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Abstract: Here we study 3-dimensional Lotka–Volterra systems. It is known that some of these
differential systems can have at least four periodic orbits bifurcating from one of their equilibrium
points. Here we prove that there are some of these differential systems exhibiting at least six periodic
orbits bifurcating from one of their equilibrium points. We remark that these systems with such six
periodic orbits are non-competitive Lotka–Volterra systems. The proof is done using the algorithm
that we provide for computing the periodic solutions that bifurcate from a zero-Hopf equilibrium
based in the averaging theory of third order. This algorithm can be applied to any differential system
having a zero-Hopf equilibrium.
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1. Introduction and Statement of Results

An equilibrium point of a 3-dimensional autonomous differential system having a pair of purely
imaginary eigenvalues and a zero eigenvalue is a zero-Hopf equilibrium.

A 2-parameter unfolding of a 3-dimensional autonomous differential system with a zero-Hopf
equilibrium is a zero-Hopf bifurcation. More precisely, when the two parameters of the unfolding
are zero we have an isolated zero-Hopf equilibrium, and the dynamics of the unfolding is complex
and sometimes chaotic in a small neighborhood of this isolated equilibrium when we vary the two
parameters in a small neighborhood of the origin, see for more details [1–8] and references quoted there.

A Lotka–Volterra system in R3 with coordinates (x1, x2, x3) is a quadratic polynomial differential
system of the form

dxi
dt

= xi
(
ri −

3

∑
j=1

aijxj
)
, i = 1, 2, 3, (1)

where the dot denotes derivative with respect to the independent variable t, usually called the time,
and the ri’s and the aij’s are parameters.

Many natural phenomena can be modeled by the Lotka–Volterra systems, starting in biology
with the time evolution of conflicting species that now continuing being studied intensively see [9–20],
later on problems of plasma physics [21], or problems in hydrodynamics [22], · · · .

It is known that Lotka–Volterra systems can exhibit zero-Hopf equlibria, see for instance [23].
Then a natural question is if we perturbed a Lotka–Volterra system (1) having a zero-Hopf equilibrium
point inside the class of all Lotka–Volterra systems (1) how many periodic orbits can bifurcate from
such an equilibrium?
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Note that the unfolding of a Lotka–Volterra system (1) with a zero-Hopf equilibrium needs at
least a 3-parameter family. Arnold [24] in 1973 proposed to investigate bifurcations of 3-parameter
families with a zero–Hopf equilibrium.

As far as we know the number of periodic orbits which can bifurcate from a zero-Hopf equilibrium
point when this is perturbed inside the class of all Lotka–Volterra systems (1) only has been studied
partially in the paper [23] using averaging theory of second order. There the authors provided explicit
conditions for the existence of one or two periodic orbits bifurcating from one of these equilibria.

Here we shall use the averaging theory of third order for studying the number of periodic orbits
which can bifurcate from a zero-Hopf equilibrium point of a Lotka–Volterra system (1). Previous results
in this direction are the following. The bifurcation of periodic orbits in a Hopf equilibrium of a
Lotka–Volterra system (1) have been studied by many authors. Thus in the papers [25–27] the authors
proved that two periodic orbits can bifurcate from a Hopf equilibrium of system (1). While in [28–30] it
is shown that three periodic orbits can bifurcate from a Hopf equilibrium. Recently in [31] it is proved
that four periodic orbits can bifurcate from a Hopf equilibrium of system (1). All these previous results
on the number of periodic orbits bifurcating from a Hopf equilibrium are when system (1) has all its
coefficients aij and ri positive (i.e., for the so called competitive Lotka–Volterra systems), and under
this assumption in [28] it is conjectured that at least five periodic orbits can bifurcate from a such Hopf
equilibrium, but this conjecture remains open.

Our main objective is to show that the previous conjecture cannot be extended to the general
Lotka–Volterra systems (1), because we shall prove that there are non-competitive Lotka–Volterra
systems having at least six periodic orbits bifurcating from a zero-Hopf equilibrium.

In short, until now it is known that there are Lotka–Volterra systems (1) having at least four
periodic orbits bifurcating from one of their equilibrium points. Our main result is the following one.

Theorem 1. There are non-competitive Lotka–Volterra systems (1) having at least six periodic orbits bifurcating
from a zero-Hopf equilibrium.

