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Abstract: In this paper, we propose a computationally fast and accurate explicit hybrid method for
image segmentation. By using a gradient flow, the governing equation is derived from a phase-field
model to minimize the Chan–Vese functional for image segmentation. The resulting governing
equation is the Allen–Cahn equation with a nonlinear fidelity term. We numerically solve the
equation by employing an operator splitting method. We use two closed-form solutions and one
explicit Euler’s method, which has a mild time step constraint. However, the proposed scheme has the
merits of simplicity and versatility for arbitrary computational domains. We present computational
experiments demonstrating the efficiency of the proposed method on real and synthetic images.

Keywords: image processing; Allen–Cahn equation; finite difference method

1. Introduction

Image segmentation is a process of partitioning an image into some non-intersecting regions [1,2].
Image segmentation is important in many computer vision and image processing applications [3].
For example, we need to segment MR brain images to get a 3D brain image. Using segmentation
technique, we also can detect the head and abdomen of a fetus from an ultrasound image to provide
necessary diagnoses and get quantitative estimates of organ sizes [4]. One of the most widely used
methods for binary image segmentation is Chan and Vese model [5], which is based on the level set
method [6]. In [7], the authors proposed a completely convex formulation of the algorithm of Chan
and Vese when the constant values of each phase are not known a priori. Shi and Pan proposed
a local and global binary fitting model using the variational level set approach [8]. Çataloluk and
Çelebi implemented an image segmentation algorithm based Chan–Vese algorithm [9]. Boykov and
Funka-Lea proposed graph cuts based image segmentation [10]. It uses region-based characteristics
using an energy minimization [11]. Chen et al. [12] proposed a new diffusion equation model for noisy
image segmentation using classical diffusion equation and the segmental process.

The primary purpose of this paper is to present a practical solution algorithm for the previously
developed method by the authors in [13]. In that paper, a multigrid method [14] was used to solve the
equation, which has a limitation in choosing a domain size, i.e., it should be close to square and the
grid size should be a power of two for best performance. The essential contribution of this article is
to present a computationally simple and efficient explicit hybrid scheme for image segmentation on
arbitrary domains.

The contents of this paper are: In Section 2, the phase-field method for image segmentation is
described. In Section 3, we present the computationally efficient and accurate explicit hybrid scheme.
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We perform computational tests for image segmentation using the proposed algorithm in Section 4.
The conclusion is made in Section 5.

2. Phase-Field Model for Image Segmentation

2.1. Mumford–Shah Model

Let Ω be a bounded image domain. Let f0(x) : Ω → [0, 1] represent a given grayscale image.
For the given image f0(x), Mumford and Shah [15] showed that the image segmentation can be done
by the minimization of the functional:

EMS(u, C) = µ Length(C) +
∫

Ω
| f0(x)− u(x)|2dx + ν

∫
Ω\C
|∇u(x)|2dx, (1)

where u is an approximation to f0. Its segmenting curve C is the edges in f0. Parameters µ and ν are
positive constant.

2.2. Chan–Vese Model

Chan and Vese [5] presented a level set method for the numerical realization of the minimization
of the functional (1). In this approach, the unknown curve C is the zero level set of continuous function
φ(x) : Ω → R. Here, φ is the signed distance from the interface C and it satisfies |∇φ| = 1. Using φ,
the energy functional is expressed by

ECV(c1, c2, φ) =µ
∫

Ω
δε(φ(x)) |∇φ(x)|dx + λ1

∫
Ω
| f0(x)− c1|2Hε(φ(x)) dx

+ λ2

∫
Ω
| f0(x)− c2|2(1− Hε(φ(x))) dx.

here, Hε(φ(x)) is the regularized Heaviside function and δε = H′ε. For example, in the Chan and Vese
paper [5], the regularized Heaviside function is defined as

Hε(z) =


0, if z < −ε

1, if z > ε
1
π tan−1 ( x

ε

)
+ 1

2 , if |z| ≤ ε.

