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Abstract: In this paper, we prove the following result by perturbation technique. If q is a quasinilpotent
element of a Banach algebra and spectrum of p + q for any other quasinilpotent p contains at most n
values then qn = 0. Applications to C* algebras are given.
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1. Introduction

The perturbation technique is often useful for characterization of quasinilpotents of Banach algebras
in the Jacobson radical and socle. For example, J. Zemánek gave a characterizations of Jacobson radical via
perturbation by quasinilpotents [1]. A. Katavolos and C. Stamatopoulos gave some equivalent conditions
for the identity of the set of quasinilpotents and Jacobson radical [2]. B. Aupetit gave some characterizations
of Jacobson radicals and socles from the view of the cardinality of the spectrum, and also the root
distribution of some special analytic multifuntion ([3,4]). In his monograph ([5], Theorem 5.6.10), he proved
that in an infinite dimensional Banach space, there are two quasinilpotent compact operators, such that the
spectrum of the sum of these two operators is infinite. The first author and Y. Turovskii gave a similar
result for Calkin algebra in Hilbert space in ([6], Corollary 4.12). A more detailed analysis will be given
in this paper. At the same time, inspired by Katavolos and Stamatopoulos’s work, the author and X.
Wang proved that if the perturbation of quasinilpotents has only one point in the spectrum in the Banach
algebra, then all the quasinilpotent elements would be in a Jacobson radical ([7], Theorem 3.1). For the
finite spectrum case, the first author gave a characterization of elements (especially for quasinilpotents) in
the socle in [8]. In this paper, we develop the perturbation technique for characterization of nilpotency of
quasinilpotents of a Banach algebra and give applications to non-commutativity of Banach algebras.

In what follows, all spaces and algebras are taken over the field C of complex numbers and all the
algebras are unital. Let A be a unital Banach algebra. For an element a in A, let σ(a) mean the spectrum of
a, and σ̂(a), the polynomially convex hull of σ(a), mean the full spectrum of a. The cardinality of σ(a) is
denoted by #σ(a); a is quasinilpotent (finite-spectrum, or scattered), if σ(a) is {0} (finite, or at most countable).
The set of all quasinilpotent (finite-spectrum or scattered ) elements in A is denoted by Q(A) (F (A) or
S(A)). By Rad(A) we denote the Jacobson radical of A. The socle, that is, the sum of all minimal one-sided
ideals of A, is denoted by Soc(A). We will also use kh(socA) to denote the Kernel–Hull closure of the socle
of A. One can find the definition and properties in ([5], Section 5.7).
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2. Finite Spectrum Problem

The following lemma gave a characterization of socle from the perturbation theory.

Lemma 1 ([8], Theorem 1). ] Let A be a semi-simple unital Banach algebra; then the following statements
are equivalent:

(i) x ∈ Soc(A);
(ii) σ̂(x + a)\σ̂(a) is finite for every a ∈ A.

In order to calculate easily, we can modify Lemma 1 to the following.

Lemma 2. Let A be a semi-simple unital Banach algebra; then the following statements are equivalent:

(i) x ∈ Soc(A);
(ii) σ(x + a)\σ̂(a) is finite for every a ∈ A.

Proof. In fact, it is known that under the condition of Lemma 1, σ̂(x + a)\σ̂(a) = σ(x + a)\σ̂(a).
For example, one can see the proof at the end of Section 3.1 of [6]. To make the reader easier, we would like
to give the details here. This follows from the fact that if a compact set in C is the union of a polynomially
convex set K and a countable set Z, then it is polynomially convex. Indeed, let λ ∈ K̂ ∪ Z. If λ ∈ K̂,
then clearly λ ∈ K. Assume now that λ /∈ K. As K is polynomially convex, there is a polynomial p
such that

max
µ∈K
|p (µ)| < |p (λ)| ≤ max

µ∈Z
|p (µ)| .

