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Abstract: We consider high-dimension low-sample-size data taken from the standard multivariate
normal distribution under assumption that dimension is a random variable. The second order
Chebyshev–Edgeworth expansions for distributions of an angle between two sample observations
and corresponding sample correlation coefficient are constructed with error bounds. Depending on
the type of normalization, we get three different limit distributions: Normal, Student’s t-, or Laplace
distributions. The paper continues studies of the authors on approximation of statistics for random
size samples.
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1. Introduction

Let ~X1 = (X11, ..., X1m)
T , . . . ,~Xk = (Xk1, ..., Xkm)

T be a random sample from m-dimensional
population. The data set can be regarded as k vectors or points in m-dimensional space. Recently,
there has been significant interest in a high-dimensional datasets when the dimension is large.
In a high-dimensional setting, it is assumed that either (i) m tends to infinity and k is fixed, or (ii)
both m and k tend to infinity. Case (i) is related to high-dimensional low sample size (HDLSS) data.
One of the first results for HDLSS data appeared in Hall et al. [1]. It became the basis of research in
mathematical statistics for the analysis of high-dimensional data, see, e.g., Fujikoshi et al. [2], which are
an important part of the current data analysis fashionable area called Big data. Scientific areas where
these settings have proven to be very useful include genetics and other types of cancer research,
neuroscience, and also image and shape analysis. See a recent survey on HDLSS asymptotics and its
applications in Aoshima et al. [3].

For examining the features of the data set, it is necessary to study the asymptotic behavior of
three functions: the length ‖~Xi‖ of a m-dimensional observation vector, the distance ‖~Xi −~Xj‖ between
any two independent observation vectors, and the angle ang(~Xi,~Xj) between these vectors at the
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population mean. Assuming that ~Xi’s are a sample from N(0, Im), it was shown in Hall et al. [1] that
for HDLSS data the three geometric statistics satisfy the following relations:

‖~Xi‖ =
√

m +Op(1), i = 1, . . . , k, (1)

‖~Xi −~Xj‖ =
√

2m +Op(1), i, j = 1, . . . k, i 6= j, (2)

ang(~Xi,~Xj) =
1
2

π +Op(m−1/2), i, j = 1, . . . k, i 6= j, (3)

where ‖ · ‖ is the Euclidean distance and Op denotes the stochastic order. These interesting results
imply that the data converge to the vertices of a deterministic regular simplex. These properties were
extended for non-normal sample under some assumptions (see Hall et al. [1] and Aoshima et al. [3]).
In Kawaguchi et al. [4], the relations (1)–(3) were refined by constructing second order asymptotic
expansions for distributions of all three basic statistics. The refinements of (1) and (2) were achieved by
using the idea of Ulyanov et al. [5] who obtained the computable error bounds of orderO(m−1) for the
chi-squared approximation of transformed chi-squared random variables with m degrees of freedom.

The aim of the present paper is to study approximation for the third statistic ang(~X1,~X2) under
generalized assumption that m is a realization of a random variable, say Nn, which represents the
sample dimension and is independent of ~X1 and ~X2. This problem is closely related to approximations
of statistics constructed from the random size samples, in particular, to this kind of problem for the
sample correlation coefficient Rm.

The use of samples with random sample sizes has been steadily growing over the years. For an
overview of statistical inferences with a random number of observations and some applications,
see Esquível et al. [6] and the references cited therein. Gnedenko [7] considered the asymptotic
properties of the distributions of sample quantiles for samples of random size. In Nunes et al. [8] and
Nunes et al. [9], unknown sample sizes are assumed in medical research for analysis of one and
more than one-way fixed effects ANOVA models to avoid false rejections, obtained when using the
classical fixed size F-tests. Esquível et al. [6] considered inference for the mean with known and
unknown variance and inference for the variance in the normal model. Prediction intervals for the
future observations for generalized order statistics and confidence intervals for quantiles based on
samples of random sizes are studied in Barakat et al. [10] and Al-Mutairi and Raqab [11], respectively.
They illustrated their results with real biometric data set, the duration of remission of leukemia
patients treated by one drug. The present paper continues studies of the authors on non-asymptotic
analysis of approximations for statistics based on random size samples. In Christoph et al. [12], second
order expansions for the normalized random sample sizes are proved, see below Propositions 1 and 2.
These results allow for proving second order asymptotic expansions of random sample mean in
Christoph et al. [12] and random sample median in Christoph et al. [13]. See also Chapters 1 and 9 in
Fujikoshi and Ulyanov [14].

The structure of the paper is the following. In Section 2, we describe the relation between
ang(~X1,~X2) and Rm. We recall also previous approximation results proved for distributions of
ang(~X1,~X2) and Rm. Section 3 is on general transfer theorems, which allow us to construct
asymptotic expansions for distributions of randomly normalized statistics on the base of approximation
results for non-randomly normalized statistics and for the random size of the underlying sample,
see Theorems 1 and 2. Section 4 contains the auxiliary lemmas. Some of them have independent
interest. For example, Lemma 3 on the upper bounds for the negative order moments of a
random variable having negative binomial distribution. We formulate and discuss main results
in Sections 5 and 6. In Theorems 3–8, we construct the second order Chebyshev–Edgeworth expansions
for distributions of ang(~X1,~X2) and Rm in random setting. Depending on the type of normalization,
we get three different limit distributions: Normal, Laplace, or Student’s t-distributions. All proofs are
given in the Appendix A.
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2. Sample Correlation Coefficient, Angle between Vectors and Their Normal Approximations

We slightly simplify notation. Let ~Xm = (X1, ..., Xm)T and ~Ym = (Y1, ..., Ym)T be two vectors from
an m-dimensional normal distribution N(0, Im) with zero mean, identity covariance matrix Im and the
sample correlation coefficient

Rm = Rm(~Xm,~Ym) =
∑m

k=1 Xk Yk√
∑m

k=1 X2
k ∑m

k=1 Y2
k

. (4)

Under the null hypothesis H0:
{
~Xm and ~Ym are uncorrelated

}
, the so-called null density pRm(y; n)

of Rm is given in Johnson, Kotz and Balakrishnan [15], Chapter 32, Formula (32.7):

pRm (y; m) =
Γ((m− 1)/2)√
π Γ((m− 2)/2)

(
1 − y2

)(m−4)/2
I(−1 1)(y)

for m ≥ 3, where IA(.) denotes indicator function of a set A.

• Note µ = ERm = 0 and σ2 = Var(Rm) = 1/(m− 1) for m ≥ 2,
• R2 is two point distributed with P(R2 = −1) = P(R2 = 1) = 1/2,
• R3 is U-shaped with pR3(y; 3) = (1/π) (1− y2)−1/2 I(−1,1)(y) and
• R4 is uniform with density pR4(y; 4) = 1/2 I(−1,1)(y).
• Moreover, for m ≥ 5, the density function pRm(y; m) is unimodal.

Consider now the standardized correlation coefficient

Rm =
√

m− c Rm (5)

with some correcting real constant c < m having density

pRm
(y; m, c) =

Γ((m− 1)/2)√
m− c

√
π Γ((m− 2)/2)

(
1− y2

m− c

)(m−4)/2

I{|r|<√m−c }(y), (6)

which converges with c = O(1) as m→ ∞ to the standard normal density

ϕ(y) =
1√
2 π

e− y2/2, y ∈ (−∞ ∞)

and by Konishi [16], Section 4, Formula (4.1) as m→ ∞:

F∗m(x, c) := P
(√

m− c Rm ≤ x
)
= Φ(x) +

x3 + (2(c− 1)− 3)x
4 (m− c)

ϕ(x) +O(m−3/2), (7)

where Φ(x) =
∫ x
−∞ ϕ(y)dy is the standard normal distribution function. Note that in Konishi [16] the

sample size (in our case the dimension of vectors) is m + 1 and c = 1 + 2∆ with Konishi’s correcting
constant ∆. Moreover, (7) follows from the more general Theorem 2.2 in the mentioned paper for
independent components in the pairs (Xk Yk), k = 1, ..., m.

In Christoph et al. [17], computable error bounds of approximations in (7) with c = 2 and c = 2.5
of order O(m−2) for all m ≥ 7 are proved:

supx

∣∣∣∣P(√m− 2.5 Rm ≤ x
)
− Φ(x)− x3 ϕ(x)

4 (m− 2.5)

∣∣∣∣ ≤ Bm

(m− 2.5)2 ≤
B

m2 (8)

and

supx

∣∣∣∣P(√m− 2 Rm ≤ x
)
− Φ(x)− (x3 − x) ϕ(x)

4 (m− 2)

∣∣∣∣ ≤ B∗m
(m− 2)2 ≤

B∗

m2 (9)
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where for some m ≥ 7 constants Bm and B∗m are calculated and presented in Table 1 in
Christoph et al. [17]: i.e., B7 = 1.875, B∗7 = 2.083 and B50 = 0.720, B∗50 = 0.982.

