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Abstract: Mathematically, the execution of an American-style financial derivative is commonly
reduced to solving an optimal stopping problem. Breaking the general assumption that the knowledge
of the holder is restricted to the price history of the underlying asset, we allow for the disclosure
of future information about the terminal price of the asset by modeling it as a Brownian bridge.
This model may be used under special market conditions, in particular we focus on what in the
literature is known as the “pinning effect”, that is, when the price of the asset approaches the strike
price of a highly-traded option close to its expiration date. Our main mathematical contribution is
in characterizing the solution to the optimal stopping problem when the gain function includes the
discount factor. We show how to numerically compute the solution and we analyze the effect of the
volatility estimation on the strategy by computing the confidence curves around the optimal stopping
boundary. Finally, we compare our method with the optimal exercise time based on a geometric
Brownian motion by using real data exhibiting pinning.

Keywords: American option; brownian bridge; free-boundary problem; optimal stopping;
stock pinning

1. Introduction

American options are a special type of vanilla option that can be considered among the most basic
financial derivatives. By allowing for the possibility to exercise at any time before the day of expiration,
they add a new dimension to their valuation that escapes the consolidated hedging and arbitrage-free
pricing frameworks. The methodology to value an American option can be traced back to [1], which
suggested transforming this problem into a free-boundary problem. However, even in the simplest
case first proposed by [2], where the underlying stock is modeled by a geometric Brownian motion,
it took almost 40 years to reach a complete and rigorous derivation of its solution. This was given
in [3], where it was finally proved that the free-boundary equation characterizes the optimal stopping
boundary. A good historical survey on the topic can be found in [4].

The literature on the valuation of American options is considerable, and there have been many
attempts to extend the classes of stochastic processes that could model the dynamics of the underlying
stock. However, sometimes this has been achieved at the cost of reducing the completeness of the
result. For example, Detemple et al. [5] treats more general diffusion processes and proves that the
optimal strategy satisfies the free-boundary equation, but it leaves open the proof of the uniqueness
of the solution. The more recent work [6] provides a closed-form expression of the optimal stopping
boundary for a fairly general class of diffusion processes by expressing it in terms of Maclaurin series.
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However, as in [5], it requires a boundedness assumption on the derivative of the drift term that
excludes the class of Gaussian bridges. This class of processes has recently attracted attention to model
situations where some future knowledge about the dynamics of the underlying assets is disclosed
to the trading agent, see, e.g., [7–10]. However, these results are mostly focused into quantifying the
value of the disclosed information and do not deal with its effect on the execution strategy of a held
option.

In the area of option pricing, a first analysis of the Brownian bridge was done in [11] by exploiting
a time transformation that converts the problem into one about the more tractable Brownian motion.
Later, the applicability of this work in the problem of optimally selling a bond was highlighted in [12].
Successively, in [13], the authors take up the problem in [11] by reframing it into the wider context of
the free-boundary problem and they extend its solution to a wider class of gain functions. In particular,
in [13], the Brownian bridge process is presented as a possible model for financial applications under
special market conditions, such as the so-called “pinning effect”.

The pinning effect refers to the situation in which the price of a given stock approaches the strike
price of a highly-traded option close to its expiration date. Evidence for the pinning effect was first
reported in [14], where the authors employ a bridge process to model stock pinning by tuning a
geometric Brownian motion. In [15], the authors postulate that the pinning behavior is mainly driven
by delta-hedging of long option positions and consider, as a model for the stock price, a stochastic
differential equation with a drift that pulls the price towards a neighborhood of the strike price. Later,
the results in [16] add real data evidence in support for this model. In [17], the same assumption is
validated and a comprehensive set of evidence for the pinning phenomenon is reported. The model
of [15] is generalized in [18] by adding a diffusion term that shrinks the volatility near the strike price.

Motivated by these findings, we study in this paper the best strategy for executing an American
put option in the presence of stock pinning. Similarly to [13], we model the underlying stock by a
Brownian bridge. Differently, we include a discount factor in the gain function that makes the problem
more realistic. This addition makes more challenging the associated optimal stopping problem, as
it involves a non-perpetual option that is non-homogeneous in time. We solve this corresponding
optimal stopping problem, in the spirit of [3,19], by characterizing the optimal stopping boundary as
the unique solution of a Volterra integral equation up to some regularity conditions.

Besides contributing with the solution to this original problem, we also explore its applicability in
real situations. The studied model may be too simple to be applied with real data, but it allows for
computing exact solutions and to easily quantify the uncertainty about the knowledge of its parameters.
For this reason, we describe an algorithm to numerically compute the optimal strategy and provide
the confidence curves around the optimal stopping boundary when the stock volatility is estimated
via maximum likelihood. This inferential method is potentially relevant for an investor that only has
access to discrete data.

In addition, we test our results on a real dataset comprised by financial options on Apple and
IBM equities. Our model is competitive when compared with a model based on a geometric Brownian
motion and, in accordance with the motivation of our work, the best performances are obtained when
the stock price exhibits a pinning-at-the-strike behavior. Finally, since our mathematical model is
strongly based on the particular assumption of the pinning-at-the-strike behavior, we briefly show
what effects we should expect in case of relaxing this assumption, at least from a qualitative point of
view, and why a more complete analysis would require more sophisticated tools.

We conclude by mentioning related works using similar models. In [20], the authors tackle
the non-discounted problem for a Brownian bridge with a normally-distributed ending point.
More recently, Ekstrom et al. [21] solves the same problem for small values of the variance, finding
bounds for the value function when the pinning point follows a general distribution with a finite first
moment. A double stopping problem, for which the aim is to maximize the mean difference between
two stopping times, is analyzed in [22]. The recent paper [19] solves the non-discounted problem using
the exponential of a Brownian bridge to model the stock prices. A Brownian bridge with unknown
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pinning random distribution and a Bayesian approach is advocated by [23]. The analytical results
in [13] are extended in [24] by looking at a class of Gaussian bridges that share the same optimal
stopping boundary. The discounted problem with a Brownian bridge and in the presence of random
pinning point is addressed in [25], under regularity assumptions on the gain function that allow for an
application of the standard Itô’s formula (something that does not hold in our setting).

The rest of the paper is structured as follows. In Section 2, we introduce the model along
with notations and definitions. Section 3 provides the theoretical results required for obtaining the
free-boundary equation. Section 4 deals with the problem of computing the optimal stopping boundary
and quantifying the uncertainty associated with the estimation of the stock volatility. Section 5
compares our method with the optimal exercise time based on a geometric Brownian motion by
using real data exhibiting various degrees of pinning. Section 6 comments about the relaxation of the
pinning-at-the-strike assumption and, finally, Section 7 offers some conclusions.

Proofs and technical lemmas required to back up Section 3 are relegated to Appendix A and B
respectively. Supplementary Materials are available online for the implementation and reproducibility
of the methods and simulations exposed in Section 4.

2. Problem Setting

We introduce next the model of the financial asset and we define the optimal stopping problem
whose solution constitutes the best strategy to exercise an American put option based on that asset.

We assume that the financial option has a strike price S > 0 and a maturity date T > 0. To model
the pinning effect, we use a Brownian bridge process for the dynamics of the underlying asset.
Indeed, this process may be seen as a Brownian motion conditioned to terminate at a known terminal
value, that in our case is fixed to the strike price S (see Section 6 for a discussion on the relaxation
of this assumption). That is, by calling X[t,T] = (Xt+s, 0 ≤ s ≤ T − t) to the asset price process,
with 0 ≤ t < T, we assume it satisfies the SDE:

Xt = x, dXt+s =
S− Xt+s

T − t− s
ds + σ dWs, (1)

with 0 ≤ s ≤ T − t or, equivalently, it has the explicit expression

Xt+s = x
T − t− s

T − t
+ S

s
T − t

+ σ

√
T − t− s

T − t
Ws, (2)

again with 0 ≤ s ≤ T − t and where, in both equations, (Ws, 0 ≤ s ≤ T − t) denotes a standard
Brownian motion. To emphasize that the process almost surely satisfies the relation Xt = x, we will
use the notation Pt,x and Et,x to denote the corresponding probability and mean operators.

Denoting by G(x) = (S− x)+ the gain function of the put option and by λ ≥ 0 the discounting
rate, we can finally write the optimal expected reward for exercising the American option as the
Optimal Stopping Problem (OSP)

V(t, x) = sup
0≤τ≤ T−t

Et,x

[
e−λτG(Xt+τ)

]
. (3)

The function V is called the value function and the supreme above is taken over all the stopping
times τ of X[t,T] with respect to its natural filtration (Fs)T

s=0.
Under mild conditions, namely V being lower semi-continuous and G upper semi-continuous

(see [26], Corollary 2.9), it is guaranteed that the supremum in (3) is achieved. The Optimal Stopping
Time (OST), τ∗(t, x), is defined as the smallest stopping time attaining the supremum (3) and can be
characterized as the hitting time of a closed set D, referred to as the stopping set. Since these conditions
on V and G are satisfied in our settings (see [26], Remark 2.10), we can write

τ∗(t, x) := inf{0 ≤ s ≤ T − t : Xt+s ∈ D | Xt = x}, (4)



Mathematics 2020, 8, 1159 4 of 27

where D is defined as

D := {(t, x) ∈ [0, T]×R : V(t, x) = G(x)} . (5)

We then define the continuation set C as the complement of the set D and we denote by ∂C
its boundary.

