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Abstract: We show that the viscosity approximation method coupled with the Krasnoselskii–Mann
iteration generates a sequence that strongly converges to a fixed point of a given nonexpansive
mapping in the setting of uniformly smooth Banach spaces. Our result shows that the geometric
property (i.e., uniform smoothness) of the underlying space plays a role in relaxing the conditions on
the choice of regularization parameters and step sizes in iterative methods.
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1. Introduction

Iteratively finding a fixed point for a nonexpansive mapping is an active topic of nonlinear
operator theory and optimization. A nonexpansive mapping does not increase distances. A typical
example of a nonexpansive mapping is metric (i.e., nearest point) projection onto a closed convex
subset of a Hilbert space. Thus, projection methods in Hilbert spaces fall, in principle, into the category
of fixed point algorithms.

Whereas Picard’s successive iterates always converge in the norm topology to the unique fixed
point of a contraction, this is not the case for nonexpansive mapping (think of a rotation around the
origin counterclockwise in a two-dimensional plane). Averaged iterative methods are thus employed.
The Krasnoselskii–Mann (KM) method [1,2] is an averaged method. Let C be a nonempty closed convex
subset of a real Banach space X and let T : C → C be a nonexpansive mapping [3] (i.e., ‖Tx− Ty‖ ≤
‖x− y‖ for x, y ∈ C). Then, KM generates a sequence of iterates, (xn) through the iteration procedure:

xn+1 = (1− τn)xn + τnTxn, n = 0, 1, · · · , (1)

where the initial guess x0 ∈ C and (τn) ⊂ [0, 1], which is interpreted as step sizes.
Reich [4] proved the weak convergence to a fixed point of T (if any) of KM (1) in a Banach

space X that is uniformly convex with a Fréchet differentiable norm under the divergence condition
∑∞

n=0 τn(1− τn) = ∞ (thus, constant step sizes τn ≡ τ ∈ (0, 1) work). Strong convergence does not
hold in general, even in a Hilbert space. See the counterexample [5] in `2. An implicit version of KM
for strongly accretive and strongly pseudo-contractive mappings may also be found in [6].

Halpern’s method [7] is another averaged method for finding a fixed point of a nonexpansive
mapping T. This method generates a sequence (xn) via the process:

xn+1 = αnu + (1− αn)Txn, n = 0, 1, · · · , (2)
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where the initial guess x0 ∈ C is arbitrary, u ∈ C is a (fixed) point known as anchor, and αn ∈ (0, 1) is
known as a regularization parameter at iteration n.

There is an essential difference between KM (1) and Halpern (2): the former provides a convex
combination of the nth iterate xn with Txn as the (n+ 1)th iterate xn+1, and the latter provides a convex
combination of the fixed anchor u with Txn as the (n + 1)th iterate xn+1. Thus, Halpern’s method (2)
is, in nature, contractive with coefficient 1− αn < 1 at iteration n. Regarding the convergence of
Halpern’s method (2), we have the following result:

Theorem 1 ([7–11]). Let X be a uniformly smooth Banach space, C a nonempty closed convex subset of X,
and T : C → C a nonexpansive mapping with a fixed point. Then, the sequence (xn) generated by Halpern’s
algorithm (2) converges strongly to a fixed point of T if the following conditions are satisfied:

(H1) limn→∞ αn = 0,
(H2) ∑∞

n=0 αn = ∞,
(H3) either ∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1.

Halpern’s method was extended to the viscosity approximation method (VAM) for nonexpansive
mappings [12–14], following Attouch [15], for selecting a particular fixed point of a given nonexpansive
mapping. More precisely, VAM replaces the anchor u with a general ρ-contraction f : C → C
(i.e., ‖ f (x)− f (y)‖ ≤ ρ‖x− y‖ for all x, y ∈ C and some ρ ∈ [0, 1)). Consequently, VAM generates a
sequence (xn) via the iteration process:

xn+1 = αn f (xn) + (1− αn)Txn, n = 0, 1, · · · . (3)

It was proved that VAM (3) converges in norm to a fixed point of T in a Hilbert space [13] and,
more generally, in a uniformly smooth Banach space [14] under the same conditions (H1)–(H3) in
Theorem (1).

