
mathematics

Article

Improved Memetic Algorithm for Solving the
Minimum Weight Vertex Independent
Dominating Set

Yupeng Zhou 1,2, Jinshu Li 2, Yang Liu 2, Shuai Lv 3, Yong Lai 1,4,* and Jianan Wang 1,2

1 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,
Jilin University, Changchun 130012, China; zhouyp605@nenu.edu.cn (Y.Z.); wangjn@nenu.edu.cn (J.W.)

2 School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117,
China; lijs508@nenu.edu.cn (J.L.); liuy995@nenu.edu.cn (Y.L.)

3 Urban Construction Archives, Changchun 130000, China; lv6266808@gmail.com
4 College of Computer Science and Technology, Jilin University, Changchun 130012, China
* Correspondence: laiy@jlu.edu.cn

Received: 3 July 2020; Accepted: 13 July 2020; Published: 15 July 2020
����������
�������

Abstract: The minimum weight vertex independent dominating set (MWVIDS) problem is
an important version of the minimum independent dominating set. The MWVIDS problem has a
number of applications in many fields. However, the MWVIDS problem is known to be NP-hard
and thus computationally challenging. In this work, we present the improved memetic algorithm
called MSSAS for solving the MWVIDS problem. The proposed MSSAS algorithm combines
probability-based dynamic optimization (PDO) (to generate good and diverse offspring solutions
by assembling elements of existing good solutions) as well as a local search phase named C_LS
(to seek high-quality local optima by combining the idea of constrained-based two-level configuration
checking strategy and tabu mechanism). The extensive results on popular DIMACS and BHOLIB
benchmarks demonstrate that MSSAS competes favorably with the state-of-the-art algorithms.
In addition, we analyze the benefits of the newly raised components including two above proposed
ideas with our memetic framework. It is worth mentioning that the combination of both components
has excellent effects for the MWVIDS problem.

Keywords: combinatorial optimization; minimum weight vertex independent dominating set; local
search; constrained-based CC2; probability-based dynamic optimization

1. Introduction

Given an undirected graph G, an independent dominating set (IDS) is a subset of vertices D
such that every vertex that is not in D is adjacent to a vertex that is in D and there are no pairs of
adjacent vertices in D. The minimum independent dominating set (MIDS) problem consists in finding
an independent dominating set with the minimum size. There are many variants of MIDS, consisting
of minimum weight independent dominating set (MWIDS), minimum weight vertex independent
dominating set (MWVIDS) and minimum weight edge independent dominating set (MWEIDS). Among
these different versions of MIDS, MWIDS considers both vertex and edge weights, while MWEIDS
only considers the weight of edge. Similarly, MWVIDS only considers vertex weight and ignores edge
weight, i.e., each vertex has a positive weight. The aim of MWVIDS is to identify the minimum weight
of IDS in the given graph. To greatly illustrate these problems, an example is shown in Figure 1. MIDS
and its variants are NP-hard (non-deterministic polynomial hard) problems [1], which means that,
there are no polynomial-time algorithms for these problems unless P = NP.

Mathematics 2020, 8, 1155; doi:10.3390/math8071155 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6882-0107
http://www.mdpi.com/2227-7390/8/7/1155?type=check_update&version=1
http://dx.doi.org/10.3390/math8071155
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1155 2 of 17

C D E

BA

Figure 1. An illustration of the relation between four IDS related problems. Given a graph G = (V, E)
where V = {A, B, C, D, E}: (a) assuming that the weight values of all vertices is 1, then {A, E} is one
MIDS solution of this given graph; (b) assuming each vertex has weight value such that w(A) = 1,
w(B) = 2, w(C) = 2, w(D) = 3, w(E) = 4 and each edge has a weight value such that w(eAB) = 5,
w(eAC) = 3, w(eAD) = 4, w(eBD) = 1, w(eBE) = 3, then the one MWIDS solution is {B, C} and its total
weight is 11; (c) if the weight value of each vertex has still followed by (b) and each edge’s weight is 0,
then the MWVIDS solution is {B, C} with the total weight value of 4; and (d) when only considering
the weight of edges, the solution MWEIDS value is {B, C} and the sum of its weight value is 7.

Its extended versions are combinatorial optimization problems, which are widely used in many
fields, such as wireless network [2], warehouse location [3] and virtual machine integration [4].
In practice, the majority of them have to consider vertex weights, which belongs to MWVIDS. In this
way, we choose MWVIDS as the object of our study because of its great significance.

An important problem in wireless sensor networks [5,6] is the deployment of the sink vertex.
The problem is to find the appropriate location of the sink vertex to minimize the network maintenance
cost. The sensor vertex is used to monitor the situation in the surrounding area, while the sink vertex
is responsible for receiving and processing information from the surrounding sensor vertices. If the
network is modeled as a graph, the maintenance cost of the vertex can be regarded as the vertex weight,
and the cost of communication between vertices is considered as the weight of the edge. In large-scale
wireless sensor network environment nowadays, multi-sink vertex [7] is adopted to improve the
accuracy and efficiency of information collection; however, compared with the traditional single sink
vertex, it also increases the cost of network maintenance. The maintenance cost of the vertex is far
greater than the communication cost between vertices, so this problem can be regarded as MWVIDS.

The layout of the city express station [8] can also make use of the MWVIDS idea. Each city will set
up a courier station, responsible for distributing delivery into the surrounding area. How to arrange
the courier station reasonably is the key to achieve high efficiency and save money. When modeling
the delivery process of a city, the cost of express warehouse management is regarded as vertex weight
and the cost of express distribution is regarded as edge weight. Compared with the express delivery
process, the warehouse management cost is much more expensive; in other words, the edge weight
can be ignored, so the essence of this problem is also to find MWVIDS to some degree.

For MIDS and its variants, many algorithms have been proposed to solve the related problems.
A branch-and-reduce MIDS algorithm based on some well-designed branching rules was offered by
Gaspers and Liedloff [9], as well as it can reach a very close lower bound on running time. According
to Wang et al. [10], a greedy randomized adaptive search procedure (GRASP) combined with tabu
strategy was proposed for MIDS, which can find a better solution based on the information of path
cost. Subsequently, Wang et al. introduced a tabu search-based memetic MIDS algorithm [11], in which
tabu method was used to prevent cycling problems and a repairing-based crossover strategy was
added to compensate for infeasible solutions. For MWIDS, Davidson et al. [12] built three different
integer linear programming (ILP) models. At the same time, they put forward two different greedy
heuristics, where one does not consider the weight of the edge and the other considers the weight
of the edge. A biased random key genetic algorithm is proposed for MWIDS [13]. The decoder in

Mathematics 2020, 8, 1155 3 of 17

the algorithm can transform any real value vector into an effective solution to the problem. Recently,
a local search algorithm with a reinforcement learning-based repair procedure was designed [14],
which combines the idea of reinforcement learning, local search and repair process to improve the
solution of the MWIDS.

