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1. Introduction

Quantum calculus or g-calculus is attributed to the great mathematicians L.Euler and C. Jacobi,
but it became popular when Albert Einstein used it in quantum mechanics in his paper [1] published in
1905. F.H. Jackson [2,3] introduced and studied the g-derivative and g-integral in a proper way. Later,
quantum groups gave the geometrical aspects to g-calculus. It is pertinent to mention that g-calculus
can be considered an extension of classical calculus discovered by I. Newton and G.W. Leibniz. In fact,
the operators defined as:

dhf(z) _ f(Z+h21—f(Z)

and:

f(z) = f(g2)
dqf(z) = -9z
where z € Cand h > 0 are the h-derivative and g-derivative, respectively, where h is Planck’s constant,
are related as: g = ¢/ = ¢*™" where i = h/27. Srivastava [4] applied the concepts of g-calculus by
using the basic (or g-) hypergeometric functions in Geometric Function Theory (GFT). Ismail [5] and
Agarwal [6] introduced the class of g-starlike functions by using the g-derivative. The g-close-to-convex
functions were defined in [7], and Sahoo and Sharma [8] obtained several interesting results for
g-close-to-convex functions. Several convolution and fractional calculus g-operators were defined
by the researchers, which were reposited by Srivastava in [9]. Darus [10] defined a new differential
operator called the g-generalized operator by using g-hypergeometric functions. Let A be the class of
functions of the form:

,0<g <],

flz)=z+ i az, )
k=2
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analytic in the open unit disc E = {z : |z] < 1}.
Let f(z) be given by (1) and g(z) defined as:

gz)=z+) bz,
k=2

The Hadamard product (or convolution) of f and g is defined by:

(F*8)(z) =2+ Y aghi.

k=2

Let f, h be analytic functions. Then, f is subordinate to i, written as f < hor f(z) < h(z),z € E,
if there exists a Schwartz function w(z) analytic in E with w(0) = 0 and |w(z)| < 1 for z € E, such that
f(z) = h(w(z)). If h is univalent in E, then f < h, if and only if f(0) = h(0) and f(E) C h(E).

A sequence {by};-; of complex numbers is a subordinating factor if, whenever f(z) =
Z,‘?’:lakzk, a1 = 1is regular, univalent, and convex in E, we have } )" 1b,a,z" < f(z),z € E [11].

We recall some basic concepts from g-calculus that are used in our discussion and refer to [2,3,12]
for more details.

A subset B C Cis called g-geometric if zg € B whenever z € B, and it contains all the geometric

sequences {zq } . In GFT, the g-derivative of f(z) is defined as:

i) =TI e ), es o,

and d,f(0) = f'(0). For a function g(z) = z, the g-derivative is:

d‘lg(z) = [k]zk_l’

where [k] = =L =1+ q+¢* + ...+ 4.
We note that as ¢ — 17, d;f(z) — f'(z), which is the ordinary derivative. From (1), we
deduce that:

1—qk

—1+2 akz

Let f(z) and g(z) be defined on a g-geometric set B. Then, for complex numbers 4, b, we have:

dg(af(z) £bg(2)) = adyf(2) + bdyg(2).
dq(f(2)8(2)) = f(qz)dgg(2) + &(2)dyf (2)-

)=
f(2)\ _ 8(2)dgf(2) — flz) deg(z) .\
dq ( > = ¢(2)3(q2) , 8(2)8(qz) # 0.

nq 1dqf( z)
dg (log f(z)) = T

Jackson [2] introduced the g-integral of a function f, given by:

[ fnage==0-9) ¥ a*ft),
k=0

provided that the series converges.
For any non-negative integer 1, the g-number shift factorial is defined as:

]t = { [1][2] ... [] if n #0,
1 if n=0
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Let A € R and n € N; the g-generalized Pochhammer symbol is defined as:

AL, =M A+1A+2].A+n—1].

The g-Gamma function is defined for A > 0 as:

(A +1) = [A]T4(A) and T,(1) =1
For complex parameters a; (1 <i < l),b]- #0,-1,-2,...(1 <j < m)with] < m+ 1, the basic
g-hypergeometric function is defined as,

lFm(a1,...al; bl,..., bm,Z) = Z Zk. (2)

with () = @ and I,m € Ny = NU {0}. Here, the g-shifted factorial is defined for a2 € C as:

(@), = { (1-a)(1—agq).. (1 — aqk’l) i.fk eN,
1 if k=0.