Usually, the asymptotic for Rm is (9), where c = 2 since it is related to the t-distributed statistic√
m− 2 Rm /

√
1− R2

m. With the correcting constant c = 2.5, one term in the asymptotic in (8) vanishes.
In order to use a transfer theorem from non-random to random dimension of the vectors, we prefer

(7) with c = 0. In a similar manner as proving (8) and (9) in Christoph et al. [17], one can verify the
following inequalities for m ≥ 3:

supx

∣∣∣∣∣P(√mRm ≤ x
)
−Φ(x)− (x3 − 5 x)

4 m
ϕ(x)

∣∣∣∣∣ ≤ C1m−2. (10)

Let us consider now the connection between the correlation coefficient Rm and the angle θm of the
involved vectors ~Xm,~Ym:

θm = ang(~Xm,~Ym). (11)

Hall et al. [1] showed that under the given conditions

θm =
1
2

π +Op(m−1/2) as m→ ∞,

where Op denotes the stochastic order. Since

cos θm =
‖~Xm‖2 + ‖~Ym‖2 − ‖~Xm − ~Ym‖2

2 ‖~Xm‖ ‖~Ym‖
= Rm(~Xm,~Ym) = Rm,

the computable error bounds for θm follows from computable error bounds for Rm.
For any fixed constant c < m, and arbitrary x with |x| <

√
m− c π/2, we obtain for the angle

θm : 0 < θm < π :

P
(√

m− c(θm − π/2) ≤ x
)

= P
(

θm ≤ π/2 + x/
√

m− c
)

= P
(

cos θm ≥ cos(π/2 + x/
√

m− c)
)

= P
(

Rm ≥ − sin(x/
√

m− c)
)

= P
(√

m− c Rm ≤
√

m− c sin(x/
√

m− c)
)

(12)

because Rm is symmetric and P(Rm ≤ x) = P(− Rm ≤ x).
Equation (12) shows the connection between the correlation coefficient Rm and the angle θm among

the vectors involved. In Christoph et al. [17], computable error bound of approximation in (8) are
used to obtain similar bound for the approximation of the angle between two vectors, defined in (11).
Here, the approximation (10) and (12) with c = 0 lead for any m ≥ 3 and for |x| ≤ π

√
m /2 to

supx

∣∣∣P (√m(θm −
π

2
) ≤ x

)
−Φ(x)− (1/3)x3 − 5x

4 m
ϕ(x)

∣∣∣ ≤ C1 m−2. (13)

Many authors investigated limit theorems for the sums of random vectors when their dimension
tends to infinity, see, e.g., Prokhorov [18]. In (6) and (7), the dimension m of the vectors ~Xm and ~Ym

tends to infinity.
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Now, we consider the correlation coefficient of vectors ~Xm and ~Ym, where the non-random
dimension m is replaced by a random dimension Nn ∈ N+ = {1, 2, ...} depending on some natural
parameter n ∈ N+ and Nn is independent of ~Xm and ~Ym for any m, n ∈ N+. Define

RNn =
∑Nn

k=1 Xk Yk√
∑Nn

k=1 X2
k ∑Nn

k=1 Y2
k

.

3. Statistical Models with a Random Number of Observations

Let X1, X2, . . . ∈ R = (−∞ ∞) and N1, N2, . . . ∈ N+ = {1, 2, ...} be random variables on the
same probability space (Ω,A,P). Let Nn be a random size of the underlying sample, i.e., the random
number of observations, which depends on parameter n ∈ N+. We suppose for each n ∈ N+

that Nn ∈ N+ is independent of random variables X1, X2, . . . and Nn → ∞ in probability as n →
∞. Let Tm := Tm (X1, . . . , Xm) be some statistic of a sample with non-random sample size m ∈ N+.
Define the random variable TNn for every n ∈ N+:

TNn(ω) := TNn(ω)

(
X1(ω), . . . , XNn(ω)(ω)

)
, ω ∈ Ω,

i.e., TNn is some statistic obtained from a random sample X1, X2, . . . , XNn .
The randomness of the sample size may crucially change asymptotic properties of TNn , see, e.g.,

Gnedenko [7] or Gnedenko and Korolev [19].

3.1. Random Sums

Many models lead to random sums and random means

SNn = ∑Nn
k=1 Xk and MNn =

1
Nn

Nn

∑
k=1

Xk, . (14)

A fundamental introduction to asymptotic distributions of random sums is given in Döbler [20].
It is worth mentioning that a suitable scaled factor by SNn affects the type of limit distribution.

In fact, consider random sum SNn given in (14). For the sake of convenience, let X1, X2, ... be
independent standard normal random variables and Nn ∈ N+ be geometrically distributed with
E(Nn) = n and independent of X1, X2, .... Then, one has

P
(

1√
Nn

SNn ≤ x
)

=
x∫
−∞

1√
2 π

e−u2/2du for all n ∈ N, (15)

P

 1√
E(Nn)

SNn ≤ x

 →
x∫
−∞

1√
2

e−
√

2 |u|du as n→ ∞, (16)

P

√E(Nn)

Nn
SNn ≤ x

 →
x∫
−∞

(
2 + u2)−3/2 du as n→ ∞. (17)

We have three different limit distributions. The suitable scaled geometric sum SNn is standard
normal distributed or tends to the Laplace distribution with variance 1 depending on whether we take
the random scaling factor 1/

√
Nn or the non-random scaling factor 1/

√
ENn, respectively. Moreover,

we get the Student distribution with two degrees of freedom as the limit distribution if we use
scaling with the mixed factor

√
E(Nn)/Nn. Similar results also hold for the normalized random mean

MNn = 1
Nn

SNn .
Assertion (15) is obtained by conditioning and the stability of the normal law. Moreover,

using Stein’s method, quantitative Berry–Esseen bounds in (15) and (16) for arbitrary centered random
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variables X1 with E(|X1|3) < ∞ were proved in (Chen et al. [21], Theorem 10.6), (Döbler [20]
Theorems 2.5 and 2.7) and (Pike and Ren [22] Theorem 3), respectively. Statement (17) follows from
(Bening and Korolev [23] Theorem 2.1).

First order asymptotic expansions are obtained for the distribution function of random sample
mean and random sample median constructed from a sample with two different random sizes
in Bening et al. [24] and in the conference paper Bening et al. [25]. The authors make use of
the rate of convergence of P(Nn ≤ gnx) to the limit distribution H(x) with some gn ↑ ∞.
In Christoph et al. [12], second order expansions for the normalized random sample sizes are proved,
see below Propositions 1 and 2. These results allow for proving second order asymptotic expansions
of random sample mean in Christoph et al. [12] and random sample median in Christoph et al. [13].

3.2. Transfer Proposition from Non-Random to Random Sample Sizes

Consider now the statistic TNn = TNn

(
~XNn ,~YNn

)
,, where the dimension of the vectors ~XNn ,~YNn

is a random number Nn ∈ N+.
In order to avoid too long expressions and at the same time to preserve a necessary accuracy,

we limit ourselves to obtaining limit distributions and terms of order m−1 in the following
non-asymptotic approximations with a bounds of order m−a for some a > 1.

We suppose that the following condition on the statistic Tm = Tm(~Xm,~Ym) with ETm = 0 is met
for a non-random sample size m ∈ N+:

Condition 1. There exist differentiable bounded function f2(x) with supx |x f ′2(x)| < c0 and real numbers
a > 1, C1 > 0 such that for all integer m ≥ 1

supx

∣∣∣P(mγTm ≤ x
)
−Φ(x)−m−1 f2(x)

∣∣∣ ≤ C1 m−a, (18)

where γ ∈ {−1/2, 0, 1/2}.

Remark 1. Relations (10) and (13) give the examples of statistics such that Condition 1 is met. For other
examples of multivariate statistics of this kind, see Chapters 14–16 in Fujikoshi et al. [2].

Suppose that the limiting behavior of distribution functions of the normalized random size
Nn ∈ N+ is described by the following condition.

Condition 2. There exist a distribution function H(y) with H(0+) = 0, a function of bounded variation
h2(y), a sequence 0 < gn ↑ ∞ and real numbers b > 0 and C2 > 0 such that for all integer n ≥ 1

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)

∣∣ ≤ C2n−b, 0 < b ≤ 1

supy≥0

∣∣P(g−1
n Nn ≤ y

)
− H(y)− n−1h2(y)

∣∣ ≤ C2n−b, b > 1

 (19)

Remark 2. In Propositions 1 and 2 below, we get the examples of discrete random variables Nn such that
Condition 2 is met.

Conditions 1 and 2 allow us to construct asymptotic expansions for distributions of randomly
normalized statistics on the base of approximation results for normalized fixed-size statistics
(see relation (18)) and for the random size of the underlying sample (see relation (19)). As a result,
we obtain the following transfer theorem.
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Theorem 1. Let |γ| ≤ K < ∞ and both Conditions 1 and 2 be satisfied. Then, the following inequality holds
for all n ∈ N+ :

supx∈R

∣∣∣P(gγ
n TNn ≤ x

)
− Gn(x, 1/gn)

∣∣∣ ≤ C1 E
(

N−a
n
)
+ (C3Dn + C4) n−b, (20)

Gn(x, 1/gn) =
∫ ∞

1/gn

(
Φ(x yγ) +

f2(xyγ)

gny

)
d
(

H(y) +
h2(y)

n

)
, (21)

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(xyγ) +

f2(xyγ)

ygn

)∣∣∣∣ dy, (22)

where a > 1, b > 0, f2(z), h2(y) are given in (18) and (19). The constants C1, C3, C4 do not depend on n.

Remark 3. Later, we use only the cases γ ∈ {−1/2, 0, 1/2}.

Remark 4. The domain [1/gn, ∞) of integration in (21) depends on gn. Thus, it is not clear how Gn(x, 1/gn) is
represented as a polynomial in g−1

n and n−1. To overcome this problem (see (26)), we prove the following theorem.

Theorem 2. Under the conditions of Theorem 1 and the additional conditions on functions H(.) and h2(.),
depending on the convergence rate b in (19):

H(1/gn) ≤ c1 g−b
n , b > 0, (23)

i :
∫ 1/gn

0 y− 1dH(y) ≤ c2 g−b+1
n ,

ii : h2(0) = 0 and |h2(1/gn)| ≤ c3 n g−b
n ,

iii :
∫ 1/gn

0 y− 1|h2(y)|dy ≤ c4 n g−b
n ,

 f or b > 1, (24)

we obtain for the function Gn(x, 1/gn) defined in (21):

supx
∣∣Gn(x, 1/gn)− Gn,2(x)

∣∣ ≤ C g−b
n + supx

(
|I1(x, n)| I{b<1}(b) + |I2(x, n)|

)
(25)

with

Gn,2(x) =



∞∫
0

Φ(x yγ)dH(y), 0 < b < 1,

∞∫
0

Φ(x yγ)dH(y) + 1
gn

∞∫
0

f2(x yγ)
y dH(y), b = 1

∞∫
0

Φ(x yγ)dH(y) + 1
gn

∞∫
0

f2(x yγ)
y dH(y) I{γ=0}(γ) +

1
n

∞∫
0

Φ(x yγ)dh2(y), b > 1.

(26)

I1(x, n) =
∫ ∞

1/gn

f2(xyγ)

gn y
dH(y) f or b ≤ 1 and I2(x, n) =

∫ ∞

1/gn

f2(xyγ)

gn n y
dh2(y) f or b > 1.

Remark 5. The additional conditions (23) and (24) guarantee to extend the integration range from [1/gn, ∞)

to (0, ∞) of the integrals in (26).

Theorems 1 and 2 are proved in Appendix A.1.