Gwinner [16] combined KM (1) and VAM (3) to propose the following iteration method:

xn+1 = βn[(1− αn)Txn + αn f (xn)] + (1− βn)xn, n = 0, 1, · · · , (4)

where the initial guess x0 ∈ C is arbitrary and (αn), (βn) are two sequences in [0, 1] satisfying some
conditions to be specified. This algorithm is obtained by first applying the viscosity approximation
method to the nonexpansive mapping T and then applying KM to the viscosized mapping (1− αn)T +

αn f . Hence, we call (4) the Krasnoselskii–Mann viscosity approximation method (KMVAM).
We now outline Gwinner’s method to study the convergence of (4). His method is somewhat

implicit. Let zn be the unique fixed point of the contraction Tn : C → C defined by:

Tnz := (1− αn)Tz + αn f (z), z ∈ C. (5)

zn is the unique solution to the fixed point equation:

zn = (1− αn)Tzn + αn f (zn). (6)

It is shown that Tn is (1− α(1− ρ))-contraction, with ρ being the contraction coefficient of f .
Gwinner proved the following result:

Theorem 2 ([16], Theorem 4). Let X be a Banach space, C a bounded closed convex subset of X, and T : C → C
a nonexpansive mapping with fixed points. Let (xn) and (zn) be defined by (4) and (6), respectively. Assume that
(αn) and (βn) satisfy the conditions:

(G1) limn→∞ αn = 0,
(G2) ∑∞

n=1 αnβn = ∞,
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(G3) limn→∞
|αn+1−αn |

α2
n+1βn

= 0.

Assume, in addition, that:

(G4) the sequence (zn) defined by the fixed point equation (6) converges in norm to a fixed point z of T.

Then, (xn) converges in norm to the same fixed point z of T.

We observed that Gwinner used condition (G4) to obtain the strong convergence of (xn).
This raises two interesting problems:

(P1) What Banach spaces X satisfy the property that each sequence (zn) defined by (6) converges in
norm to a fixed point of T, given any closed convex subset C of X, any nonexpansive mapping
T : C → C with fixed points, and any contraction f : C → C?

(P2) Can a particular structure (i.e., geometric property) of X relax the conditions (G1)–(G3) in
Theorem (2) for the choices of the parameters (αn) and (βn)?

Both problems have partial answers. Uniformly smooth Banach spaces [17] and reflexive Banach
spaces with a weakly continuous duality map Jµ for some gauge µ [18] satisfy the property (G4), which
is known as Reich’s property [18], due to Reich [17] first proving the property (G4) (with f being
constant) in a uniformly smooth Banach space.

In this paper, we address the second problem and provide an affirmative answer. More precisely,
we prove that in a uniformly smooth Banach space X, the conclusion of Theorem (2) remains valid if the
square raised to αn+1 in the denominator of condition (G3) is removed. This is a genuine improvement
of the choice of (αn). Assuming constant step sizes βn ≡ β ∈ (0, 1], conditions (G1)-(G3) are satisfied
for the choice αn = (1 + n)−τ for 0 < τ < 1, which excludes the standard choice of αn = (1 + n)−1.
In contrast, our choice includes αn = (1 + n)−1 (see Theorem (3) and and Remark (1) in Section 3).

The paper is organized as follows. The next section introduces uniformly smooth Banach spaces
and two inequalities that are helpful in the subsequent argument. Our main result is presented
in Section 3, where we prove the strong convergence of Algorithm (4) under certain conditions on
the parameters (αn) and (βn) weaker than Gwinner’s conditions (G1)–(G3) with a different proof.
Our result shows that intelligently manipulating the geometric property (i.e., uniform smoothness) of
the underlying space X can improve the choices of the regularization parameters (αn) and the step
sizes (βn) in the algorithm (4). Finally, a brief summary of this paper is given in Section 4.