The OST, defined in (4), can be interpreted as the best exercise strategy for the American option,
and it allows for rewriting the value function V in the simplified form

V(t, x) = Et,x

[
e−λτ∗(t,x)G

(
Xt+τ∗(t,x)

)]
. (6)

To solve the OSP given in (3), we follow the well-known approach of reformulating it as a
free-boundary problem, for the unknowns V and ∂C. The latter is commonly called the Optimal
Stopping Boundary (OSB). Our OSP is a finite-horizon problem that involves a time non-homogeneous
process, with its associated free-boundary problem being

∂tV +LXV = λV on C, (7a)

V > G on C, (7b)

V = G on D, (7c)

∂xV = ∂xG on ∂C, (7d)

where LX is the infinitesimal generator of the Brownian bridge X[0,T]. Given a suitably smooth function
f : [0, T]×R→ R, the application of the operator LX to it returns the function

(LX f ) (t, x) =
S− x
T − t

∂x f (t, x) +
σ2

2
∂x2 f (t, x). (8)

Equations (7a), (7b), and (7c) easily come from the definitions of D, C, and τ∗(t, x)
(see Proposition 2 below), whereas (7d), generally known as the smooth fit condition, depends on
how well-behaved the OSB is for the underlying process. The regularity of the OSB is an important
factor in finding and characterizing the solution of the problem itself, and for this reason we will
study it in detail in later sections. An in-depth survey on the optimal stopping theory that exploits the
free-boundary approach can be found in [26].

3. Optimally Exercising American Put Options for a Brownian Bridge

We present in this section the main result, consisting of the solution of the problem (3).
In particular, we solve the free boundary problem defined in (7) by showing that the OSB can be
written in terms of a function b(t) that is ∂C = {(t, b(t)) : t ∈ [0, T]}, and that this function can be
computed as the solution to a Volterra integral equation.

From an applicative perspective, the function b defines the optimal strategy to follow in order to
maximize the profit from the execution of the American put option. It is the best to exercise the option
the first time the price of the underlying financial asset crosses at time t ∈ [0, T] the level b(t).

Theorem 1. The optimal stopping time in (4) can be written as

τ(t, x) = inf{s ∈ [0, T − t] : Xt+s ≤ b(t + s)}, x ∈ R, 0 ≤ t ≤ T,

where the function b is defined as the unique solution, among the class of continuous functions of bounded
variation lying below S, of the integral equation

b(t) = S−
∫ T

t
Kσ,λ(t, b(t), u, b(u))du. (9)
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In addition, the value function V in (6) can be expressed as

V(t, x) =
∫ T

t
Kσ,λ(t, x, u, b(u))du. (10)

The kernel Kσ,λ in (9) and (10) is defined as

Kσ,λ(t, x1, u, x2) := e−λ(u−t) 1 + λ(T − u)
T − u

[
(S− µ(t, x1, u))Φ(zσ(t, x1, u, x2))

+ νσ(t, u)φ(zσ(t, x1, u, x2))
]
,

(11)

where Φ and φ are, respectively, the distribution and the density functions of a standard normal random variable,

µ(t, x, u) = x
T − u
T − t

+ S
u− t
T − t

, (12)

νσ(t, u) = σ

√
(u− t)(T − u)

T − t
, (13)

and zσ(t, x1, u, x2) = (x2 − µ(t, x1, u))/νσ(t, u). The proof is in Appendix A.

The proof of the theorem makes use of some important partial results that we state in the following
propositions. All the proofs are deferred to Appendix A.

The next result sheds some light on the shapes of the sets D and C, by showing that their common
border can be expressed by means of a function b that satisfies some regularity conditions. In the
proof, we focus on regions where it is easy to prove that the value function either exceeds or equals
the immediate reward, thus revealing subsets of C and D, respectively. Those regions come from the
fact that G is null above S and positive below, the paths of the process decrease with x (for a fixed
realization), and V is non-increasing with respect to x, t, and λ.

Proposition 1. There exists a non-decreasing right-continuous function b : [0, T]→ R such that b(t) < S for
all t ∈ [0, T), b(T) = S, and D = {(t, x) ∈ [0, T]×R : x ≤ b(t)}. The proof is in Appendix A.

The next proposition analyzes the regularity properties of the value function and proves that
the smooth fit condition holds. It uses an extended version of the Itô’s formula (see Lemma A2) to
prove the monotonicity property that exploits the regularity properties of the function b proved in
Proposition 1. We later use these results in Proposition 3 to show the continuity of b. Part (i) comes
from standard arguments on parabolic partial differential equations in conjunction with the Markovian
property of the Brownian bridge. The rest of the proposition employs different methods, but they all
rely on the fact that the OST for a pair (t, x) is sub-optimal under different initial conditions.

Proposition 2. The value function V defined in (3) satisfies the following conditions:

(i) V is C1,2 on C and on D, and ∂tV +LXV = λV on C.
(ii) x 7→ V(t, x) is convex and strictly decreasing for all t ∈ [0, T]. Moreover,

∂xV(t, x) = −E
[

e−λτ∗(t,x) T − t− τ∗(t, x)
T − t

]
. (14)

(iii) The smooth fit condition holds, i.e., ∂xV(t, b(t)) = −1 for all t ∈ [0, T].
(iv) t 7→ V(t, x) is non-increasing for all x ∈ R.
(v) V is continuous.

The proof is in Appendix A.
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From the previous result, we are able to get a stronger result on the regularity of b that is used to
characterize b as the unique solution of the Volterra equation. We prove it by assuming that the OSB
allows discontinuities of the first type and reaching a contradiction. Then, since b is non-increasing
and finite, it does not allow discontinuities of the second type either and must be continuous.

Proposition 3. The optimal stopping boundary b for the problem (3) is continuous. The proof is in Appendix A.

Finally, the next proposition shows that the OSB satisfies the Volterra integral Equation (9) and that
it is the only solution up to some regularity conditions. The proof follows well-known procedures based
on probabilistic arguments (see [3]) rather than relying on integral equation’s theory, which usually
uses some variation of the contraction mapping principle.

Proposition 4. The optimal stopping boundary b for the problem (3) can be characterized as the unique solution
of the type two nonlinear Volterra integral Equation (9), within the class of continuous functions of bounded
variation c : [0, T]→ R such that c(t) < S for all t ∈ (0, T). The proof is in Appendix A.

Remark 1. All the results in this section have their own analog when it comes to optimally exercising American
call options, that is, when the gain function in (3) is substituted with G(x) = (x− S)+. Indeed, exploiting the
symmetry of the Brownian bridge and the gain functions, it is easy to check that the relation bc(t) = 2S− bp(t)
holds, where bc and bp stand for the OSBs for the call and the put option, respectively.

Remark 2. Setting λ = 0, we can recover the OSB that maximizes the mean of a Brownian bridge, and
using the results in [11,13,27], we get an explicit expression for the OSB that is b0(t) = S− σB

√
T − t, with

B ≈ 0.8399.

4. Boundary Computation and Inference

4.1. Solving the Free-Boundary Equation

The lack of an explicit solution for (9) requires a numerical approach to compute the OSB.
Let (ti)

N
i=0 be a grid in the interval [0, T] for some N ∈ N. The method we consider builds on

a proposal by [28]. They suggested to approximate the integral in (9) by a right Riemann sum,
hence enabling the computation of the value of b(ti), for i = 0, . . . , N − 1, by using only the values
b(tj), with j = i + 1, . . . , N. Therefore, by knowing the value of the boundary at the last point
(b(tN) = b(T) = S), one can obtain its value at the second last point b(tN−1) and recursively construct
the whole OSB evaluated at (ti)

N
i=0.