4. Auxiliary Propositions and Lemmas

Consider the standardized correlation coefficient (5) having density (6) with correcting real
constant c = 0 and standardized angle

√
m(θm − π/2), see (12). By (10) and (13) for m ≥ 3, we have

supx

∣∣∣∣∣P(√m Rm ≤ x
)
−Φ(x)− (x3 − 5 x)

4 m
ϕ(x)

∣∣∣∣∣ ≤ C1m−2, m ∈ N+, (27)
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and for the angle θm between the vectors for |x| ≤ π
√

m /2

supx

∣∣∣P (√m(θm −
π

2
) ≤ x

)
−Φ(x)− (1/3)x3 − 5x

4 m
ϕ(x)

∣∣∣ ≤ C1m−2, m ∈ N+, (28)

where (27) and (28) for m = 1 and m = 2 are trivial and C1 does not depend on m.
Suppose f2(x; a) = (a x3 − 5 x) ϕ(x)/4 with a = 1 or a = 1/3 when (27) or (28) are considered.

Since a product of polynomials in x with ϕ(x) is always bounded, numerical calculus leads to

supx |x f ′2(x; a)| = supx |x (ax4 − (3a + 5) x2 + 5)| ϕ(x)/4 ≤ 0.4.

Condition 1 of the transfer Theorem 1 to the statistics Rm and θm are satisfied with c0 = 0.4 and
a = 2.

Next, we estimate Dn(x) defined in (22).

Lemma 1. Let gn a sequence with 0 < gn ↑ ∞ as n→ ∞. Then, with some 0 < c(γ, a) < ∞, we obtain with
a = 1 and a = 1/3:

Dn = sup
x

∫ ∞

1/gn

∣∣∣∣ ∂

∂y

(
Φ(x yγ) +

f2(xyγ; a)
ygn

)∣∣∣∣ dy ≤ 1
2
+

c(γ, a)
4

.

In the next subsection, we consider the cases when the random dimension Nn is negative binomial
distributed with success probability 1/n.

4.1. Negative Binomial Distribution as Random Dimension of the Normal Vectors

Let the random dimension Nn(r) of the underlying normal vectors be negative binomial
distributed (shifted by 1) with parameters 1/n and r > 0, having probability mass function

P(Nn(r) = j) =
Γ(j + r− 1)

Γ(j) Γ(r)

(
1
n

)r (
1− 1

n

)j−1
, j = 1, 2, ... (29)

with E(Nn(r)) = r (n− 1) + 1. Then, P(Nn(r)/gn ≤ x) tends to the Gamma distribution function
Gr,r(x) with the shape and rate parameters r > 0, having density

gr,r(x) =
rr

Γ(r)
xr−1e−rx I(0 ∞)(x), x ∈ R. (30)

If the statistic Tm is asymptotically normal, the limit distribution of the standardized statistic
TNn(r) with random size Nn(r) is Student’s t-distribution S2r(x) having density

sν(x) =
Γ((ν + 1)/2)√

νπ Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2
, ν > 0, x ∈ R, (31)

with ν = 2r, see Bening and Korolev [23] or Schluter and Trede [26].

Proposition 1. Let r > 0, discrete random variable Nn(r) have probability mass function (29) and gn :=
ENn(r) = r(n− 1) + 1. For x > 0 and all n ∈ N there exists a real number C2(r) > 0 such that

supx≥0

∣∣∣∣P(Nn(r)
gn

≤ x
)
− Gr,r(x)− h2;r(x)

n

∣∣∣∣ ≤ C2(r) n−min{r,2}, (32)

where

h2;r(x) =

0, f or r ≤ 1,
gr,r(x)

(
(x− 1)(2− r) + 2Q1

(
gn x

))
2 r , f or r > 1.
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Q1(y) = 1/2− (y− [y]) and [.] denotes the integer part of a number. (33)

Figure 1 shows the approximation of P (Nn(r) ≤ (r(n− 1) + 1)x) by G2,2(x) and G2,2(x) +
h2(x)/n.

Figure 1. Distribution function P (Nn(r) ≤ (r(n− 1) + 1)x) (black line, almost covered by the red line),
the limit law G2,2(x) (blue line) and the second approximation G2,2(x) + h2(x)/n (red line) with n = 25
and r = 2.

Remark 6. The convergence rate for r ≤ 1 is given in Bening et al. [24] or Gavrilenko et al. [27]. The Edgeworth
expansion for r > 1 is proved in Christoph et al. [12], Theorem 1. The jumps of the sample size Nn(r) have an
effect only on the function Q1(.) in the term h2;r(.).

The negative binomial random variable Nn satisfies Condition 2 of the transfer Theorem 1 with
H(x) = Gr,r(x), h2(x) = h2;r(x), gn = ENn(r) = r(n− 1) + 1 and b = min{r 2}.

Lemma 2. In Theorem 2 the additional conditions (23) and (24) are satisfied with H(x) = Gr,r(x), h2(x) =
h2;r(x), gn = ENn(r) = r(n− 1) + 1 and b = min{r 2}. Moreover, one has for γ ∈ {−1/2, 0, 1/2} and
f2(z; a) = (a z3 − 5 z) ϕ(z)/4, with a = 1 or a = 1/3:

|I1(x, n)| =


∣∣∣ ∫ ∞

1/gn

f2(x yγ; a)
gn y dGr,r(y)

∣∣∣ ≤ c5 g−r
n r < 1,∣∣∣ ∫ ∞

1/n
f2(x yγ; a)

n y dG1,1(y)− n−1 f2(x; a) ln n I{γ=0}(γ)
∣∣∣ ≤ c6n−1, r = 1,

(34)

|I2(x, n)| =
∣∣∣∣∫ ∞

1/gn

f2(x yγ; a)
gn n y

dh2;r(y)
∣∣∣∣ ≤

{
c7g−r

n , r > 1, r 6= 2,(
c7 + c8 ln n I{γ=0}(γ)

)
g−2

n , r = 2.
(35)

Furthermore, we have

0 ≤ g−1
n − (r n)−1 ≤ (r− 1) (r n)−2 e−1/2 for r > 1, n ≥ 2 . (36)

In addition to the expansion of Nn(r) a bound of E(Nn(r))−a is required, where m−a is rate of
convergence of Edgeworth expansion for Tm, see (18).

Lemma 3. Let r > 0, α > 0 and the random variable Nn(r) is defined by (29). Then,

E
(

Nn(r)
)−α ≤ C(r)

{
n−min{r, α}, r 6= α

ln(n) n−α, r = α
(37)

and the convergence rate in case r = α cannot be improved.
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4.2. Maximum of n Independent Discrete Pareto Random Variables Is the Dimension of the Normal Vectors

Let Y(s) ∈ N be discrete Pareto II distributed with parameter s > 0, having probability mass and
distribution functions

P(Y(s) = k) =
s

s + k− 1
− s

s + k
and P

(
Y(s) ≤ k

)
=

k
s + k

, k ∈ N, (38)

which is a particular class of a general model of discrete Pareto distributions, obtained by discretization
continuous Pareto II (Lomax) distributions on integers, see Buddana and Kozubowski [28].

Now, let Y1(s), Y2(s), ..., be independent random variables with the same distribution (38).
Define for n ∈ N and s > 0 the random variable

Nn(s) = max
1≤j≤n

Yj(s) with P(Nn(s) ≤ k) =
(

k
s + k

)n
, n ∈ N. (39)

It should be noted that the distribution of Nn(s) is extremely spread out on the positive integers.
In Christoph et al. [12], the following Edgeworth expansion was proved:

Proposition 2. Let the discrete random variable Nn(s) have distribution function (39). For x > 0, fixed s > 0
and all n ∈ N, then there exists a real number C3(s) > 0 such that

sup
y>0

∣∣∣∣P(Nn(s)
n
≤ y

)
− Hs(y)−

h2;s(y)
n

∣∣∣∣ ≤ C3(s)
n2 ,

Hs(y) = e−s/y and h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)
)
/
(
2 y2), y > 0 (40)

where Q1(y) is defined in (33).

Remark 7. The continuous function Hs(y) = e−s/yI(0 ∞)(y) with parameter s > 0 is the distribution function
of the inverse exponential random variable W(s) = 1/V(s), where V(s) is exponentially distributed with rate
parameter s > 0. Both Hs(y) and P(Nn(s) ≤ y) are heavy tailed with shape parameter 1.

Remark 8. Therefore, E
(

Nn(s)
)
= ∞ for all n ∈ N and E

(
W(s)

)
= ∞. Moreover:

• First absolute pseudo moment ν1 =
∫ ∞

0 x
∣∣d(P(Nn(s) ≤ n x

)
− e−s/x)∣∣ = ∞,

• Absolute difference moment χu =
∫ ∞

0 xu−1
∣∣P(Nn(s) ≤ n x

)
− e−s/x

∣∣dx < ∞
for 1 ≤ u < 2, see Lemma 2 in Christoph et al. [12].

On pseudo moments and some of their generalizations, see Chapter 2 in Christoph and Wolf [29].

Lemma 4. In Transfer Theorem 2, the additional conditions (23) and (24) are satisfied with H(y) = Hs(y) =
e−s/y, h2(y) = h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)

)
/
(
2 y2), y > 0, gn = n and b = 2. Moreover, one has

for |γ| ≤ K < ∞ and f2(z; a) = (a z3 − 5 z) ϕ(z)/4, with a = 1 or a = 1/3:

I2(x, n) =

∣∣∣∣∣
∫ ∞

1/n

f2(x yγ; a)
n2 y

dh2;s(y)

∣∣∣∣∣ ≤ C(s)n−2.

Lemma 5. For random size Nn(s) with probabilities (39) with reals s ≥ s0 > 0 and arbitrary small s0 > 0
and n ≥ 1, we have

E
(

Nn(s)
)−α ≤ C(s)n−α. (41)

The Lemmas are proved in Appendix A.2.
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5. Main Results

Consider the sample correlation coefficient Rm = Rm(~Xm,~Ym), given in (4) and the two statistics
R∗m =

√
m Rm and R∗∗m = m Rm which differ from Rm by scaling factors. Hence, by (10),

P(
√

mRm ≤ x) = P(R∗m ≤ x) = P
(

1√
m

R∗∗m ≤ x
)
= Φ(x) +

(x3 − 5 x)
4 m

ϕ(x) + r(m) (42)

with |r(m)| ≤ Cm−2.
Let θm be the angle between the vectors ~Xm and ~Ym. Contemplate the statistics Θm = θm − π/2,

Θ∗m =
√

m (θm − π/2) and Θ∗∗m = m (θm − π/2) which differ only in scaling . Then, by (13),

P(
√

m Θm ≤ x) = P(Θ∗m ≤ x) = P
(

1√
m

Θ∗∗m ≤ x
)
= Φ(x) +

(
(1/3)x3 − 5 x

)
4 m

ϕ(x) + r∗(m)

with |r∗(m)| ≤ Cm−2.
Consider now the statistics RNn , R∗Nn

and R∗∗Nn
as well as ΘNn , Θ∗Nn

and Θ∗∗Nn
when the vectors

have random dimension Nn. The normalized statistics have different limit distributions as n→ ∞.