Letl=m+1,a, =" (A>—-1),a,=q(V2<i< I),and b; = q (V1 < j < m), and by using
the property (¢"), = Ty(a +k) (1 — 7" /T4(a), from (2), we get the function,

© T,A+k)

e
F - - L) 1
a2 Z+Z k—1)T,(A+1)

L k—1 -’

k=2

z € E.

In [13], the g-Srivastava—Attiya convolution operator is defined as:

z) :z—i—ki<M)szk,z €E,

(a € C\Zj;s € Cwhen|z| <1;Re(s) > 1when |z| =1).
Using convolution, the operator Df’ A for A > —1 is defined as:

Do f(2) = f;am * f(2)
A+1]_,4

_Z+Z ( 1+a> [k—l]! akzk,zeE,

where:

ey Rt

];,H,A(z):(cf,,ﬂ(z))*l*l? A(z _z+2< ) o

It is a convergent series with a radius of convergence of one. We observe that D(q),a,o f(z) = f(z2)

and D;,o,o f(z) = zd;f(z). The operator D;, s, teduces to known linear operators for different values of
parameters 4, s, and A as:

(i) Ifg — 17, itreduces to the operator Dj , discussed by Noor et al. in [14].

(ii) For s = 0, it is a g-Ruscheweyh differential operator [15].

(iii) If s = =1, A = 0, and ¢ — 17, it is an Owa-Srivastava integral operator [16].

(iv) If s € Np,a =1, A = 0, and ¢ — 17, it reduces to the generalized Srivastava—Attiya integral
operator [17].

(v) If s € Ng,a = 0, A = 0, it is a g-Salagean differential operator [18].

(vi) Fors, A € Ny, and a = 0, it is the operator defined in [19].
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The following identities hold for the operator D;r o f(2),

2y (Djanf(2)) = (%d) Dyaaf(2) - [:jD;,a,Af (2) )
zdq (D, 0 f(2)) = <[1;AM) DS o asaf(2) = E?A]

Dy anf(2)- )

Let P(q) be the class of functions of the form p(z) = 1+ c1z + 2% + ..., analytic in E,
and satisfying:

1 1
— — < .
‘P(Z> 1-¢ - 1-¢ (z€ E,ge(0,1))
It is known from [20] that p € P(q) implies p(z) < ffqzz. It follows immediately that Re p(z) > 0,

z € E.
The classes of bounded g-starlike functions S;(c, M) and bounded g-convex functions Cg(c, M) of
complex order ¢ were defined in [21], respectively, as:
- M} ,

2d,f(2)
c—1+ }’(z) iy
c

Sq(C,M):{f6A2|

(cec*;M>;,zeE>,

or equivalently,

zdgf(z) 1+ {c(1+m)—m}z
f@ 1—mz }

1 1
o =1 — - =
(cEC,m M,M> >

Sq(e, M) = {fe A:

2

The class of bounded g-convex functions C;(c, M) of complex order c is defined as:

o dq(zdqf(2))
-+ e

Cole, M) =< feA: .

-M| <M >,

1
(ce(C*;M>2,z€E),

or equivalently,

dg(zd,f(z c m)—m}z
Cq(c,M):{feA: q;q;{z()))<1+{quz) }}
<c6*;m:1—]\14;M>;>.

Using the operator D7, | f(z), we now define the following new classes S;,.(c, M) and
Cq,a,S,A(c, M) as:
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B _ z(dgDj .\ (f(2))) 14 {c(14+m)—m}z
Saasa (M) = {f = DZ,:,A(f(Z)) A 1—mz ze b
<0<q<1,c€*;m—1—]\1/I;M>;>_

Special cases:

(i) fc=1,m=1,andq — 17, then S, ;. (c, M) reduces to class 5°(a, A) discussed in [22].

(i) Ifc=15s=0,A=0,m= —g,then S, ;5 A(c, M) reduces to class S;‘ introduced by Noor et al. [23].

(iii) If s = 0,¢c = Him (-1 <m < 0),m = —q, then Sq,a,s,/\(cr M) reduces to class ST, studied by
Noor [24].