By applying the gradient descent method, the associated Euler–Lagrange equation is given as

∂φ

∂t
= δε(φ)

[
µ∇ ·

(
∇φ

|∇φ|

)
− λ1( f0(x)− c1)

2 + λ2( f0(x)− c2)
2
]

.

Note that λ1 = λ2 was used in the original Chan–Vese model.

2.3. Modified Allen–Cahn Model

In the phase-field method, phase function (or order parameter) φ is defined by φ(x) ≈ 1 if
x ∈ inside(C) and φ(x) ≈ −1 if x ∈ outside(C) while it is distributed continuously on thin interfacial
layers. A phase-field approximation for minimizing the Chan–Vese functional is given as

E(φ) =
∫

Ω

(
F(φ)

ε2 +
|∇φ|2

2

)
dx (2)

+
λ

2

∫
Ω

[
(1 + φ)2( f0 − c1)

2 + (1− φ)2( f0 − c2)
2
]

dx.

here, F(φ) = 0.25(φ2 − 1)2 and ε is a positive parameter. In addition, c1 and c2 are the averages of f0

in the regions which φ > 0 and φ < 0, respectively:
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c1 =

∫
Ω f0(x)(1 + φ(x))dx∫

Ω (1 + φ(x))dx
and c2 =

∫
Ω f0(x)(1− φ(x))dx∫

Ω (1− φ(x))dx
.

By a variational derivative of energy functional (2) with respect to φ and assuming c1 and c2 are
constant, we have the following modified Allen–Cahn equation:

φt = −
F′(φ)

ε2 + ∆φ + λ[(1− φ)( f0 − c2)
2 − (1 + φ)( f0 − c1)

2]. (3)

For more details about the phase-field model for image segmentation, one may refer to [13].

3. Numerical Solution Algorithm

In this section, we describe a computationally efficient and accurate explicit hybrid numerical
method for the modified AC Equation (3). For the AC equation part, we use the recently developed
explicit hybrid FDM for the AC equation [16,17]. By applying the operator splitting scheme, we can
split Equation (3) as a sequence of simpler subproblems:

φt =λ[(1− φ)( f0 − c2)
2 − (1 + φ)( f0 − c1)

2], (4)

φt =∆φ, (5)

φt =−
F′(φ)

ε2 . (6)

Let Ω = (a, b)× (c, d) and we discretize the two-dimensional space Ω as the set of cell centers
Ωh = {(xi, yj) : xi = a + (i− 0.5)h, yj = c + (j− 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}, where Nx and Ny

are total number of grid size in x- and y-directions, respectively. Here, h = (b− a)/Nx = (d− c)/Ny

is the spatial step size. Let φn
ij be approximations of φ(xi, yj, n∆t), where ∆t is the time step size. In the

numerical algorithm, we compute the next time step solution φn+1 with given φn by going through
the following three steps:

Step (1) Given a solution φn at time t = n∆t, we solve Equation (4) analytically and the solution after
∆t is

φn+1,1
ij =e−λ[( f0,ij−cn

1 )
2+( f0,ij−cn

2 )
2]∆tφn

ij (7)

+ (e−λ[( f0,ij−cn
1 )

2+( f0,ij−cn
2 )

2]∆t − 1)
( f0,ij − cn

1 )
2 − ( f0,ij − cn

2 )
2

( f0,ij − cn
1 )

2 + ( f0,ij − cn
2 )

2 ,

where cn
1 and cn

2 are

cn
1 =

Nx
∑

i=1

Ny

∑
j=1

f0,ij(1 + φn
ij)

Nx
∑

i=1

Ny

∑
j=1

(1 + φn
ij)

and cn
2 =

Nx
∑

i=1

Ny

∑
j=1

f0,ij(1− φn
ij)

Nx
∑

i=1

Ny

∑
j=1

(1− φn
ij)

.