5.1. The Random Dimension Nn = Nn(r) Is Negative Binomial Distributed

Let the random dimension Nn(r) be negative binomial distributed with probability mass
function (29) and gn = ENn(r) = r(n − 1) + 1. “The negative binomial distribution is one of the
two leading cases for count models, it accommodates the overdispersion typically observed in count
data (which the Poisson model cannot)”, see Schluter and Trede [26].

It follows from Theorems 1 and 2 and Proposition 1 that if limit distributions for

P
(

gγ
n Nn(r)1/2−γRNn(r) ≤ x

)
for γ ∈ {1/2, 0− 1/2} exist they are

∫ ∞
0 Φ(x yγ)dGr,r(y) with densities

given bellow in the proof of the corresponding theorems:

rr
√

2 π Γ(r)

∫ ∞

0
yr−1/2e−(x yγ+r y)dy =


s2 r(x) = Γ(r + 1/2)√

2 rπ Γ(r)

(
1 + x2

2 r

)−(r+1/2)
, γ = 1/2,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

l1(x) = 1√
2

e−
√

2 |x|, for r = 1, γ = −1/2,

(43)

where in case γ = −1/2 for r 6= 1 generalized Laplace distributions occur.

5.1.1. Student’s t-Distribution

We start with the case γ = 1/2 in Theorems 1 and 2. Consider the statistic RNn(r) =
√

gnRNn(r).
The limit distribution is the Student’s t-distribution S2r(x) with 2 r degrees of freedom with
density (31).

Theorem 3. Let r > 0 and (29) be the probability mass function of the random dimension Nn = Nn(r) of
the vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) with
gn = ENn(r) = r(n− 1) + 1 hold, then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣P (√gn RNn(r) ≤ x
)
− S2r;n(x; 1)

∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,
(44)

where

S2r;n(x; a) = S2r(x) +
s2r(x)

r n

(
a x3 − 10 r x + 5 x3

2r− 1
+

(2− r) (x3 + x)
4 (2r− 1)

)
. (45)
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Moreover, the scaled angle θNn(r) between the vectors ~XNn(r) and ~YNn(r) allows the estimate

supx

∣∣∣P (√gn (θNn(r) − π/2) ≤ x
)
− S2r;n(x; 1/3)

∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,

where S2r;n(x; 1/3) is given in (45) with a = 1/3.

Figure 2 shows the advantage of the Chebyshev–Edgeworth expansion versus the limit law in
approximating the empirical distribution function.

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9

1.0

Theorem 5.1

Lines:
Probability
Student
Corrected Student

Figure 2. Empirical version of P
(√

gn RNn(r) ≤ x
)

(blue line), limit Student law S2r(x) (orange line)

and second approximation S2r;n(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.

Remark 9. The limit Student’s t-distribution S2r(x) is symmetric and a generalized hyperbolic distribution
which can be written as a regularized incomplete beta function Iz(a, b). For x > 0:

S2r(x) =
∫ x

−∞
s2r(u) du =

1
2

(
1 + I2r/(x2+2 r)(1/2, r)

)
and Iz(a, b) =

Γ(a + b)
Γ(a) Γ(b)

∫ z

0
ta−1(1− t)b−1.

Remark 10. For integer values ν = 2 r ∈ {1, 2, ...} the Student’s t-distribution S2r(x) is computable in
closed form:

the Cauchy law S1(x) =
1
2
+

1
π

arctan(x), S2(x) =
1
2
+

x
2
√

2 + x2
,

S3(x) =
1
2
+

1
π

(
x√

3(1 + x2/3)
+ arctan(x/

√
3)

)
and S4(x) =

1
2
+

27 (x2 + 3) x (2 x2 + 9)
8 (3 x2 + 9)5/2 .

Remark 11. If the dimension of the vectors has the geometric distribution Nn(1), then asymptotic distribution
of the sample coefficient is the Student law S2(x) with two degrees of freedom.

Remark 12. The Cauchy limit distribution occurs when the dimension of the vectors has distribution Nn(1/2).

Remark 13. The Student’s t-distributions S2r(x) are heavy tailed and their moments of orders α ≥ 2 r do
not exist.
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5.1.2. Standard Normal Distribution

Let γ = 0 in the Theorems 1 and 2 examining the statistics R∗Nn(r)
and Θ∗Nn(r)

=
√

Nn(r)(θNn(r)−π/2).

Theorem 4. Let r > 0 and Nn = Nn(r) be the random vector dimension having probability mass function (29).
If the representation (42) for the statistic Rm and the inequality (32) with gn = ENn(r) = r(n− 1) + 1 hold,
then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣∣P(√Nn(r) RNn(r) ≤ x
)
−Φn;2(x; 1)

∣∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,
(46)

where

Φn;2(x; a) = Φ(x) +
ϕ(x)

n

(
(a x3 − 5 x) ln n

4
I{r=1}(r) +

Γ(r− 1) (a x3 − 5 x)
4 Γ(r)

I{r>1}(r)

)
. (47)

Moreover, the scaled angle θ∗Nn(r)
between the vectors ~XNn(r) and ~YNn(r) allows the estimate

supx

∣∣∣∣P(√Nn(r) (θNn(r) − π/2) ≤ x
)
−Φn;2(x; 1/3)

∣∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,

where Φn;2(x; 1/3) is given in (47) with a = 1/3.

Figure 3 shows that the second order Chebyshev–Edgeworth expansion approximates the
empirical distribution function better than the limit normal distribution.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

0.6

0.7

0.8

0.9
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Theorem 5.2

Lines:
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Normal
Corrected Normal

Figure 3. Empirical version of P
(√

Nn(r) RNn(r) ≤ x
)

(blue line), limit normal law Φ(x) (orange line)

and second approximation Φn;2(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.

Remark 14. When the distribution function of a statistic Tm without standardization tends to the standard
normal distribution Φ(x), i.e., P(Tm ≤ x)→ Φ(x), then the limit law for P(TNn ≤ x) remains the standard
normal distribution Φ(x).
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5.1.3. Generalized Laplace Distribution

Finally, we use γ = −1/2 in Theorems 1 and 2 examining the statistic g−1/2
n R∗∗Nn(r)

.

Theorems 1 and 2 state that if there exists a limit distribution of P
(

g−1/2
n R∗∗Nn

≤ x
)

as n→ ∞ then it
has to be a scale mixture of normal distributions with zero mean and gamma distribution:

Lr(x) =
∫ ∞

0
Φ(xy−1/2)dGr,r(y)

having density, see formula (A9) in the proof of Theorem 5:

lr(x) =
rr

Γ(r)

∫ ∞

0
ϕ(xy−1/2) yr−3/2e−rydy =

2 rr

Γ(r)
√

2 π

(
|x|√
2 r

)r−1/2

Kr−1/2(
√

2 r |x|). (48)

where Kα(u) is the α-order Macdonald function or α-order modified Bessel function of the third kind.
See, e.g., Oldham et al. [30], Chapter 51, or Kotz et al. [31], Appendix, for properties of these functions.

For integer r = 1, 2, 3, ... these densities lr(x), so-called Sargan densities, and their distribution
functions are computable in closed forms:

l1(x) = 1√
2

e−
√

2 |x| and L1(x) = 1− 1
2 e−

√
2 |x|, x > 0

l2(x) =
(

1
2 + |x|

)
e−2 |x| and L2(x) = 1− 1

2 (1 + x) e−2 |x|, x > 0

l3(x) = 3
√

6
16

(
1 +
√

6 |x|+ 2 x2
)

e−
√

6 |x|) and L3(x) = 1−
(

1
2 + 5

√
6 x

16 + 3 x2

8

)
e−
√

6 |x|,

 (49)

where Lr(−x) = 1− Lr(x) for x ≥ 0.
The standard Laplace distribution is L1(x) with variance 1 and density l1(x) given in (49).

Therefore, Sargans distributions are a kind of generalizations of the standard Laplace distribution.

Theorem 5. Let r = 1, 2, 3 and (29) be probability mass function of the random dimension Nn = Nn(r) of the
vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) for Nn(r) with
gn = ENn(r) = r(n− 1) + 1 hold, then there exists a constant Cr such that for all n ∈ N+

sup
x

∣∣∣P (g−1/2
n Nn(r) RNn(r) ≤ x

)
− Ln;2(x; 1)

∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,
(50)

where

Ln;2(x; a) =



L1(x), r = 1,

L2(x) + a x |x| − 5 x
√

2
2(n− 1) + 1 e−2 |x|, r = 2,

L3(x) + 27
24(n− 1) + 8

(
a x3√

2
− 5 x |x|

6 − 5 x
6
√

6

)
e−
√

6 |x|

+ 9 x
2 n

(
1

12
√

6
+
|x|
12 −

x2

6
√

6

)
e−
√

6 |x|, r = 3.

(51)

For arbitrary r > 0, the approximation rate is given by:

sup
x

∣∣∣P (g−1/2
n Nn(r) RNn(r) ≤ x

)
− Lr(x)

∣∣∣ ≤ Crn−min {r 1}.

Moreover, the scaled angle Nn(r) θNn(r) between the vectors ~XNn(r) and ~YNn(r) allows the estimate

supx

∣∣∣P (g−1/2
n Nn(r) θNn(r) ≤ x

)
− Ln;2(x; 1/3)

∣∣∣ ≤ Cr

{
n−min{r,2}, r 6= 2,

ln(n) n−2, r = 2,
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where Ln;2(x; 1/3) is given in (51) with a = 1/3.

Figure 4 shows that the Chebyshev–Edgeworth expansion approaches the empirical distribution
function better than the limit Laplace law.