The proof of Theorem 1 is given in Section 3. In Section 2 we describe the algorithm used for
computing the periodic solutions bifurcating from a zero–Hopf equilibrium.

2. The Algorithm for Computing the Periodic Solutions Bifurcating from a
Zero-Hopf Equilibrium

Assume that we have a differential system

ẋi = fi(x1, . . . , xn, λ) for i = 1, . . . , n, (2)

defined in an open subset of Rn, and that the origin of coordinates is a zero–Hopf equilibrium for
this system, i.e., the eigenvalues of the linear part of the system at the origin are ±ωi and 0 with
multiplicity n− 2. Here λ = (λ1, . . . , λm) denotes the parameters of the system.

(1) Since we want to apply the averaging theory of order three (see the Appendix A) for studying the
periodic solutions bifurcating from the zero–Hopf equilibrium at the origin and the averaging
theory uses a small parameter ε, we write the parameters of the system in the form

λk = λk0 + ελk1 + ε2λk2 + ε3λk3, for k = 1, . . . , m.

(2) Due to the fact that the zero–Hopf bifurcation will take place in a neighborhood of the origin,
where it is localized the zero–Hopf equilibrium, we blow up this neighborhood doing the scaling
of variables

(x1, . . . , xn) = (εX1, . . . , εXn),
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using again the small parameter ε, and we obtain a differential system of the form

Ẋi = Fi(X1, . . . , Xn, λ, ε) for i = 1, . . . , n. (3)

(3) In order to simplify the future computations and also for applying the averaging theory described
in the Appendix A we need that the right hand part of the differential system starts with order ε,
for these two reasons we shall pass the linear part of the differential system (3) to its real Jordan
normal form doing a convenient linear change of variables (X1, . . . , Xn)→ (u1, . . . , un). Thus the
differential system (3) in the new variables (u1, . . . , un) writes

u̇1 = −ωu2 + εg1(u1, . . . , un, λ, ε),

u̇2 = ωu1 + εg2(u1, . . . , un, λ, ε),

u̇3 = εg3(u1, . . . , un, λ, ε),

· · · · · ·

u̇n = εgn(u1, . . . , un, λ, ε).

(4)

(4) In order to apply the averaging theory to a differential system the right hand part of that
differential system must be a periodic function in the independent variable of the system,
see again the Appendix A. For this reason we first pass the differential system (4) to the
generalized cylindrical coordinates (r, θ, u3, . . . , un) where u1 = r cos θ and u2 = r sin θ,
and system (4) becomes

ṙ = εG1(r, θ, u3, . . . , un, λ, ε),

θ̇ = ω + εG2(r, θ, u3, . . . , un, λ, ε),

u̇3 = εG3(r, θ, u3, . . . , un, λ, ε),

· · · · · ·

u̇n = εGn(r, θ, u3, . . . , un, λ, ε).

(5)

Now this differential system has its right hand part periodic in the variable θ, because this variable
appears only through the functions cos θ and sin θ. Since the cylindrical coordinates are not well
defined at r = 0, we are studying only the periodic orbits which does not intersect the set r = 0.

(5) Now we take the variable θ as the new independent variable, and system (5) in this new
independent variable writes

r′ = εH1(r, θ, u3, . . . , un, λ, ε),

u′3 = εH3(r, θ, u3, . . . , un, λ, ε),

· · · · · ·

u′n = εHn(r, θ, u3, . . . , un, λ, ε),

(6)

where the prime denotes derivative with respect to the variable θ. Note that the differential
system (6) is already written in the normal form (A1) for applying to it the averaging theory
described in the Appendix A. We also must take care to look for the periodic solutions into the
region where θ̇ does not vanish.

(6) We apply the averaging theory of third order and according with it we may get s periodic
solutions (rk(θ, ε), uk

3(θ, ε), . . . , uk
n(θ, ε)) of system (6) for k = 1, . . . , s such that

(rk(0, ε), uk
3(0, ε), . . . , uk

n(0, ε)) = (rk∗, uk∗
3 , . . . , uk∗

n ) + O(ε), (7)
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where the values (rk∗, uk∗
3 , . . . , uk∗

n ) are the zeros of the first averaging function which is not
identically zero, see again the Appendix A.