Step (2) Next, we solve Equation (5) by using the explicit Euler’s method with homogeneous
Neumann boundary condition:

φn+1,2
ij = φn+1,1

ij +
∆t
h2

(
φn+1,1

i−1,j + φn+1,1
i+1,j − 4φn+1,1

ij + φn+1,1
i,j−1 + φn+1,1

i,j+1

)
. (8)

Step (3) Finally, by using the method of separation of variables [18,19], the solution of Equation (6) is

φn+1
ij =

φn+1,2
ij√

e−2∆t/ε2 + (φn+1,2
ij )2(1− e−2∆t/ε2)

. (9)
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Here, we note that Equations (7) and (9) are unconditionally stable [13] since the analytic solutions
exist for all time steps. However, Equation (8) has a constraint for stability as ∆t ≤ 0.25h2 because of
the explicit Euler scheme for the heat equation. Therefore, the proposed hybrid scheme is stable if and
only if the condition, ∆t ≤ 0.25h2, is satisfied. Although the scheme has the restriction for stability,
it has the merits of simplicity and versatility for arbitrary computational domains. We define the
discrete energy functional as

E h(φn) =
h2

ε2

Nx

∑
i=1

Ny

∑
j=1

F(φn) +
h2

2

Nx−1

∑
i=1

Ny

∑
j=1
|∇x

hφn
i+ 1

2 ,j|
2 +

h2

2

Nx

∑
i=1

Ny−1

∑
j=1
|∇y

hφn
ij+ 1

2
|2

+
λh2

2

Nx

∑
i=1

Ny

∑
j=1

[
(1 + φn

ij)
2( f0,ij − c1)

2 + (1− φn
ij)

2( f0,ij − c2)
2
]

.

where ∇x
hφn

i+ 1
2 ,j

= (φi+1,j − φij)/h and ∇y
hφn

ij+ 1
2
= (φij+1 − φij)/h.

To help readers understand better, we consider a South Korea license plate image as an example.
The numerical algorithm of image segmentation method is described as follows:

(i) Select the real image f for image segmentation (see Figure 1a) and change it into a grayscale
image as shown in Figure 1b.

(a) (b)

Figure 1. (a) Real and selected license plate image. (b) Selected grayscale image.

(ii) Normalize the given image f as

f0 = ( f − fmin)/( fmax − fmin),

where fmax and fmin are the maximum and the minimum values of the given image f ,
respectively, (see Figure 2).

x

f

fmin

fmax

(a)
x

f0

0

1

(b)

Figure 2. (a) Given image f and (b) normalized grayscale image f0.
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(iii) Obtain numerical approximation to the given image f0 by the explicit hybrid scheme, that is
described from Steps (1)–(3). Since solutions with the proposed numerical algorithm are almost
insensitive to the initial condition of φ0, we simply initialize φ0 = 2 f0 − 1. We can use the other
initial condition. We stop the computation if |E h(φn+1) − E h(φn)| < ∆t× tol. Here, the discrete
total energy E h(φ) is defined by Equation (2). Refer to Algorithm 1 for the procedure.

Algorithm 1 Image segmentation.

Set the initial condition as φ0 = 2 f0 − 1, N, a tolerance tol, and n = 0.
while n ≤ N do

Compute φn+1 from φn by solving Equations (4)–(6).
if |E h(φn+1) − E h(φn)| < ∆t× tol then

Stop the calculation.
end if

Set n = n + 1
end while

4. Numerical Experiments

We perform numerical tests using the proposed method on synthetic and real images. In the
AC equation without a fidelity term, across the interfacial regions, φ varies from −0.9 to 0.9 over a
distance of approximately 2

√
2ε tanh−1(0.9). Let εm = hm/[2

√
2 tanh−1(0.9)], which implies we have

approximately m grid points if we use ε = εm.