Let Z′ = {µ ∈ Z : |p (λ)| ≤ |p (µ)|}. It is easy to see that Z′ is a compact set and λ ∈ Ẑ′. But every
countable compact set in C is polynomially convex. Thus, λ ∈ Z′ ⊂ Z.

Thus, the following problem might be interesting. Will the change be uniform?

Problem 1. LetA be a semi-simple unital Banach algebra, x ∈ Soc(A). Is there a (fixed) positive integer Prank(x),
such that #(σ(x + a)\σ̂(a)) ≤ Prank(x), for every a ∈ A?

The answer is no.
There are two examples in Hilbert space. Let H be a Hilbert space, with the basis {ei}∞

i=0. A = B (H).
For every positive integer n, let Hn = span{e0, e1, ..., en−1}. Then H = Hn ⊕ H⊥n , and B (H) ⊇ B (Hn)⊕
B
(

H⊥n
)
. The first example is for rank one operators.

Example 1. Let p0 be the projection on span{e0}. Then p0 ∈ SocA. Let an ∈ B (Hn), such that an(ei) = ei−1 for
i = 1, ..., n− 1, and an(e0) = en−1. Then an is the primitive permutation matrix, and it is well known that σ(an) ∈
{λ ∈ C : λn = 1} and σ(an) has at most n points. Let An = an ⊕ 0; then σ(An) ∈ {λ ∈ C : λn = 1} ∪ {0} and
σ̂(An)) = σ(An) is finite. Let us calculate the spectrum of p0 + An. In fact, we only need to consider the matrix

1 1 0 · · · · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · ·

0 0 0 0 · · · 1
1 0 0 0 · · · 0

 .
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Its characteristic polynomial is p(λ) = λn − λn−1 − 1. It is clear that no eigenvalue of this matrix is in {λ ∈ C :
λn = 1} ∪ {0}. Next please note that p(λ) has n different roots. If not, then p(λ) and p′(λ) = nλn−1 − (n−
1)λn−2 has at least one same root, but it is easy to check that it is impossible. Thus, for any n > 0, there is an
operator An, such that #(σ(p0 + An)\σ̂(An)) is n.

Another example is for quasinilpotent operators.

Example 2. Let q0(e1) = e0, and q0(ei) = 0, for every i 6= 1. Then clearly q0 is nilpotent. For every n > 2,
let bn(ei) = ei−1 for i = 2, ..., n− 1, bn(e1) = 0, and bn(e0) = en−1. Then q0|Hn + bn is a primitive permutation
matrix, and at the same time bn is nilpotent. Let Bn = bn ⊕ 0; then the number of spectrum of q0 + Bn is n + 1,
and q0, B0 is nilpotent.

In the paper [9], we gave a characterization of quasinilpotent elements which are in the socle in
semi-simple Banach algebras.

Lemma 3. Let A be a semi-simple unital Banach algebra; then a quasinilpotent element q ∈ A is in the socle if and
only if q +Q(A) ⊂ F (A), where the Q(A) (or F (A)) means the set of all the quasinilpotent (or finite-spectrum)
elements in A.

Now we will give a more clear characterization of quasinilpotent elements with q +Q(A) ⊂ In(A),
where In(A) means the set of elements with at most n-points spectra. It is trivial if A is finite-dimensional.
Please note that q +Q(A) ⊂ In(A) ⊂ F (A)l then q ∈ Soc(A) by Lemma 3. Thus, q must be nilpotent.
But in fact we can show that qn = 0.

In the next theorem, the main technical tool we used is the Jacobson density theorem in Sinclair’s
form: if ξ1, · · · , ξn and η1, · · · , ηn are two linearly independent systems of vectors in the underlying space
Xπ of a strictly irreducible representation π ∈ Irr(A) of a Banach algebra A, then there is an invertible
element a ∈ A−1 such that

π(a)ξi = ηi

for i = 1, · · · , n, where A−1 means the set of all invertible elements in A. One can see [3], Theorem 4.2.5,
and [3], Corollary 4.2.6.