Remark 15. One can find the distribution functions Lr(x) for arbitrary r > 0 with formula 1.12.1.3 in
Prudnikov et al. [32]:

Lr(x) =
1
2
+

2 rr
√

2 π Γ(r)

∫ x

0

(
|x|
2 r

)r−1/2

Kr−1/2(
√

2 r |x|)dx

=
1
2
+

x
(2 r)(r−1/2)/2

(
Kr−1/2(

√
2 rx)Lr−3/2(

√
2 rx) + Kr−3/2(

√
2 rx)Lr−1/2(

√
2 rx)

)
.

where Lα(x) are the modified Struve functions of order α, for properties of modified Struve functions see, e.g.,
Oldham et al. [30], Section 57:13.

Remark 16. The function (48) as density of a mixture of normal distributions with zero mean and
random variance Wr having gamma distribution P(Wr ≤ y) = Gr,r(y) is given also in Kotz et al. [31],
Formula (4.1.32) with τ = r, σ = 1/

√
r, using Formula (A.0.4) with λ = −r + 3/2 and the order-reflection

formula K−α(x) = Kα(x). Such a variance gamma model is studied in Madan and Senata [33] for share
market returns.

Remark 17. A systematic exposition about the Laplace distribution and its numerous generalization and diverse
applications one finds in the useful and interesting monography by Kotz et al. [31]. Here, these generalized
Laplace distributions L1(x), L2(x) and L3(x) are the leading terms in the approximations of the sample
correlation coefficient R∗∗Nn(r)

of two Gaussian vectors with negative binomial distributed random dimension
Nn(r) and the angle θ∗∗Nn(r)

between these vectors.

Remark 18. In Goldfeld and Quandt [34] and Missiakoulis [35] Sargans densities lr(x) and distribution
functions Lr(x) for arbitrary integer r = 1, 2, 3, ... have been studied as an alternative to normal law in
econometric models because they are computable in closed form, see also Kotz et al. [31], Section 4.4.3 and the
references therein.
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Figure 4. Empirical version of P
(

g−1/2
n Nn(r) RNn(r) ≤ x

)
(blue line), limit Laplace law Lr(x) (orange

line) and second approximation Ln;2(x; 1) (green line) for the correlation coefficient for pairs of normal
vectors with random dimension N25(2). Here, x > 0, n = 25 and r = 2.
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5.2. The Random Dimension Nn = Nn(s) Is the Maximum of n Independent Discrete Pareto Random Variables

The random dimension Nn(s) has probability mass function (39): Since ENn(s) = ∞ we choose
gn = n and consider again the cases γ = 1/2, γ = 0 and γ = −1/2.

It follows from Theorems 1 and 2 and Proposition 2 that if limit distributions for P
(

gγ
n RNn(s) ≤ x

)
for γ ∈ {1/2, 0− 1/2} exist, they are

∫ ∞
0 Φ(x yγ)dHs(y) with densities given below in the proof of the

corresponding theorems

s√
2 π

∫ ∞

0
y− 3/2e−(x2 y2 γ/2+s/y)dy =


l1/
√

s(x) =
√

2 s
2 e−

√
2 s|x|, γ = 1/2,

ϕ(x) = 1√
2 π

e−x2/2, γ = 0,

s∗2(x;
√

s) = 1
2
√

2 s

(
1 + x2

2 s

)−3/2
, γ = −1/2,

(52)

where s∗2(x;
√

s) is the density of the scaled Student’s t-distribution S∗2(x;
√

s) with 2 degrees of freedom,
see Definition B37 in Jackman [36], p.507. If Z has density s∗2(x;

√
s) then Z/

√
s has a classic Student’s

t-distribution with two degrees of freedom.

5.2.1. Laplace Distribution

We start with the case γ = 1/2 in Theorems 1 and 2. Consider the statistics
√

n RNn(s) and√
n(θNn(s) − π/2). The limit distribution is now the Laplace distribution

L1/
√

s(x) =
1
2
+

1
2

sign(x)
(

1− e−
√

2 s |x|
)

with density l1/
√

s(x) =

√
2 s
2

e−
√

2 s|x|.

Theorem 6. Let s > 0 and (39) be the probability mass function of the random dimension Nn = Nn(s) of the
vectors under consideration. If the representation (42) for the statistic Rm and the inequality (32) with gn = n
hold, then there exists a constant Cs such that for all n ∈ N+

sup
x

∣∣∣P (√n RNn(s) ≤ x
)
− L1/

√
s ;n(x; a)

∣∣∣ ≤ Csn−2,

where

L1/
√

s ;n(x; a) = L1/
√

s(x) +
l1/
√

s(x)
8 s n

(
a 2 s x3 − (4− s)x

(
1 +
√

2 s |x|
))

. (53)

Moreover, the scaled angle θNn(s) between the vectors ~XNn(s) and ~YNn(s) allows the estimate

supx

∣∣∣P (√n (θNn(s) − π/2) ≤ x
)
− L1/

√
s ;n(x; 1/3)

∣∣∣ ≤ Cs n−2,

where L1/
√

s ;n(x; 1/3) is given in (53) with a = 1/3.

5.2.2. Standard Normal Distribution

Let γ = 0 in the Theorems 1 and 2 examine the statistics R∗Nn(s)
and Θ∗Nn(s)

=
√

Nn(s)(θNn(s) −π/2).

Theorem 7. Let s > 0 and Nn = Nn(s) be the random vector dimension having probability mass function (39).
If the representation (42) for the statistic Rm and the inequality (32) with gn = n hold, then there exists a
constant Cs such that, for all n ∈ N+

sup
x

∣∣∣∣P(√Nn(s) RNn(s) ≤ x
)
−Φ(x)− 1

4n
ϕ(x) s2 (x3 − 5 x)

∣∣∣∣ ≤ Cs n−2,
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Moreover, the scaled angle θ∗Nn(s)
between the vectors ~XNn(s) and ~YNn(s) allows the estimate

supx

∣∣∣∣P(√Nn(s) (θNn(s) − π/2) ≤ x
)
−Φ(x)− 1

4n
ϕ(x) s2 (

1
3

x3 − 5 x)
∣∣∣∣ ≤ Csn−2.

5.2.3. Scaled Student’s t-Distribution

Finally, we use γ = −1/2 in Theorems 1 and 2 examining the statistics n−1/2 Nn(s) RNn(s) and
n−1/2 Nn(s) (θNn(s) − π/2). The limit Scaled Student’s t-Distribution S∗2(x;

√
s) with two degrees of freedom

is a scale mixture of the normal distribution with zero mean and mixing exponential distribution
1− e−sy, y ≥ 0, and it is representable in a closed form, see (A15) below in the proof of Theorem 8:∫ ∞

0
Φ(x/

√
y)de−s/y =

∫ ∞

0
Φ(x/

√
y)sy−2e−s/ydy =

∫ ∞

0
Φ(x
√

z)se−szdz

=
∫ ∞

0
Φ(x
√

z)d(1− e−sz)dz =
1
2
+

x/
√

s
2
√

2
√

1 + x2/(2s)
= S∗2(x)

Theorem 8. Let s > 0 and Nn = Nn(s) be the random vector dimension having probability mass function (39).
If the representation (42) for the statistic Rm and the inequality (32) with gn = n hold, then there exists a
constant Cs such that for all n ∈ N+

sup
x

∣∣∣P (n−1/2 Nn(s) RNn(s) ≤ x
)
− S∗n;2(x; 1)

∣∣∣ ≤ Cr n−2, (54)

where

S∗n;2(x;
√

s; a) = S∗2(x;
√

s) +
(15a + 3s− 18)x3 − 6 x s(6− s)

4 n (x2 + 2 s)2 s∗2(x;
√

s) (55)

Moreover, the scaled angle θ∗Nn(s)
between the vectors ~XNn(s) and ~YNn(s) allows the estimate

supx

∣∣∣P (n−1/2 Nn(s) θNn(s) ≤ x
)
− Sn;2(x;

√
s; 1/3)

∣∣∣ ≤ Cs n−2,

where Sn;2(x;
√

s; 1/3) is given in (55) with a = 1/3.

Theorems 3 to 8 are proved in Appendix A.3.

6. Conclusions

The asymptotic distributions of the sample correlation coefficient of vectors with random
dimensions are normal scale mixtures. From (43) and (52), one can conclude that random dimension
and corresponding scaling have significant influence on limit distributions A scale mixture of a normal
distribution change the tail behavior of the distribution. Students t-Distributions have polynomial
tails, as one class of heavy-tailed distributions, they can be used to model heavy-tail returns data in
finance. The Laplace distributions have heavier tails than normal distributions.
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Appendix A. Proofs of the Theorems and Lemmas

Appendix A.1. Proofs of Theorems 1 and 2

Proof of Theorem 1. The proof follows along the similar arguments of the more general transfer
Theorem 3.1 in Bening et al. [24]. Since in Theorem 3.1 in Bening et al. [24] the constant γ has to
be non-negative and in our Theorem 1, we also need γ = −1/2, therefore we repeat the proof.
Conditioning on Nn, we have

P
(

gγ
n TNn ≤ x

)
= P

(
Nγ

n TNn ≤ x (Nn/gn)
γ
)

= ∑∞
m=1 P

(
mγTm ≤ x(m/gn)

γ
)
P(Nn = m).

Using now (18) with Φm(z) := Φ(z) + m−1 f2(z), we find

∑∞
m=1

∣∣∣P(mγTm ≤ x(m/gn)
γ
)
−Φm(x(m/gn)

γ)
∣∣∣ P(Nn = m)

(18)
≤ C1 ∑∞

m=1 m−a P(Nn = m) = C1 E(N−a
n ). (A1)

Taking into account P
(

Nn/gn < 1/gn

)
= P

(
Nn < 1

)
= 0, we obtain

∑∞
m=1 Φm(x (m/gn)

γ)P(Nn = m) = E (ΦNn(x (Nn/gn)
γ))

=
∫ ∞

1/gn
∆n(x, y)dP

(Nn

gn
≤ y

)
= Gn(x, 1/gn) + I1,

where ∆n(x, y) := Φ(xyγ) + f2(xyγ)/(gny), Gn(x, 1/gn) is defined in (21) and

I1 =
∫ ∞

1/gn
∆n(x, y)d

(
P
(Nn

gn
≤ y

)
− H(y)−

h2(y) I{b>1}(b)
n

)
.

