimates on the decay rate of the coefficients (resp. leaders) of the
expansion of f in the rectangular Schauder system, near the point considered. We deduce that
pointwise rectangular Lipschitz regularity yields pointwise level coordinate axes Lipschitz regularities.
As an application, we refine earlier results in Ayache et al. (Drap brownien fractionnaire. Potential
Anal. 2002, 17, 31–43) and Kamont (On the fractional anisotropic Wiener field. Probab. Math. Statist.
1996, 16, 85–98), where uniform rectangular Lipschitz regularity of the trajectories of the fractional
Brownian sheet over the total I2 (or any cube) was considered. Actually, we prove that fractional
Brownian sheets are pointwise rectangular and level coordinate axes monofractal. On the opposite,
we construct a class of Sierpinski selfsimilar functions that are pointwise rectangular and level
coordinate axes multifractal.

Keywords: rectangular Lipschitz regularity; level coordinate axes Lipschitz regularity; expansion in
the rectangular Schauder system; monofractal; multifractal; Sierpinski selfsimilar functions; fractional
Brownian sheets

1. Introduction

Many authors have studied several properties of anisotropic random fields, see for example [1–13],
and the references therein for further information. Some of these fields are models for textures in
images (see [11] and the references therein).

For a given two parameter index H̄ = (H1, H2) ∈ (0, 1)2, the fractional Brownian sheet {BH̄(x) :
x = (x1, x2)}, is a real-valued centered Gaussian field, introduced by Kamont in [7], then redefined by
Ayache et al. in [2] through the following fractional integration with respect to the standard real-valued
Brownian sheet W on R2

∀x = (x1, x2) ∈ R2
+ BH̄(x) =

∫
R2

2

∏
i=1

gHi (xi, ui) dW(u) , (1)
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where
u = (u1, u2) , ga(t, s) = (t− s)a−1/2

+ − (−s)a−1/2
+ and s+ = max(s, 0) .

The realizations of the fractional Brownian sheet are continuous. The covariance is given by

E[BH̄(t1, t2)BH̄(s1, s2)] =
2

∏
i=1

K2Hi (ti, si)

where
K2a(t, s) =

1
2
(|t|2a + |s|2a − |t− s|2a)

is the covariance kernel of the fractional Brownian motion Ba in Rwith Hurst index a.
Recall that a corresponds to the critical uniform Lipschitz exponent of the sample paths of Ba over any
arbitrary compact interval I; one has, almost surely

sup{α ∈ (0, 1) : Ba ∈ Lipα(I)} = a .

Actually, (see for example [14]), Ba is monofractal of order a in the sense that

∀ t sup{α ∈ (0, 1) : Ba ∈ Lipα(t)} = a .

Let us recall the notions of Lipα(I) and Lipα(t0). Without any loss of generality, let I denotes the
unit interval [0, 1].

Definition 1. Let u be a continuous function on I (we write u ∈ C(I)). Let t0 ∈ I. Let α ∈ (0, 1).
We say that u is Lipschitz of order α at t0 and we write u ∈ Lipα(t0), if there exists C > 0 such that

∀ t ∈ I |u(t)− u(t0)| ≤ C|t− t0|α . (2)

We say that u is Lipschitz of order α on I and we write u ∈ Lipα(I), if the constant C in (2) is uniform on
all t0 ∈ I.

We say that u is uniform Lipschitz on I if there exists δ > 0 such that u ∈ Lipδ(I).

When H1 6= H2, the fractional Brownian sheet given in (1) has the following anisotropic
operator-selfsimilarity:

∀a1, a2 > 0 aH1
1 aH2

2 BH̄(x1/a1, x2/a2) = BH̄(x) in law . (3)

It is proved that the fractional Brownian sheet has stationary rectangular increments. In [2]
(resp. [7]), it is also proved that for any cube Q ⊂ R2, the restrictions BH̄

Q of realizations of BH̄ to Q are
uniform rectangular Lipschitz with order H̄′ = (H′1, H′2) for H′1 < H1 and H′2 < H2, in the sense that

∃ C > 0 ; ∀ (x, y) ∈ Q2 |�yBH̄
Q(x)| ≤ C

2

∏
i=1
|yi − xi|H

′
i , (4)

where rectangular increments of a continuous function f are defined for x = (x1, x2) and y = (y1, y2) by

�y f (x) = f (y)− f (x1, y2)− f (y1, x2) + f (x) . (5)

This paper is concerned with pointwise rectangular Lipschitz regularity and pointwise level
coordinate axes Lipschitz regularities; without any loss of generality, we will take Q the unit cube
I2 = [0, 1]2.
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Definition 2. (Pointwise rectangular Lipschitz regularity)
Let f be a continuous function on I2 (we write f ∈ C(I2)). Let x ∈ I2. Let ᾱ = (α1, α2) ∈ (0, 1)2.

We say that f is rectangular Lipschitz of order ᾱ at x and we write f ∈ Lipᾱ(x), if there exists C > 0 such that

∀ y ∈ I2 |�y f (x)| ≤ C
2

∏
i=1
|yi − xi|αi . (6)

We say that f is rectangular Lipschitz of order ᾱ on I2 and we write f ∈ Lipᾱ(I2), if the constant C in (6)
is uniform on all x ∈ I2.

We say that f is uniform Lipschitz on I2 if there exists δ > 0 such that f ∈ Lipδ(I2) in the sense that
there exists C > 0 such that

∀ x, y ∈ I2 | f (y)− f (x)| ≤ C|x− y|δ . (7)

Let (e1, e2) be the canonical basis of R2.

Definition 3. (Pointwise level coordinate axes Lipschitz regularities)
Let s ∈ (0, 1), x = (x1, x2) ∈ I2 and f ∈ C(I2). We say that f ∈ Ns(x, e1) if there exists C > 0

such that
∀y = (y1, y2) ∈ I2 | f (y)− f (x1, y2)| ≤ C |y1 − x1|s .