(iv) Ifs =0,A =0,c =aePcosp (a € C*, || < ¥),and g — 17, then S, 45 1 (c, M) becomes special
cases of Janowski B-spiral like functions of complex order SP(A, B, a) discussed in [25].

(v) If s € No,A =0,a =0,and g — 17, then S,W,S’)\(C, M) reduces to class Hy(c, M) discussed by
Aouf et al. in [26].

(vi) f0<c <1, -1<m<0,andq — 17, then S; 5 1(c, M) becomes a special case of the class S, , (17,
A, B) with = 0 discussed in [19].

A function f € Ais in the class S, ;5 1(c, M) if and only if:

zdg(Dg 0 f(2))
D};,a,Af(Z)

zdg (D, 0 f(2))
A—B { Df,,a,/\f(z) }

-1

<1, ®)

where A =c(1+m)—mand B = —m.
The class C; 45,1 (c, M) is defined as:

o (e, M) = {f Al dq(zdy(D; , ,f(2)) L1+ {c(14+m) — m}zlz . E},

dﬂi(DZ,a,Af(Z)) 1—mz
0< <1c€C*'m—1—i'M>1
q 7 7 - M/ 2 .

It is easy to see that f € Cy451(c, M) & zdgf € Sy45(c, M). In order to develop results for the
classes S, 45,1 (c, M) and C; 45 1 (c, M), we need the following:

Lemma 1 ([27]). Let B and vy be complex numbers with B # 0, and let h(z) be regular in E with h(0) = 1 and

Re[Bh(z) +7] > 0.If p(z) = 1 + p1z + p2z? + ... is analytic in E, then p(z) + ;Zgz(j)v < h(z) = p(z) <
h(z).

Lemma 2 ([11]). The sequence {by},_; is a subordinating factor sequence if and only if:
Re{1+22bk2k} >0,z€cE.
k=1

2. Properties of Classes S, ;51 (c, M) and C; 451 (c, M)

We start the section with the necessary and sufficient condition for a function to be in the class
Sq,a,s,)\ (C/ M) .
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Theorem 1. Let f € A. Then, f € S, 4 (c, M) if and only if:

Yt {Ik] = 1+ |e(1+m) +m([K] — 1)[} M[k*j]lk];l

[1+4a]

S
([k”]) ‘ lag| < le(14m)]|, (6)
wherem =1— 37, (M > 1),
Proof. Let us assume first that Inequality (6) holds. To show f € S, 1(c, M), we need to prove

Inequality (5).

2(dg (D, f(2)) e\ Al
o L | oo () S (1 - Dagt

A—B {Zd”’(Df?f”ﬂ‘f ) } (A-B)z+ 5, (A-BIK) (k) s ar
[14a]
Lol (el
A1), k-+a]\®
1)

D[S],W\f(z)
0 k+a]\ ¥
()
A1)y
le(m)| =R le(Ltm) [k -1) |

(1 = 1) [

- 00 S A1)
A= Bl [T, (A-BIK) () Strad
TTR=1] ([K]—1)]a|

||

< 1.

Hence, f € S, (c, M) by using Inequality (6). Conversely, let f € S;,,1(c, M) be of the form
(1), then:

Z(dq(Ds,a,/\f(Z)) . . ktal\S [A+1],
o0 | 2 (fred) et (= Dk
2dy(D5 )| |4 o0 B kra\* M x|
AB{qD;‘,:}?&)} (A=Bjz+ i, (A= B (1133) e

Since |Rez| < |z|,, we have:

o0 S A+
L= (%ﬁﬁ) . [k+_]1k]!1 ([K] = 1)ayz*
o0 S A1
(A= B)z+ 1, (A—BK) (K ) et

Now, we choose values of z on the real axis such that qu(D; af(2)/ Dy i f (z) is real. Letting
z — 17 through real values, after some calculations, we obtain Inequality (6). [

Re < 1.

Remark 1. (i) Ifq — 17,5 € No,a = 0, and A = 0, the above result reduces to the sufficient condition for
f(z) to be in class Hy(c, M) (c € C*, M > 1) discussed in [26]. (ii) Ifc =1 —a (a € [0,1)),m = 0,A =0,
and q — 17, the above result reduces to the sufficient condition for f(z) to be in class S}, («) discussed in [28].