For MWVIDS, we designed a memetic algorithm to solve it. Memetic algorithm (MA) is formally
proposed in [15] and used to solve the TSP problem. The framework of memetic algorithm is described
as follows: the outstanding offspring is selected from the parent solutions through performing a
series of optimizations to obtain a higher quality solution. Recently, memetic algorithms have been
widely used in optimization problems [16–19]. For example, the dynamic optimization problems are
proposed to combine an adaptive hill climbing method as the local search technique [16]. An improved
MA for the partial vertex cover problem is designed [17], in which adaptive mutation and crossover
strategies skip local optima. A MA for solving the problem of graph coloring is provided in [18],
where a distance-and-quality based replacement criterion is used for pool updating. In [11], a tabu
search-based MA is proposed to solve MIDS, in which a repairing-based crossover strategy is added to
compensate for the infeasible solutions. A MA is proposed for a vehicle routing problem in [19], which
uses different local search algorithms to solve it.

The contributions of the work are highlighted as follows.
Firstly, we propose an improved memetic algorithm called sequential self-adaptive search

(MSSAS) for solving the MWVIDS problem, which explores the synergy between the process of
local search process (C_LS) and a combination operator (PDO). The algorithm also integrates the
construction of initial solutions generated by a kind of greedy randomized construction heuristic and
an effective pool updating procedure.

Secondly, in the stage of local search improvement, we adapt the constrained-CC2 strategy for
MWVIDS problem based on CC2 [20] to prevent from the cycling problem. In addition, each choice of
removal vertices is accompanied by tabu restriction [21,22] to refrain from exploring visited solutions.
Furthermore, our scoring function takes the frequency of vertices into consideration for searching
for high-quality solutions. With strategies above, we get an improved vertex selection strategy for
evaluating which vertex to be added or removed in this process. Then, we develop a procedure called
C_LS which combines constrained-based CC2, scoring function and tabu strategy with local search.

Thirdly, we propose a combination operator called probability-based dynamic optimization (PDO)
to generate offspring solutions by combining vertices of existing good solutions. The PDO process is
accompanied by a pool updating dynamically to maintain a space of optimal solutions. In this way,
the diversity of our solutions would be effectively increased.

Finally, we carried out extensive experiments to evaluate the performance of our proposed MSSAS
algorithm on two benchmarks DIMACS [23] and BHOLIB [24]. The results show that MSSAS performs
better than competitors for almost all instances.

The rest of the paper is organized as follows. Some definitions and notations are introduced in
Section 2. The general framework of our algorithm is proposed in Section 3.1. The construction phase
is described in Section 3.2. Then, we put forward local search procedure in Section 3.3. We elaborate
the process of probability-based dynamic optimization (PDO) in Section 3.4. After that, we recommend
our pool updating strategy in Section 3.5. In Section 4, our experiment results compared with two
competitors are displayed and analyzed. Finally, the conclusions and acknowledgment are shown.

2. Preliminaries

At first, we list some necessary notations for MWVIDS. An undirected graph G = (V, E) comprises
a vertex set V = {v1, v2, . . . , vn} of n vertices together with a set E = {e1, e2, . . . , em} of m edges, where
each edge e = {v, u} connects two vertices u and v, and these two vertices are called the endpoints
of edge e. If there is an edge between two vertices, these two vertices are defined as neighbors.
The distance between two vertices u and v is expressed as dist(u, v), which means the number of
edges in the shortest path from u to v. For a vertex v, we define its ith level neighborhood as Ni(v) =

Mathematics 2020, 8, 1155 4 of 17

{u|dist(u, v) = i}. We use N(v) to denote a collection of vertices with dist(u, v) = 1, i.e., N(v) = N1(v).
In addition, Ni[v] = Ni(v) ∪ {v}. For a broader definition, we define N[S] =

⋃
v∈S N[v] as an assemble

of neighbors of vertices in S, where S ⊆ V. For a vertex set V′ ⊆ V, a vertex v is dominated by V′ if:
(1) v ∈ V′; and (2) v /∈ V′, but there exists u ∈ V′ with v ∈ N[u].

A dominating set of G is a subset D ⊆ V such that every vertex in G either belongs to D or is
adjacent to a vertex in D, while an independent set of G is a subset IS ⊆ V where no two vertices in
IS are adjacent. Thus, a subset IDS of V is called as an independent dominating set, if IDS is both a
dominating set and an independent set. In a graph G, when each vertex v is associated with a positive
weight w(v), G is called an undirected weight graph. The task of minimum weight vertex independent
dominating set (MWVIDS) problem is to find an independent dominating set IDS, which minimizes
the total weight of vertices in IDS.

3. The Improved Memetic Algorithm for MWVIDS

3.1. Discussion of the Capabilities of Some Previous Evolutionary-Based Metaheuristics

Recently, there are various evolutionary-based metaheuristics to solve some hard optimization
problems. We can learn from the paper [25] that, to reduce the amount of data, it is an efficient idea to
choose swarm intelligence (SI) for feature selection process of data. This is proved as a technique for
solving NP-hard computational problems. In addition, a multiple swarm intelligence optimization
algorithm is used for effectively addressing the wind speed data, obtaining an optimal forecasting
performance in paper [26]. While in paper [27] the particle swarm optimization (PSO) algorithm and
the ant colony optimization (ACO) method act as the representatives of the SI approach. Afterwards,
the proposed technique SCH-SpecPSO justifies the data communication for making dynamic network
handover decisions through machine learning methods in [28]. The usage of bio-inspired swarm
intelligence provides more ideas for robust communication networks. When it comes to the question
of truck scheduling at cross-docking terminals, on the one hand, it is proved efficient to combine
the strong mutation, which is dedicated to altering solutions in searching process, with the weak
mutation, which has little ground of concrete strategies in [29]. On the other hand, a novel delayed
start parallel evolutionary algorithm is proposed in paper [30], which executes separate evolutionary
algorithms exchanging the promising solutions for an excellent result. The memetic algorithm, which
is introduced below, is very suitable for our problem. Thus, we choose MAs as our framework.

3.2. General Approach

In our paper, we propose an algorithm for MWVIDS based on MA. Memetic algorithms (MAs)
are hybrid search methods that combine the population-based search framework and local search
framework. In the context of combinatorial optimization, Cowling et al. introduced the term
“hyperheuristic” as a strategy that views the process of searching as an evolution, which needs to make
choices which elements could be added in the result set [31]. In this way, we consider population-based
search more as a container for our search with better performance. The basic implementation of initial
construct is memoryless, since computations in a construct iteration do not make use of information
collected in previous iterations. The idea of population-based search is based on memory structures,
such as path relinking [32], which is an intensification strategy that can be applied to introduce memory
structures to solution construction [33,34].

Generally speaking, MAs maintain a search space of candidate solutions, make great use of solutions
and explore better components of solutions step by step with designed operators such as combination
and improvement. In addition, it is always followed with an evaluation function for choosing suitable
components. We put forward our sequential self-adaptive search called MSSAS, which is a constantly
sequential process with an evolving solution. In detail, our improvement process is a sequential iteration
by combing probability-based dynamic optimization namely PDO which works as a constructor to
generate superior solution at a particular rate as well as a local search phase to seek high-quality local

Mathematics 2020, 8, 1155 5 of 17

optima with ideas of constrained-based CC2 and tabu mechanism. With the group of combination
operator and improvement operator taking into account the solution structure, our algorithm definitely
achieves a high performance in quality and diversity compared with other algorithms.

First, we present the general framework of our algorithm in Algorithm 1 as follows.