Recall that a set of vectors is linearly independent if all of its finite subsets are linearly independent.
For instance, it is easy to show (see [2], observation on page 161) that if T is a quasinilpotent operator on a
Banach space X and x ∈ X, then the set {x, Tx, T2x, · · · }\{0} is linearly independent.

Theorem 1. Let A be a semi-simple unital Banach algebra. If there is a nonzero quasinilpotent element q ∈ A with
q +Q(A) ⊂ In(A), then qn = 0.

Proof of Theorem 1. If for every irreducible representation π, π(qn) = 0, then qn ∈ Rad(A) = 0. Thus,
we can assume there is an irreducible representation π on a Banach space X and an x ∈ X such π(qn)x 6= 0.
In this case, the set S = {x1, x2, · · · , xn+1, · · · }\{0} is linearly independent and contains x1, x2, · · · , xn+1,
where xk = π(qk−1)x by ([2], (the observation in page 161)). If xn+2 ∈ S, we can find an invertible a ∈ A
such that

π(a)x1 = x1,

π(a)xi = [
i
2
]xi−1 + (−1)i+1xi, 2 ≤ i ≤ n + 1. (1)



Mathematics 2020, 8, 1163 4 of 7

We have

π(a−1)xi =
i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk + (−1)i+1xi (2)

for all 1 ≤ i ≤ n + 1. This result is obvious for n = 1 and 2. Suppose 2 < m < n + 1 and the result is true
for m; that is,

π(a−1)xm =
m−1

∑
k=1

(−1)[
m−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk + (−1)m+1xm.

Let π(a−1) act on two sides of the Equation (1). We have

π(a−1)xm+1 =(−1)m+1[
m + 1

2
]π(a−1)xm + (−1)m+2xm+1

=
m−1

∑
k=1

(−1)[
m−1

2 ]+[ k
2 ]+m+1[

m + 1
2

][
m
2
] · · · [ k + 2

2
][

k + 1
2

]xk + [
m + 1

2
]xm + (−1)m+2xm+1

=
m

∑
k=1

(−1)[
m
2 ]+[ k

2 ][
m + 1

2
][

m
2
] · · · [ k + 2

2
][

k + 1
2

]xk + (−1)m+2xm+1.

Thus, Equation (2) holds for all 1 ≤ i ≤ n + 1 by the induction hypothesis.
Let p = a−1qa. Then p is quasinilpotent. We can calculate that

π(q + p)x1 = x1,

π(q + p)xi =xi+1 + π(a−1)([
i
2
]xi + (−1)i+1xi+1)

=xi+1 + [
i
2
](

i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk + (−1)i+1xi)

+ (−1)i+1(
i

∑
k=1

(−1)[
i
2 ]+[ k

2 ][
i + 1

2
][

i
2
] · · · [ k + 2

2
][

k + 1
2

]xk + (−1)i+2xi+1)

=[
i
2
](

i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk) + (−1)i+1[

i
2
]xi

+ (−1)i+1(
i−1

∑
k=1

(−1)[
i
2 ]+[ k

2 ][
i + 1

2
][

i
2
] · · · [ k + 2

2
][

k + 1
2

]xk) + (−1)i+1[
i + 1

2
]xi

=
i−1

∑
k=1

((−1)[
i−1

2 ]+[ k
2 ][

i
2
] + (−1)i+1+[ i

2 ]+[ k
2 ][

i + 1
2

])[
i
2
][

i− 1
2

] · · · [ k + 1
2

]xk + (−1)i+1ixi

=
i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ]i[

i
2
][

i− 1
2

] · · · [ k + 1
2

]xk + (−1)i+1ixi, 2 ≤ i ≤ n + 1.