Theorem 2. Let f; € S, ;1 (c, M) having the form:
[e0]
filz) =z+ Z ak,izk, fori=1,2,3,.,1.
k=2

Then, F € Sy 45 (c, M), where F(z) = Zle cifi(z) with ZLl c;=1.

Proof. From Theorem 1, we can write:
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{0 = 1+ [b(1+m) + m(k] - 1)|} S

Yo b(1+m)|

(leealy’

Ak i <1. (7)

Therefore:

=1 k=2
)
5 (zciak) z,
k=2 \i=1

where however due to (7), we have:

(=1 oc1-4m) + (] - )3 e | ()

=1 1
2120:2 ]b(1+m)| (i_zzciakJ)

(=)

U {[k] =1+ 1|b(14+m)+m([k] —1)|} [A[k+—1]1k]?1

= |b(1+m)|

Therefore, F € Sy 451(c, M). O

Theorem 3. Let f; withi =1,2,...,v belong to the class Sy 4,5 ) (c, M). The arithmetic mean h of f; is given by:

1 %
W) = Y fil2) ®)
i=1
belonging to class Sg 451 (c, M).
Proof. From (8), we can write:

iE(z—i—Zakz )zz%—Z(iZak,i)zk. )
i1 k=2 \Yix

Since f; € S, 4 (c, M) for every i = 1,2,...,v, using (6) and (9), we have:
2 A+1],_
Z {[k] =1+ [b(1+m) +m([k] —1)|} [ [ki]lk]!l

G (3, z)

,% :(Z{ ] =1+ [b(1+m) +m([k] - 1)[}

1
52 b(1+m)|) = |b(1+m)|,

and this completes the proof. O

Now, we give the subordination relation for the functions in class S, ;1 (c, M) by using the

subordination theorem.

Theorem 4. Let m = 1 — 3; (M > ). Furthermore, ¢ # 0 with Re(c) > 2(1+ j when m > 0 and

Re(c) < ST )whenm<0and)\>0 Iff € Sgas(c, M), then:
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{9+ le(1 +m) +mq|}Cy2Bs,a(2)
2[{q+ |c(1+m)+mq|}Cr2Bsa(2) + |[c(1+m

where g(z) is a convex function in E, C) j = Al Bsq(k) = ‘ ([Ha] )s

k=1 ~ [i+a] , and:

_ (1+m)|c|
{g 4 lc(U+m) +mq|}Cr2Bsa(2)

{q+[c(14+m)+mq|}C)2Bsa(2)
2[{g+[c(1+m)+mq|}Cy2Bs,a(2)+|c(1+m)|]

Re f(z) > —1

The constant is the best estimate.

Proof. Let f(z) € Sy 451(c, M) and g(z) =z + 337, cxzk. Then:

{q+le(1 +m) +mq|}Cy2Bs,0(2)
2[{q + |c(1 +m) +mq|}Cr2Bsa(2) + |c(1+m

)”(f*g)(Z)

{q+ |c(1 +m) +mq|}Ca2Bsa(2) <z+ i axciz"

= 2[{q + [c(L+m) + mq[}Ca2Bsa(2) + le(T+ m)]]

Thus, (10) holds true if:

{ {q+[c(1 +m)+mq|}Cy2Bsa(2) k}“’
k=1

2[{q+ [c(1+ m) + mq|}Cp2Bsa(2) + [c(1+m)[]"

is a subordinating factor sequence with a; = 1. From Lemma 2, it suffices to show:

{g+ |c(1+m) +mq|}C, 2B q(2)

Re {1 + 220:1

k=2

i (f+g)(z) <g(2)

)

[w+wu+m+mmwumﬂa+wu+mm”%}>“

8 of 14

(10)

(11)

(12)

(13)

(14)

Now, as {[k] =1+ |c(1+m) +m([k] —1)|} C)Bsa(k) is an increasing function of k (k > 2),

we have:

{g+ |c(1+m) +mq|}C, 2Bs 4 (2)

Re {14y
e{ TR g T 1o(T o+ m) + mql1CraBea(2) + e(1 + m

{g+ |c(1+m) +mq|}Cy 2Bs 0 (2)