4.1. Effect of λ

We first consider a given image data: f (x, y) = 1 if x ≥ 50; otherwise f (x, y) = 0 on Ω =

(0, 100)× (0, 100). To study the effect of λ, we perform numerical tests with several λ values with
h = 1, ∆t = 0.001, tol = 0.01, and ε = ε16. Figure 3 shows the relation between λ and interface
thickness of numerical results at steady state. Here, the notation m∗ means the number of points
between the transition layer φ = −0.9 and φ = 0.9. The inserted small figures represent the steady
profiles φ(x, y50) when λ = 0.2, 1, and 3. As shown in Figure 3, we see that m∗ decreases as λ increases,
which is also shown in the inserted small figures.

0 0.2 1 2 3 ........ 15 16

0

2

4

6

8

10

12

14

16

λ

m
∗

40 50 60

-1

0

1

x

φ(x, 50)

40 50 60

-1

0

1

x

φ(x, 50)

40 50 60

-1

0

1

x

φ(x, 50)

Figure 3. Numerical results at steady state for several values of λ.
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As a second test, we consider the following given image:

f (x, y) =
1
2

[
1− tanh

(√
(x− 50)2 + (y− 50)2 − 20√

2δ

)]
. (10)

We use the initial condition for φ as

φ(x, y, 0) = − tanh

(√
(x− 50)2 + (y− 50)2 − 20√

2ε

)
(11)

on the computational domain Ω = (0, 100) × (0, 100) and use the following parameters: h = 1,
∆t = 0.001, δ = 0.9606, tol = 0.01, and ε = ε16. Figure 4 represents the numerical results at steady
state with respect to λ. To see the difference, we show the contour image and cross view of the given
image f (x, y) and the numerical solution φ(x, y). Here, the solid and circle-marked lines are the given
image and the numerical solution at steady state, respectively. In this test, we see the standard AC
effect when λ = 0, i.e., motion by mean curvature. In addition, the numerical solution failed to capture
the given image closely when δ ≤ 0.1. From this numerical test, we know that it is important to choose
a proper value for λ.

φ(x, y)
f(x, y)

0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

x

φ(x, 50)
f(x, 50)

(a) λ = 0
0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

x

(b) λ = 0.02
0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

x

(c) λ = 0.2
0 20 40 60 80 100

-1.0

-0.5

0.0

0.5

1.0

x

(d) λ = 2

Figure 4. Zero level set (top row) and cross section (bottom row) along the y = 50 of given image f
(solid line) and numerical solution φ (circle-marked line) for different λ.

4.2. Effect of ε

Next, we study the effect of ε, which means the interface thickness of numerical solution. For this
test, the given image and initial condition are Equations (10) and (11), respectively. The parameters
used are space step size h = 1, time step size ∆t = 0.01, λ = 0.5, δ = 0.9606, and Ω = (0, 100)2.
Figure 5 shows that the interfacial transition layer is larger as the value of ε is larger.

4.3. Character Image Segmentation

Now, we apply our proposed method to several character image segmentations. As an example,
we consider the car license plate image which is given in Section 3. We use h = 1, ∆t = 0.2, ε = ε10,
and tol = 0.1.

4.3.1. Car License Plate

On Ω = (0, 297) × (0, 122), we implement the numerical algorithm with the given image
(see Figure 1b) and λ = 20. Figure 6 shows the temporal evolution of numerical solution. By using our
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numerical scheme, we obtain the almost segmented image of car license plate in only one iteration and
then have final results satisfying the given stop criterion after 29 iterations.

0 3 5 10 13 15 20 23 35

0

1

2

3

4

5

6

7

8

εm

m
∗

20 50 80

-1

0

1
20 50 80

-1

0

1

20 50 80

-1

0

1

Figure 5. Numerical results at steady state for several values of ε.

(a)

(b)

initial 1 iteration 29 iterations
Figure 6. Korean car license plate image segmentation: (a) zero contour line with original image.
(b) Segmented image.