Estimating integral I1, we use the integration by parts for Lebesgue–Stieltjes integrals,
the boundedness of f2(z), say supz | f2(z)| ≤ c∗1 , and estimates (19)

|I1| ≤ supx lim
L→∞

|∆n(x, y)|
∣∣P(Nn/gn ≤ y

)
− H(y)− n−1h2(y) I{b > 1}(b)

∣∣∣∣∣∣y=L

y=1/gn

+ supx

∫ ∞

1/gn

∣∣∣ ∂

∂ y
∆n(x, y)

∣∣∣ ∣∣∣P(Nn/gn ≤ y
)
− H(y)− n−1h2(y) I{b>1}(b)

∣∣∣ dy

≤ (1 + c∗1)C2 n−b + C2 Dn n−b,

where Dn is defined in (22). Together with (A1), we obtain (20) and Theorem 1 is proved.

Proof of Theorem 2. Using (23), we find for b > 0

∫ 1/gn

0
Φ(x yγ)dH(y) ≤

∫ 1/gn

0
dH(y) = H(1/

√
gn)− H(0)

(23)
≤ c1g−b

n .

Let now b > 1. Since f2(z) is supposed to be bounded, it follows from | f2(z)| ≤ c∗1 < ∞
and (24i) that ∫ 1/gn

0
| f2(x yγ)|y−1dH(y) ≤ c∗1

∫ 1/gn

0
y−1dH(y)

(24i)
≤ c∗1 c2g−b+1

n .

Integration by parts, |z|ϕ(z) ≤ c∗ = (2 π e)−1/2, (24ii) and (24iii) lead to∣∣∣∣∫ 1/gn

0
Φ(x yγ)dh2(y)

∣∣∣∣ ≤ |h2(1/gn)|+ γc∗
∫ 1/gn

0
y−1|h2(y)|dy ≤ (c3 + γc∗c4)n g−b

n .
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Theorem 2 is proved.

Appendix A.2. Proofs of Lemmas 1 to 5

Proof of Lemma 1. To estimate Dn, we consider three cases:

Dn = supx |Dn(x)| = max{supx>0 |Dn(x)|, supx<0 |Dn(x)|, |Dn(0)|}.

Let x > 0. Since ∂
∂y Φ(x yγ) = γ x yγ−1 ϕ(x yγ) ≥ 0, we find

∫ ∞

1/gn

∣∣∣∣ ∂

∂y
Φ(x yγ)

∣∣∣∣ dy =
∫ ∞

1/gn
γ x yγ−1 ϕ(x yγ)dy =

∫ ∞

x g−γ
n

ϕ(u)du = Φ(∞)−Φ(x g−γ
n ) ≤ 1/2.

Consider now f2(x yγ; a) = (a(x yγ)3 − 5 x yγ) ϕ(x yγ)/4 with a = 1 or a = 1/3. Then,

∂

∂y

(
f2(x yγ; a)

y

)
=

Q5(x yγ; a)
4 y2 , Q5(z; a) = −(γ a z5 − ((3a + 5) γ− a) z3 + 5 (γ− 1)z) ϕ(z). (A2)

Since supz |Q5(z; a)| ≤ c(γ; a) < ∞ and g−1
n
∫ ∞

1/gn
y−2dy = 1, inequality (29) holds for x > 0.

Taking into account |Dn(x)| = |Dn(−x)| and Dn(0) = 0, Lemma 1 is proved.

Proof of Lemma 2. Using (30), we find Gr,r(1/gn) ≤ c1g−r
n with c1 = rr−1/Γ(r). For r > 1,

then
∫ 1/gn

0 y−1dGr,r(y) ≤ c2g−r+1
n with c2 = rr/

(
(r − 1)Γ(r)

)
. Since gr,r(0) = 0, h2;r(0) = 0

and gn ≤ r n for r > 1, then (24ii) and (24iii) hold with c3 = c∗r and c4 = c∗r /(r − 1),

where c∗r = rr

2r Γ(r) supy{e−r y (|y− 1||2− r|+ 1)} < ∞.

It remains to prove the bounds in (34) and (35). Let first r < 1. With c∗1 = supz | f2(z; a)|, we find

|I1(x, n)| ≤
c∗1 rr

gn Γ(r)

∫ ∞

1/gn
yr−2dy ≤

c∗1 rr

(r− 1) Γ(r)
g−r

n with c5 =
c∗1 rr

(r− 1) Γ(r)
.

If r = 1 with c∗∗1 = supz{|a z2 − 5|ϕ(z/
√

2)}, we find | f2(z; a)| ≤ c∗∗1 |z| ϕ(z/
√

2) and

|I1(x, n)| ≤
c∗∗1 |x|√

2 π n

∫ ∞

1/n
yγ−1e− (y+x2 y2 γ/4) dy with γ ∈ {−1/2, 0, 1/2}.

For γ = 1/2 using |x| (1 + x2/4)−1/2 ≤ 2, we obtain

|I1(x, n)| ≤
c∗∗1 |x|√

2 π n

∫ ∞

1/n
y1/2−1e− (1+x2/4) y dy ≤

c∗∗1 |x|Γ(1/2)√
2 π (1 + x2/4)1/2

n−1 ≤ c6 n−1, c6 =
√

2 c∗∗1 .

If γ = −1/2, then Prudnikov et al. [37], formula 2.3.16.3, for x 6= 0 leads to

I1(x, n) ≤
c∗∗1 |x|√

2 π n

∫ ∞

1/n
y−1−1/2 e−(2 y+x2/(4 y))dy ≤

c∗∗1 |x|√
2 π n

2
√

π

|x| e−
√

2 |x| ≤
√

2 c∗∗1
n

, c6 =
√

2 c∗∗1 .

Finally, if γ = 0, then f2(x yγ; a) = f2(x; a) does not depend on y. Using now

0 ≤ ln n−
∫ 1

1/n
y−1dG1,1(y) =

∫ 1

1/n

1− e−y

y
dy ≤ 1 and

∫ ∞

1
y−1dG1,1(y) ≤ e−1,

then (34) for r = 1 holds with c6 = c∗1(1 + e−1).
Let r > 1. Integration by parts for Lebesgue–Stieltjes integrals in I2(x, n) in (35) and (A2) lead to

I2(x, n) ≤ 1
n gn

(
c∗1 gn |h2;r(1/gn)|+

∫ ∞

1/gn

|Q5(xyγ; a)|
4 y2 |h2;r(y)|dy

)
. (A3)
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Since c(γ; a) = supz |Q5(z; a)| < ∞ and with above defined c∗r , we find

∫ ∞

1/gn

|h2;r(y)|
y2 dy ≤ c∗r

∫ ∞

1/gn
yr−3dy =

c∗r
(2− r)

g−r+2
n for 1 < r < 2

and with c∗∗r = rr−1

2 Γ(r) supy{(e−r y/2 (|y− 1| |2− r|+ 1)} < ∞, we obtain

∫ ∞

1/gn

|h2;r(y)|
y2 dy ≤ c∗∗r

∫ ∞

1/gn
yr−3e−r y/2dy ≤ c∗∗r Γ(r− 2)

(r/2)r−2 for r > 2.

Hence, we obtain (35) for r > 1, r 6= 2 with some constant 0 < c7 < ∞.
For r = 2, the second integral in line above is an exponential integral. Therefore, we estimate the

integral I2(x, n) in (35) more precisely like in estimating I1(x, n) above, taking into account the given
function f2(z; a).

Using |h2;2(y)| ≤ 4 y e−2y and consider (A2), define P4(z; a) by Q5(z; a) = −z P4(z; a)ϕ(z/
√

2)
with c∗2 = supz |P4(z; a)|ϕ(z/

√
2) < ∞, we obtain in (A3)

∫ ∞

1/gn

|Q5(x yγ)|
4 y2 |h2;2(y)|dy ≤ c∗2 |x|√

2 π

∫ ∞

1/gn
yγ−1 e−(2y+x2 y2γ/4)dy.

We estimate the latter integral in the same way as I1(x, n) for the two cases γ = 1/2 γ = −1/2 and
find (35) for r = 2 with some constants 0 < c7 < ∞.

In order to prove (35) for r = 2 and γ = 0, we consider for α > 0 the following inequalities:

∫ ∞

1/gn
y−1e−αydy


≤
∫ 1

1/gn
y−1dy +

∫ ∞
1 e−αydy ≤ ln gn + α−1 e−α,

≥
∫ 1

1/gn
y−1e−αydy ≥ e−α

∫ 1
1/gn

y−1dy ≥ e−α ln gn

. (A4)

The upper bound in (A4) leads to (35) for r = 2, γ = 0, too. The lower bound in (A4) shows that
the ln n-term cannot be improved.

Bound (36) for n ≥ 2, r > 1 results from 0 ≤ 1
gn
− 1

r n = r− 1
r2 n2(1− (r− 1)/(r n)

≤ 2(r− 1)
r2 n2 .

Proof of Lemma 3. Let r > 0. If n = 1, then P(N1(r) = 1) = 1 and (37) holds with C(r) = 1. Let n ≥ 2
and α > 0

E
(

Nn(r)
)−α

=
1
nr

(
1 + ∑∞

k=2
Γ(k + r− 1)
kα Γ(r) Γ(k)

(
1− 1

n

)k−1
)

.

It follows from the relations (49) and (50) with their corresponding bounds in the proof of
Theorem 1 in Christoph et al. [12] that

Γ(k + r− 1)
Γ(r)Γ(k)

=
1

(k + r− 1) B(r k)
=

kr−1

Γ(r)

(
1 + R1(k)

)
, |R1(k)| ≤

c1(r)
k

. (A5)

For x ≥ k ≥ 2 using (1− 1/n)x ≤ e−x/n, we find

kr−1(1− 1/n)k−1

kα
≤
∫ k+1

k

xr (1− 1/n)x−2

(x− 1)1+α
dx ≤ 23+α

∫ k+1

k
xr−3 e−x/ndx.

Then, with c2(r) = 23+α(1 + c1(r))/Γ(r), we obtain

E
(

Nn(r)
)−α ≤ c2(r)n−r Jr(n), where Jr(n) =

∫ ∞

1
xr−α−1 e−x/ndx = nr−α

∫ ∞

1/n
yr−α−1 e−ydy.