Under our settings, the right Riemann sum is no longer a valid option because we know from (11)
that, depending on the shape of the boundary b near the expiration date, K(ti, b(ti), u, b(u)) could
explode as u→ T, so we cannot evaluate the kernel K at the right point in the last subinterval (tN−1, T].
To deal with this issue, we employ a right Riemann sum approximation along all the subintervals
except the last one, ending up with the following discrete version of the Volterra integral Equation (9):

b(ti) ≈ S−
N−1

∑
j=i+1

(tj − tj)Kσ,λ(ti, b(ti), tj, b(tj))− I(ti, tN−1), (15)

for i = 0, 1, . . . , N − 1, where I(ti, tN−1) :=
∫ T

tN−1
Kσ(ti, b(ti), u, b(u))du. It can be shown that 0 ≤

I(ti, tN−1) ≤ H(ti, tN−1), where

H(ti, tN−1) := e−λ(tN−1−ti)
∫ T

tN−1

(1 + λ(T − u))

(
S− b(ti)

T − ti
+ σ

√
1

2π(T − u)

)
du

= e−λ(tN−1−ti)

(
(S− b(ti))

T − tN−1

T − ti

(
1 +

λ

2
(T − tN−1)

)
+
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σ

√
2(T − tN−1)

π

(
1 +

λ

3
(T − tN−1)

))
,

by using (12) and (13), the form of the kernel (11), and the fact that Φ(x) ≤ 1 and φ(x) ≤ (2π)−1/2 for
all x ∈ R. Therefore, I(ti, tN−1) ≈ H(ti, tN−1)/2 can be seen as a reasonable approximation, admitting
an upper bound for the error ε(ti, tN−1) := |H(ti, tN−1)/2 − I(ti, tN−1)|, namely ε(ti, tN−1) ≤
H(ti, tN−1)/2. Moreover, H(ti, tN−1) = O(

√
T − tN−1) as tN−1 → T. After substituting I(ti, tN−1) for

H(ti, tN−1)/2 in (15), we get

b(tN−1) ≈
(

1
2
− λ

4
(T − tN−1)

)−1

×
(

S
2

(
1− λ

2
(T − tN−1)

)
− σ

√
T − tN−1

2π

(
1 +

λ

3
(T − tN−1)

))
, (16)

b(ti) ≈
(

1− 1
2

e−λ(tN−1−ti)

(
1 +

λ

2
(T − tN−1)

)
T − tN−1

T − ti

)−1

×
(

S−
N−1

∑
j=i+1

(tj − tj)Kσ,λ(ti, b(ti), tj, b(tj))

− 1
2

e−λ(tN−1−ti)

(
S

T − tN−1

T − ti

(
1 +

λ

2
(T − tN−1)

)
+ σ

√
2(T − tN−1)

π

(
1 +

λ

3
(T − tN−1)

)))
. (17)

The procedure for computing the estimated boundary according to the previous approximations
is laid down in Algorithm 1. From now on, we will use b̃ to denote the cubic-spline interpolating curve
that goes through the numerical approximation of the boundary at the points (ti)

N
i=0 via Algorithm 1.

Algorithm 1: Optimal stopping boundary computation

Input: S, λ, (ti)
N
i=0, δ

Output: (b̃(ti))
N
i=0

Code:
b̃(T)← S
Update b̃(tN−1) according to (16)
for i = N − 2 to 0 do

b̃(ti)← b̃(ti+1)

ε← 1
while ε > δ do

b̃old(ti)← b̃(ti)

Update b̃(ti) according to (17)
ε← |b̃old(ti)− b̃(ti)|/|b̃old(ti)|

end
end

Recall from Remark 2 that our OSB for λ = 0 takes the form b0(t) = S− Bσ
√

T − t. Having the
explicit form of b0 allows us to validate the accuracy of Algorithm 1 and to tune up its parameters.
We empirically determined that δ = 10−3 offers a good trade-off between accuracy and computational
time. This value was considered every time Algorithm 1 was employed.

We decided to use a logarithmically-spaced grid that is ti = log(1 + i
N (eT − 1)), i = 0, . . . , N,

with N = 200, after systematically observing that uniform partitions tend to misbehave near the
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expiration date T. In addition, it is preferable that the partition gets thinner close to T in a smooth way.
Figure 1 shows how precise the Algorithm 1 is by comparing the computed boundary b̃0 versus its
explicit form for S = 10, T = 1, λ = 0, and σ = 1.

0 0. 5 1

9
9.

5
10

b
b
~

(a) N = 20

0 0. 5 1

9
9.

5
10

(b) N = 50

0 0. 5 1

9
9.

5
10

(c) N = 100

0 0. 5 1

9
9.

5
10

(d) N = 200

Figure 1. Boundary estimation via Algorithm 1 for different partition sizes and for the parameters
S = 10, T = 1, λ = 0, and σ = 1. The estimation becomes more accurate as the partition gets thinner.

4.2. Estimating the Volatility

We assume next that the volatility of the underlying process is unknown, as it may occur in real
situations. It is well known that, under model (1), one can exactly compute the volatility if the price
dynamics are continuously observed. However, investors in real life have to deal with discrete-time
observations and thus they would have to estimate σ to obtain the OSB.

We start by assuming that we have recorded the price values at the times t0 = 0 < t1 < · · · <
tN−1 < tN = T, for N ∈ N, so at tn, with n ∈ {0, 1, . . . , N}, we have gathered a sample (Xti )

n
i=0 from

the historical path of the Brownian bridge (Xt)T
t=0 with XT = S. From (2), we have that

Xti | Xti−1 ∼ N
(

µ(ti−1, Xti−1 , ti), ν2
σ(ti−1, ti)

)
, i = 1, . . . , n,

and the log-likelihood function of the volatility takes the form

`(σ | (ti, Xti )
n
i=0) = C− n log(σ)− 1

2σ2

n

∑
i=1

(
Xti − µ(ti−1, Xti−1 , ti)

ν1(ti−1, ti)

)2

,

where C is a constant independent of σ. The maximum likelihood estimator for σ is given by

σ̂n =

√√√√ 1
n

n

∑
i=1

(
Xti − µ(ti−1, Xti−1 , ti)

ν1(ti−1, ti)

)2

.
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Under an equally spaced partition (ti = i T
N , i = 0, 1, . . . , N), standard results on maximum likelihood

(see [29]) give that
√

n(σ̂n − σ) N
(

0,
σ2

2

)
,

when n → ∞ (hence N → ∞) and T → ∞ such that ti − ti−1 = T/N remains constant, with
i = 1, . . . , N.

4.3. Confidence Intervals for the Boundary

We present as follows the uncertainty propagated by the estimation of σ to the computation of the
OSB. In order to do so, we assume that the OSB is differentiable with respect to σ, so we are allowed to
apply the delta method, under the previous asymptotic conditions. This entails that

√
n(bσ̂n(t)− bσ(t)) N

(
0,
(

∂bσ

∂σ
(σ, t)

)2 σ2

2

)
, (18)

where bσ represents the OSB defined at (9) associated with a process with volatility σ. Plugging-in the
estimate σ̂n into (18) gives the following asymptotic 100(1− α)% (pointwise) confidence curves for bσ:

(
c1,σ̂n(t), c2,σ̂n(t)

)
:=
(

bσ̂n(t)±
zα/2

σ̂n
√

n/2

∣∣∣∣∂bσ

∂σ
(t)
∣∣∣
σ=σ̂n

∣∣∣∣) , (19)

where zα/2 represents the α/2-upper quantile of a standard normal distribution. Algorithm 1 can
be used to compute an approximation of the term ∂bσ

∂σ (·) by means of (bσ̂n+ε(·)− bσ̂n(·))/ε for some
small ε > 0. We denote by

(
c̃1,σ̂n(t), c̃2,σ̂n(t)

)
the approximation of the confidence interval (19) coming

from this approach at t ∈ [0, T]. Through the paper, we use ε = 10−2, as has been empirically
checked to provide, along with δ = 10−3 for Algorithm 1, a good compromise between accuracy,
stability, and computational speed in calculating the confidence curves. Figure 2 illustrates, for one
path of a Brownian bridge, how the boundary estimation and its confidence curves work. Figure 3
empirically validates the approximation of the confidence curves by marginally computing for each tn

the proportion of trials, out of M = 1000, in which the true boundary does not belong to the interval
delimited by the confidence curves.
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σn

c~1,σn

c~2,σn

Figure 2. Inferring the boundary using one third (n = 66, N = 200) of the Brownian bridge path,
for T = 1, S = 10, X0 = 10, λ = 0, and σ = 1. The solid curves represent the true boundary bσ

(red curve), the estimated boundary b̃σ̂n
(blue curve), the upper confidence curve c̃1,σ̂n

(orange curve),
and the lower confidence curve c̃2,σ̂n

(green curve).
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The spikes visible in Figure 3 near the last point tN = T = 1 indicate that the true boundary rarely
lies within the confidence curves at those points. This happens because the confidence curves have zero
variance at the maturity date T (actually c̃1,σ̂n(T) = c̃2,σ̂n(T) = S), and the numerical approximation
of b(tN−1) given at (16) is slightly biased. This affects the accuracy of the estimated boundary by
frequently leaving the true boundary outside the confidence curves near maturity. This drawback is
negligible in practice, since the estimated boundary and the confidence curves are very close to the
true boundary in terms of absolute distance.
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(a) One third of the paths (n = 66).
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0

0.
05
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1

(b) Two thirds of the paths (n = 133).

Figure 3. Pointwise proportion of trials, out of M = 1000, in which the true boundary does not belong
to the interval delimited by the confidence curves. We use S = 10, X0 = 10, T = 1, λ = 0, σ = 1, and a
significance level α = 0.05, and a number M = 1000 of sample paths. For each path, one third (a) or
two thirds (b) of the observations were used to compute σ and then to estimate the confidence curves
by (19). The continuous line represents the proportion of non-inclusions, the dashed line stands for

α, and the dotted lines are placed at the values α± z0.025

√
α(1−α)

M . The spikes at T = 1 are numerical
artifacts due to the null variance of b̃σ̂n

(T).