Algorithm 1: MSSAS(G)

1 Initialize a solution pool P;
2 for i = 1, . . . , |P| do
3 CS := ∅ and CS := Construct() ; /* construction heuristic, Sec. 3.2 */
4 CSlb :=C_LS(init_noimpro_iter) ; /* local search algorithm, Sec. 3.3 */
5 P := PoolUpdate(CSlb);
6 if CSlb is better than CS∗ then
7 CS∗ := CSlb;

8 Choose randomly two solutions pi, pj from P;
9 CS :=PDO(pi, pj); /* probability-based dynamic optimization, Sec. 3.4 */

10 while stopping condition is not met do
11 CSlb :=C_LS(noimpro_iter);
12 if CSlb is better than CS∗ then
13 CS∗ := CSlb;

14 P := PoolUpdate(CSlb);
15 if CSlb == ∅ then CS :=PDO(pi,pj);
16 else CS :=PDO(pi,CSlb);

17 return CS∗;

In the beginning, the algorithm starts with an initial population set P. In our work, the size of
P is set to 10. All of the elite solutions are generated by the construct procedure, which is a greedy
randomized construction heuristic (Line 3) and the following improved function local search (Line 4).
In this loop (Line 2–7), with |P| times, we generate an initial population set P. During each iteration,
we add the local best solution CSlb into P (Line 5), along with updating the global best solution CS∗

(Line 6–7). Afterwards, two solutions are randomly selected from the P, and then recombined by the
PDO, which is described in Section 3.4 to generate a new offspring solution CS (Lines 8–9). The loop
on Lines 10–16 persistently executes until the total time of the process reaches a given time limit. By
using the local search process to improve the solution, we would obtain a local best solution CSlb.
If CSlb is better than CS∗, then CS∗ should be updated accordingly (Lines 12–13). Meanwhile, the
algorithm uses CSlb to update the population P (Line 14). At the end of loop, we use PDO like a
constructor to build a new initial solution CS by modifying the structure of solutions provided by a
random solution pi from P and CSlb when the local search procedure finds a better solution than CS∗.
Otherwise, the PDO process will use two random solutions pi and pj from population P as the input
parameters. This new generated solution CS in the current loop will be the inception of the next local
search repeatedly for better performance.

3.3. Construction Phase

The construction phase is similar to the semi-greedy heuristic proposed by Hart and Shogan [35].
For implementing this phase, we constantly maintain the candidate set with a particular order
called restricted candidate list (RCL), which is measured by the benefit of adding the next vertex.
During each selection process, we choose to pick vertices with more benefits in RCL list for better
solution composition.

Mathematics 2020, 8, 1155 6 of 17

In this section, we propose the covering cardinality τ to measure which vertex will be picked
as the next element. For ∀vj ∈ V and a current candidate solution CS, the covering cardinality τj
is defined as the number of vertices not yet dominated by CS that will become domination if vj is
added into CS. Meanwhile, each vertex has a property, i.e., a ratio ρj =w(j) /τj between its weight
and covering cardinality. Obviously, a vertex with a smaller value of ρj is more likely to have more
neighbors, with a lower weight value.

We present the pseudo-code of the construction phase in Algorithm 2. At first, the algorithm
initializes the candidate list L, covering cardinality τ and ratio ρ accordingly (Line 1). During each loop
of Lines 2–8, the algorithm adds one vertex into CS, until CS becomes an independent dominating set.
The minimum ρ− and maximum ρ+ greedy function values of the candidate vertices are computed
(Lines 3–4), respectively. The restricted candidate list (RCL), formed by all candidate vertices whose
greedy function value is less than or equal to ρ− + α(ρ+− ρ−), is built (Line 5), where α is a real-valued
parameter between 0 and 1. A vertex e is chosen at random from the RCL (Line 6) and then is added to
CS (Line 7). At the end of each loop (Line 8), the covering cardinalities are recomputed and the greedy
function values are updated for all candidate vertices for the next iteration.

Algorithm 2: Construct()

1 compute τj , ρj for each vertex of G, i.e., L = {1, 2, . . . , n};
2 while CS is not a feasible solution do
3 ρ− := min{ρj, j ∈ L};
4 ρ+ := max{ρj, j ∈ L};
5 RCL := {j ∈ L|ρj ≤ ρ− + α(ρ+ − ρ−) };
6 select a random vertex e from the RCL;
7 CS := CS ∪ {e} ;
8 update τj, ρj;

9 return CS;

3.4. Local Search Procedure

Local search shows great performance on seeking good solutions. By exploring the neighborhood
structure, the searching process is accomplished by allowing one vertex to move from one solution to a
better one intelligently. Based on the idea that better neighboring solutions are usually accepted, while
much worse neighboring solutions are accepted with a low probability. Especially, we combine local
search process with a corresponding population solution pool which acts as a container of excellent
solutions to recompose newly better solutions. We introduce the principle of population solution
pool below. In the case of circulation problem, the constrained-CC2 strategy based on CC2 [20] is
proposed to improve the efficiency of the local search. Meanwhile, each iteration is attached with tabu
restriction [21] to avoid exploring visited solutions.

3.4.1. Scoring Function

Based on the limited local information, the evaluation function greatly influences the quality of
the solution. Some vertices are selected by following vertex selection strategy rule, which combines the
proposed constrained-based CC2 with our scoring function here. We take the frequency of each vertex into
account referring to the idea in [20]. At the start, each vertex v initializes the frequency variable p(v) = 1.
After each iteration, for all vertices still not be dominated by the candidate solution, the corresponding
p(v) will be increased by 1. On this account, we encourage the algorithm to dominate those undominated
vertices in the next time. Based on this idea, we propose our scoring function as below.

Considering a graph G = (V, E) and a candidate solution S, for each vertex v, we express the
value of score by sc(v). w[v] is a positive value indicating the weight of v. We use a list inde to identify

Mathematics 2020, 8, 1155 7 of 17

if v is independent. inde[v] = 1 indicates v is independent, which means none of v’s neighbors is in S.
On the contrary, inde[v] = 0 means v is not independent.

sc[v] =

1/w[v] ∗ ∑

u∈C1

p[u], f or v /∈ S ∩ inde[v] = 1,

−1/w[v] ∗ ∑
u∈C2

p[u], f or v ∈ S ∩ inde[v] = 1
(1)

where t[v] is denoted as the number of vertices in N[v] which are in S, C1 = {u|u ∈ N[v], t[v] = 0}
and C2 = {u|u ∈ N[v], t[v] = 1}. Indeed, C1 is a set of vertices which are the neighbors of v, under the
constraint that they have not been dominated by S but would be dominated by adding v. C2 is a set of
vertices which are the neighbors of v, along with the constraint that they have been dominated by S
and would be undominated by removing v.

3.4.2. Constrained-Based CC2 and Vertex Selection Strategy

During the process of searching, we choose a vertex by assessment of configuration and score
value. It is more likely to have a circulation problem in the searching process of local search.
The phenomenon often manifests as visiting one solution repeatedly, or even caught in a poor
local result. In consideration of this cause, the two-level configuration checking (CC2 for short)
strategy [20] was proposed to handle this problem in local search. Therefore, we adapt this strategy to
constrained-CC2 for MWIDS problem during the local search process. We choose a vertex by checking
the configuration, which means, when adding a vertex without changing the configuration compared
with before, there is no need to append it. At the same time, we need to check respectively to guarantee
every vertex is independent. In detail, we implement CC2 with a boolean array con f , which indicates
whether a vertex can be chosen. con f [v] = 1 means v is a configuration changed vertex and is allowed
to be added to the candidate solution S. On the contrary, we cannot add a vertex with con f [v] = 0.
At the beginning, we initialize con f [v] as 1 for all the vertex in S. When con f [v] is changed, the con f
value of its neighbors will be adjusted as well. In this process, the configuration changing should take
both its state and its neighbors’ states into consideration.