We say that f ∈ Ns(x, e2) if there exists C > 0 such that

∀y = (y1, y2) ∈ I2 | f (y)− f (y1, x2)| ≤ C |y2 − x2|s .

Clearly

∀ σ ∈ (0, 1)
2⋂

i=1

Nαi (x, ei) ⊂ Lip(σα1,(1−σ)α2)(x) . (8)

Let us mention that pointwise level coordinate axes Lipschitz regularities Ns(x, ei) are stronger
then pointwise directional Lipschitz regularities Cs(x, ei) that have been studied in [15]. Let f ∈
C(I2), x = (x1, x2) ∈ I2 and 0 < s < 1. Recall that f ∈ Cs(x, e1) (resp. f ∈ Cs(x, e2)) if there exists
a positive constant C such that | f (y1, x2)− f (x)| ≤ C|y1 − x1|s ∀ y1 ∈ I (resp. | f (x1, y2)− f (x)| ≤
C|y2 − x2|s ∀ y2 ∈ I). Actually Ns(x, ei) ⊂ Cs(x, ei). Of course there is no converse embedding
between Cs(x, ei) and both pointwise rectangular Lipschitz regularity and pointwise level coordinate
axes Lipschitz regularities.

In the next section (respectively the third section), we characterize pointwise rectangular Lipschitz
regularity (respectively pointwise level coordinate axes Lipschitz regularities) by simple estimates
on the decay rate of the coefficients/leaders of the expansion of the function in the basis of tensor
products of Schauder functions, near the point considered (see Theorem 1/Theorem 2 (respectively
Theorem 3/Theorem 4)). We deduce that pointwise rectangular Lipschitz regularity yields pointwise
level coordinate axes Lipschitz regularities (see Theorem 5).

In the fourth section, as an application, we refine result (4) by proving that fractional Brownian
sheets are pointwise rectangular and level coordinate axes monofractal (see Theorem 6). A second
application will be done to more general anisotropic deterministic selfsimilar functions that can
modelize anisotropic turbulence or cascades. We construct a class of Sierpinski selfsimilar functions
that are pointwise rectangular and level coordinate axes multifractal (see Theorem 7).

Finally, a short conclusion section is given.
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2. Characterization of Lipᾱ(x) in Rectangular Schauder Bases

2.1. Characterization with Rectangular Schauder Coefficients

The rectangular Schauder system {Φm=(m1,m2)
}m∈N2

0
of C(I2) is obtained by tensor products

Φm(y) = Φm(y1, y2) = ∏2
i=1 φmi (yi), of classical (1-variable) Schauder functions {φm, m ≥ 0} on I,

normed in L∞. Recall that φ0 = 1, φ1(t) = t, and for m ≥ 2, m = 2j + n with j ≥ 0 and 1 ≤ n ≤ 2j,
φm(t) = φ(2j+1t− 2n + 1) with support [(n− 1)2−j, n2−j], where φ(t) = max(0, 1− |t|).

Let M = N0 ∪ {−2,−1}. For j ∈ M, let

Ñ−2 = {0}, Ñ−1 = {1}, and Ñj = {2j + n : n = 1, · · · , 2j} for j ≥ 0 . (9)

It is known that if u ∈ C(I), then u = ∑
j∈M

∑
m∈Ñj

bm(u)φm with

b0(u) = u(0) , b1(u) = u(1)− u(0)

and

∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj bm(u) = u(
2n− 1
2j+1 )− 1

2

(
u(

n− 1
2j ) + u(

n
2j )

)
. (10)

For j = (j1, j2) ∈ M2, we put
Ñj = Ñj1 × Ñj2 . (11)

Denote by 0 and 1 respectively the vectors (0, 0) and (1, 1). If a = (a1, a2) and b = (b1, b2) belong
to R2, we will write a ≤ b if ai ≤ bi for all i ∈ {1, 2}, a < b (resp. a > b) if ai < bi (respectively ai > bi)
for all i ∈ {1, 2}, and a � b if either a1 > b1 or a2 > b2 .

Any f ∈ C(I2) can be written as

f (y) = ∑
j∈M2

∑
m∈Ñj

CmΦm(y)

= C(0,0) + C(0,1)y2 + C(1,0)y1 + C(1,1)y1y2

+ ∑
j≥0

∑
m∈Ñj

C(0,m)φm(y2) + ∑
j≥0

∑
m∈Ñj

C(m,0)φm(y1)

+ y1 ∑
j≥0

∑
m∈Ñj

C(1,m)φm(y2) + y2 ∑
j≥0

∑
m∈Ñj

C(m,1)φm(y1)

+ ∑
j≥0

∑
m=(m1,m2)∈Ñj

Cmφm1(y1)φm2(y2) ,

where
C(0,0) = f (0, 0), C(0,1) = f (0, 1)− f (0, 0), C(1,0) = f (1, 0)− f (0, 0) ,

C(1,1) = f (1, 1) + f (0, 0)− f (1, 0)− f (0, 1) ,

∀ j ≥ 0 ∀ m ∈ Ñj C(0,m) = fm(0)

with

fm(t) = f (t,
2n− 1
2j+1 )− 1

2

(
f (t,

n− 1
2j ) + f (t,

n
2j )

)
, (12)

∀ j ≥ 0 ∀ m ∈ Ñj C(m,0) = gm(0)

with

gm(t) = f (
2n− 1
2j+1 , t)− 1

2

(
f (

n− 1
2j , t) + f (

n
2j , t)

)
, (13)

∀ j ≥ 0 ∀ m ∈ Ñj C(1,m) = fm(1)− fm(0) ,
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∀ j ≥ 0 ∀ m ∈ Ñj C(m,1) = gm(1)− gm(0) ,

and

∀ j ≥ 0 ∀ m = (m1, m2) ∈ Ñj Cm = fm2(
2n1 − 1

2j1+1 )− 1
2

[
fm2(

n1 − 1
2j1

) + fm2(
n1

2j1
)

]
. (14)

It is known that both uniform and pointwise Lipschitz regularities Lipα(I) and Lipα(t0) (given in
Definition 1) are characterized in Schauder bases (see [16] for example).