4.3.2. ‘Allen–Cahn Equation’ Text Image

As second test, a character image segmentation is performed for a text image ‘Allen–Cahn
equation’ with ‘Vernada’ font on a 355 × 50 mesh with λ = 20. Figure 7 represents Allen–Cahn
equation text image and its segmented image. The first and second column is the original images and
the segmented image, respectively. We can obtain the good segmented image after 11 iterations. In this
test, we set the initial condition with a small circle as φ(x, y) = 1.0 if

√
(x− 177.5)2 + (y− 25)2 ≤ 15;

otherwise φ(x, y) = −1.

(a)

(b)

initial 11 iterations
Figure 7. Allen–Cahn equation text image segmentation with a small circle initial condition. (a) Original
image and contour line. (b) Filled contours.

Next, we perform Allen–Cahn equation text image segmentation with random initial condition,
that is set with 20% salt-and-pepper noise. Figure 8a shows the overlapped original image and zero
contour line of φ(x, y) at initial state and after 14 iterations. Additionally, we can see the numerical
solution φ(x, y) at each time level in Figure 8b. From these results, we can see that the proposed
method presents a good quality segmented image regardless of an initial state.
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(a)

(b)

initial 14 iterations
Figure 8. Allen–Cahn equation text image segmentation with a random initial condition. (a) Original
image and contour line. (b) Filled contours.

4.3.3. Barcode Image

Now, we consider the barcode image. For this test, we use λ = 20 on the 554 × 230 mesh.
Especially, as shown in first column in Figure 9, we set the initial condition with a rectangle, that
is, φ(x, y) = 1 if |x − 277| ≤ 55.4 and |y− 115| ≤ 23; otherwise φ(x, y) = −1. In Figure 9, we can
obtain the visually clear results in only one iteration. In addition, we have the final results by the stop
criterion after 12 iterations.

(a)

(b)

initial 1 iteration 12 iterations
Figure 9. Barcode image segmentation with a rectangle initial condition. (a) Original image and
contour line. (b) Segmented image.

4.3.4. Accuracy of the Proposed Method

In this section, we demonstrate the robustness and accuracy of the proposed method through the
given image with salt-and-papers noise. In [20], a model for image segmentation was proposed by
the binary level-set function using L0 gradient regularizer as regularizing term. For verification,
we perform the same experiments which were presented in [20]. For this test, we use h = 1,
∆t = 1, tol = 1× 10−5, and ε = ε15 on a 250× 250 mesh grid.

Figure 10a shows that the original rice image is degraded by different noise density levels. Here,
we use three different levels: 0.01, 0.1, and 0.2 from left to right columns in Figure 10a. Figure 10b
shows the numerical result by the previous method [20]. We can observe that the rice grains in bottom
region are not well segmented using the previous method. However, the proposed model can segment
almost all rice grains as shown in Figure 10c. In the noisy image, the proposed model has a relatively
high accuracy compared to the other model [20].

4.4. Comparison with the Previous Method

We demonstrate the performance of the five test problems that are fingerprint, Europe night-lights,
blood vessel, brain MRI, and texture images used in [13] and compare the results between the two
methods. Figure 11 shows the initial image and segmented results of the previous method [13], and the
proposed method. Tests were performed on a 2.70 GHz Intel Core i5-6400 CPU with 4.00 GB of RAM.
We used h = 1 and ∆t = 0.1. Other parameters are in Table 1.
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(a)

(b)

(c)

Figure 10. Rice image with salt-and-paper noise segmentation. From left to right columns, the noise
density level are 0.01, 0.1, 0.2. (a) Original image with noise and numerical results by (b) previous
method in [20] and (c) proposed method used λ = 100, 200, 300 according to each noise density level
0.01, 0.1, 0.2, respectively.

Table 1. Comparison of performance between our proposed method and previous method in [13].