2. Preliminaries

2.1. Uniform Smooth Banach Spaces

Let (X, ‖ · ‖) be a real Banach space and let S(X) be the unit sphere of X, i.e., S(X) = {x ∈ X :
‖x‖ = 1}. Consider the limit:

lim
τ→0

‖x + τy‖ − ‖x‖
τ

, (7)

where x, y ∈ X. A Banach space X is said to be smooth if the limit (7) exists for each pair of x, y ∈ S(X).
A smooth Banach space X is:

• Fréchet differentiable if the limit (7) is attained uniformly over y ∈ S(X),
• uniformly Gâteaux differentiable if the limit (7) is attained uniformly over x ∈ S(X), and
• uniformly smooth if the limit (7) is attained uniformly for x, y ∈ S(X).

Examples of uniformly convex Banach spaces include Hilbert spaces H and lp (and also Lp) spaces for
1 < p < ∞.

Uniform smoothness can be characterized by the normalized duality map J : X → X∗, which is
defined by:

J(x) = {ξ ∈ X∗ : 〈x, ξ〉 = ‖x‖2 = ‖ξ‖2}, x ∈ X. (8)
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X is uniformly smooth if and only if J is single-valued and uniformly continuous on each bounded
subset of X. For more knowledge on geometric properties of Banach spaces, the reader is referred to
the book [19].

2.2. Two Lemmas

Below we list two lemmas that are used in the proof of the main result in Section 3.

Lemma 1. In a Banach space X, the following inequality holds:

‖u + w‖2 ≤ ‖u‖2 + 2〈w, J(u + w)〉, u, w ∈ X.

Lemma 2 ([20]). Assume (τn) is a sequence of nonnegative real numbers satisfying the condition:

τn+1 ≤ (1− λn)τn + λnβn + σn (9)

for all n ≥ 0, where (λn) and (σn) are sequences in (0,1) and (βn) is a sequence in R. Assume

(i) ∑∞
n=1 λn = ∞,

(ii) lim supn→∞ βn ≤ 0 (or ∑∞
n=1 λn|βn| < ∞),

(iii) ∑∞
n=1 σn < ∞.

Then limn→∞ τn = 0.

3. Strong Convergence of Krasnoselskii–Mann Viscosity Approximation Method

Let X be a Banach space and let C be a nonempty closed convex subset of X. For convenience,
we use the notation:

• NC := {T : T : C → C a nonexpansive mapping such that Fix(T) 6= ∅},
• Fix(T) := {x ∈ C : Tx = x} is the set of fixed points of T,
• ΠC := { f : f : C → C a ρ-contraction for some ρ ∈ [0, 1)}.

Some related class of mappings may be found in [21,22].
Given T ∈ NC, f ∈ ΠC and α ∈ (0, 1). Define a contraction Tα ∈ ΠC by:

Tαx := (1− α)Tx + α f (x), x ∈ C. (10)

It is easy to show that Tα is a (1− α(1− ρ))-contraction. Let zα ∈ C be the unique fixed point of Tα.
Equivalently, we have:

zα = (1− α)Tzα + α f (zα). (11)

Lemma 3 ([14,17]). Assume X is a uniformly smooth Banach space. Then (zα) converges as α→ 0 to a point
Q( f ) ∈ Fix(T), and Q : ΠC → Fix(T) defines a retraction, satisfying the variational inequality:

〈(I − f )Q( f ), J(Q( f )− p)〉 ≤ 0, f ∈ ΠC, p ∈ Fix(T). (12)

Lemma 4. Let T ∈ NC and f ∈ ΠC. Then, for x ∈ C and p ∈ Fix(T), we have:

‖Tαx− p‖ ≤ (1− α(1− ρ))‖x− p‖+ α‖ f (p)− p‖. (13)

Here, ρ ∈ [0, 1) is the contraction coefficient of f .
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Proof. We have, noticing that Tα p = (1− α)p + α f (p):

‖Tαx− p‖ ≤ ‖Tαx− Tα p‖+ ‖Tα p− p‖
≤ (1− α(1− ρ))‖x− p‖+ α‖ f (p)− p‖.

This proves (13).

In terms of Tαn , the KMVAM (4) can be rewritten as:

xn+1 = βnTαn xn + (1− βn)xn. (14)

We next discuss certain properties of (xn).