:Re{l—i-

_|_

Yo {q + |c(1+m) + mg|}Ca2Bsa(2)arz" }

[{q+1c(1+m) +mq|}C)2Bsa(2) + |c(1 4 m)]]

o gtleem) mg)CiBu@

— Hg+le(@+m) +mq[}Cr2Bsa(2) + [c(1+m)|]
Yoo {g + le( + m) + mq|}Ch2Bs,a(2) |ag| ¥

[{q+ (1 +m) +mq|}Cy2Bs.a(2) + |c(1 4+ m)]]

{g+ le(1 +m) +mq|}Cy2Bs,a(2)

“ T [ le(U m) + maJCazBea(2) + 1+ m)])
(1+m)|c| .

[{g+ lc(1+m) +mq|}Cy2Bs,a(2) + |c(1+m)]]

> 0. (z]| =r<1)

m”ﬁ}

[{q+ [c(1+ m) + mq[}Cr2Bsa(2) + |c(1+m)|]~

Hence, (14) holds true in E, and the subordination result (10) is affirmed by Theorem 4.

z

The inequality (11) follows by taking g(z) = % = Yt 4z in (10).
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Let us consider the function:

L c(1+m)] 2
&) =2 = e T m) T mal}CrzBen @) + e+ m)]” 2 € F)

which is a member of S, ;5 1 (¢, M). Then. by using (10), we have:

{9+ |c(1 4+ m) +mq|}C) 2Bsq(2) .
(a1 (1 m) + mq}CrzBen(2) + 1l +m) 17 < T2

It is easily verified that:

{5] + |C(1 + m) + mq|}CA,ZBs,a(2) (P(Z)} _ 71 (Z c E)
7 ’

min Re {2{{,7 + (14 m) +mq|}Cr2Bsa(2) + [c(1+m)]]

{q+le(1+m)+mq|}Cy 2Bs,a(2)
2[{q+]c(1+m)+mq[}Cy 2Bs,a(2)+]c(1+m)]]

then the constant cannot be replaced by a larger one. [

Remark 2. If s € Ng,a = 0, A = 0, and g — 1=, Theorem 4 reduces to the subordination result proven
in [29].

Now, we discuss the inclusion results pertaining to classes S; ;51 (c, M) and C; 451 (c, M) in
reference to parameters s and A.

1+{c(1+m)—m}z

Theorem 5. For any complex number s, Sgas112(c, M) C Sgasa(c, M) if Re( ) >

1-mz
ﬁ {1 —cos(ayInq)} where a = ay + iay.
Proof. Let f € Sq,a,SJrl,A(C, M), then:
D/ 2) L 1 {e(+m) —m}z (15)
DZTA (2) 1—mz ’
Let:
1 + c 1 —|—m —m+iz
"E = { (1 - mi }
and:
Dtsm,)\f(z) '
We will show:

r(z) < h(z),

which would prove S,,41(c, M) C Sgu541,1(c, M). From the identity relation (3), after a few
calculations, we have:

2dy(D5 .0 f(2)  [1+a) Diiif(@)  [a]

D:afm) gt Dy f(z) gt

After some calculations, we have:
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DELfz) 1 {qﬂquw;mmz)) . M}

DZ,u, Sz) o [1+4] D;M f(z)
= a7 r(a) + ).

Applying logarithmic g-differentiation, we have:
2dy (D531 £(2))
D ‘SI,JZ,]/\f (z)

From (15) and (16), we have:

zd,r(z)

IAECETIT)

(16)

z[dyr(z)] - 14+ {c(1+m)—m}z
r(z) + g7 a] 1—mz '

r(z) +

If Re(h(z)) > m {1 —cos(ayIng)}, then from Lemma 1, it implies:

r(z) < h(z),
which implies f(z) € S;45(c, M). Therefore, S; 451 (c, M) C Sg4541,1(c, M). O

1+{c(14+m)—m}z
1-mz

Theorem 6. For any complex number s, CWLHLA(C/ M) C Cq,a,s,A(C/M) if Re(
m {1 —cos(azIngq)} where a = ay + ia;.