Mathematics 2020, 8, 1151 21 of 28

Since Jr(n) ≤ (α − r)−1 for 0 < r < α, Jr(n) ≤ nr−α Γ(r− α) for r > α and using (A4) with r = α

Jr(n) ≤ ln n + e−1, the upper bound (37) is proved.
Let r = α > 0. Considering the formula (A5), 0 ≤ ∑∞

k=2 k−1|R1(k)| ≤ c1(r)π2/(6 Γ(r)) < ∞,

∑(n) := ∑n−1
k=2 k−1 ≥ ln n− ln 2 and ∑n−1

k=2
1− (1− 1/n)k−1

k ≤ ∑n−1
k=2

k− 1
k n ≤ 1, we find:

E(Nn(r))−r ≥ 1
nr Γ(r)

(
∑n−1

k=2
1
k

(
1− 1

n

)k−1
− c3

)
≥ 1

nr Γ(r)

(
∑n−1

k=2
1
k
− c4

)
≥ 1

nr Γ(r)
(ln n− c5) ,

where c3 = c1(r)π2/6, c4 = 1 + c3 and c5 = c4 − ln 2. Hence, the ln n-term cannot be dropped.

Proof of Lemma 4. The upper bounds in the estimates (23) and (24) with Hs(y), h2;s(y) and I2(x, n)
given in (40) are C(s)e−s n/2. For example, (24ii):∫ 1/n

0 y−1|h2;s(y)|dy ≤ s(s + 1)/2
∫ 1/n

0 y−3 e−s/ydy ≤ (s + 1)/(2s)
∫ ∞

s n z e−zdz ≤ (s +

1)/(2s)e−sn/2.

Proof of Lemma 5. Proceeding as in Bening et al. [24] using

P(Nn(s) = k) =
(

k
s + k

)n
−
(

k− 1
s + k− 1

)n
= s n

∫ k

k−1

xn−1

(s + x)n+1 dx

and Formula 2.2.4.24 in Prudnikov et al. [37], p. 298, then

E(N−α
n ) = s n

∞

∑
k=1

1
kα

∫ k

k−1

xn−1

(s + x)n+1 dx ≤ s n
∫ ∞

0

xn−1−α

(s + x)n+1 dx = s n B(n− α, 1 + α).

Using B(n− α, 1 + α) = Γ(1 + α) (n + 1)−1+α(1 + R1/n) with |R1| ≤ c < ∞, we obtain (41).

Appendix A.3. Proofs of Theorems 3 to 8

Proof of Theorem 3. Since the additional assumptions (23) and (24) in the transfer Theorem 2 for
the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r) are satisfied by
Lemma 2 with b = r > 0 and by Lemma 3 for α = 2, it remains to calculate the integrals in (26). Define

J∗1 (x) =
∫ ∞

0
Φ(x
√

y)dGr,r(y), J∗2 (x) =
∫ ∞

0

a (x
√

y)3 − 5x
√

y ϕ(x
√

y)
4 y

dGr,r(y), and

J∗3 (x) =
∫ ∞

0
Φ(x
√

y)dh2;r(y) with h2;r(y) =
(
(y− 1) (2− r) + 2Q1

(
(r(n− 1) + 1)y

)) gr,r(y)
2r

,

and Q1(y) = 1/2− (y− [y]). Then,

G2;n(x; 0) = J∗1 (x) +
J∗2 (x)

gn
+

J∗3 (x)
n

with gn = ENn(r) = r(n− 1) + 1 . (A6)

Using formula 2.3.3.1 in Prudnikov et al. [37], p. 322, with α = r− 1/2, r + 1/2, p = 1 + x2/(2 r)
and q = 1:

Mα(x) =
rr

Γ(r)
√

2π

∞∫
0

yα−1e−(r+x2/2)ydy =
Γ(α) rr−α

Γ(r)
√

2 π

(
1 + x2/(2r)

)−α (A7)

we calculate the integrals occurring in (A6). Consider

∂

∂x
J∗1 (x) =

∫ ∞

0
y1/2 ϕ(x

√
y)gr,r(y)dy =

rr

Γ(r)
√

2 π

∫ ∞

0
yr−1/2e−(r+x2/2)ydy

= Mr+1/2(x) = s2r(x) and J∗1 (x) = S2r(x) .
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The integral J∗2 (x) in (A6) we calculate again with (A7) using Mr−1/2(x) = s2r(x) (2r+ x2)/(2r− 1)
and Mr+1/2(x) = s2r(x)

J∗2 (x) :=
rr

√
2π Γ(r)

∫ ∞

0

1
y

(
a x3y3/2 − 5 x y1/2

)
yr−1 e−(r+x2/2)ydy

=
(

a x3 Mr+1/2(x)− 5 x Mr−1/2(x)
)
=

(
a x3 − 10 r x + 5 x3

2r− 1

)
s2r(x).

The integral J∗3 (x) in (A6) is the same as the integral J4(x) in the proof of Theorem 2 in
Christoph et al. [12] with the estimate

sup
x

∣∣∣∣J∗3 (x)− (2− r)x(x2 + 1)
4r(2r− 1)

s2r(x)
∣∣∣∣ ≤ c(r) n−r+1 .

With (36), we proved (44).

Proof of Theorem 4. By Lemma 2, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r)
with b = r > 0. In Transfer Theorem 1 for TNn =

√
Nn RNn , the right-hand side of (20) is estimated by

Lemma 1 and Lemma 3 for α = 2 for the case γ = 0. Then, we have by (21) with (35)

Gn(x, 1/gn) = Φ(x)
(

1− Gr,r(1/gn)− n−1h2;r(1/gn)I{r>1}(r)
)
+

f2(x; a)
gn

∫ ∞

1/gn

1
y

dGr,r(y)I{r>1}(r).

The estimates (23), (24i), (24ii), (34) and
∫ ∞

0 y−1dGr,r(y) = r Γ(r− 1)/Γ(r) for r > 1 lead to (46)
with Φn;2(x; 1) defined in (47). Thus, Theorem 4 is proved.

Proof of Theorem 5. By Lemma 2, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit Gamma distribution H(x) = Gr,r(x) of the normalized sample size Nn(r)
with b = r > 0. In Transfer Theorem 1 for TNn = g−1/2

n Nn RNn , the right-hand side of (20) is estimated
by Lemma 1 and Lemma 3 for α = 2 for the case γ = −1/2. Then, we have in (25)

G2;n(x; 0) = J∗1;r(x) +

(
J∗2;r(x)

gn
+

J∗3;r(x)
n

)
I{r>1}(r) with gn = ENn(r) = r(n− 1) + 1 (A8)

J∗1;r(x) =
∫ ∞

0
Φ(x/

√
y)dGr,r(y), J∗2;r(x) =

∫ ∞

0

(a x3 y−3/2 − 5x y−1/2)ϕ(x/
√

y)
4 y

dGr,r(y), and

J∗3;r(x) =
∫ ∞

0
Φ(x/

√
y)dh2;r(y) with h2;r(y) =

(
(y− 1) (2− r) + 2Q1

(
(r(n− 1) + 1)y

)) gr,r(y)
2r

.

Consider formula 2.3.16.1 in Prudnikov et al. [37], p. 444:

Iα :=
∫ ∞

0
yα−1 e−py−q/ydy = 2

(
q
p

)α/2
Kα(2

√
p q) p > 0, q > 0,

where Kα(u) is the α-order Macdonald function (or α-order modified Bessel function of the second
kind), see, e.g., Oldham et al. [30], Chapter 51, for properties of these functions.

Let us calculate the integral J∗1;r(x) occurring in (A8). Consider

d
dx

J∗1;r(x) =
rr

√
2 π Γ(r)

∫ ∞

0
yr−3/2e−ry−(x2/(2 y)dy

=
2 rr

√
2 π Γ(r)

(
|x|
2 r

)r−1/2

Kr−1/2(
√

2 r |x|) =: lr(x). (A9)
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If α = ±1/2,±3/2,±5/2, ... the integral Iα and consequently Kα(x) are computable in closed-form
expressions with formula 2.3.16.2 in Prudnikov et al. [37], p. 444:

I∗m =
∫ ∞

0
ym−1/2e−py−q/ydy = (−1)m√π

∂m

∂pm

(
p−1/2e−2

√
pq
)

, p > 0, q > 0, m = 0, 1, 2, ... (A10)

and with formula 2.3.16.3 in Prudnikov et al. [37], p. 444:

I∗−m =
∫ ∞

0
y−m−1/2 e−py−q/ydy = (−1)m

√
π

p
∂m

∂qm e−2
√

p q, p > 0, q > 0, m = 0, 1, 2, ...

For r = 1, 2, 3 using (A10) with m = r− 1, we find

lr(x) =
d

dx
J∗1,r(x) =

rr

Γ(r)
√

2 π

∫ ∞

0
yr−3/2 e−ry−x2/(2y)dy =

rr

Γ(r)
√

2 π
I∗r−1

and we obtain the densities lr(x) in (49) with

I∗m(x) ==



√
2 π 1
|x| e−

√
2 r |x|, x 6= 0 m = −1,

√
π e−

√
2 r |x|, m = 0,

√
π

(
1

2 r3/2 +
|x|
√

2
2 r

)
e−
√

2 r |x|, m = 1,

√
π

(
3

4 r5/2 +
3 |x|
√

2
4 r2 +

|x|2
2 r3/2

)
e−
√

2 r |x|, m = 2.

Consider now J2;r(x) for r = 2 and r = 3:

J∗2;r(x) =
∫ ∞

0

(a x3 y−3/2 − 5x y−1/2) rr yr−1 e−ry−x2/(2y)

4 y
√

2π Γ(r)
dy =

rr

4
√

2π Γ(r)

(
a x3 I∗r−3(x)− 5 x I∗r−2(x)

)
.

Hence,

J∗2;2(x) =
(
a x |x| − 5 x/

√
2
)

e−2 |x| and J∗2;3(x) =
27
8

(
a x3
√

2
− 5 x

( 1
6
√

6
+
|x|
6

))
e−
√

6|x| .