Proposition 1. Let 0 < α < 1. Let u ∈ C(I).

1.
u ∈ Lipα(I) ⇔ ∃ C > 0 ∀ j ≥ 0 ∀ m ∈ Ñj |bm(u)| ≤ C2−αj . (15)

2. Let t0 ∈ I. If u ∈ Lipα(t0) then there exists C such that

∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |bm(u)| ≤ C(2−αj + |t0 − n2−j|α) . (16)

Conversely, if u is uniform Lipschitz on I and (16) holds then u ∈ Lipα′(t0) for all α′ < α.

Remark 1. Let x = (x1, x2) and y = (y1, y2). Clearly if W(y) = u(y1)v(y2), U(y) = u(y1) and V(y) =
v(y2) then

�yW(x) = (u(y1)− u(x1))(v(y2)− v(x2)) ,

�yU(x) = 0 and �yV(x) = 0 .

Thanks to Remark 1

• function
g0(y) := C(0,0) + C(0,1)y2 + C(1,0)y1 + C(1,1)y1y2 (17)

belongs to Lipᾱ(I2) for all ᾱ = (α1, α2) < 1,
• function

g1(y) := ∑
j≥0

∑
m∈Ñj

C(0,m)φm(y2) = f (0, y2)− f (0, 0)− C(0,1)y2 (18)

belongs to Lipᾱ(x) for all ᾱ = (α1, α2) < 1,
• function

g2(y) := ∑
j≥0

∑
m∈Ñj

C(m,0)φm(y1) = f (y1, 0)− f (0, 0)− C(1,0)y1 (19)

belongs to Lipᾱ(I2) for all ᾱ = (α1, α2) < 1,
• function

g3(y) := y1 ∑
j≥0

∑
m∈Ñj

C(1,m)φm(y2) = y1 [ f (1, y2)− f (0, y2)]− y1C(1,0) − y1y2C(1,1) (20)

belongs to Lipᾱ(x) if and only if the one variable function f (1, t)− f (0, t) belongs to Lipα2(x2),
• function

g4(y) := y2 ∑
j≥0

∑
m∈Ñj

C(m,1)φm(y1) = y2 [ f (y1, 1)− f (y1, 0)]− y2C(0,1) − y1y2C(1,1) (21)

belongs to Lipᾱ(x) if and only if the one variable function f (t, 1)− f (t, 0) belongs to Lipα1(x1).
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If f is uniform Lipschitz on I2, then functions f (1, t)− f (0, t) and f (t, 1)− f (t, 0) are uniform
Lipschitz on I, consequently g3 and g4 can be sharply characterized in Lipᾱ(x) using the second result
of Proposition 1. More precisely

Proposition 2. Let f ∈ C(I2), 0 < ᾱ < 1 and x ∈ I2.

1. If g3 and g4 belong to Lipᾱ(x) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(1,m)| ≤ C(2−j +
∣∣∣n2−j − x2

∣∣∣)α2 (22)

and
∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(m,1)| ≤ C(2−j +

∣∣∣n2−j − x1

∣∣∣)α1 . (23)

2. Conversely, if f is uniform Lipschitz on I2 and both (22) and (23) are satisfied then

∀ i ∈ {3, 4} ∀ ᾱ′ < ᾱ gi ∈ Lipᾱ′(x) . (24)

Remark 2. Note that if f ∈ Lipᾱ(x) then g3 and g4 belong to Lipᾱ(x). In fact

| f (1, t)− f (0, t)− f (1, x2) + f (0, x2)| = |�(1,t) f (x)−�(0,t) f (x)|
≤ |�(1,t) f (x)|+ |�(0,t) f (x)|
≤ C|t− x2|α2

and

| f (t, 1)− f (t, 0)− f (x1, 1) + f (x1, 0)| = |�(t,1) f (x)−�(t,0) f (x)|
≤ |�(t,1) f (x)|+ |�(t,0) f (x)|
≤ C|t− x1|α1 .

To achieve the sharp characterization of Lipᾱ(x) by Schauder coefficients, it remains to deal with the series

F(y) = ∑
j≥0

∑
m=(m1,m2)∈Ñj

Cmφm1(y1)φm2(y2) . (25)

Proposition 3. Let f ∈ C(I2), 0 < ᾱ < 1 and x ∈ I2.

1. If f ∈ Lipᾱ(x) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = (m1, m2) ∈ Ñj |Cm| ≤ C
2

∏
i=1

(2−ji +
∣∣∣ni2−ji − xi

∣∣∣)αi . (26)

2. Conversely, if f is uniform Lipschitz on I2 and (26) is satisfied, then the function F given in (25) satisfies

∀ ᾱ′ < ᾱ F ∈ Lipᾱ′(x) . (27)

Proof of Proposition 3.

1. Assume that f ∈ Lipᾱ(x). Recall that coefficients Cm are given by (14) where fm2 is as in (12). Write
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fm2(t) = f (t,
2n2 − 1

2j2+1 )− f (x1,
2n2 − 1

2j2+1 )− f (t, x2) + f (x)

− 1
2

[
f (t,

n2 − 1
2j2

)− f (x1,
n2 − 1

2j2
)− f (t, x2) + f (x)

+ f (t,
n2

2j2
)− f (x1,

n2

2j2
)− f (t, x2) + f (x)

]
+ fm2(x1)

= �
(t, 2n2−1

2j2+1 )
f (x)− 1

2

[
�

(t, n2−1

2j2
)

f (x) +�(t, n2
2j2

) f (x)
]
+ fm2(x1) .