) >

Proof. It is obvious from the fact f € C, 451 (c, M) < zdgf € Sga51(c, M). O

17q*)‘
1-q 7

1+{c(1+m)—m}z
1-mz

Theorem 7. For any complex number s, Sy ,5111(¢c, M) C Sy451(c, M) if Re(
A> -1

) >

Proof. Let f € S;51+1(c, M), then:

zdq(Dg ;011 f(2)) = 1+ {c(14+m)— m}z.

17
D;,a’/\ﬂf(z) 1—mz 17

Consider:

and:

qu(DZ/a//\f(z))
Dtsy,a,/\f(z) .

We will show:

q(z) < h(z),

which would conveniently prove S, ;s 111(c, M) C S 4 (c, M). From the identity relation (4), after a
few calculations, we have:

qu(D;,a,Af(z)) [1 + /\] D;,a,/\+1f(z) [)\}

D;,a,)\f(z) a q)\ D;,u,/\f(z) - qT
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After some calculations, we have:

D;,a,/\+1f(z) o 1 qa‘qu(D;,a,/\f(z)) n )t]
D;,a,/\f(z) B [1 + /\] Dy q.a, )\f(z)

= i (@ + W)

Applying logarithmic g-differentiation, we have:

zds(D qa/\+1f( z)) —a(2) zdqq(z)
D3 ori1f(2) q(z) + 9" [A]
From (17) and (18), we have:

(18)

(@] 1+ el m) — )z
TP s 37 B R T

IfRe(h(z)) > lﬂ; for any value of A > —1, so by Lemma 1, we have q(z) < h(z), which implies
f(z) € Sy (c, M). Therefore, S; ;51 11(c, M) C Sga5(c, M). O

Remark 3. If we consider ¢ — 1~ withRea > 0,c =1,m = 1in Theorem 5and A > 0,c =1,m = lin
Theorem 7, we obtain the special cases of the inclusion results, Theorems 2.4 and 2.5 in [19].

In [30], the g-Bernardi integral operator L, f(z) is defined as:

Lyf(z) = M/OZ L (1) dgt
z+ 2 ( k—l—b ) akzkr b=1,2,3,..

Now, we apply the generalized operator D;/ aprOnLpf (z) as
k+a]\* [A+1]q ([1+] k
Paaallef(2)) =2 2 ( ) o () o

The identity relation of D;l ar(Lpf(z)) is given as:

wdy [ {Lof )] = (57 ) Dianf@) = DpaalLaf 21 19)

The following theorems are the integral inclusions of the classes S 41 (c, M) and C 451 (c, M)
with respect to the g-Bernardi integral operator.

b
Theorem 8. If f(z) € Sy 4(c, M) then Lyf(z) € Sga5(c, M) if Re(H{C(}fH’Q—m}Z) > 1lfq for any
complex number s.

Proof. Let g(z) € S, 4 (c, M), then:

zdy(Dy ,,8(2)) 5 1+{c(1+m)— m}z.

2
Df]’a,)\g(z) 1—mz (20)

Consider:
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14 e m) — )z
o 1—mz

h(z)

and:

2y (D3, Lig(2))
DS L1 (2)

We will show:

u(z) < h(z),

which would prove Lyg(z) € Sg4,5,1(c, M). From the identity relation (19), after some calculations,
we have:

zdg(Dy 2 Lo8(2)) <[1+b]) D3an8(2)  [p]
Dy, aLog(z)  \ q* ) (D;,,\Leg(z)) g

After some calculations, we have:

Diaa8z) 1

DZ,H,/\ng(Z) [1+b]

Applying logarithmic g-differentiation, we have:
24,(D5,,,8(2))

Dcs],a,)\g(z)

From (20) and (21), we have:

q".2dy (D5 , 1 Lpg(2)) -
Dts],a,/\ng(Z)

(21)

zldgu(z)] - 14+ {c(1+m)—m}z
u(z) +q7[p] 1—mz

If Re(h(z)) > %, so by Lemma 1, we have u(z) < h(z), which implies Lyg(z) €
Sq’ﬂ,S,A(C,M). O

Theorem 9. If f(z) € Cy 1 (c, M), then Ly f(z) € Cg a1 (c, M) for any complex number s.

Proof. It is an immediate consequence of the fact C; 51 (c, M) < zdgf € Sy 452 (c, M). O
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