We can always find some real numbers αi,j, j = 1, · · · , i such that

π(q + p)(αi,1x1 + αi,2x2 + · · ·+ αi,ixi) = (−1)i+1i(αi,1x1 + αi,2x2 + · · ·+ αi,ixi).
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Thus
{(−1)i+1i : i ∈ N, 1 ≤ i ≤ n + 1} ⊂ σ(π(q + p)) ⊂ σ(q + p).

If xn+2 = 0, we can find an invertible b ∈ A such that

π(b)x1 = x1, π(b)xn+1 = (−1)n+2(n + 1)xn + xn+1,

π(b)xi = [
i
2
]xi−1 + (−1)i+1xi, 2 ≤ i ≤ n.

We also have

π(b−1)xi =
i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk + (−1)i+1xi

for 1 ≤ i ≤ n by the induction hypothesis and

π(b−1)xn+1 = (−1)n+1(n + 1)π(b−1)xn + xn+1.

Let r = b−1qb. Then r is quasinilpotent. We can calculate that

π(q + r)x1 = x1,

π(q + r)xi =xi+1 + π(b−1)([
i
2
]xi + (−1)i+1xi+1)

=xi+1 + [
i
2
](

i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk + (−1)i+1xi)

+ (−1)i+1(
i

∑
k=1

(−1)[
i
2 ]+[ k

2 ][
i + 1

2
][

i
2
] · · · [ k + 2

2
][

k + 1
2

]xk + (−1)i+2xi+1)

=[
i
2
](

i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ][

i
2
][

i− 1
2

] · · · [ k + 2
2

][
k + 1

2
]xk) + (−1)i+1[

i
2
]xi

+ (−1)i+1(
i−1

∑
k=1

(−1)[
i
2 ]+[ k

2 ][
i + 1

2
][

i
2
] · · · [ k + 2

2
][

k + 1
2

]xk) + (−1)i+1[
i + 1

2
]xi

=
i−1

∑
k=1

((−1)[
i−1

2 ]+[ k
2 ][

i
2
] + (−1)i+1+[ i

2 ]+[ k
2 ][

i + 1
2

])[
i
2
][

i− 1
2

] · · · [ k + 1
2

]xk + (−1)i+1ixi

=
i−1

∑
k=1

(−1)[
i−1

2 ]+[ k
2 ]i[

i
2
][

i− 1
2

] · · · [ k + 1
2

]xk + (−1)i+1ixi, 2 ≤ i ≤ n.

π(p + r)xn+1 = (n + 1)2(π(b−1)xn) + (−1)n+2(n + 1)xn+1.

We can always find some real numbers βi,j, j = 1, · · · , i such that

π(q + r)(βi,1x1 + βi,2x2 + · · ·+ βi,ixi) = (−1)i+1i(βi,1x1 + βi,2x2 + · · ·+ βi,ixi).

Thus
{(−1)i+1i : i ∈ N, 1 ≤ i ≤ n + 1} ⊂ σ(π(q + r)) ⊂ σ(q + r).

Both of these conclusions contradict that q +Q(A) ⊂ In(A). Thus, we have qn = 0.
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Remark 1. Theorem 1 is a generalization of Theorem 3.1 in [7], which is the case n = 1.

Remark 2. The reverse of Theorem 1 does not hold. For example, we can consider

A = M2(C)⊕M2(C).

Then for any quasinilpotent element q ∈ A, we have that q is nilpotent and q2 = 0, but we can easily find
p ∈ A is nilpotent, such that #σ(p + q) > 2.

3. Noncommutativity

It is well known that a C* algebra is commutative if and only if there is no nonzero quasinilpotent
element. Now we want to use quasinilpotent elements to character C* algebra which is nearly commutative,
following Behncke’s way in [10].

Theorem 2. Let A be a unital C* algebra. If Q(A) +Q(A) ⊂ F (A), then any irreducible representation π of A
is finite dimensional.