Case (a) (b) (c) (d) (e)

parameters

pixels 256× 256 256× 256 64× 64 256× 256 256× 256
λ 1 1.8 10 1 1.5
ε ε2 ε40 ε4 ε5 ε30

tol 810 0.004 20 10 1.2

proposed method Iterations 13 196 36 85 196
CPU time (s) 0.437 6.235 0.078 2.859 6.266

Li et al. [13] Iterations 12 200 36 87 195
CPU time (s) 0.796 12.687 0.141 5.531 12.125
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(a) (b) (c) (d) (e)

Figure 11. Various image segmentation: (a) fingerprint, (b) Europe night-lights, (c) blood vessel,
(d) brain MRI, and (e) texture images. From top to bottom, original images, the segmented results
using our proposed method and previous method in [13].

In recent researches, a multigrid method is known as one of the fastest technique in solving the
common discretized equation [14]. Therefore, it is frequently used for image segmentation [13,21,22]
since the method can overcome convergence rate degradation and speed up the computation. However,
the multigrid method has a restriction in choosing the number of pixels of input image because of its
methodology. In this section, we show the advantage of our proposed method by comparing with the
previous method [13].

Figure 12a–c represent the original image, the initial condition, and segmented result with
89× 97 pixels, respectively. Note that 89 and 97 are the prime numbers which have difficulties in
using the multigrid method. Figure 12d represents the image segmentation using the previous method
in [13], which uses a multigrid method with 96× 96 pixels. Other parameters are the same as the
simulation in the previous section.

(a) (b) (c) (d)

Figure 12. Hand image segmentation. (a) Original image from [23] that Copyright 2016 Society of
Photo Optical Instrumentation Engineers. (b) Initial condition with a circle. Segmented contour line
(red color) and original image using (c) our proposed method and (d) the previous method [13].

Figure 13 shows the evolutions of normalized total discrete energy E h(φn)/E h(φ0) for numerical
solution by the previous method [13] and new proposed method. As we expected, both energies
are shown the non-increasing behavior. Especially, the proposed method is slightly lower than the
previous method.
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0 0.4 0.8 0.88

0.1

0.4

0.7

1.0

Ed(φ
n)

Ed(φ0)

t

Previous method (Li and Kim, 2004)
New proposed method

Figure 13. Time evolution of normalized total discrete energy for numerical solution by previous
method [13] and new proposed method.

Moreover, we can show the time step size ∆t, the number of iterations, and CPU time (s) in Table 2.
Since the previous method in [13] applies an implicit scheme in solving Equation (5), a larger time step
can be used than the proposed one and it may reduce the number of iterations for image segmentation.
Nevertheless, the CPU time is less when our proposed algorithm is applied in spite of same number of
iterations. It results from the cheap computational cost of an explicit scheme.

Table 2. Time step size ∆t, the number of iterations, and CPU time (s) used in Figure 12c,d.

Method Pixels ∆t Iterations CPU Time (s)

Proposed method 89× 97 0.1 13 0.826
Li et al. [13] 96× 96 0.1 13 1.061

4.5. Application in Medical Image: Coronary Artery

The coronary artery is a vessel that delivers oxygen-rich blood to the myocardium. The effective
technique in imaging coronary arteries is important to avoid complicated clinical procedures and risks
to the patient [24]. An image of an artery may have large unnecessary area in square-shaped one
because of the artery’s structure and it is inefficient to perform image processing like segmentation.
Figure 14 represents the original coronary artery image from [25], the initial condition, and segmented
results with 75× 127 pixels. Here, the parameters are used as ε = ε1 and λ = 1. As shown in Figure 14,
the original image has inhomogeneous intensity. By this property, segmentation of the original image is
sensitive to the initial condition. In this case, the active contour scheme [5,26] is more suitable for image
segmentation because we can capture the target object with intensity inhomogenity using the active
contours and they can handle intensity variations across the regions in the domain. Therefore, it is
important to determine the appropriate initial condition for good results. To show this, we implement
tests with two different initial conditions; φ0 = 2 f0 − 1 and two specific rectangles. See second column
in Figure 14. As numerical results, we can see that the test with two specific rectangles has a good
segmented image.