Thus

Cm = fm2(
2n1 − 1

2j1+1 )− 1
2

[
fm2(

n1 − 1
2j1

) + fm2(
n1

2j1
)

]
= �

(
2n1−1

2j1+1 , 2n2−1

2j2+1 )
f (x)− 1

2

(
�

(
2n1−1

2j1+1 , n2−1

2j2
)

f (x) +�
(

2n1−1

2j1+1 , n2
2j2

)
f (x)

)

− 1
2

[
�

(
n1−1

2j1
, 2n2−1

2j2+1 )
f (x)− 1

2

(
�

(
n1−1

2j1
, n2−1

2j2
)

f (x) +�
(

n1−1

2j1
, n2

2j2
)

f (x)

)

+ �
(

n1
2j1

, 2n2−1

2j2+1 )
f (x)− 1

2

(
�

(
n1
2j1

, n2−1

2j2
)

f (x) +�
(

n1
2j1

, n2
2j2

)
f (x)

)]
.

Since f ∈ Lipᾱ(x) then (26) holds.
2. Conversely, assume that f is uniform Lipschitz on I2 and (26) is satisfied. Using (12)

| fm(t)| ≤
1
2
| f (t, 2n− 1

2j+1 )− f (t,
n− 1

2j )|+ 1
2
| f (t, 2n− 1

2j+1 )− f (t,
n
2j )| ≤ C2−δj .

Using (7) and (14)
∀ j ≥ 0 ∀m ∈ Ñj |Cm| ≤ C2−δj1 . (28)

Since

Cm = fm1(
2n2 − 1

2j2+1 )− 1
2

[
fm1(

n2 − 1
2j2

) + fm1(
n2

2j2
)

]
then similarly

∀ j ≥ 0 ∀m ∈ Ñj |Cm| ≤ C2−δj2 . (29)

It follows that

∀ j ≥ 0 ∀m ∈ Ñj ∀θ ∈ (0, 1) |Cm| ≤ C2−θδj12−(1−θ)δj2 . (30)

Put δ1 = δθ and δ2 = δ(1− θ). By (26) there exists C > 0 such that

∀σ ∈ [0, 1] ∀j ≥ 0 ∀m ∈ Ñj |Cm| ≤ C
2

∏
i=1

2−(1−σ)δi ji (2−ji +
∣∣∣ni2−ji − xi

∣∣∣)σαi .

Then

|Cm| ≤ C
2

∏
i=1

µδi ,αi ,ji ,mi ,xi (31)

where for 0 < δ < 1, 0 < α < 1, j ≥ 0, m = 2j + n ∈ Ñj and t ∈ R

µδ,α,j,m,t = 2−(1−σ)δj(2−j +
∣∣∣n2−j − t

∣∣∣)σα . (32)
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For h ∈ R, put
∆hφm(t) = φm(t + h)− φm(t) (33)

and

Rδ,α(h, t) =
∞

∑
j=0

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)| . (34)

Clearly, if h = (h1, h2) then

�x+hΦm(x) =
2

∏
i=1

∆hi
φmi (xi) (35)

and the function F given in (25) satisfies

|�x+hF(x)| ≤ C
2

∏
i=1

Rδi ,αi (hi, xi) . (36)

Relation (36) together with the following lemma yield (27).

Lemma 1. There exists C > 0 such that

∀ 0 < |h| ≤ 1 ∀ t Rδ,α(h, t) ≤ C|h|σα+(1−σ)δ . (37)

Proof of Lemma 1. Clearly

µδ,α,j,m,t ≤ C2−(1−σ)δj(2−jσα +
∣∣∣n2−j − t

∣∣∣σα
) . (38)

Remark 3. If m = 2j + n ∈ Ñj, with j ≥ 0 then φm has support [(n− 1)2−j, n2−j]. It follows that for t ∈ I
and j ≥ 0, there exists a unique value of m = 2j + n for which t ∈ [(n− 1)2−j, n2−j).

On the other hand
|∆hφm(t)| ≤ |φm(t)|+ |φm(t + h)| . (39)

Relation (38) together with Remark 3 and the triangle inequality
∣∣n2−j − (t + h)

∣∣ ≤ ∣∣n2−j − t
∣∣+

|h| yield

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)| ≤ C2−(1−σ)δj(2−σαj + |h|σα) . (40)

Since 0 < |h| ≤ 1, let J ∈ N0 such that 2−J ≤ |h| < 2. 2−J . Split Rδ,α(h, t) as

Rδ,α(h, t) =
J

∑
j=0

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)|+
∞

∑
j=J+1

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)| . (41)

Since α > 0, 0 < σ < 1 and δ > 0 then relation (40) yields

∞

∑
j=J+1

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)| ≤ C|h|σα+(1−σ)δ . (42)

Let us bound the first sum in (41). Since φ is Lipschitz then

|∆hφm(t)| ≤ C2j |h| .
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An argument similar to that of (40) yields

J

∑
j=0

∑
m∈Ñj

µδ,α,j,m,t |∆hφm(t)| ≤ C
J

∑
j=0

2−(1−σ)δj(2−σαj + |h|σα)2j |h| ≤ C|h|σα+(1−σ)δ . (43)

Both (42) and (43) yield (37).

Proposition 2 together with Remark 2 and Proposition 3 yield the following full characterization
of Lipᾱ(x).

Theorem 1. Let f ∈ C(I2), 0 < ᾱ < 1 and x ∈ I2.

1. If f ∈ Lipᾱ(x) then (22) together with (23) and (26) hold.
2. Conversely, if f is uniform Lipschitz on I2 and (22) together with (23) and (26) hold, then

∀ ᾱ′ < ᾱ f ∈ Lipᾱ′(x) . (44)

2.2. Characterization of Lipᾱ(x) by Decay Conditions of Schauder Leaders

An equivalent characterization of Lipᾱ(x) by decay conditions of Schauder leaders can also be
obtained.