4.4. Simulations

The ability to perform inference for the true OSB rises some natural questions: how much
optimality is lost by b̃σ̂n when compared to bσ? How do the stopping strategies associated with the
curves c̃i,σ̂n , i = 1, 2, compare with the one for b̃σ̂n ? For example, a risk-averse (or risk-lover) strategy
would be to consider the upper (lower) confidence curve c̃1,σ̂n (c̃2,σ̂n ) as the stopping rule, this being
the most conservative (liberal) option within the uncertainty on estimating bσ. A balanced strategy
would be to consider the estimated boundary b̃σ̂n .

In the following, we investigate how these stopping strategies behave, assuming σ = 1, T = 1,
S = 10, X0 = 10, and λ = 0. We first estimate the payoff associated with each of them, and then we
compare these payoffs with the one generated by considering the true boundary in its explicit form
(see Remark 2). The choice of σ = 1 is not restrictive as it is enough to rescale time by 1/σ and space
(i.e., the price values) by 1/

√
σ.

To perform the comparison, we defined a subset of [0, T]×R where the payoffs were computed.
We carried out the comparison along the pairs

(
ti, X(q)

ti

)
, for i = 1, . . . , N, N = 200, and q =

0.2, 0.4, 0.6, 0.8, where ti = i T
N and X(q)

ti
represents the q-quantile of the marginal distribution

of the process at time ti that is N
(

0, ti(T−ti)
T

)
(see Figure 4).

For each i and q, we generated M = 1000 different paths (sj, Xsj)
rN
j=0 of a Brownian bridge with

volatility σ = 1 going from (0, 0) to (1, 0). Each path was sampled at times sj = j T
rn , for j = 0, 1, . . . , rN,

for r = 1 and r = 25. The idea behind this setting is to tackle both the low-frequency scenario, which
regards investors with access to daily prices or less frequent data, and the high-frequency scenario,
addressing high volumes of information as it happens to be when recording intraday prices. We forced
each path to pass through

(
ti, X(q)

ti

)
(see Figure 4), and used the past (sj, Xsj)

ri
j=0 of each trajectory to

estimate the boundary and the confidence curves. The future (sj, Xsj)
rN
j=ri was employed to gather M
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observations of the payoff associated with each stopping rule, whose means and variances are shown
below in Figures 5 and 6, respectively.
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25
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Figure 4. X(q)
t for q = 0.2, 0.4, 0.6, 0.8, where X(q)

t is the q-quantile of a N (0, t(1− t)), the marginal
distribution at time t of a Brownian bridge with unit volatility and X0 = X1 = 10. The green and

orange lines refer to the paths of (Xt | X0.2 = X(0.2)
0.2 )1

t=0 and (Xt | X0.8 = X(0.8)
0.8 )1

t=0 respectively,
with X0.2

0.2 ≈ 9.6649 and X0.8
0.8 ≈ 10.3382.

Figure 5 shows the value functions associated with each stopping rule, the red curve being the
one associated with the OSB. An important fact revealed by Figure 5 is that in both the low and
high-frequency scenarios the estimate b̃σ̂n behaves almost indistinguishably to bσ in terms of the mean
payoff after just a few initial observations.

Despite the variance payoff not being an optimized criterion in (3), it is worth knowing how it
behaves for the three different stopping strategies, as it represents the risk associated with adopting
each stopping rule as an exercise strategy. As expected, for any pair (t, x), a higher stopping boundary
implies a smaller payoff variance.

Figure 6 not only reflects this behavior by suggesting the upper confidence curve as the best
stopping strategy, but also reveals that the variance does exhibit considerable differences for the
stopping rules in the low-frequency scenario. These differences increase when the time gets closer to
the initial point t = 0 and also when the quantile level q decreases. In the high-frequency scenario, this
effect is alleviated.

Figures 5 and 6 also reveal that both the mean and the variance of the payoff associated with the
estimated boundary b̃σ̂ converge to the ones associated with the true boundary as more data are taken
to estimate σ.

The pragmatic bottom line of the simulation study can be summarized in the following
rules-of-thumb: if 15 < n < 1000, it is advised to adopt the upper confidence curve as the stopping rule
because c̃1,σ̂n has almost the same mean payoff as all the other stopping rules while having considerable
less variance; if n ≥ 1000, the means and the variances of the payoff of the three stopping rules are
quite similar, being the most efficient option to just assume b̃σ̂n without computing the confidence
curves.
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For n ≤ 15, the best candidate for the execution strategy is not obvious, and it would depend on
which criterion is chosen to measure the mean-variance trade-off of the three strategies.
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Figure 5. Mean of the payoff associated with: the true boundary bσ (red curve), the estimated boundary
b̃σ̂n

(blue curve), the upper confidence curve c̃1,σ̂n
(orange curve), and the lower confidence curve c̃2,σ̂n

(green curve). The left column shows the low-frequency scenario (r = 1), while the right one stands for
the high-frequency scenario (r = 25). We use σ = 1, T = 1, S = 10, X0 = 10, and λ = 0.
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Figure 6. Variances of the payoff associated with: the true boundary bσ (red curve), the estimated
boundary b̃σ̂n

(blue curve), the upper confidence curve c̃1,σ̂n
(orange curve), and lower confidence curve

c̃2,σ̂n
(green curve). The left column shows the low-frequency scenario (r = 1), while the right one

stands for the high-frequency scenario (r = 25). We use σ = 1, T = 1, S = 10, X0 = 10, and λ = 0.

5. Pinning-At-The-Strike and Real Data Study

In this section, we compare the performance of the optimal stopping strategy using the Brownian
bridge model with a classical approach that uses the geometric Brownian motion [3]. The latter does
not take into account the pinning information of the asset’s price at maturity. We do so by a real data
study analyzing various scenarios showing different degrees of intensity of pinning-at-the-strike.

The pinning behavior is more likely to take place among heavily traded options, as shown
in [14,17]. This is why we consider the options based on Apple and IBM expiring within the span of
11 January–18 September, in particular 8905 options for Apple and 4833 for IBM. We denote by M the

total number of options of each company and, for the j-th option, we let (X(j)
ti
)

Nj
i=0 be the 5-min tick

close price of the underlying stock divided by the strike price Sj. In order to quantify the strength of the
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pinning effect, we define the pinning deviance as pj := |X(j)
tNj
− 1|, j = 1, . . . , M. Therefore, under perfect

pinning, we should expect X(j)
tNj

= 1 and pj = 0.

We perform the following steps in the real data application:

1. We split each path (X(j)
ti
)

Nj
i=0 into two subsets by using a factor ρ ∈ P = {0.1, 0.2, . . . , 0.9}. We call

historical set to the first ρ100% values of the prices (X(j)
ti
)
bρNjc
i=0 and future set to the remaining

part (including the present value) (X(j)
ti
)

Nj
i=bρNjc. Here, j = 1, . . . , M while 1− ρ represents the

proportion of life time of the option.
2. We use the historical set to estimate the volatility as described in Section 4.2.
3. We compute the risk-free interest rate λj,ρ as the 52-week treasury bill rate (extracted from [30])

held by the market when the split of (X(j)
ti
)

Nj
i=0 was done.

4. We set the drift of the geometric Brownian motion to the risk-free interest rate such that the
discounted process is a martingale.

5. We compute the OSBs using Algorithm 1 for the Brownian bridge model (9) and use the method
exposed in ([28], p. 12) for the geometric Brownian motion model studied in [3]. Both numerical
approaches are similar, the only subtle difference relies on the Brownian bridge requiring the
last part of the integral to be computed as in Algorithm 1, while the geometric Brownian motion
needs no special treatment. The OSBs are computed with S = 1 (the stock prices were previously
normalized by using the strike prices), T = 1 (all the maturity dates were standardized to 1),
and 201 nodes for the time partitions described in Section 4.1.

6. We compute the profit generated by optimally exercising the option within the remaining time

by using the future set. This is done by calculating e−λj,ρτ
j,ρ
BB

(
1− X(j)

tbρNjc+τ
j,ρ
BB

)
and e−λj,ρτ

j,ρ
GBM

(
1−

X(j)

tbρNjc+τ
j,ρ
GBM

)
, where τ

j,ρ
BB and τ

j,ρ
GBM are the OSTs associated, respectively, to the Brownian bridge

and geometric Brownian motion strategies under the initial condition
(

tbρNjc, X(j)
tbρNjc

)
.

7. We compute the “ρ-aggregated” cumulative profit, as defined below, to measure the goodness of
both models (BB stays for Brownian bridge while GBM stays for geometric Brownian motion):

BB(p) =
1

|P||J (p)| ∑
j∈J (p)

∑
ρ∈P

e−λj,ρτ
j,ρ
BB

(
1− X(j)

tbρNjc+τ
j,ρ
BB

)
,

GBM(p) =
1

|P||J (p)| ∑
j∈J (p)

∑
ρ∈P

e−λj,ρτ
j,ρ
GBM

(
1− X(j)

tbρNjc+τ
j,ρ
GBM

)
,

where J (p) := {j = 1, . . . , M : pj < p}, and |P| and |J (p)| are the number of elements in P
and J (p), respectively.