The quality of candidate solutions largely depends on the evaluation function. We choose which
vertices to add or remove on the basis of limited local information each time. Here, we evaluate vertices
by scoring function, constrained-based CC2 and tabu strategy. The tabu strategy [21,22] aims to avoid
visiting previous solutions. It is implemented by a list named tabu_list to prevent adding the vertex
which has just been removed. In other words, we use the state of vertex about whether in tabu_list to
mark which one can be picked up. Further, we tend to choose a vertex older with more steps since the
last time it changes its state (be removed from or added into the candidate solution). Thus, we give
priority to the oldest one while picking a vertex. We define some rules for different situations as below.

• Remove-Rule1: Choose the vertex with the highest score value, then remove the oldest one by
breaking ties randomly and update the configuration accordingly.

• Remove-Rule2: Choose the vertex not in tabu_list with the highest score value, then remove the
oldest one by breaking ties randomly and update the configuration accordingly.

• Add-Rule: Choose a vertex v which could be allowed to add into the solution with con f [v] = 1
and the highest score value and update the configuration accordingly.

3.4.3. The Main Procedure of the Local Search

We develop a procedure called C_LS (Algorithm 3) which combines constrained-based CC2 and
tabu strategy with local search. At first, we should initialize iter, tabu_list, con f , weight and score
values for all vertices (Line 1). Then, candidate solution CS and local best solution CSlb are both set to
an empty set (Line 2).

Mathematics 2020, 8, 1155 8 of 17

While the non-improvement number of iteration noimpro_ iter is not reached, the search process
works for a dominating set and then swaps some vertices for the final best solution (Lines 3–20). Then,
if the algorithm gets to an IDS in which all vertices are dominated (Lines 4–9), then we update the
local best solution CSlb by using CS (Lines 5–6). We select a vertex v, and then remove it from CS
according to Remove-Rule1 (Lines 7). Then, the algorithm updates the configuration of its neighbors
by constrained-based CC2 (Line 8).

The algorithm removes a vertex not in the tabu_list according to Remove-Rule2 (Line 10).
Afterwards, the configuration is updated accordingly (Line 11). The tabu_list should be cleared
up in order that the forbidden vertices would be available for the next circulation (Line 12). The aim
of the following loop on Lines 13–19 is to add vertices into the candidate set until there are no
undominated vertices. A vertex maxc is selected according to Add-Rule and the algorithm makes
sure the vertex maxc is independent (Line 14). Here, if the weight of CS plus the just selected added
vertex maxc is larger than the global best solution CS∗ (Lines 15–16), the algorithm obviously abandons
this vertex and then breaks this adding process. Otherwise, the suitable vertex maxc is added in
the candidate solution and the con f value is updated according to constrained-based CC2 (Line 17).
The current added vertex will be put into the tabu_list as well (Line 18). For each undominated vertex
v, the frequency value p[v] is increased by 1 (Line 19). Finally, when reaching noimpro_iter, the local
best solution of the problem CSlb will be returned.

Algorithm 3: C_LS(noimpro_iter)

1 initialize iter, tabu_list, con f , weight and score values of all vertices;
2 CS := CSlb := ∅;
3 while iter < noimpro_iter do
4 if there are no undominated vertices then
5 if w(CS) < w(CSlb) then
6 CSlb := CS and iter := 0;

7 v := a vertex in CS with the highest value sc(v), breaking ties in the oldest one ;
8 CS := CS\{v} and update con f according to Constrained-based CC2;
9 continue;

10 v := a vertex in CS with the highest value sc(v) and v /∈ tabu_list, breaking ties in the
oldest one;

11 CS := CS\{v} and update conf according to Constrained-based CC2;
12 tabu_list := ∅;
13 while there are undominated vertices do
14 maxc := a vertex in V \ CS with the highest value sc(maxc), breaking ties in the oldest

one;
15 if w(CS) + w[maxc] ≥ CS∗ then
16 break;

17 CS := CS ∪ {maxc} and update conf according to Constrained-based CC2;
18 tabu_list := tabu_list ∪ {maxc};
19 p[v] := p[v] + 1, for each vertex v which is not dominated;

20 iter := iter + 1;

21 return CSlb;

3.5. Probability-Based Dynamic Optimization

Our combination operator is particularly designed based on probability, which elevates the
property of offspring acceptation with more possibility of exploring new promising solutions. From a
general perspective, our proposed algorithm is composed of a number of basic components: a pool of

Mathematics 2020, 8, 1155 9 of 17

candidate solutions which is effective to maintain a search space and a combination operator called the
process of probability-based dynamic optimization (PDO) to generate better solutions by combining
vertices of existing good solutions.

In this section, we take both the quality and the diversity of population P into account. When
selecting the parents for recombination, we tend to consider the quality of the candidate solutions as a
crucial factor. It is based on an idea that the shared vertices contained in both good parent solutions are
more likely to exist in an optimal solution. The recombination mechanism can make great use of the good
properties from parents to offspring. Our mechanism named PDO (Algorithm 4) is a kind of algorithm to
recompose existing solutions with a certain probability, with the process of checking the composition of
the existing good solutions. The vertices concluded in both parent solutions will be chosen at a bigger
rate β1, while vertices concluded in one parent solution will be picked up at a lower rate (100%− β1).

In addition, considering the parents selection may make a difference to the diversity of population.
Exploring more new search areas in a diverse and random way for seeking promising solutions is vital.
More specifically, to ensure the heritage of good properties from parents to offspring, we generate a
circulation that begins with a local search process and is followed by PDO to combine two solutions pi
and pj randomly, which may be from solution pool or from the improved solution from local search. If
a vertex v which is assumed to be independent is concluded in both pi and pj, we add v into CS at rate
β1 (Lines 2–3). On the other hand, if v is concluded in pi or pj, we add v in CS at rate (100%− β1); at the
same time, we need to assure v is independent (Line 5–6). Otherwise, if the vertex v is not independent,
we remove all neighbors of v in CS at a rate of β2 and then add v into CS (Lines 8–11). We come up
with this idea to add as many independent vertices as possible instead of skipping this possibility.