If j ≥ 0 and m = n + 2j ∈ Ñj, we will denote by λ the dyadic interval

λm = [(n− 1)2−j, n2−j) . (45)

Set
3λm = [(n− 2)2−j, (n + 1)2−j) . (46)

If t ∈ I, denote by λj(t) the dyadic interval at scale j that contains t.
For j = (j1, j2) ≥ 0 and m = (m1, m2) ∈ Ñj, with mi = ni + 2ji , define the Schauder leader of f at

m by
dm = dλm1×λm2

= sup
λm′1
×λm′2

⊂λm1×λm2

|Cm′ | , (47)

where λm′i
= [(n′i − 1)2−ji , n′i2

−j′i ) for m′i = n′i + 2j′i ∈ Ñj′ .

If j = (−1, j2 ≥ 0) and m = (1, m2), with m2 = n2 + 2j2 ∈ Ñj2 , define the Schauder leader of f at
m by

dm = sup
λm′2
⊂λm2

|C(1,m′2)
| . (48)

If j = (j1 ≥ 0,−1) and m = (m1, 1), with m1 = n1 + 2j1 ∈ Ñj1 , define the Schauder leader of f at
m by

dm = sup
λm′1
⊂λm1

|C(m′1,1)| . (49)

If j = (j1, j2) ≥ 0, set
dj(x) = max

λm′1
×λm′2

⊂3λj1(x1)
×3λj2(x2)

dm′ . (50)

If j = (−1, j2 ≥ 0), set
dj(x) = max

λm′2
⊂3λj2(x2)

d(1,m′2)
. (51)

If j = (j1 ≥ 0,−1), set
dj(x) = max

λm′1
⊂3λj1(x1)

d(m′1,1) . (52)
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Theorem 2. Let f ∈ C(I2), 0 < ᾱ < 1 and x ∈ I2.

1. If f ∈ Lipᾱ(x) then there exists C > 0 such that

∀ j = (−1, j2 ≥ 0) dj(x) ≤ C2−j2α2 , (53)

∀ j = (j1 ≥ 0,−1) dj(x) ≤ C2−j1α1 (54)

and

∀ j ≥ 0 dj(x) ≤ C
2

∏
i=1

2−jiαi . (55)

2. Conversely, if f is uniform Lipschitz on I2 and (53) together with (54) and (55) hold, then

∀ ᾱ′ < ᾱ f ∈ Lipᾱ′(x) . (56)

Proof of Theorem 2.

1. Let f ∈ Lipᾱ(x).

• Since g3 and g4 belong to Lipᾱ(x) then by Proposition 2

∀ j′ ≥ 0 ∀ m′ = 2j′ + n′ ∈ Ñj′ |C(1,m′)| ≤ C(2−j′ +
∣∣∣n′2−j′ − x2

∣∣∣)α2 (57)

and
∀ j′ ≥ 0 ∀ m′ = 2j′ + n′ ∈ Ñj′ |C(m′ ,1)| ≤ C(2−j′ +

∣∣∣n′2−j′ − x1

∣∣∣)α1 . (58)

Let j ≥ 1, if λ′ ⊂ 3λ then j′ ≥ j− 1 and
∣∣∣n′2−j′ − xi

∣∣∣ ≤ C2−j for all i ∈ {1, 2}. Hence (57)
and (58) yield (53) and (54).

• Thanks to Proposition 3

∀ j′ ≥ 0 ∀ m′ = (m′1, m′2) ∈ Ñj′ |Cm′ | ≤ C
2

∏
i=1

(2−j′i +
∣∣∣n′i2−j′i − xi

∣∣∣)αi . (59)

Let j ≥ 1, if λ′i ⊂ 3λi then j′i ≥ ji − 1 and
∣∣∣n′i2−j′i − xi

∣∣∣ ≤ C2−ji for all i ∈ {1, 2}. Hence (59)
yields (55).

2. The converse part is reminiscent of that of [17] page 17. Assume that f is uniform Lipschitz on I2

and (53) together with (54) and (55) hold.

• Let t ∈ I. Let j′ ≥ 0 be given. If λ′ = [(n′ − 1)2−j′ , n′2−j′), denote by λ = [(n− 1)2−j, n2−j)

the dyadic interval defined by

– if λ′ ⊂ 3λj′(t), then λ = λj′(t) and j = j′,
– else, if j = sup{l : λ′ ⊂ 3λl(t)}, then λ = λj(t) and it follows that there exists C > 0

such that
1
C

2−j ≤ |n′2−j′ − t| ≤ C2−j.

Set m′ = n′ + 2j′ . In the first case, relation (53) implies that

|C(1,m′)| ≤ d(1,j)(x) ≤ C2−jα2 = C2−j′α2 .

Similarly, relation (54) implies that

|C(m′ ,1)| ≤ d(j,1)(x) ≤ C2−jα1 = C2−j′α1 .
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In the second case,

|C(1,m′)| ≤ d(1,j)(x) ≤ C2−j2α2 ≤ C|n′2−j′ − x2|α2

and
|C(m′ ,1)| ≤ d(j,1)(x) ≤ C2−j1α1 ≤ C|n′2−j′ − x1|α1 .

The conclusion of the converse part of Proposition 2 holds.
If j′ ≥ 0. With the same notations as above

|C(m′1,m′2)
| ≤ C

2

∏
i=1

(2−j′i αi + |n′i2−j′i − xi|αi ) .

The conclusion of the converse part of Theorem 3 holds.

3. Pointwise Level Coordinate Axes Lipschitz Regularities

Remark 4. Clearly if W(y) = u(y1)v(y2) then W(y)−W(x1, y2) = (u(y1)− u(x1))v(y2) and W(y)−
W(y1, x2) = u(y1)(v(y2)− v(x2)).

Thanks to Remark 4, we have the following results.