Property 1. (xn) is bounded. For p ∈ Fix(T), we have:

‖xn+1 − p‖ = βn‖Tαn xn − p‖+ (1− βn)‖xn − p‖
≤ βn[(1− αn(1− ρ))‖xn − p‖+ αn‖ f (p)− p‖] + (1− βn)‖xn − p‖
= (1− αnβn(1− ρ))‖xn − p‖+ αnβn‖ f (p)− p‖

≤ max
{
‖xn − p‖, (1− ρ)−1‖ f (p)− p‖

}
.

By induction, we have:

‖xn − p‖ ≤ max
{
‖x0 − p‖, (1− ρ)−1‖ f (p)− p‖

}
for all n ≥ 0; in particular, {xn} is bounded.

Property 2. Asymptotic estimate for ‖xn+1 − xn‖:

‖xn+1 − xn‖ ≤ (1− αnβn(1− ρ))‖xn − xn−1‖+ (|αnβn − αn−1βn−1|+ |βn − βn−1|)M, (15)

where M is a constant such that M ≥ sup{‖Txn − xn‖+ ‖ f (xn)− xn‖ : n ≥ 0}.
Toward this, we use (14) to obtain:

xn+1 − xn = βnTαn xn − βn−1Tαn−1 xn−1 + (1− βn)xn − (1− βn−1)xn−1.

After some manipulations, we can rewrite xn+1 − xn as:

xn+1 − xn = βn(Tαn xn − Tαn xn−1) + βn(Tαn xn−1 − Tαn−1 xn−1)

+ (βn − βn−1)(Tαn−1 xn−1 − xn−1) + (1− βn)(xn − xn−1)

= βn(Tαn xn − Tαn xn−1) + βn(αn − αn−1)( f (xn−1)− Txn−1)

+ αn−1(βn − βn−1)( f (xn−1)− Txn−1) + (βn − βn−1)(Txn−1 − xn−1)

+ (1− βn)(xn − xn−1)

= βn(Tαn xn − Tαn xn−1) + (αnβn − αn−1βn−1)( f (xn−1)− Txn−1)

+ (βn − βn−1)(Txn−1 − xn−1) + (1− βn)(xn − xn−1).
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It follows from Lemma (4) that:

‖xn+1 − xn‖ ≤ βn(1− αn(1− ρ))‖xn − xn−1‖+ |αnβn − αn−1βn−1|M
+ |βn − βn−1|M + (1− βn)‖xn − xn−1‖

= (1− αnβn(1− ρ))‖xn − xn−1‖+ (|αnβn − αn−1βn−1|+ |βn − βn−1|)M.

This is (15), and Property 2 is verified.

Property 3. Approximating fixed point property of (xn): ‖xn − Txn‖ ≤ ‖xn − xn+1‖/βn + αn M. Indeed,
from (14), we have:

‖xn+1 − Txn‖ ≤ βn‖Tαn xn − Txn‖+ (1− βn)‖xn − Txn‖
= βnαn‖Txn − f (xn)‖+ (1− βn)‖xn − Txn‖
≤ αnβn M + (1− βn)‖xn − Txn‖.

It turns out that:

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Txn‖
≤ ‖xn − xn+1‖+ αnβn M + (1− βn)‖xn − Txn‖.

Consequently, ‖xn − Txn‖ ≤ ‖xn − xn+1‖/βn + αn M and Property 3 is proved.

Lemma 5. Suppose ‖xn − Txn‖ → 0. Then:

lim sup
n→∞

〈x∗ − f (x∗), J(x∗ − xn)〉 ≤ 0 (16)

where x∗ = Q( f ), and Q is the retraction defined by (12).

Proof. Notice zα → x∗ in norm as α→ 0, where zα satisfies the fixed point Equation (11), from which
we obtain:

zα − xn = (1− α)(Tzα − xn) + α( f (zα)− xn).

By Lemma 1, we derive that:

‖zα − xn‖2 ≤ (1− α)2‖Tzα − xn‖2 + 2α〈 f (zα)− xn, J(zα − xn)〉
≤ (1− α)2(‖Tzα − Txn‖+ ‖Txn − xn‖)2

+ 2α(〈 f (zα)− zα, J(zα − xn)〉+ ‖zα − xn‖2) (17)

≤ (1− α)2‖zα − xn‖2 + ‖Txn − xn‖(2‖zα − xn‖+ ‖Txn − xn‖)
+ 2α(〈 f (zα)− zα, J(zα − xn)〉+ ‖zα − xn‖2).