Algorithm 4: PDO(pi,pj)

/* pi and pj from solution pool P */
1 for every vertex v ∈ V do
2 if v ∈ pi ∩ pj && rand() % 100 < β1 then
3 CS := CS ∪ {v};
4 else if v ∈ pi ∪ pj then
5 if inde[v] = 1 then

/* v is independent */
6 if rand() % 100 < (100− β1) then CS := CS ∪ {v} ;

7 else
8 if rand() % 100 < β2 then
9 for each vertex l ∈ CS ∩ N[v] do

10 CS := CS \ {l};
11 CS := CS ∪ {v};

12 while CS is not a feasible solution do
13 compute τj , ρj for each vertex of V \ CS, and put these vertices into L;
14 ρ− := min{ρj, j ∈ L} and ρ+ := max{ρj, j ∈ L};
15 select a random vertex e from RCL := {j ∈ L|ρj ≤ ρ− + α(ρ+ − ρ−) };
16 if w(CS) + w(e) ≥ w(CS∗) then
17 return CS;

18 CS := CS ∪ {e};
19 return CS;

Mathematics 2020, 8, 1155 10 of 17

After offspring elements selection, we recompose current solution by the construction procedure
until all vertices are dominated, which is very similar to the construction process (Lines 12–18).
In addition, there are some adjustments following the birth of offspring. If the returned solution is
already an IDS, we find a better solution (Line 19). Otherwise, CS which is not a feasible solution
will be returned (Line 17), i.e., failing to obtain a better solution, compared with CS∗. In addition, the
offspring obtained would be the inception of the next local search procedure repeatedly for a better
performance. At the same time, updating the composition of population with local optimal solutions
accordingly, we also propose a technique to clear or exchange the worst elements of population P to
keep high-quality solution set.

3.6. Population Updating Strategy

Our population updating strategy is shown here, which is proved to conduct well for maintaining
top solutions. Population updating is a crucial factor for exploring a promising, high-quality solution
area. First, we combine local search process with population updating for improving the solution
quality as much as possible. Local search is used to pursue high-quality results by exploring the
neighbor structure, while population provides a container to maintain optimal solutions. Population
updating is used to decide whether a solution could be a member of it and which one would be
replaced. Moreover, considering a poor diversity may attribute to situations such as repetitions of
solution components or stopping with poor local optima [36]. Thus, we need to manage population
diversity by the offspring acceptance and replacement strategies.

In this section, we introduce our pool updating strategy, namely PoolUpdate, that manages the
composition of pool and decides which existing solution should be replaced. At the very beginning,
we initiate |P| preferable solutions of population by random generation construction followed with
local search improvement. Along with the search process, the pool constantly maintains the top
|P| optimal solutions. It is realized according to the idea of basic quality-based pool updating [36];
we come up with the mechanism that replaces the worst solution of the pool for a better population
structure. In detail, in each circulation, if the weight of local optimal solution CSlb from improvement
of local search is lower than the worst one in the pool, we replace the worst one with CSlb. When the
weight value of CSlb is equivalent to the worst one in the pool, we execute replacement at a rate of
50%. In short, the population quality is increased by the dynamic replacement strategy above.

3.7. Discussion of MSSAS’s Complexity

In this subsection, we discuss the complexity of each component of MSSAS, including the
construct, local search and population updating procedures. The complexity of the construct
procedure is O(|V|2). The complexity of one iteration in local search procedure is O(|CS|(|V| − |CS|)2).
The complexity of population updating procedure is O(|V|2).

4. Experimental Results

In this section, to verify the effectiveness of our proposed algorithm, we compare MSSAS with
two algorithms: CC2FS [20] and CPLEX. Specially, CC2FS is an efficient algorithm for the minimum
weight dominating set problem. The authors of the improved CC2FS [20] provided us with their source
code, which had been modified for greatly solving MWIDS problem. In addition, we compare solution
values with those of CPLEX, which is a high-performance mathematical programming solver for linear
programming, mixed-integer programming and quadratic programming. In our work, the version of
CPLEX that we used is CPLEX 12.6.

Our proposed algorithm was implemented in C++ and compiled by g++ with option -O3 in Intel
Xeon E5-2640 v4 @ 2.40GHz CPU with 128GB RAM under CentOS 7.5. Many previous works use
the time limit as the stopping criterion of tested algorithms [37–39]. For the MSSAS and competitors,
the time limit was set to 100 s. All algorithms were executed 10 times under the same time limit.
The MIN column is denoted as the minimal solution values, while the AVG column is denoted as the

Mathematics 2020, 8, 1155 11 of 17

average solution value over 10 run times. The bold values of the following tables indicate the best
values in the comparison of other algorithms.

We evaluated the performance of our proposed algorithm on two sets of benchmarks, namely
DIMACS [23] and BHOLIB [24], where DIMACS has already used for testing several graph problems,
such as vertex cover [40], dominating set [20] and clique [39], while BHOSLIB is the famous
benchmark for graph problems which has many crafted hard instances with hidden optimum solutions.
For generating the corresponding weighting instances, we used the same weighting function as the
authors of [20,39], i.e., w(vi) = (i mod 200)+1, for each vertex vi ∈ V.

4.1. Parameter Settings

To obtain the suitable parameter settings of our proposed algorithm, the automatic configuration
tool irace [41] was applied for α, β1, β2, init_noimpro_iter and noimpro_iter. We restricted the training
set to include 20 training instances chosen from DIMACS and BHOLIB benchmarks. The tuning
process was given a budget of 9000 runs of the proposed algorithm. For each execution, the time limit
was set to 100 s. Table 1 represents the values tuning of parameters.

Table 1. The parameter settings of our proposed algorithm.

Parameter Description Range of Values Final Value

α the parameter of Construct() (0.7, 0.8, 0.9, 0.95) 0.8
β1 the parameter of PDO() (60, 70, 80) 80
β2 the parameter of PDO() (2, 5, 15) 5
init_noimpro_iter the parameter of C_LS() (500, 1000, 1500) 1000
noimpro_iter the parameter of C_LS() (2000, 5000, 50,000, 70,000) 50,000

4.2. Experimental Evaluation of MSSAS on DIMACS and BHOLIB Benchmarks

Tables 2 and 3 show that the results obtained by CC2FS can match with the results of MSSAS
for only three instances, but the run time of CC2FS is always slower than MSSAS. Except for
these three instances, MSSAS can steadily find better solutions than CC2FS. For all tested instances,
the average number of MSSAS iterations is 6,011,056.71, while the average number of CC2FS iterations
is 6,916,590.65. Because our proposed MSSAS needs to maintain some candidate solutions during the
search process, it is obvious that the average iteration number of MSSAS is larger than that of CC2FS.
Now, we focus on the comparison between CPLEX and MSSAS. For 12 instances, MSSAS obtains
better solution values than CPLEX, while, for the remaining instances, both of them can obtain the
same solution quality. From the analysis of Tables 2 and 3, we can draw a conclusion that for DIMACS
Benchmark the quality of solution found by MSSAS is always better than those of the other algorithms.

Table 2. Experimental results of CPLEX, CC2FS and MSSAS I.

Instance CPLEX CC2FS MSSAS
UB MIN AVG MIN AVG

brock200_2 87 183 183 87 87
brock200_4 198 235 235 198 198.3
brock400_2 200 587 587 200 235.1
brock400_4 162 481 487 162 181.5
brock800_2 140 156 156 126 131.9
brock800_4 85 200 200 85 86.2
C1000.9 1026 2407 2407 743 915.8
C125.9 512 841 841 512 512.2
C2000.5 114 155 155 53 57.6
C2000.9 1373 1489 1489 718 844.4

Mathematics 2020, 8, 1155 12 of 17

Table 2. Cont.