8. We finally compute the relative mean profit (BB(p)−GBM(p)) /GBM(p).
9. We plot the pinning deviances p versus the relative mean profit (see Figure 7).

The Brownian bridge model behaves better than the geometric Brownian motion for options
with low pinning deviance. This advantage fades away as we take distance from an ideal
pinning-at-the-strike scenario, that is, when the pinning deviance increases. While the Brownian
bridge model outperforms the geometric Brownian motion when applied to the Apple options along
the whole dataset, when we consider the IBM options, the advantage is only present in 60% of the
options with lower pinning deviances.

Remark 3. Besides using the OSB, we also considered in the analysis the confidence curves described in
Section 4.3. However, since this is a high-frequency sampling scenario, both confidence curves provided almost
indistinguishable results and were omitted to avoid redundancy.
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Remark 4. We did not consider the prices to buy the options when computing the profits in Figure 7, as we are
interested in when it is optimal to exercise the option rather than in whether it is profitable to buy the option held.

It is clear that an application of the Brownian bridge model is profitable in the presence of
pinning-at-the-strike effect. However, it is far from being trivial to know beforehand if a stock will
pin or not. Even if pinning forecasting is not the scope of this paper (for a systematic treatment, we
refer to [15,16,18]), we provide some basic evidence about the possibility to predict the appearance
of the pinning effect by means of the trading volume of the options associated with a stock. For that,
we study the association between the pinning deviances (pj)

M
j=1 and the number of open contracts

for a given option that we call the Open Interest (OI). In particular, we compute the weighted OI for

options expiring during the year 2017. Its definition is wOIj := ∑
Kj
k=0 wj,koj,k, where oj,k is the OI

of the j-th option at day k after it was opened, Kj is the total number of days the option remained

available, and the weights wj,k := e−(1−k/Kj)/ ∑
Kj
i=0 e−(1−i/Kj), j = 1, . . . , M, place more importance to

OIs closer to the maturity date. We highlight that the wOI is an observable quantity. The Spearman’s
rank correlation coefficient between the wOI and the pinning deviances scored −0.5932 for Apple and
−0.4281 for IBM, thus revealing a significant (p-values < 10−16) positive dependence between wOI
and the pinning strength.
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Figure 7. Results of the real data application. The black curve is the relative mean profit
(BB(p)−GBM(p)) /GBM(p) for a pinning deviance p, while the blue dashed curve represents the
kernel density estimation of the pinning deviances.

6. Pinning at Any Point

A recurring assumption in our work is that the pinning point coincides with the strike price of
the option. We address next on what should be expected when relaxing this assumption.

A pinning point different from the strike prices would be desirable as it would increase the
adaptability of the model to fit specific real situations. However, this extra flexibility makes the
problem substantially more complex. For instance, the arguments used to state that the OSB is
monotone in Proposition 1 do not work anymore. Actually, empirical evidence suggests that this
property does not hold anymore. Assuming that all regularity conditions still hold and that is possible
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to apply the extended version of the Itô’s formula, then following the same arguments of Section 3 one
would obtain the integral equation

b(t) = S− e−λ(T−t)(S− A)+ −
∫ T

t
Kσ,λ(t, b(t), u, b(u))du, (20)

where A and S are the pinning point and the strike price respectively, and where

Kσ,λ(t, x1, u, x2) := e−λ(u−t)
[(

S
T − u

+ λA−
(

1
T − u

+ λ

)
µ(t, x1, u)

)
Φ(zσ(t, x1, u, x2))

+ νσ(t, u)φ(zσ(t, x1, u, x2))] .

Figure 8 shows the optimal stopping boundary numerically obtained from (20) for different
discounting rates, suggesting that the OSB is not monotone.
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Figure 8. Numerical solution of the integral Equation (20) for different values of λ. The dotted line
represents the pinning point (A = 0) while the dashed line indicates the strike price (S = 1).

Without monotonicity, it is much harder to prove other properties like the continuity of
the boundary and the smooth fit condition. Some continuity results for the boundary for time
homogeneous and non-homogeneous diffusions are proved in [31,32], respectively, while [33]
addresses the smooth fit condition for a broad range of cases.

Some works go a step forward and try to solve a similar problem with a random pinning point,
but in such cases different kinds of simplifications are required. For example, in [21], the authors work
in a non-discounted scenario with the identity as the gain function and gives bounds for the value
function with a general pinning point distribution. Another good example is [25], where gain functions
of class C2 are considered.

7. Conclusions

In this work we solved the problem of optimally exercising an American put option, in the
presence of discount, by modeling the stock price with a Brownian bridge terminating at the strike
price. The OSP was translated into a free-boundary problem shown to have a unique solution within a
certain class of functions. We used a recursive fixed point algorithm to compute the OSB in practice,
corroborating its accuracy in the case without discount. Using a maximum likelihood estimation for the
volatility, we computed pointwise confident curves around the estimated OSB, and we analyzed some
correlated alternative stopping rules. The simulation study done for the non-discounted case showed
that the lower confidence curve is the most appealing stopping decision because of the resulting
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reduced variance of the optimal profit. Finally, we performed a real data study that empirically
concluded that the Brownian bridge model behaves considerably better than a classical geometric
Brownian motion when the stock prices exhibit the pinned-at-the-strike effect.

Our model not only requires an accurate insider information on the final value, but also is limited
to the case in which the final value coincides with the strike price. A natural extension would be
to find the optimal strategy for the case when the terminal point is different from the strike price.
We gave empirical evidence suggesting that in general the OSB is no longer monotone, resulting in a
considerably more challenging problem. Another interesting extension would be to use a model that
does not admit negative values for the stock price like, for instance, the exponential of a Brownian
bridge or a geometric Brownian bridge.

Supplementary Materials: The following are available online at [34]: R script: 0-simulations.R, R script:
1-boundary_computation_BB-AmPut_discount.R, R script: 2-inference_BB.R, R script: 3-simulation_study.R,
R script: 4-figures.R, R data: Prop1.RData, R data: Prop2.RData, R data: payoff_N200_ratio1.RData, R data:
payoff_N200_ratio25.RData.
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Appendix A. Main Proofs

Proof of Proposition 1. Take an admissible pair (t, x) satisfying x ≥ S and t < T, and consider
the stopping time τε := inf {0 ≤ s ≤ T − t : Xt+s ≤ S− ε | Xt = x} (assume for convenience that
inf{∅} = T − t), for ε > 0. Notice that Pt,x [τε < T − t] > 0, which implies that V(t, x) ≥
Et,x

[
e−λτε G(Xt+τε)

]
> 0 = G(x), from where it comes that (t, x) ∈ C.

Define b(t) := sup {x ∈ R : (t, x) ∈ D}. The above arguments guarantee that b(t) < S for all
t ∈ [0, T), and we get from (3) that b(T) = S. Furthermore, from (3), it can be easily noticed that, as
λ increases, V(t, x) decreases. Therefore, b(t) increases, and, since b(t) is known to be finite for all t
when λ = 0 (see Remark 1), then we can guarantee that b(t) > −∞ for all values of λ.

Notice that, since D is a closed set, b(t) ∈ D for all t ∈ [0, T]. In order to prove that D has the form
claimed in Proposition 1, let us take x < b(t) and consider the OST τ∗ = τ∗(t, x). Then, relying on (3),
(2), and (6), we get

V(t, x)−V(t, b(t)) ≤ Et,x

[
e−λτ∗G(Xt+τ∗)

]
−Et,b(t)

[
e−λτ∗G(Xt+τ∗)

]
(A1)

≤ Et,0

[(
Xt+τ∗ + b(t)

T − t− τ∗

T − t
− Xt+τ∗ − x

T − t− τ∗

T − t

)+
]

= (b(t)− x)E
[

T − t− τ∗

T − t

]
≤ b(t)− x,

where we used the relation

G(a)− G(b) ≤ (b− a)+, (A2)



Mathematics 2020, 8, 1159 18 of 27

for all a, b ∈ R, for the second inequality. Since V(t, b(t)) = S− b(t), we get from the above relation that
V(t, x) ≤ S− x = G(x), which means that (t, x) ∈ D and therefore {(t, x) ∈ [0, T]×R : x ≤ b(t)} ⊂ D.
On the other hand, if (t, x) ∈ D, then x ≥ b(t), which proves the reverse inclusion.

Take now t, t′ ∈ [0, T] and x ∈ R such that t′ < t and (t, x) ∈ C. Then, since the function
t 7→ V(t, x) is non-increasing for all x ∈ R (see (iv) from Proposition 2), V(t′, x) ≥ V(t, x) > G(x), i.e.,
(t′, x) ∈ C. Hence, b is non-decreasing.

Finally, in order to prove the right-continuity of b, let us fix t ∈ (0, T) and notice that, since b is
non-decreasing, then b(t+) ≥ b(t). On the other hand, as D is a closed set and (t + h, b(t + h)) ∈ D for
all 0 < h ≤ T − t, then (t+, b(t+)) ∈ D or, equivalently, b(t+) ≤ b(t).