Therefore:
〈zα − f (zα), J(zα − xn)〉 ≤

τ

α
‖Txn − xn‖+ ατ, (18)

where τ > 0 is such that τ ≥ max{‖zα − xn‖2, ‖zα − xn‖+ (1/2)‖Txn − xn‖} for all α ∈ (0, 1) and
n ≥ 0.

Since ‖Txn − xn‖ → 0, it follows from (18) that

lim sup
n→∞

〈zα − f (zα), J(zα − xn)〉 ≤ ατ. (19)
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Now since zα → x∗ in norm as α → 0 and since the duality map J is norm-to-norm uniformly
continuous over any bounded subset of X, taking the limit as α→ 0 in (19) and swapping the order of
the two limits yields (16).

We are now in the position to prove the strong convergence of the KMVAM (4) by showing that
wise manipulations of the geometric property (i.e., uniform smoothness) of the underlying space X
can improve Theorem 2. Hence, the solution to problem (P2) in the Introduction is affirmative.

Theorem 3. Let X be a uniformly smooth Banach space, C a nonempty closed convex subset of X, T ∈ NC,
and f ∈ ΠC. Assume the following conditions:

(A1) limn→∞ αn = 0 and ∑∞
n=0 αn = ∞,

(A2) either ∑∞
n=1(|αnβn − αn−1βn−1|+ |βn − βn−1|) < ∞

or limn→∞
|αn βn−αn−1βn−1|

αn βn
= 0 (i.e., limn→∞

αn−1βn−1
αn βn

= 1) and ∑∞
n=1 |βn − βn−1|) < ∞,

(A3) βn ≥ β > 0 for all n ≥ 0.

Then, (xn) converges strongly to x∗ = Q( f ), where Q is the retraction defined by (12).

Proof. Noticing Tαn xn = (1− αn)Txn + αn f (xn), we have:

xn+1 − x∗ = βn(Tαn xn − x∗) + (1− βn)(xn − x∗)

= βn(1− αn)(Txn − x∗) + (1− βn)(xn − x∗) + αnβn( f (xn)− x∗).

Applying Lemma 1, we obtain:

‖xn+1 − x∗‖2

≤ ‖βn(1− αn)(Txn − x∗) + (1− βn)(xn − x∗)‖2 + 2αnβn〈 f (xn)− x∗, J(xn+1 − x∗)〉
≤ βn(1− αn)

2‖Txn − x∗‖2 + (1− βn)‖xn − x∗‖2 + 2αnβn〈 f (xn)− x∗, J(xn+1 − x∗)〉 (20)

≤ [1− βn + βn(1− αn)
2]‖xn − x∗‖2 + 2αnβn〈 f (xn)− x∗, J(xn+1 − x∗)〉.

Since f is a ρ-contraction, we obtain:

〈 f (xn)− x∗, J(xn+1 − x∗)〉 = 〈 f (xn)− f (x∗), J(xn+1 − x∗)〉+ 〈 f (x∗)− x∗, J(xn+1 − x∗)〉
≤ ρ‖xn − x∗‖ · ‖xn+1 − x∗‖+ 〈 f (x∗)− x∗, J(xn+1 − x∗)〉
≤ (ρ/2)(‖xn − x∗‖2 + ‖xn+1 − x∗‖2) + 〈 f (x∗)− x∗, J(xn+1 − x∗)〉.

Substituting this into (20), we obtain:

‖xn+1 − x∗‖2 ≤ (1− αnβn(2− ρ− αn))‖xn − x∗‖2 + ραnβn‖xn+1 − x∗‖2

+ 2αnβn〈 f (x∗)− x∗, J(xn+1 − x∗)〉.