Instance CPLEX CC2FS MSSAS
UB MIN AVG MIN AVG

C250.9 484 1274 1274 484 528.9
C4000.5 127 333 333 45 56.1
C500.9 552 690 1068.6 540 592.2
c-fat200-1 226 226 226 226 226
c-fat200-2 57 61 61 57 57
c-fat200-5 10 10 10 10 10
c-fat500-1 524 531 531 524 534
c-fat500-2 262 266 266 262 262
c-fat500-5 20 20 20 20 20
DSJC1000.5 48 80 80 48 48.1
DSJC500.5 74 92 92 74 74
gen200_p0.9_44 740 1731 1731 740 838.3
gen200_p0.9_55 858 1340 1340 858 929.2
gen400_p0.9_55 585 1456 1456 585 667.7
gen400_p0.9_65 732 1328 1328 713 896.4
gen400_p0.9_75 875 1546 1546 828 1103.5
hamming10-4 268 465 473.5 197 260.2
hamming6-2 402 553 557.9 402 402
hamming6-4 35 134 134 35 35
hamming8-2 2232 3876 3985.2 2232 2764.5
hamming8-4 118 145 145 118 118

Table 3. Experimental results of CPLEX, CC2FS and MSSAS II.

Instance CPLEX CC2FS MSSAS
UB MIN AVG MIN AVG

johnson16-2-4 380 380 380 380 380
johnson32-2-4 698 732 732 698 710
johnson8-2-4 54 54 54 54 54
johnson8-4-4 213 252 252 213 213.2
keller4 224 337 337 224 224.9
keller5 283 414 414 283 301.6
keller6 2038 808 824.2 418 534.4
MANN_a27 405 1603 1603 405 405
MANN_a45 1080 13454 14154 1080 1254.3
MANN_a81 3402 69160 69160 3402 11284
MANN_a9 54 54 54 54 54
p_hat1500-1 554 1552 1552 382 472.8
p_hat1500-2 324 1195 1195 315 519
p_hat1500-3 30 35 35 30 30
p_hat300-1 314 1014 1014 314 366.9
p_hat300-2 164 569 569 164 199.2
p_hat300-3 29 41 41 29 29
p_hat700-1 438 1468 1468 406 517.1
p_hat700-2 255 669 669 230 392.8
p_hat700-3 33 58 58 33 33
san1000 16 16 16 16 16
san200_0.7_1 207 219 219 207 216.6
san200_0.7_2 93 218 218 93 93
san200_0.9_1 746 2079 2079 746 766.6
san200_0.9_2 873 2456 2456 873 977.7
san200_0.9_3 489 489 489 489 489
san400_0.5_1 30 30 30 30 30
san400_0.7_1 138 301 301 138 139.4
san400_0.7_2 126 206 206 126 167.4
san400_0.7_3 98 98 98 98 98.7

Mathematics 2020, 8, 1155 13 of 17

The experiment results of BHOSLIB Benchmarks are shown in Table 4. It is obvious that MSSAS
has outstanding performance than other algorithms in comparison. Only the results of frb30-15-3 and
frb30-15-5 are equivalent to those of CPLEX. Therefore, MSSAS performed the best.

Table 4. Experimental results of CPLEX, CC2FS and MSSAS III.

Instance CPLEX CC2FS MSSAS
UB MIN AVG MIN AVG

frb30-15-1 517 804 804 490 504.3
frb30-15-2 534 769 769 464 510.2
frb30-15-3 543 1140 1140 543 620.8
frb30-15-4 571 1209 1209 559 588.7
frb30-15-5 474 1088 1088 474 553.9
frb35-17-1 772 1178 1178 650 716.5
frb35-17-2 828 1170 1170 748 845.3
frb35-17-3 802 1311 1311 747 810.4
frb35-17-4 801 1194 1194 723 795.9
frb35-17-5 797 1244 1244 724 778.2
frb40-19-1 849 1344 1344 814 886.1
frb40-19-2 904 1029 1029 818 877.3
frb40-19-3 859 1363 1363 810 865.5
frb40-19-4 896 1413 1456.2 833 883.6
frb40-19-5 842 1196 1196 781 857.8
frb45-21-1 1059 1331 1331 872 949.6
frb45-21-2 919 1430 1430 777 903.7
frb45-21-3 1038 1754 1754 928 988.6
frb45-21-4 1046 1692 1692 948 1029.5
frb45-21-5 943 1434 1434 847 927.3
frb50-23-1 1087 1903 1903 1008 1090.8
frb50-23-2 1292 1831 1934.6 1151 1218.2
frb50-23-3 1128 1416 1416 903 975.2
frb50-23-4 1091 1795 1795 1002 1078.6
frb50-23-5 1206 1786 1786 1024 1138.8
frb53-24-1 1153 2143 2143 989 1123.6
frb53-24-2 1050 1614 1614 965 1044.8
frb53-24-3 981 1429 1429 878 969.5
frb53-24-4 1144 1605 1605 1037 1131.5
frb53-24-5 1128 1600 1600 981 1049.6
frb56-25-1 1445 1947 1947 1057 1191.8
frb56-25-2 1610 1953 1953 1119 1211.9
frb56-25-3 1207 1551 1551 997 1078.5
frb56-25-4 1354 1549 1549 1057 1177.5
frb56-25-5 1499 1606 1606 931 1009.1
frb59-26-1 1467 2016 2016 1226 1365.8
frb59-26-2 1416 1704 1704 1071 1179.4
frb59-26-3 1437 1902 1902 1170 1266.3
frb59-26-4 1572 2174 2174 1165 1275.7
frb59-26-5 1760 1897 1897 1117 1203.4
frb100-40 5788 2959 2959 1805 2057.4

4.3. The Effectiveness of the Components of MSSAS

To show the effectiveness of two components of MSSAS including our local search procedure
and probability-based dynamic optimization, we designed two alternative algorithms, i.e., MSSAS1
and MSSAS2. To be specific, when adding vertices into the candidate solution, MSSAS1 adopts tabu
mechanism (in our work, the added forbidden length esd set to 7 based on preliminary experiments)
without using the constrained CC2. MSSAS2 uses a simple strategy, i.e., randomly selecting a random
solution from population and then removing some vertices from this solution as the input of local

Mathematics 2020, 8, 1155 14 of 17

search, making sure the weight of input solution is always smaller than that of the global best solution,
rather than our probability-based dynamic optimization.

The time-to-target plot [42] was used to compare MSSAS with MSSAS1 and MSSAS2 on four
instances and their respective targets. To get the time-to-target plots, we performed 200 independent
runs of MSSAS, MSSAS1 and MSSAS2 on these four instances. Figures 2 and 3 illustrate the efficiency
contribution of our two proposed components. Figure 2 shows that the probabilities of obtaining a
solution of the target value by MSSAS are approximately 10% and 30% in at most 0.22 and 0.89 s,
respectively, whereas the probabilities of obtaining a solution of the target value are approximately
10% and 30% in almost 32.46 and 98.28 s by MSSAS1, as well as at least 0.35 and 1.04 s by MSSAS2,
which are considerably more than MSSAS.

0 2 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 M S S A S
 M S S A S 1
 M S S A S 2

Pro
ba

bili
ty

T i m e t o t a r g e t (s e c o n d s)

Figure 2. Time-to-target plot comparing MSSAS with MSSAS1 and MSSAS2 on instance C125.9 and its
target 512.