• Function g0 given in (17) belongs to
⋂2

i=1 Ns(x, ei) for all 0 < s < 1.
• Function g1 given in (18) belongs to Ns(x, e1) for all 0 < s < 1. It belongs to Ns(x, e2) if and only

if the one variable function f (0, t) belongs to Lips(x2).
• Function g2 given in (19) belongs to Ns(x, e2) for all 0 < s < 1. It belongs to Ns(x, e1) if and only

if the one variable function f (t, 0) belongs to Lips(x1).
• Function g3 given in (20) belongs to Ns(x, e1) for all 0 < s < 1. It belongs to Ns(x, e2) if and only

if the one variable function f (1, t)− f (0, t) belongs to Lips(x2).
• Function g4 given in (21) belongs to Ns(x, e2) for all s < 1. It belongs to Ns(x, e1) if and only if

the one variable function f (t, 1)− f (t, 0) belongs to Lips(x1).

3.1. Characterization of Ns(x, ei) by Decay Conditions of Schauder Coefficients

If f is uniform Lipschitz on I2, then g2 and g4 (resp. g1 and g3) can be sharply characterized in
Ns(x, e1) using the second result of Proposition 1. More precisely

Proposition 4. Let f ∈ C(I2), s ∈ (0, 1) and x ∈ I2.

1. If g2 and g4 belong to Ns(x, e1) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(m,0)| ≤ C(2−j +
∣∣∣n2−j − x1

∣∣∣)s (60)

and
∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(m,1)| ≤ C(2−j +

∣∣∣n2−j − x1

∣∣∣)s . (61)

2. Conversely, if f is uniform Lipschitz on I2 and both (60) and (61) are satisfied then

∀ i ∈ {2, 4} ∀ s′ < s gi ∈ Ns′(x, e1) . (62)

3. If g1 and g3 belong to Ns(x, e2) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(0,m)| ≤ C(2−j +
∣∣∣n2−j − x2

∣∣∣)s (63)
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and
∀ j ≥ 0 ∀ m = 2j + n ∈ Ñj |C(1,m)| ≤ C(2−j +

∣∣∣n2−j − x2

∣∣∣)s . (64)

4. Conversely, if f is uniform Lipschitz on I2 and both (63) and (64) are satisfied then

∀ i ∈ {1, 3} ∀ s′ < s gi ∈ Ns′(x, e2) . (65)

Remark 5. Note that if f ∈ Ns(x, e1) (resp. f ∈ Ns(x, e2)) then g2 and g4 belong to Ns(x, e1) (resp. g1 and
g3 belong to Ns(x, e2)).

To achieve the sharp characterization of both Ns(x, e1) and Ns(x, e2), it remains to deal with the series F
given in (25).

Proposition 5. Let f ∈ C(I2), 0 < s < 1 and x ∈ I2.

1. (a) If f ∈ Ns(x, e1) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = (m1, m2) ∈ Ñj |Cm| ≤ C(2−j1 +
∣∣∣n12−j1 − x1

∣∣∣)s . (66)

(b) Conversely, if f is uniform Lipschitz on I2 and (66) is satisfied, then

∀ s′ < s F ∈ Ns′(x, e1) . (67)

2. (a) If f ∈ Ns(x, e2) then there exists C > 0 such that

∀ j ≥ 0 ∀ m = (m1, m2) ∈ Ñj |Cm| ≤ C(2−j2 +
∣∣∣n22−j2 − x2

∣∣∣)s . (68)

(b) Conversely, if f is uniform Lipschitz on I2 and (68) is satisfied, then

∀ s′ < s F ∈ Ns′(x, e2) . (69)

Proof of Proposition 5.

1. (a) Let j ≥ 0 and m = (m1, m2) ∈ Ñj. Using (14)

|Cm| = | fm2(
2n1 − 1

2j1+1 )− fm2(x1)

− 1
2

(
fm2(

n1 − 1
2j1

)− fm2(x1) + fm2(
n1

2j1
)− fm2(x1)

)
| .

Since f ∈ Ns(x, e1) then using (12) there exists C > 0 such that (66) holds.
(b) Conversely, assume that f is uniform Lipschitz on I2 and (66) is satisfied.

As in the beginning of the proof of the converse part in Proposition 3

|Cm| ≤ Cµδ1,s,j1,m1,x1 2−(1−σ)δ2 j2 . (70)

So

|F(y)− F(x1, y2)| ≤ CRδ1,s(y1 − x1, x1) ∑
j2≥0

(
2−(1−σ)δ2 j2 ∑

m2

|φm2(y2)|
)

≤ CRδ1,s(y1 − x1, x1)

≤ C|y1 − x1|σs+(1−σ)δ1 .
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2. The proof is similar.

Proposition 4 together with both Remark 5 and Proposition 5 yield the following full
characterization of both Ns(x, e1) and Ns(x, e2).

Theorem 3. Let f ∈ C(I2), 0 < s < 1 and x ∈ I2.

1. (a) If f ∈ Ns(x, e1) then there exists C > 0 such that (60), (61) and (66) hold.
(b) Conversely, if f is uniform Lipschitz on I2 and (60) together with (61) and (66) hold, then

∀ s′ < s f ∈ Ns′(x, e1) . (71)

2. (a) If f ∈ Ns(x, e2) then there exists C > 0 such that (63), (64) and (68) hold.
(b) Conversely, if f is uniform Lipschitz on I2 and (63) together with (64) and (68) hold, then

∀ s′ < s f ∈ Ns′(x, e2) . (72)

3.2. Characterization of Ns(x, ei) by Decay Conditions of Schauder Leaders

If j = (−2, j2 ≥ 0) and m = (0, m2), with m2 = n2 + 2j2 ∈ Ñj2 , then define the Schauder leader of
f at m by

dm = sup
λm′2
⊂λm2

|C(0,m′2)
| . (73)

If j = (j1 ≥ 0,−2) and m = (m1, 0), with m1 = n1 + 2j1 ∈ Ñj1 , then define the Schauder leader of
f at m by

dm = sup
λm′1
⊂λm1

|C(m′1,0)| . (74)

If j = (−2, j2 ≥ 0), set
dj(x) = max

λm′2
⊂3λj2(x2)

d(0,m′2)
. (75)

If j = (j1 ≥ 0,−2), set
dj(x) = max

λm′1
⊂3λj1(x1)

d(m′1,0) . (76)

Using the same arguments as in the proof of Theorem 2, we obtain the following results.