Proof of Proposition 2. (i) Half of the statement relies on the results obtained in ([26], Section 7.1)
relative to the Dirichlet problem. It states that ∂tV +LXV = λV on C. In addition, it indicates how to
prove that V is C1,2 from a solution of the parabolic Partial Differential Equation (PDE)

∂t f +LX f − λ f = 0 in R,

f = V on ∂R,

where R ∈ C is a sufficiently regular region. If we consider R as an open rectangle, since V is
continuous by (v) below, and both µ and σ are locally Hölder continuous, then the above PDE has a
unique solution (see Theorem 9, Section 3, [35]). Finally, since V(t, x) = G(x) = S− x for all (t, x) ∈ D,
V is C1,2 also on D.

(ii) We easily get the convexity of x 7→ V(t, x) by plugging-in (2) into (3). To prove (14), let us
fix an arbitrary point (t, x) ∈ [0, T] × R, and consider τ∗ = τ∗(t, x) and ε > 0. Since τε → τ a.s.,
by arguing similarly to (A1), we get

ε−1(V(t, x + ε)−V(t, x)) ≥ −E
[

e−λτ∗ T − t− τ∗

T − t

]
, (A3)

where the limit is valid due to the dominated convergence theorem. For ε < 0, the reverse inequality
emerges, giving us, after taking ε→ 0, the relation ∂−x V(t, x) ≤ −E

[
e−λτ∗ T−t−τ∗

T−t

]
≤ ∂+x V(t, x), which,

due to the continuity of x 7→ ∂xV(t, x) on (−∞, b(t)) and on (b(t), ∞) for all t ∈ [0, T] (V is C1,2 on
C and on D), turns into ∂xV(t, x) = −E

[
e−λτ∗ T−t−τ∗

T−t

]
for all (t, x) where t ∈ [0, T] and x 6= b(t).

For x = b(t), Equation (14) also holds and it turns into the smooth fit condition (iii) later proved.
Furthermore, since Pt,x [τ∗ < T − t] > 0 by Lemma A1, (14) shows that ∂xV < 0 and therefore

x 7→ V(t, x) is strictly decreasing for all t ∈ [0, T].
(iii) Take a pair (t, x) ∈ [0, T)×R lying on the OSB, i.e., x = b(t), and consider ε > 0. Since (t, x) ∈

D and (t, x+ ε) ∈ C, we have that V(t, x) = G(x) and V(t, x+ ε) > G(x+ ε). Thus, taking into account
the inequality (A2), we get ε−1(V(t, x+ ε)−V(t, x)) > ε−1(G(x+ ε)−G(x)) ≥ −1, which, after taking
ε → 0 turns into ∂+x V(t, x) ≥ −1. On the other hand, consider the OST τε := τ∗(t, x + ε) and follow
arguments similar to (A1) to get

ε−1(V(t, x + ε)−V(t, x)) ≤ −E
[

e−λτε
T − t− τε

T − t

]
, (A4)

which, alongside the fact that τε → 0 a.s. and using the dominated convergence theorem gives
that ∂+x V(t, x) ≤ −1. Therefore, ∂+x V(t, b(t)) = −1 for all t ∈ [0, T). Since V = G in D, it follows
straightforwardly that ∂−x V(t, b(t)) = −1 and hence the smooth fit condition holds.

(iv) Notice that, due to (i), alongside (8), (2), and (14), and, recalling that x 7→ V(t, x) is convex
(and therefore ∂x2 V ≥ 0), we get that

∂tV(t, x) ≤ λV(t, x)− T − t− x
T − t

∂xV(t, x) = −E
[

e−λτ∗(x− S)
T − t− τ∗

T − t

(
λ +

x− S
T − t

)]
.
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Therefore, ∂tV ≤ 0 on the set CS := [0, T)× [S, ∞) ⊂ C.
For some small ε > 0, denote by (X[t,T]

s )T−t+ε
s≥0 a process such that, for s ∈ [0, T − t], it behaves

as the Brownian bridge X[t,T], and the remaining part stays constant at the value S, i.e., X[t,T]
s = S

for s ∈ [T − t, T − t + ε]. Let µ[t,T] be its drift and define the process (X[t−ε,T]
s )T−t+ε

s≥0 = X[t−ε,T] with
drift µ[t−ε,T]. Since µ[t,T](t, x) ≥ µ[t−ε,T] whenever x ≤ S, Theorem 1.1 from [36] guarantees that
X[t,T]

s ≥ X[t−ε,T]
s Pt,x-a.s., for all (t, x) and for all s ≤ τS, where τS := inf{s ∈ [0, T − t] : X[t,T]

s > S}.
Assume now that both processes start at x ≤ S, and consider the stopping time τ∗ = τ∗(t, x).

Therefore, since V(t + s ∧ τ∗, X[t,T]
s∧τ∗) and V(t + s, X[t−ε,T]

s ) are a martingale and a supermartingale
(see Section 2.2 from [26]), respectively, we have:

V(t, x)−V(t− ε, x) ≤ E
[
V(t + τS ∧ τ∗, X[t,T]

τS∧τ∗)−V(t− ε + τS ∧ τ∗, X[t−ε,T]
τS∧τ∗ )

]
≤ E

[
I(τ∗ ≤ τS, τ∗ < T − t)e−λτ∗(X[t−ε,T]

τ∗ − X[t,T]
τ∗ )+

]
+E

[
I(τ∗ ∧ τS = T − t)e−λτ∗(X[t−ε,T]

T−t − X[t,T]
T−t )

+
]

+E
[
I(τS ≤ τ∗, τS < T − t)V(t + τS, X[t,T]

τS )−V(t− ε + τS, X[t−ε,T]
τS )

]
≤ E

[
I(τS ≤ τ∗, τS < T − t)V(t− ε + τS, S)−V(t− ε + τS, X[t−ε,T]

τS )
]
≤ 0.

The second inequality comes after noticing that τ∗ is not optimal for X[t−ε,T] and using (A2);
the third inequality holds since X[t−ε,T]

τ∗ ≤ X[t,T]
τ∗ for τ∗ ≤ τS, X[t−ε,T]

T−t ≤ X[t,T]
T−t whenever τ∗ ∧ τS = T− t,

and the fact that ∂tV ≤ 0 on the set CS; and the last inequality relies on the increasing behavior of
x 7→ V(t, x). Finally, after dividing by ε and taking ε→ 0, we get the claimed result. This technique
of comparing the processes starting at different times and same space value is based on a similar
argument for a different gain function that has recently appeared in [19].

(v) Let (X[ti ,T]
ti+s )

[0,T−ti ]
s≥0 be a Brownian bridge going from Xti = x to XT = S for any x ∈ R,

with i = 1, 2. Notice that, according to (2), the following holds:

X[t2,T]
t2+s′

d
= r1/2X[t1,T]

t1+s + (1− r1/2)(S− x)
s

T − t1
, (A5)

where r = T−t2
T−t1

, s ∈ [0, T − t1], and s′ = sr ∈ [0, T − t2].
Take 0 ≤ t1 < t2 < T, consider τ1 := τ∗(t1, x), and set τ2 := τ1r. Since t 7→ V(t, x) is decreasing

for every x ∈ R, then

0 ≤ V(t1, x)−V(t2, x)

≤ Et1,x

[
e−λτ1 G

(
X[t1,T]

t1+τ1

)]
−Et2,x

[
e−λτ2 G

(
X[t2,T]

t2+τ2

)]
≤ E

[
e−λτ2

(
G
(

X[t1,T]
t1+τ1

)
− G

(
X[t2,T]

t2+τ2

))]
≤ E

[(
X[t2,T]

t2+τ2
− X[t1,T]

t1+τ1

)+]
= E

[((
r1/2 − 1

)(
X[t1,T]

t1+τ1
+ (S− x)

τ1

T − t1

))+
]

≤
((

r1/2 − 1
)
(S + I(x ≤ S)(S− x))

)+
,

where the first equality comes after applying (A5) and the last inequality takes place since r < 1 and
X[t1,T]

t1+τ1
≤ S.

Hence, V(t1, x)−V(t2, x) → 0 as t1 → t2, i.e., t 7→ V(t, x) is continuous for every x ∈ R. Thus,
to address the continuity of V, it is sufficient to prove that, for a fixed t, x 7→ V(t, x) is uniformly
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continuous within a neighborhood of t. The latter comes after the following inequality, which comes
right after applying similar arguments to those used in (A1):

0 ≤ V(t, x1)−V(t, x2) ≤ (x2 − x1)E
[

e−λτ∗ T − t− τ∗

T − t

]
≤ x2 − x1,

where x1, x2 ∈ R are such that x1 ≤ x2 and τ∗ = τ∗(t, x1).

Proof of Proposition 3. We already proved the right-continuity of b in Proposition 1, so this proof is
devoted to prove its left-continuity.

Let us assume that b is not left-continuous. Therefore, as b is non-decreasing, we can ensure
the existence of a point t∗ ∈ (0, T) such that b(t−∗ ) < b(t∗), which allows us to take x′ in the interval
(b(t−∗ ), b(t∗)) and consider the right-open rectangle R = [t′, t∗) × [b(t−∗ ), x′] ⊂ C (see Figure A1),
with t′ ∈ (0, t∗).

t

x

o

•

t∗t
′

b(t−∗ )

b(t∗)

x
′

y

R

D

C

Figure A1. Graphical sketch of the proof of left continuity of b.