Therefore:

‖xn+1 − x∗‖2 ≤ 1− αnβn(2− ρ− αn)

1− ραnβn
‖xn − x∗‖2 +

2αnβn

1− ραnβn
〈 f (x∗)− x∗, J(xn+1 − x∗)〉. (21)

Setting

γn = 1− 1− αnβn(2− ρ− αn)

1− ραnβn
=

αnβn(2(1− ρ)− αn)

1− ραnβn
= O(αnβn) (22)

and
δn =

2
1− ραnβn

〈 f (x∗)− x∗, J(xn+1 − x∗)〉, (23)
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we can rewrite (21) as:

‖xn+1 − x∗‖2 ≤ (1− γn)‖xn − x∗‖2 + γnδn. (24)

To use Lemma 2 to prove ‖xn − x∗‖2 → 0, we need to verify these two conditions:

(γ) ∑∞
n=0 γn = ∞ and

(δ) lim supn→∞ δn ≤ 0.

First, we verify (γ). From (22) and (A3), we find that γn = O(αn), which implies (γ) by virtue of (A1).
Regarding (δ), using condition (A2), we can apply Lemma 2 to Property 2 to obtain ‖xn+1− xn‖ →

0, which in turns implies that ‖xn − Txn‖ → 0 via Property 3. Then, by Lemma 5, we obtain (16),
which implies (δ) for αn → 0.

Now the two conditions (γ) and (δ) are sufficient to guarantee ‖xn − x∗‖ → 0 (i.e., xn → x∗ in
norm) by virtue of Lemma 2. This completes the proof.

Remark 1. In the proof of Theorem 3, we manipulated the uniform smoothness of X (i.e., norm-to-norm uniform
continuity of the duality J). As a result, we relaxed the conditions on the selections of the parameters (αn) and
(βn). Note that the parameter αn is referred to as a regularization parameter and therefore tends to zero, and the
parameter βn, as a step size in KM, is better not to be diminishing. In the case of a constant step size, i.e., βn = β

for all n, the conditions (G1)–(G3) of Theorem 2 are reduced to the conditions:

(G1)’ limn→∞ αn = 0,
(G2)’ ∑∞

n=1 αn = ∞,

(G3)’ limn→∞
|αn+1−αn |

α2
n+1

= 0.

The conditions (A1)–(A3) of Theorem 3 are:

(A1)’ limn→∞ αn = 0 and ∑∞
n=0 αn = ∞,

(A2)’ either ∑∞
n=1 |αn − αn−1| < ∞ or limn→∞

|αn−αn−1|
αn

= 0 (i.e., limn→∞
αn−1

αn
= 1).

(A2)’ is genuinely weaker than (G3)’. For instance, if we take αn = 1
(1+n)α for all n ≥ 0, then (G1)’–(G3)’ hold

for 0 < α < 1, but (A1)’–(A2)’ hold for 0 < α ≤ 1.
Note that the conditions (G1)’–(G3)’ were also used by Lions [8] for proving the strong convergence

of Halpern’s method (2) in a Hilbert space, which were improved by Xu [11] by removing the square in
the denominator of condition (G3)’ in a uniformly smooth Banach space. Note that in a recent paper [23],
the conclusion of Theorem 3 was proved under Gwinner’s conditions (G1)–(G3) of Theorem 2 in a reflexive
Banach space with a weakly continuous duality map. The class of uniformly smooth Banach spaces is different
from the class of reflexive Banach space with a weakly duality map. For example, Lp (1 < p < ∞, p 6= 2) is
uniformly smooth, but fails to have a weakly continuous duality map [24].

A key difference of our proof of Theorem 3 from Gwinner’s proof of Theorem ([16], Theorem 4) is that we
used the uniform smoothness of the underlying space X, which allowed us to discover more helpful information
about (xn) from the implicitly defined net of (zα) (see (18) and (19)), which leads to a more accurate estimate for
‖xn − x∗‖, whereas Gwinner estimated ‖xn − zαn‖ (not estimated directly on ‖xn − x∗‖), due to the lack of
available geometric properties of X. This again verifies that the geometric properties of the underlying Banach
space can improve the convergence of iterative methods in Banach spaces.

4. Conclusions

In this paper, we proved the strong convergence of the Krasnoselskii–Mann viscosity
approximation method (KMVAM) to a fixed point of a given nonexpansive self-mapping T of a
closed convex subset C of a uniformly smooth Banach space X, and identified the limit as the unique
retraction from the family of all contractions on C onto the set of fixed points of T. Our argument
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showed that wise manipulations of the uniform smoothness of X can relax the selections of the
regularization parameters and step sizes in KMVAM.
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