Theorem 4. Let f ∈ C(I2), 0 < s < 1 and x ∈ I2.

1. (a) If f ∈ Ns(x, e1) then there exists C > 0 such that

∀ j = (j1 ≥ 0, j2 ∈ {−2,−1}) dj(x) ≤ C2−j1s (77)

and
∀ j ≥ 0 dj(x) ≤ C2−j1s . (78)

(b) Conversely, if f is uniform Lipschitz on I2 and both (77) and (78) hold, then

∀ s′ < s f ∈ Ns′(x, e1) . (79)

2. (a) If f ∈ Ns(x, e2) then there exists C > 0 such that

∀ j = (j1 ∈ {−2,−1}, j2 ≥ 0) dj(x) ≤ C2−j2s (80)
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and
∀ j ≥ 0 dj(x) ≤ C2−j2s . (81)

(b) Conversely, if f is uniform Lipschitz on I2 and both (80) and (81) hold, then

∀ s′ < s f ∈ Ns′(x, e2) . (82)

3.3. Relationship between Lipᾱ(x) and Pointwise Level Coordinate Axes Lipschitz Regularities

We have already relation (8). In addition, both Theorems 2 and 4 imply that rectangular Lipschitz
regularity yields pointwise level coordinate axes Lipschitz regularities.

Set g(y) = f (y)− f (y1, 0) and h(y) = f (y)− f (0, y2). Define

N f (x, e1) := sup{s ∈ (0, 1) : f ∈ Ns(x, e1)} (83)

and
N f (x, e2) := sup{s ∈ (0, 1) : f ∈ Ns(x, e2)} . (84)

Theorem 5. If f ∈ Lipᾱ(x) and f is uniform Lipschitz on I2 then g ∈ Nα1−ε(x, e1) and h ∈ Nα2−ε(x, e2) for
all ε > 0.

If f is uniform Lipschitz on I2, then

Ng(x, e1) = sup{α1 ∈ (0, 1) : ∃ α2 ∈ (0, 1) f ∈ Lipᾱ(x)} (85)

and
Nh(x, e2) = sup{α2 ∈ (0, 1) : ∃ α1 ∈ (0, 1) f ∈ Lipᾱ(x)} . (86)

4. Applications

4.1. The Fractional Brownian Sheets

The following result refines result (4).

Theorem 6. The fractional Brownian sheet BH̄
I2 is pointwise rectangular and level coordinate axes monofractal.

More precisely, with probability 1,

∀ H̄′ < H̄ ∀ x ∈ I2 BH̄
I2 ∈ LipH̄′(x) ,

∀ H̄′ 
 H̄ ∀ x ∈ I2 BH̄
I2 /∈ LipH̄′(x)

and
∀ x ∈ I2 ∀ i ∈ {1, 2} N f (x, ei) = Hi .

Proof of Theorem 6. The coefficients of the fractional Brownian sheet BH̄
I2 in the tensor product

Schauder basis were obtained in [7]; in fact

BH̄
I2 = ∑

j∈M2
∑

m∈Ñj

CmΦm (87)

where (Cm)m≥0 is a Gaussian sequence, with E(Cm) = 0, and the variance given by the formula

E(|Cm|2) =
2

∏
i=1

ami (88)
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with
a0 = 0, a1 = 1 and ami = (2−2Hi − 2−2)2−ji2Hi for mi ∈ Ñji ji ≥ 0 . (89)

As mentioned in [2],

∀ y1 BH̄
I2(y1, 0) = 0 and ∀ y2 BH̄

I2(0, y2) = 0

(this remark follows also from the fact that a0 = 0).
In [7], it is mentioned that if m1 = 0 or m2 = 0 then Cm = 0 almost surely. For m > 0, put

gm = Cm√
E(|Cm |2)

. The following lemma can be obtained using same arguments as Corollary 4.6 in [7].

Lemma 2. There exists C > 0 such that, with probability 1,

C ≤ sup
j>0 , m∈Ñj

sup
j′≥j

 sup
m′∈Ñj′ , λm′1

×λm′2
⊂λm1×λm2

|gm′ |√
1 + |j′ − j| ln 2


 < ∞ .

Since 2−j′Hi ≤ 2−jHi for all j′ ≥ j, then Theorem 6 follows directly from (88), (89), Theorem 2 and
Theorem 5.

4.2. Sierpinski Selfsimilar Functions

We will construct a class of Sierpinski selfsimilar functions that will be pointwise rectangular and
level coordinate axes multifractal. Let s and t be two integers with s < t. Choose A ⊂ {0, 1, . . . , s−

1} × {0, 1, . . . , t− 1}. For ω = (a, b) ∈ A, the contraction Sω(x1, x2) =

(
x1

s
+

a
s

,
x2

t
+

b
t

)
maps I2

into the rectangle

Rω = [
a
s

,
a + 1

s
]× [

b
t

,
b + 1

t
]. (90)

The (general) Sierpinski carpet K (see [18–20]) and references therein) is the unique non-empty
compact set (see [21,22]) satisfying

K =
⋃

ω∈A
Sω(K). (91)

It is given by

K = {x ∈ I2 : (Sω1 ◦ · · · ◦ Sωl )
−1(x) ∈

⋃
ω∈A

Rω ∀ω = (ω1, . . . , ωl) ∈ Al ∀ l ∈ N}

=
⋂
l∈N

(
⋃

ω∈Al

Rω)

where
Rω = (Sω1 ◦ · · · ◦ Sωl )(I2) for ω = (ω1, . . . , ωl) .