0 2 0 4 0 6 0 8 0 1 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 M S S A S
 M S S A S 1
 M S S A S 2

Pro
ba

bili
ty

T i m e t o t a r g e t (s e c o n d s)

Figure 3. Time-to-target plot comparing MSSAS with MSSAS1 and MSSAS2 on instance frb30-15-1 and
its target 500.

5. Conclusions and Future Work

In this work, we introduced a novel algorithm for solving the NP-hard minimum weight vertex
independent dominating set problem. Firstly, an improved mimetic algorithm called sequential
self-adaptive search is proposed for solving the denoted problem, which explores the synergy between
the process of local search process and a combination operator. The algorithm also integrates the
construction of initial solutions generated by a kind of greedy randomized construction heuristic
and an effective pool updating procedure. Secondly, in the stage of local search improvement,

Mathematics 2020, 8, 1155 15 of 17

the constrained-CC2 strategy for MWVIDS problem based on CC2 is adapted to prevent from the
cycling problem. In addition, each choice of removal vertices is accompanied by tabu restriction
to refrain from exploring visited solutions. Furthermore, the proposed scoring function takes the
frequency of vertices into consideration for searching high-quality solutions. With the strategies above,
an improved vertex selection strategy for evaluating which vertex to be added or removed in this
process is obtained. Then, a procedure called C_LS is developed which combines constrained-based
CC2, scoring function and tabu strategy with local search. Thirdly, the research indicates a combination
operator called probability-based dynamic optimization (PDO) to generate offspring solutions by
combining vertices of existing good solutions. The PDO process is accompanied by a pool updating
dynamically to maintain a space of optimal solutions. In this way, the diversity of solutions can be
effectively increased. Extensive experiments were carried out to evaluate the performance of proposed
MSSAS algorithm on two benchmarks DIMACS and BHOLIB. The results show that MSSAS performs
better than competitors for almost all instances.

In the future, we will focus on improving the performance of our algorithm on solving massive
graphs regarding some real applications, because, with the increase of instance scale, our proposed
method may not scale very well. In addition, we would find some other important properties and
improve scoring function. In addition, we may explore a better way [43,44] to estimate the size of the
search space and improve corresponding strategies in our algorithm with more creative ideas.

Author Contributions: conceptualization, Y.Z. and Y.L. (Yong Lai); methodology, J.L. and Y.L. (Yang Liu);
validation, S.L. and J.W.; writing-original draft preparation, S.L., J.W., and Y.L. (Yong Lai); writing-review
and editing, Y.Z., J.L., Y.L. (Yang Liu), and Y.L. (Yong Lai). All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Fundamental Research Funds for the Central Universities
2412020FZ030 and 2412018ZD017, project of Jilin Provincial Science and Technology Department under Grant No.
20190302109GX, Jilin Province Natural Science Foundation under grant 20190103005JH and NSFC (under grant
nos. 61806050, 61972063, 61976050, 61972384).

Conflicts of Interest: The authors declare that they have no conflicts of interest to this work. We declare that we
do not have any commercial or associative interest that represents a conflict of interest in connection with the
work submitted.

References

1. Hartmanis, J. Computers and intractability: A guide to the theory of NP-completeness (michael r. garey and
david s. johnson). Siam Rev. 1982, 24, 90. [CrossRef]

2. Lin, C.R.; Gerla, M. Adaptive clustering for mobile wireless networks. IEEE J. Sel. Areas Commun. 1997, 15,
1265–1275. [CrossRef]

3. Khumawala, B.M. An efficient branch and bound algorithm for the warehouse location problem. Manag. Sci.
1972, 18, B-718. [CrossRef]

4. Terra-Neves, M.; Lynce, I.; Manquinho, V. Virtual machine consolidation using constraint-based
multi-objective optimization. J. Heuristics 2019, 25, 339–375. [CrossRef]

5. Nocetti, F.G.; Gonzalez, J.S.; Stojmenovic, I. Connectivity based k-hop clustering in wireless networks.
Telecommun. Syst. 2003, 22, 205–220. [CrossRef]

6. Tree, S. Wireless sensor networks. Self 2014, 1, C0.
7. Dai, S.; Tang, C.; Qiao, S.; Xu, K.; Li, H.; Zhu, J. Optimal multiple sink nodes deployment in wireless

sensor networks based on gene expression programming. In Proceedings of the 2010 Second International
Conference on Communication Software and Networks, Singapore, 26–28 February 2010; pp. 355–359.

8. Ji, Y.; Yang, H.; Zhang, Y.; Zhong, W. Location optimization model of regional express distribution center.
Procedia-Soc. Behav. Sci. 2013, 96, 1008–1013. [CrossRef]

9. Gaspers, S.; Liedloff, M. A branch-and-reduce algorithm for finding a minimum independent dominating
set in graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science; Springer: Berlin,
Germany, 2006; pp. 78–89.

10. Wang, Y.; Li, R.; Zhou, Y.; Yin, M. A path cost-based GRASP for minimum independent dominating set
problem. Neural Comput. Appl. 2017, 28, 143–151. [CrossRef]

http://dx.doi.org/10.1137/1024022
http://dx.doi.org/10.1109/49.622910
http://dx.doi.org/10.1287/mnsc.18.12.B718
http://dx.doi.org/10.1007/s10732-018-9400-2
http://dx.doi.org/10.1023/A:1023447105713
http://dx.doi.org/10.1016/j.sbspro.2013.08.115
http://dx.doi.org/10.1007/s00521-016-2324-6

Mathematics 2020, 8, 1155 16 of 17

11. Wang, Y.; Chen, J.; Sun, H.; Yin, M. A memetic algorithm for minimum independent dominating set problem.
Neural Comput. Appl. 2018, 30, 2519–2529. [CrossRef]

12. Davidson, P.P.; Blum, C.; Lozano, J.A. The weighted independent domination problem: Integer linear
programming models and metaheuristic approaches. Eur. J. Oper. Res. 2018, 265, 860–871. [CrossRef]

13. Corominas, G.R.; Blum, C.; Blesa, M.J. A biased random key genetic algorithm for the weighted independent
domination problem. In Proceedings of the Genetic and Evolutionary Computation Conference Companion,
Prague, Czech Republic, 13–17 July 2019; pp. 2052–2055.

14. Wang, Y.; Pan, S.; Li, C.; Yin, M. A local search algorithm with reinforcement learning based repair procedure
for minimum weight independent dominating set. Inf. Sci. 2020, 512, 533–548. [CrossRef]

15. Moscato, P.; Norman, M.G. A memetic approach for the traveling salesman problem implementation of
a computational ecology for combinatorial optimization on message-passing systems. Parallel Comput.
Transput. Appl. 1992, 1, 177–186.