Applying twice the fundamental theorem of calculus, using the fact that (t, b(t)) ∈ D for all
t ∈ [0, T], the smooth fit condition (iii), and the fact that x 7→ V(t, x) is C2 on C, we obtain

V(t, x)− G(x) =
∫ x

b(t)

∫ u

b(t)
(∂x2 V(t, v)− ∂x2 G(v))dv du, (A6)

for all (t, x) ∈ R.
On the other hand, if we set m := − sup(t,x)∈R ∂xV(t, x), then we readily obtain from (14) that

m > 0 (see Lemma A1) which, combined with ∂tV +LXV = λV on C and ∂tV ≤ 0 on C ((i) and (iv) in
Proposition 2), along with the fact that V(t, x) ≥ 0 for all admissible pairs (t, x), gives

∂x2 V(t, x) =
2
σ2

(
λV(t, x)− S− x

T − t
∂xV(t, x)− ∂tV(t, x)

)
≥ 2m

σ2
S− x
T − t

> 0, (A7)

for all (t, x) ∈ R. Therefore, by noticing that ∂x2 G(x) = 0 for all x ∈ (b(t−∗ ), x′) and plugging-in (A7)
into (A6), we get

V(t, x)− G(x) ≥
∫ x

b(t)

∫ u

b(t)

2m
σ2

S− x
T − t

dv du ≥ 2m
σ2

S− x
T − t

∫ x

b(t−∗ )

∫ u

b(t−∗ )
dv du =

2m
σ2

S− x
T − t

(x− b(t−∗ ))
2.
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Finally, after taking t→ t∗ on both sides of the above equation, we obtain V(t∗, x)− G(x) > 0 for
all x ∈ (b(t−∗ ), b(t∗)), which contradicts the fact that (t∗, x) ∈ D.

Proof of Proposition 4. Assume we have a function c : [0, T]→ R that solves (9) and define

Vc(t, x) :=
∫ T

t
e−λ(u−t)

(
1

T − u
+ λ

)
Et,x [(S− Xu)1 (Xu ≤ c(u))] du (A8)

=
∫ T

t
Kσ,λ(t, x, u, c(u))du,

where X = (Xs)T
s=0 is a Brownian bridge with σ volatility that ends at XT = S, and Kσ,λ is defined

at (11). It turns out that x 7→ Kσ,λ(t, x, u, c(u)) is twice continuously differentiable and therefore
differentiating inside the integral symbol at (A8) yields ∂xVc(t, x) and ∂x2 Vc(t, x), and furthermore
ensures their continuity on [0, T)×R.

Let us compute the operator ∂t +LX acting on the function Vc,

∂tVc +LXVc(t, x) = lim
h↓0

Et,x[Vc(t + h, Xt+h)]−Vc(t, x)
h

.

Define the function

I(t, u, x1, x2) := e−λ(u−t)
(

1
T − u

+ λ

)
(S− x1)1 (x1 ≤ x2) (A9)

and notice that

Et,x[Vc(t + h, Xt+h)] = Et,x

[
Et+h,Xt+h

[∫ T

t+h
I(t + h, u, Xu, c(u))du

]]
= Et,x

[
Et,x

[∫ T

t+h
I(t + h, u, Xu, c(u))du

∣∣∣ Ft+h

]]
= Et,x

[∫ T

t+h
I(t + h, u, Xu, c(u))du

]
,

where (Fs)T
s=0 is the natural filtration of X. Therefore,

∂tVc +LXVc(t, x)

= lim
h↓0

Et,x

[∫ T
t+h I(t + h, u, Xu, c(u))du

]
−Et,x

[∫ T
t I(t, u, Xu, c(u))du

]
h

= lim
h↓0

1
h
Et,x

[∫ T

t+h

(
eλh − 1

)
I(t, u, Xu, c(u))du

]
− lim

h↓0
1
h
Et,x

[∫ t+h

t
I(t, u, Xu, c(u))du

]
= λV(t, x)− (S− x)

(
1

T − t
+ λ

)
1(x ≤ c(t)).

From this result, alongside with (8) and the fact that Vc, ∂xVc, and ∂x2 Vc are continuous on
[0, T)×R, we get the continuity of ∂tVc on C1 ∪ C2, where

C1 := {(t, x) ∈ [0, T)×R : x > c(t)}, C2 := {(t, x) ∈ [0, T)×R : x < c(t)}.

Now, define the function F(t)(s, x) := e−λsVc(t + s, x) with s ∈ [0, T − t), x ∈ R, and consider

Ct
1 := {(s, x) ∈ C1 : t ≤ s < T}, Ct

2 := {(s, x) ∈ C2 : t ≤ s < T}.



Mathematics 2020, 8, 1159 22 of 27

We claim that F(t) satisfies the (iii-b) version of the hypothesis of Lemma A2 taking C = Ct
1

and D◦ = Ct
2. Indeed: F(t), ∂xF(t), and ∂x2 F(t) are continuous on [0, T)×R; it has been proved that

F(t) is C1,2 on Ct
1 and Ct

2; we are assuming that c is a continuous function of bounded variation; and

(∂tF(t) +LX F(t))(s, x) = −e−λs(S− x)
(

1
T−t−s + λ

)
1(x ≤ c(t + s)) is locally bounded on Ct

1 ∪ Ct
2.

Thereby, we can use the (iii-b) version of Lemma A2 to obtain the following change-of-variable
formula, which is missing the local time term because of the continuity of Fx on [0, T)×R:

e−λsVc(t + s, Xt+s)

= Vc(t, x)−
∫ t+s

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du + M(1)

s , (A10)

with M(1)
s =

∫ t+s
t e−λ(u−t)σ∂xVc(u, Xu)dBu. Notice that (M(1)

s )T−t
s=0 is a martingale under Pt,x.

In the same way, we can apply the (iii-b) version of Lemma A2 using the function F(s, x) =

e−λsG(Xt+s), and taking C = {(s, x) ∈ [0, T − t)× R : x > S} and D◦ = {(s, x) ∈ [0, T − t)× R :
x < S}, thereby getting

e−λsG(Xt+s) = G(x)−
∫ t+s

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu < S)du (A11)

−M(2)
s +

1
2

∫ t+s

t
e−λ(u−t)

1(Xu = S)dlS
s (X),

where M(2)
s = σ

∫ t+s
t e−λ(u−t)

1(Xu < S)dBu, with 0 ≤ s ≤ T − t, is a martingale under Pt,x.
Consider the following stopping time for (t, x) such that x ≤ c(t):

ρc := inf {0 ≤ s ≤ T − t : Xt+s ≥ c(t + s) | Xt = x} . (A12)

In this way, along with assumption c(t) < S for all t ∈ (0, T), we can ensure that 1(Xt+s ≤
c(t + s)) = 1(Xt+s ≤ S) = 1 for all s ∈ [0, ρc), as well as

∫ t+s
t e−λ(u−t)

1(Xu = S)dlS
s (X) = 0. Recall

that Vc(t, c(t)) = G(c(t)) for all t ∈ [c, T) since c solves (9). Moreover, Vc(T, S) = 0 = G(S). Hence,
Vc(t + ρc, Xt+ρc) = G(Xt+ρc). Therefore, we are able now to derive the following relation from
Equations (A10) and (A11):

Vc(t, x) = Et,x[e−λρc Vc(t + ρc, Xt+ρc)]

+Et,x

[∫ t+ρc

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du

]
= Et,x

[
e−λρc G(Xt+ρc)

]
+Et,x

[∫ t+ρc

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ S)du

]
= G(x).

The vanishing of the martingales M(1)
ρc and M(2)

ρc comes after using the optional stopping theorem
(see, e.g., Section 3.2 from [26]). Therefore, we have just proved that Vc = G on C2.

Now, define the stopping time

τc := inf{0 ≤ u ≤ T − t : Xt+u ≤ c(t + u) | Xt = x}

and plug-in it into (A10) to obtain the expression

Vc(t, x) = e−λτc Vc(t + τc, Xt+τc)
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+
∫ t+τc

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du−M(1)

τc .

Notice that, due to the definition of τc, 1(Xt+u ≤ c(t + u)) = 0 for all 0 ≤ u < τc whenever
τc > 0 (the case τc = 0 is trivial). In addition, the optional sampling theorem ensures that Et,x[M

(1)
τc ] =

0. Therefore, the following formula comes after taking Pt,x-expectation in the above equation and
considering that Vc = G on C2:

Vc(t, x) = Et,x[e−λτc Vc(t + τc, Xt+τc)] = Et,x

[
e−λτc G(Xt+τc)

]
,

for all (t, x) ∈ [0, T)×R. Recalling the definition of V from (3), the above equality leads to

Vc(t, x) ≤ V(t, x), (A13)

for all (t, x) ∈ [0, T)×R.
Take (t, x) ∈ C2 satisfying x < min{b(t), c(t)}, where b is the OSB for (3), and consider the

stopping time ρc defined as

ρb := inf {0 ≤ s ≤ T − t : Xt+s ≥ b(t + s) | Xt = x} .