Put Γ(x1, x2) = Λ(x1)Λ(x2), where Λ(t) = min(t, 1− t) if t ∈ [0, 1] and 0 elsewhere. Clearly

Λ(t) =
1
2

Φ2(t). The Sierpinski selfsimilar function adapted to the subdivision A satisfies

∀ x ∈ I2 f (x) = ∑
ω∈A

γω f (S−1
ω (x)) + Γ(x1, x2) . (92)

Define

|γ|max = max
ω∈A
|γω | , |γ|min = min

ω∈A
|γω | , and Hmin = − log |γ|max

log t
.

The following result was obtained in [18].
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Proposition 6. Suppose that ∑
ω∈A
|γω | < st, then the series

f (x) = Γ(x) +
∞

∑
l=1

∑
(ω1,...,ωl)∈Al

γω1 · · · γωl Γ
(

S−1
ωl
· · · S−1

ω1
(x)
)

. (93)

is a unique solution in L1(I2) for equation (92).

If furthermore
1
t
< |γ|max < 1, then f ∈ LipHmin(I2) with 0 < Hmin < 1 .

The Sierpinski selfsimilar function is written as the superposition of similar anisotropic structures
at different scales, reminiscent of some possible modelization of turbulence or cascade models. In [18],
we proved that some Sierpinski selfsimilar functions don’t satisfy the thermodynamic formalism.

Clearly if ωl = (al , bl) then

Γ
(

S−1
ωl
· · · S−1

ω1
(x)
)
= Λ(sl x1 − sl−1a1 − · · · − sal−1 − al) Λ(tl x2 − tl−1b1 − · · · − tbl−1 − bl) .

Consider the “separated open set condition”

∀ (ω, ω′) ∈ A2 ω 6= ω′ ⇒ Rω ∩Rω′ = ∅ . (94)

If x /∈ K then there exists a neighborhood ϑ(x) of x and L ∈ N such that

∀ y ∈ ϑ(x) f (y) = Γ(y) +
L

∑
l=1

∑
(ω1,··· ,ωl)∈Al

γω1 · · · γωl Γ
(

S−1
ωl
· · · S−1

ω1
(y)
)

. (95)

It follows that f ∈ Lipᾱ(x) for all ᾱ < 1.
On the other hand, from the “separated open set condition” (94), any x ∈ K has a unique expansion

x =

(
∞

∑
l=1

al

sl ,
∞

∑
l=1

bl

tl

)
with (al , bl) = (al(x), bl(x)) = ωl = ωl(x) ∈ A . (96)

For L ≥ 1, denote by

ω(L, x) = (ω1, · · · , ωL) and γω(L,x) = γω1 · · · γωL .

Let S and T be two positive integers. Assume that s = 2S and t = 2T . Set

r(x) = lim inf
L→∞

log |γω(L,x)|
log 2−L .

Theorem 7. Let
1
t
< |γ|max < 1. Assume that the “separated open set condition” (94) holds. Assume

furthermore that each column and each row of the grid contains at most one box <ω, with ω ∈ A. If
|γ|min < |γ|max, then the obtained class of Sierpinski selfsimilar functions f are pointwise rectangular and level
coordinate axes multifractal. More precisely, if x ∈ K and r(x) < S then

f ∈ Lipα(x) ∀ Sα1 + Tα2 < r(x) ,

f /∈ Lipα(x) ∀ Sα1 + Tα2 > r(x)

and

(N f (x, e1), N f (x, e2)) = (
r(x)

S
,

r(x)
T

) .
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Proof of Theorem 7. Clearly Schauder leaders of f satisfy d(2,2) = C(2,2) = 1
4 , and if L ≥ 1,j =

(LS, LT), m = (m1, m2) ∈ Ñj with (m1, m2) = (n1 + 2LS, n2 + 2LT) and ((n1− 1)2−LS, (n2− 1)2−LT) =

(
L

∑
l=1

al

sl ,
L

∑
l=1

bl

tl ), then dm = Cm = 1
4 |γω1 | · · · |γωL | (because |γ|max < 1).

Let x ∈ K and j = (j1, j2) ≥ 0 with j 6= 0. Write (L1 − 1)S < j1 ≤ L1S and (L2 − 1)T < j2 ≤ L2T.
Put L = max(L1, L2). Then (47), (50), (94) and the assumption that each column and each row of the
grid contains at most one box <ω, with ω ∈ A, imply that

1
4
|γω(L,x)| ≤ dj(x) ≤ 1

4
|γω(L−1,x)| . (97)

Hence Theorem 2 and Theorem 5 yield Proposition 7. Indeed

∀ ε > 0 ∃ Lε ∀ L ≥ Lε |γω(L,x)| ≤ 2−L(r(x)−ε) (98)

and
ε > 0 ∃ Ln ↗ ∞ ∀ n |γω(Ln ,x)| > 2−Ln(r(x)+ε) . (99)

If Sα1 + Tα2 < r(x) then for ε = r(x)− Sα1 − Tα2 relations (97) and (98) imply that

∃ Lε ∀ L > Lε dj(x) ≤ C2−LSα1−LTα2 ≤ C2−j1α1−j2α2 .

If Sα1 + Tα2 > r(x) then for 2ε = Sα1 + Tα2 − r(x) relations (97) and (99) imply that

∀ n d(LnS,LnT)(x) >
1
4

2−LnSα1−LnTα2+εLn .

5. Conclusions

In [2,7], it was proved that for any cube Q ⊂ R2, the restrictions BH̄
Q of realizations of fractional

Brownian sheets BH̄ to Q are uniform rectangular Lipschitz with order H̄′ < H̄. In this paper, we first
improved that result pointwisely, namely BH̄

Q are pointwise rectangular (respectively level coordinate
axes) monofractal with order H̄′ < H̄ (respectively Hi). The proof is based on some criteria of the latest
pointwise regularities in terms of the rectangular Schauder system, obtained in this paper. A second
application of these criteria was done, namely we constructed a class of Sierpinski selfsimilar functions
that are pointwise rectangular and level coordinate axes multifractal.
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