16. Wang, H.; Wang, D.; Yang, S. A memetic algorithm with adaptive hill climbing strategy for dynamic
optimization problems. Soft Comput. 2009, 13, 763–780. [CrossRef]

17. Zhou, Y.; Qiu, C.; Wang, Y.; Fan, M.; Yin, M. An improved memetic algorithm for the partial vertex cover
problem. IEEE Access 2019, 7, 17389–17402. [CrossRef]

18. Lü, Z.; Hao, J.K. A memetic algorithm for graph coloring. Eur. J. Oper. Res. 2010, 203, 241–250. [CrossRef]
19. Tavakkoli-Moghaddam, R.; Saremi, A.; Ziaee, M. A memetic algorithm for a vehicle routing problem with

backhauls. Appl. Math. Comput. 2006, 181, 1049–1060. [CrossRef]
20. Wang, Y.; Cai, S.; Yin, M. Local search for minimum weight dominating set with two-level configuration

checking and frequency based scoring function. J. Artif. Intell. Res. 2017, 58, 267–295. [CrossRef]
21. Dawei, L.; Li, W.; Mengguang, W. Genetic algorithm and tabu search: A hybrid strategy. J. Syst. Eng. 1998,

13, 28–34.
22. Glover, F.W.; Kochenberger, G.A. Handbook of Metaheuristics; Springer Science & Business Media: Berlin,

Germany, 2006; Volume 57.
23. Johnson, D.S. Cliques, coloring, and satisfiability: Second DIMACS implementation challenge. DIMACS Ser.

Discret. Math. Theor. Comput. Sci. 1993, 26, 11–13.
24. Xu, K.; Boussemart, F.e.e.; Hemery, F.; Lecoutre, C. A simple model to generate hard satisfiable instances.

In Proceedings of the 19th International Joint Conference on Artificial Intelligence, Jeju Island, Korea,
11–13 October 2005; pp. 337–342.

25. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm Intelligence Algorithms for Feature Selection: A Review.
Appl. Sci. 2018, 8, 1521. [CrossRef]

26. Zhao, X.; Wang, C.; Su, J.; Wang, J. Research and Application Based on the Swarm Intelligence Algorithm
and Artificial Intelligence for Wind Farm Decision System. Renew. Energy 2018, 134, 681–697. [CrossRef]

27. Slowik, A.; Kwasnicka, H. Nature Inspired Methods and Their Industry Applications - Swarm Intelligence
Algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [CrossRef]

28. Anandakumar, H.; Umamaheswari, K. A bio-inspired swarm intelligence technique for social aware
cognitive radio handovers. Comput. Electr. Eng. 2017, 71, 925–937 [CrossRef]

29. Dulebenets, M.A. A Comprehensive Evaluation of Weak and Strong Mutation Mechanisms in Evolutionary
Algorithms for Truck Scheduling at Cross-Docking Terminals. IEEE Access 2018, 6, 65635–65650. [CrossRef]

30. Dulebenets, M.A. A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a
cross-docking facility. Int. J. Prod. Econ. 2019, 212, 236–258. [CrossRef]

31. Cowling, P.; Kendall, G.; Soubeiga, E. A hyperheuristic approach to scheduling a sales summit. In Practice
and Theory of Automated Timetabling III, Proceedings of the International Conference on the Practice and Theory of
Automated Timetabling, Konstanz, Germany, 16–18 August 2000; Springer: Berlin, Germany, 2000; pp. 176–190.

32. Pessoa, L.S.; Resende, M.G.C.; Ribeiro, C.C. A hybrid Lagrangean heuristic with GRASP and path-relinking
for set k-covering. Comput. Oper. Res. 2013, 40, 3132–3146. [CrossRef]

33. Resendel, M.G.; Ribeiro, C.C. GRASP with path-relinking: Recent advances and applications. In Metaheuristics:
Progress as Real Problem Solvers; Springer: Berlin, Germany, 2005; pp. 29–63.

34. Resende, M.G.; Ribeiro, C.C. Greedy randomized adaptive search procedures: Advances and applications.
Handbook Metaheuristics 2010, 146, 281–317.

35. Shogan, A.W. Semi-greedy heuristics: An empirical study. Oper. Res. Lett. 1987, 6, 107–114.

http://dx.doi.org/10.1007/s00521-016-2813-7
http://dx.doi.org/10.1016/j.ejor.2017.08.044
http://dx.doi.org/10.1016/j.ins.2019.09.059
http://dx.doi.org/10.1007/s00500-008-0347-3
http://dx.doi.org/10.1109/ACCESS.2019.2895738
http://dx.doi.org/10.1016/j.ejor.2009.07.016
http://dx.doi.org/10.1016/j.amc.2006.01.059
http://dx.doi.org/10.1613/jair.5205
http://dx.doi.org/10.3390/app8091521
http://dx.doi.org/10.1016/j.renene.2018.11.061
http://dx.doi.org/10.1109/TII.2017.2786782
http://dx.doi.org/10.1016/j.compeleceng.2017.09.016
http://dx.doi.org/10.1109/ACCESS.2018.2874439
http://dx.doi.org/10.1016/j.ijpe.2019.02.017
http://dx.doi.org/10.1016/j.cor.2011.11.018

Mathematics 2020, 8, 1155 17 of 17

36. Hao, J.K. Memetic algorithms in discrete optimization. In Handbook of Memetic Algorithms; Springer:
Berlin/Heidelberg, Germany, 2012; pp. 73–94.

37. Wang, Y.; Li, C.; Yin, M. A two phase removing algorithm for minimum independent dominating set
problem. Appl. Soft Comput. 2020, 88, 105949. [CrossRef]

38. Cai, S.; Li, Y.; Hou, W.; Wang, H. Towards faster local search for minimum weight vertex cover on massive
graphs. Inf. Sci. 2019, 471, 64–79. [CrossRef]

39. Wang, Y.; Cai, S.; Chen, J.; Yin, M. SCCWalk: An efficient local search algorithm and its improvements for
maximum weight clique problem. Artif. Intell. 2020, 280, 103230. [CrossRef]

40. Cai, S.; Su, K.; Luo, C.; Sattar, A. NuMVC: An efficient local search algorithm for minimum vertex cover.
J. Artif. Intell. Res. 2013, 46, 687–716. [CrossRef]

41. López-Ibá nez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The irace package: Iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

42. Aiex, R.M.; Resende, M.G.C.; Ribeiro, C.C. TTT plots: A perl program to create time-to-target plots.
Optim. Lett. 2007, 1, 355–366. [CrossRef]

43. Abdelmaguid, T.F. An Efficient Mixed Integer Linear Programming Model for the Minimum Spanning Tree
Problem. Mathematics 2018, 6, 183. [CrossRef]

44. Yuan, F.; Li, C.; Gao, X.; Yin, M.; Wang, Y. A novel hybrid algorithm for minimum total dominating set
problem. Mathematics 2019, 7, 222. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2019.105949
http://dx.doi.org/10.1016/j.ins.2018.08.052
http://dx.doi.org/10.1016/j.artint.2019.103230
http://dx.doi.org/10.1613/jair.3907
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.1007/s11590-006-0031-4
http://dx.doi.org/10.3390/math6100183
http://dx.doi.org/10.3390/math7030222
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	The Improved Memetic Algorithm for MWVIDS
	Discussion of the Capabilities of Some Previous Evolutionary-Based Metaheuristics
	General Approach
	Construction Phase
	Local Search Procedure
	Scoring Function
	Constrained-Based CC2 and Vertex Selection Strategy
	The Main Procedure of the Local Search

	Probability-Based Dynamic Optimization
	Population Updating Strategy
	Discussion of MSSAS's Complexity

	Experimental Results
	Parameter Settings
	Experimental Evaluation of MSSAS on DIMACS and BHOLIB Benchmarks
	The Effectiveness of the Components of MSSAS

	Conclusions and Future Work
	References