Since V = G on D, the following equality holds due to (A14) and from noticing that 1(Xt+u ≤
b(t + u)) = 1 for all 0 ≤ u < ρb:

Et,x[e−λρb V(t + ρb, Xt+ρb)] = G(x)−Et,x

[∫ t+ρb

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
du
]

.

On the other hand, we get the next equation after substituting s for ρb at (A10) and recalling that
V = G on C2:

Et,x[e−λρb V(t + ρb, Xt+ρb)] = G(x)−Et,x

[∫ t+ρc

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du

]
.

Therefore, we can use (A13) to merge the two previous equalities into

Et,x

[∫ t+ρb

t
e−λ(u−t)(S− Xu)

(
1

T − u
− λ

)
1(Xu ≤ c(u))du

]
≥ Et,x

[∫ t+ρb

t
e−λ(u−t)(S− Xu)

(
1

T − u
− λ

)
du
]

,

meaning that b(t) ≤ c(t) for all t ∈ [0, T] since c is continuous.
Suppose there exists a point t ∈ (0, T) such that b(t) < c(t) and fix x ∈ (b(t), c(t)). Consider the

stopping time

τb := inf{0 ≤ u ≤ T − t : Xt+u ≤ b(t + u) | Xt = x}

and plug-in it both into (A14) and (A10) replacing s before taking the Pt,x-expectation. We obtain

Et,x[e−λτb Vc(t + τb, Xt+τb)] = Et,x[e−λτb G(Xt+τb)]

= Vc(t, x)−Et,x

[∫ t+τb

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du

]
and

Et,x[e−λτb V(t + τb, Xt+τb)] = Et,x[e−λτb G(Xt+τb)] = V(t, x).



Mathematics 2020, 8, 1159 24 of 27

Thus, from (A13), we get

Et,x

[∫ t+τb

t
e−λ(u−t)(S− Xu)

(
1

T − u
+ λ

)
1(Xu ≤ c(u))du

]
≤ 0.

Using the fact that x > b(t) and the time-continuity of the process X, we can state that τb > 0.
Therefore, the previous inequality can only happen if 1(Xs ≤ c(s)) = 0 for all t ≤ s ≤ t + τb, meaning
that b(s) ≥ c(s) for all t ≤ s ≤ t + τb, which contradicts the assumption b(t) < c(t).

Proof of Theorem 1. Propositions 1–3 give the required conditions to apply the Itô’s formula extension
exposed in the supplement to the function F(s, x) = e−λsV(t + s, x), from where we get that

e−λsV(t + s, Xt+s) = V(t, Xt) +
∫ s

0
e−λu(∂tV +LXV − λV)(t + u, Xt+u)du (A14)

+
∫ s

0
σe−λu∂xV(t + u, Xt+u)dBu.

Notice that the above formula is missing the local time term due to the continuity of x 7→ ∂xV(t, x)
for all t ∈ [0, T].

Recalling that ∂tV +LXV = λV on C and (∂tV +LXV − λV)(t, x) = −(S− x)
(

1
T−t + λ

)
for all

(t, x) ∈ D, taking Pt,x-expectation (causing the vanishing of the martingale term), setting s = T − t,
and making a simple change of variable in the integral, we get from (A14) the following pricing
formula for the American put option:

V(t, x) =
∫ T

t
e−λ(u−t)

(
1

T − u
+ λ

)
Et,x [(S− Xu)1 (Xu ≤ b(u))] du. (A15)

We know from (2) that, for u ∈ [t, T], X[t,T]
u ∼ N

(
µ(t, x, u), ν2

σ(t, u)
)

under Pt,x, where µ and νσ

are given in (12) and (13), respectively.
For any random variable Y, we have that E [Y1(Y ≤ a)] = P[Y ≤ a]E [Y | Y ≤ a]. In addition,

if Y ∼ N (µ, ν2), then E [Y | Y ≤ a] = µ− νφ(z)
Φ(z) , where z = a−µ

ν , and φ and Φ denote, respectively,
the density and distribution functions. Then, the more tractable representation (10) for V follows.

Since V(t, x) = S− x for all (t, x) ∈ D, we can take x ↑ b(t) on both sides in (10) in order to obtain
the type two Volterra nonlinear integral Equation (9) for the OSB b.

Finally, due to Proposition 4, we obtain that the solution of Equation (9) is unique up to the
regularity conditions considered in Theorem 1.

Appendix B. Auxiliary Lemmas

Lemma A1. Let (Xt+s)
T−t
s=0 be a Brownian bridge from Xt to XT = S with volatility σ, where t ∈ [0, T). Let b

be the OSB associated with the OSP

V(t, x) = sup
0≤τ≤T−t

Et,x

[
e−λτG(Xt+τ)

]
,

with G(x) = (G− x)+, and λ ≥ 0. Then, sup(t,x)∈R ∂xV(t, x) < 0, whereR is the set defined in the proof of
Proposition 3.

Proof. Take 0 < ε < 1, let τ∗ = τ∗(t, x), and define

p(t, x) := P [τ∗ ≤ (T − t)(1− ε)] .
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Notice that

p(t, x) = Pt,x

[
min

0≤s≤(T−t)(1−ε)
{Xt+s − b(s)} < 0

]
≥ Pt,x

[
min

0≤s≤(T−t)(1−ε)
Xt+s < b(t)

]
= P

[
min

0≤s≤(T−t)(1−ε)

{
(S− x)

s
T − t

+ σ

√
T − t− s

T − t
Ws

}
< b(t)− x

]

≥ P
[

min
0≤s≤(T−t)(1−ε)

{√
T − t− s

T − t
Ws

}
< σ−1(b(t)−max{x, S})

]

= P
[

min
0≤s≤(T−t)(1−ε)

{Ws} < ε−1/2σ−1(b(t)−max{x, S})
]

= 2P
[
W(T−t)(1−ε) < ε−1/2σ−1(b(t)−max{x, S}

]
,

where the first inequality is justified since b is non-decreasing (see Proposition 1), while the last equality
comes after applying the reflection principle. Therefore,

M := inf
(t,x)∈R

p(t, x) > 0.

Finally, by using (14), we obtain the following relation for all (t, x) ∈ R:

∂xV(t, x) ≤ −e−λ(T−t)E
[

T − t− τ∗

T − t
1 (τ∗ ≤ (T − t)(1− ε))

]
≤ −e−λ(T−t)εp(t, x)

≤ −e−λ(T−t)εM < 0.

For the sake of completeness, we formulate the following change-of-variable result by taking
Theorem 3.1 from [37] and changing some of its hypotheses according to Remark 3.2 from [37].
Specifically, the (iii-a) version of Lemma A2 comes after changing, in [37], (3.27) and (3.28) for the joint
action of (3.26), (3.35), and (3.36). The (iii-b) version relaxes condition (3.35) into (3.37) in [37].

Lemma A2. Let X = (Xt)T
t=0 be a diffusion process solving the SDE

dXt = µ(t, Xt)dt + σ(t, Xt)dBt, 0 ≤ t ≤ T,

in Itô’s sense. Let b : [0, T]→ R be a continuous function of bounded variation, and let F : [0, T]×R→ R be
a continuous function satisfying

F is C1,2 on C,

F is C1,2 on D◦,

where C = {(t, x) ∈ [0, T]×R : x > b(t)} and D◦ = {(t, x) ∈ [0, T]×R : x < b(t)}.
Assume there exists t ∈ [0, T] such that the following conditions are satisfied:

(i) ∂tF + µ∂xF + (σ2/2)∂x2 F is locally bounded on C ∪ D◦;
(ii) the functions s 7→ ∂xF(s, b(s)±) := ∂xF(s, lim

h→0+
b(s)± h) are continuous on [0, t];

(iii) and either
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(iii-a) x 7→ F(s, x) is convex on [b(s)− δ, b(s)] and convex on [b(s), b(s) + δ] for each s ∈ [0, t],
with some δ > 0, or,

(iii-b) ∂x2 F = G1 + G2 on C ∪ D◦, where G1 is non-negative (or non-positive) and G2 is continuous
on C̄ and D̄◦.

Then, the following change-of-variable formula holds:

F(t, Xt) = F(0, X0) +
∫ t

0
(∂tF + µ∂xF + (σ2/2)∂x2 F)(s, Xs)1(Xs 6= b(s))ds

+
∫ t

0
(σ∂xF)(s, Xs)1(Xs 6= b(s))dBs

+
1
2

∫ t

0
(∂xF(s, X+

s )− ∂xF(s, X−s ))1(Xs = b(s))dlb
s (X),

where dlb
s (X) is the local time of X at the curve b up to time t, i.e.,

lb
s (X) = lim

ε→0

∫ t

0
1(b(s)− ε ≤ Xs ≤ b(s) + ε)d〈X, X〉s, (A16)

where 〈X, X〉 is the predictable quadratic variation of X, and the limit above is meant in probability.
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