Integration by parts in the integral J∗3;r in (A8) leads to

J∗3;r(x) :=
∫ ∞

0
Φ(x y−1/2)d(h2;r(y)) =

x
2

∫ ∞

0
y−3/2 ϕ(x y−1/2) h2;r(y)dy

=
rr x

2 r Γ(r)
√

2π

∫ ∞

0
yr−5/2e−r y−x2/(2 y)

(
(y− 1) (2− r) + 2Q1(gn y)

)
dy,

=
rr−1 x

2 Γ(r)
√

2π

∫ ∞

0
yr−5/2(y− 1) (2− r)e−r y−x2/(2 y)dy

+
rr−1 x

Γ(r)
√

2π

∫ ∞

0
yr−5/2Q1(gn y) e−r y−x2/(2 y)dy = J3;r,1(x) + J3;r,2(x).

Since J3;2,1(x) vanishes, we calculate J3;3,1(x):

J3;3,1(x) =
9 x

2
√

2π
(I∗1 (x)− I∗2 (x)) =

9 x
2

(
1

12
√

6
+
|x|
12
− |x|

2

6
√

6

)
e−
√

6 |x|.

It remains to estimate J3;2,2(x) and J3;3,2(x). The function Q1(y) is periodic with period 1:

Q1(y) = Q1(y + 1) for all y ∈ R and Q1(y) := 1/2− y for 0 ≤ y < 1
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It is right-continuous and has the jump 1 at every integer point y. The Fourier series expansion of
Q1(y) at all non-integer points y is

Q1(y) = 1/2− (y− [y]) = ∑∞
k=1

sin(2 π k y)
k π

y 6= [y], (A11)

see formula 5.4.2.9 in Prudnikov et al. [37], p. 726, with a = 0.
Using the Fourier series expansion (A11) of the periodic function Q1(y) and interchange sum and

integral, we find

J∗3;r,2 =
x√
2 π

∑∞
k=1

1
k

∫ ∞

0
yr−5/2 e−r y−x2/(2 y) sin(2π k gn y)dy. (A12)

First, we consider r = 2. Let p > 0, q > 0 and b > 0 be some real constants. Formula 2.5.37.4 in
Prudnikov et al. [37], p. 453 reads

∫ ∞

0
y−1/2 e−p y−q/y sin(b y)dy =

√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−)) . (A13)

with 2 z2
± =

√
p2 + b2 ± p. Consider z± with p = r, q = x2/2, b = 2πkgn, k ≥ 1 and n ≥ 1: Then,√

π

p2 + b2 =

√
π

r2 + (2πkgn)2 ≤
√

π

2πkgn
,
√

2|x|z+ e−
√

2|x|z+ ≤ e−1 and 0 < z− ≤ z+

leads to

|J∗3;2,2(x)| ≤ 2 |x|√
2 π

∑∞
k=1

1
k

√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))

≤ 2√
2 π

∑∞
k=1

1
k

√
π
√

2 e−1

2πkgn
=

1
2 π e gn

∑∞
k=1

1
k2 =

π

12 e gn
.

Together with gn ≥ n, we find n−1|J∗3;2,2(x)| ≤ C n−2.
Consider finally J∗3;3,2 given in (A12). In order to estimate J∗3;3,2(x), we apply Leibniz’s rule for

differentiation under the integral sign with respect to p in (A13) and obtain

∫ ∞

0
y1/2 e−p y−q/y sin(b y)dy =

∂

∂p

{√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))
}

.

Simple calculation considering
√

q = |x|/
√

2 and |x|m e−
√

2 |x| z+ ≤ m
2m/2 z+

≤ m
2m/2 bm for

m = 1, 2, leads to

|x| ∂

∂p

{√
π

p2 + b2 e−2
√

q z+ (z+ sin(2
√

q z−) + z− cos(2
√

q z−))
}
≤ C

b2 =
C

(2π k gn)2

and we find equation (A12) with r = 3 that n−1 |J∗3;3,2| ≤ C n−3 and (50) is proved.
The approximation (52) holds since Lemmas 1, 2, and 3 are valid for arbitrary r > 0. Theorem 5
is proved.

Proof of Theorem 6. By Lemma 4, the additional assumptions (23) and (24) in the transfer Theorem 2
are satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 for the case γ = 1/2. Then, we have in (25) with (35)

G2;n(x; 0) = J∗1;s(x) + n−1 J∗2;s(x) + n−1 J∗3;s(x),
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where J∗1;s(x) =
∫ ∞

0
Φ(x
√

y)de−s/y, J∗2;s(x) =
∫ ∞

0

(ax3y3/2 − 5x
√

y)ϕ(x
√

y)
4 y

de−s/y,

and J∗3;s(x) =
∫ ∞

0
Φ(x
√

y)dh2;s(y) with h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)
)
/
(
2 y2).

To obtain (53), we calculate the above integrals as in the proof of Theorem 5 in Christoph et al. [12].
Here, we use Formula 2.3.16.3 in Prudnikov et al. [37], p. 344 with p = x2/2 > 0, s > 0, m = 1, 2:

∫ ∞

0

e−x2y/2
√

2π ym−3/2
dHs(y) =

∫ ∞

0

s e−x2y/2−s/y
√

2π ym+1/2
dy = (−1)m s

|x|
∂m

∂sm e−
√

2 s|x|. (A14)

In the mentioned proof we obtained with (A14) for m = 1∫ ∞

0
Φ(x
√

y)dHs(y) = L1/
√

s(x)

and with (A14) for m = 2

n−1 sup
x

∣∣∣∣∣J∗3;s(x)− (1− s)x(1 +
√

2s|x|)
8 s

l1/
√

s(x)

∣∣∣∣∣ ≤ n−1c(s)e−
√

πsn/2 ≤ C(s)n−2.

Again using (A14) with p = x2/2 > 0, s > 0, m = 1, 2 we find

J2;s(x) =
s√
2π

∫ ∞

0
(ax3y−1−1/2 − 5xy−2−1/2)e−(x2 y/2+s/y)dy

=
2sax3 − 5x(

√
2s |x|+ 1)

8 s
l1/
√

s(x).

Proof of Theorem 7. By Lemma 4, the additional assumptions (23) and (24) in Transfer Theorem 2 are
satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 in the case γ = 0. Then, we have in (21) with (35)

Gn(x, 1/n) = Φ(x)
(

1− e−sn − n−1h2;s(1/n)
)
+

f2(x; a)
n

∫ ∞

1/n

1
y

de−s/y.

The estimates (24i), (24ii) for b = 2 and
∫ ∞

0 y−1de−s/y = s
∫ ∞

0 y−3e−s/ydy = s2
∫ ∞

0 ze−zdz = s2

lead to ∣∣∣Gn(x, 1/gn)−Φ(x)− n−1s2 f2(x; a)
∣∣∣ ≤ Cs n−2

and Theorem 7 is proved.

Proof of Theorem 8. By Lemma 4, the additional assumptions (23) and (24) in Transfer Theorem 2 are
satisfied with the limit inverse exponential distribution Hs(y) and h2;s(y) given in (40), gn = n and
b = 2. In Transfer Theorem 1, the right-hand side of (20) is estimated by Lemma 1 and Lemma 5 for
α = 2 in the case γ = −1/2. Then, we have in (21) with (35)

G2;n(x; 0) = J∗1;s(x) + n−1 J∗2;s(x) + n−1 J∗3;s(x),

where J∗1;s(x) =
∫ ∞

0
Φ(xy−1/2)de−s/y, J∗2;s(x) =

∫ ∞

0

(ax3y−3/2 − 5xy−1/2)ϕ(xy−1/2)

4 y
de−s/y,

and J∗3;s(x) =
∫ ∞

0
Φ(xy−1/2)dh2;s(y) with h2;s(y) = s e−s/y (s− 1 + 2Q1(n y)

)
/
(
2 y2).
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To obtain (54), we calculate the above integrals:

∂

∂x

∫ ∞

0
Φ(x
√

y)de−s/y =
s√
2 π

∫ ∞

0
y− 3/2e−(x2/2+s)/y)dy =

s√
2 π

∫ ∞

0
z1/2−1e−(x2/2+s)z)dz

=
1

2
√

2 s

(
1 +

x2

2 s

)−3/2
= s∗2(x;

√
s), and

∫ ∞

0
Φ(x
√

y)de−s/y = S∗2(x;
√

s). (A15)

Define K = (s + x2/2). With z = K/y and Γ(α) =
∫ ∞

0 zα−1e−zdz, α > 0, we obtain

J∗2;s(x) =
s

4
√

2π

∫ ∞

0
(ax3y−9/2 − 5xy−7/2)e−K/ydy =

s K−7/2

4
√

2π

∫ ∞

0
(ax3z5/2 − 5xz3/2 K)e−zdz

=
s K−7/2

4
√

2π

(
ax3Γ(7/2)− 5x K Γ(5/2)

)
=

1
4 (x2 + 2s)2

(
15(a− 1)x3 − 30xs

)
s∗2(x;

√
s).

Integration by parts in J∗3;s(x) leads to

J∗3;s(x) =
x

2
√

2π

∫ ∞

0
y−3/2e−x2/(2y)s y−2e−s/y ((s− 1)/2 + Q1(n y)

)
dy = J∗4;s(x) + J∗5;s(x),

where

J∗4;s(x) =
s (s− 1) x

4
√

2π

∫ ∞

0
y−7/2e−K/ydy =

s (s− 1) x Γ(5/2)
4
√

2π K5/2
=

3 (s− 1) x
4 (x2 + 2s)

s∗2(x;
√

s)

and using the Fourier series expansion (A11) of the periodic function Q1(y) and interchange sum and
integral, we find

J∗5;s(x) =
s x

2
√

2π

∫ ∞

0
y−7/2e−K/y Q1(n y)dy =

s x
2
√

2 π
∑∞

k=1
1
k

∫ ∞

0
y−7/2 e−K/y sin(2π k n y)dy

=
s x

2
√

2 π
∑∞

k=1
1
k

∫ ∞

0
y−7/2 e−K/y sin(2π k n y)dy.

Integration by parts in the latter integral and |x|/
√

K ≤
√

2 leads now to

supx |J
∗
5;s(x)| ≤ supx

s |x|
(2 π)3/2 n ∑∞

k=1
1
k2

∫ ∞

0

(
7
2

y−9/2 + K y11/2
)

e−K/ydy ≤ csn−1

with cs =
s
√

2
(2 π)3/2 n

(
7 Γ(11/2)

2 s3 +
Γ(13/2)

s4

)
π2

6 and Theorem 8 is proved.
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