Proof of Theorem 2. Note that if Q(A) +Q(A) ⊂ F (A), then for every q ∈ Q(A), q is nilpotent by
Lemma 3. Thus, there is no ∞-nilpotent element in the sense of [10]. Thus, we can get the result by [10],
Theorem 2.

Remark 3. If we have Q(A) +Q(A) ⊂ In(A), for some n in the condition of Theorem 2, then qn = 0, for every
quasinilpotent element by Theorem 1. Then the irreducible representation is n dimensional by [10], Theorem 1.

Remark 4. The reverse of Theorem 2 does not hold. For example, let A = M2(C)∞. Then the irreducible
representation of A is 2 dimensional. Then we can find two nilpotent elements a, b, but a + b has infinite spectrum.

Problem 2. In the view of Theorem 2, we know that under the condition of Q(A) +Q(A) ⊂ F (A), the C*
algebra must be a CCR algebra. One can find the definition of CCR algebra in [11], Definition 1.5.1. Thus, there is a
problem: which kind of CCR algebra has the property Q(A) +Q(A) ⊂ F (A)?

Now we turn to the case that the socle in a Banach algebra is finite dimensional. One can find some
interesting examples and theorems for this kind of Banach algebra in [12]. We have the following result:

Theorem 3. Let A be a semi-simple unital Banach algebra with finite dimensional socle. If there is a nonzero
quasinilpotent element q ∈ A with q +Q(A) ⊂ In(A) for some n. Then for any primitive ideal P with q not being
in P, we have that A/P is isomorphic to MmP(C) for some mp ∈ N.

Proof of Theorem 3. Without loss of generality, we can assume that dim(Soc(A)) ≤ n2 for some n ∈ N.
It is well known that it is necessary to prove that for any irreducible representation π : A → B(X) with
π(q) 6= 0, then dimX ≤ n by ([5], Chapter IV Exercise 13). Now we assume that dimX > n. Note that
q +Q(A) ⊂ In(A), so it is known that qn = 0 by Theorem 1. We can pick x ∈ X such that π(q)x 6= 0,
π(q)k−1 6= 0, π(q)k = 0 for some 1 < k ≤ n. Let V1 = span{x, π(q)x, ..., π(q)k−1}. Note that V1 is an
invariant subspace of π(q); we can consider π(q): X/V1 → X/V1. If π(q)= 0, then clearly we can find
V ⊂ X, which is a finite dimensional invariant subspace of π(q) and dimV > n. If π(q) is not zero, then it
is also nilpotent and so we can find a subspace V2 ⊂ X, such that V1 is a proper subset of V2, and V2 is an
invariant subspace of π(q) by the same method. If dimV2 ≤ n, then we can continuous this process and
finally we can find that V ⊂ X, V is a finite dimensional invariant subspace of π(q), and dimV > n.
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Let q1 = π(q)|V , q1(x) = y 6= 0 and {ei : i = 0, ..., m− 1} be a basis of V, where dimV = m > n. For
any ξ ∈ V, we can find a ∈ A, such that π(a)(e0) = x, π(a)(ei) = 0, for i = 1, ..., m− 1 by Jacobson’s
density theorem ([5], Theorem 4.2.5). At the same time, we can also find b ∈ A, such that V is the invariant
subspace of π(b) with π(b)y = ξ by Jacobson density theorem. Thus, π(AqA) has a subspace W, such
that V is the invariant subspace of W, and W|V has all the one rank matrices on V. Hence dimW > n2, so
is π(AqA). Note q ∈ Soc(A), so we have AqA ⊂ Soc(A). Recall dim(Soc(A)) ≤ n2; then dim(AqA) ≤ n2.
It is a contradiction.

Remark 5. The reverse of Theorem 3 does not hold. For example, letA = C(X), where X = {0} ∪ {1/n : n ∈ N}.
Then it is a semisimple commutative Banach algebra, such that every primitive ideal has codimension 1, but the socle
is not finite dimensional.
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