4.6. Image Segmentation on Arbitrary Domain

Our numerical scheme is based on analytic formulae and explicit scheme. Therefore, it has an
advantage to obtain the numerical solution which is defined on complex domain. However, the other
solver such as multigrid or FFT is not efficient to solve the discrete equation on complex domain.
In this section, we introduce a simple algorithm for image segmentation on arbitrary domain.
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(a)

original image initial 1 iteration 4 iterations

(b)

original image initial 15 iterations 37 iterations

Figure 14. Coronary image having intensity inhomogeneity. Original image from [25] which
permissions by Elsevier and temporal segmented results. Here, the initial conditions are used by
(a) φ0 = 2 f0 − 1 and (b) two designated rectangles.

Let T be a target image which we want to extract. Let Ωin be an user-selected arbitrary domain
which contains the target image T and is embedded in the whole domain Ω. Figure 15a illustrates
the target image T and its user-selected arbitrary domain Ωin. In this figure, we construct the closed
domain Ωin with 13 points. Furthermore, let Ωh

in be a discrete domain, ∂Ωh
in be its discrete boundary

as shown in Figure 15b with spatial step size h. Here, the computational domain Ωin is approximated
by Ωh

in as h→ 0.

(a) (b)

Figure 15. (a) Schematic of the complex domain Ωin containing the target image T on the whole domain
Ω. (b) Its corresponding discrete domain Ωh

in which is represented by open circles.

Now, we only proceed the three steps for image segmentation on an arbitrary domain Ωh
in.

Note that for efficient calculation, we convert φij in Ωh
in into a vector form (φ1, φ2, · · · , φNk ),

where Nk =
∣∣Ωh

in

∣∣.
Step (1) Given a solution φn = (φn

1 , · · · , φn
Nk
) at time t = n∆t, we solve Equation (4) analytically as

follows: For k = 1, 2, · · · , Nk,

φn+1,1
k = e−λ[( f0,k−cn

1 )
2+( f0,k−cn

2 )
2 ]∆tφn

k + (e−λ[( f0,k−cn
1 )

2+( f0,k−cn
2 )

2 ]∆t − 1)
( f0,k − cn

1 )
2 − ( f0,k − cn

2 )
2

( f0,k − cn
1 )

2 + ( f0,k − cn
2 )

2 . (12)
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here, cn
1 =

Nk
∑

i=1
f0,k(1 + φn

k )/
Nk
∑

i=1
(1 + φn

k ) and cn
2 =

Nk
∑

i=1
f0,k(1− φn

k )/
Nk
∑

i=1
(1− φn

k ).

Step (2) Next, we solve Equation (5) by using the explicit Euler’s method with homogeneous
Neumann boundary condition:

φn+1,2
k = φn+1,1

k + ∆t∆hφn+1,1
k , for k = 1, 2, · · · , Nk. (13)

Step (3) Finally, by using the method of separation of variables, the solution of Equation (6) is

φn+1
k = φn+1,2

k

/√
e−2∆t/ε2 + (φn+1,2

k )2(1− e−2∆t/ε2), (14)

for k = 1, 2, · · · , Nk.

As the example, we segment original rice image into a part which we want. For numerical test,
we use ε = ε10 and λ = 100. Figure 16a–c show rice image and target domain, segmented image,
and segmented contour line with original image, respectively. We can observe the flexibility of the
proposed method.

(a) (b) (c)

Figure 16. Rice image (a) target domain, (b) segmented image, and (c) segmented contour line with
original image.

5. Conclusions

In this paper, we presented a computationally fast and accurate explicit hybrid method for
image segmentation. By using a gradient flow, the governing equation is derived from a phase-field
model to minimize the Chan–Vese functional for image segmentation. The resulting governing
equation is the Allen–Cahn equation with a nonlinear fidelity term. The numerical solution algorithm
consists of the two closed-form solutions and one explicit Euler’s method. Even though the scheme is
explicit, the proposed scheme has the merits of simplicity and versatility for arbitrary computational
domains. We presented computational experiments to demonstrate the efficiency of the proposed
image segmentation algorithm on real and synthetic images.
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