(7) Now we go back through the changes of variables until the initial differential system (2),
and we shall see how look the periodic solutions (rk(θ, ε), uk

3(θ, ε), . . ., uk
n(θ, ε)) in the

initial differential system. First the periodic solutions (7) in the differential system (5) are
(rk(t, ε), θk(t, ε), uk

3(t, ε), . . . , uk
n(t, ε)) verifying

(rk(0, ε), θk(0, ε), uk
3(0, ε), . . . , uk

n(t, ε)) = (rk∗, 0, uk∗
3 , . . . , uk∗

n ) + O(ε),

note that θk(t, ε) = ωt + O(ε).

Now the periodic solution (rk(t, ε), θk(t, ε), uk
3(t, ε), . . . , uk

n(t, ε)) of system (5) in system (4)
becomes (uk

1(t, ε), uk
2(t, ε), uk

3(t, ε), . . . , uk
n(t, ε)) satisfying

(uk
1(0, ε), uk

2(0, ε), uk
3(0, ε), . . . , uk

n(0, ε)) = (rk∗, 0, uk∗
3 , . . . , uk∗

n ) + O(ε),

because u1 = r cos θ and u2 = r sin θ. Furthermore, the periodic solution (uk
1(t, ε), . . . , uk

n(t, ε)) of
system (4) in system (3) writes (Xk

1(t, ε), . . . , Xk
n(t, ε)) satisfying

(Xk
1(0, ε), . . . , Xk

n(0, ε)) = (Xk∗
1 , . . . , Xk∗

n ) + O(ε),

here the values of Xk∗
j for k = 1, . . . , n depend on the linear change of variables that pass the

linear part of system (3) at the origin into its real Jordan normal form. Finally we pass the
periodic solutions (Xk

1(t, ε), . . . , Xk
n(t, ε)) of system (3) to system (2) and we get the periodic solutions

(xk
1(t, ε), . . . , xk

n(t, ε)) satisfying

(xk
1(0, ε), . . . , xk

n(0, ε)) = (εXk∗
1 , . . . , εXk∗

n ) + O(ε2).

So all these periodic solutions when ε→ 0 tend to the origin of coordinates, consequently are periodic
solutions bifurcating from the zero-Hopf equilibrium localized at the origin.

Here we have described this algorithm for the averaging theory up to third order, but the algorithm
is the same for the averaging theory of an arbitrary order. See the averaging theory at any order in the
papers [32–34].

3. Proof of Theorem 1

If system (1) has a zero-Hopf equilibrium (a, b, c) with non-zero components without loss of
generality we can consider this equilibrium at the point (1, 1, 1) doing the rescaling (x, y, z) →
(x/a, y/b, z/c). Then every Lotka–Volterra system (1) having the equilibrium (1, 1, 1) can be written as

ẋ = x
(
a11(x− 1) + a12(y− 1) + a13(z− 1)

)
,

ẏ = y
(
a21(x− 1) + a22(y− 1) + a23(z− 1)

)
,

ż = z
(
a31(x− 1) + a32(y− 1) + a33(z− 1)

)
,

(8)

where now we denote the coordinates of R3 by (x, y, z). Since we shall use the averaging theory of
third order for studying the periodic orbits of this system we take the coefficients aij as follows

aij = aij0 + εaij1 + ε2aij2 + ε3aij3,

with i and j varying in {1, 2, 3}, being ε a small parameter. Note that in the differential system (8)
there are 37 parameters. This big number of parameters produce that the computations for
studying the number of periodic orbits which can bifurcate from the equilibrium (1, 1, 1) are
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tedious and huge. All the computations of this paper has been done with the help of the algebraic
manipulator mathematica.

First we translate the equilibrium (1, 1, 1) to the origin of coordinates and system (8) becomes

ẋ = (1 + x)
(
a110x + a120y + a130z + ε(a111x + a121y + a131z)+

ε2(a112x + a122y + a132z) + ε3(a113x + a123y + a133z)
)
,

ẏ = (1 + y)
(
a210x + a220y + a230z + ε(a211x + a221y + a231z)+

ε2(a212x + a222y + a232z) + ε3(a213x + a223y + a233z)
)
,

ż = (1 + z)
(
a310x + a320y + a330z + ε(a311x + a321y + a331z)+

ε2(a312x + a322y + a332z) + ε3(a313x + a323y + a333z)
)
.

(9)

In order that the linear part of system (9) at the origin has eigenvalues 0 and ±ωi with ω 6= 0 we
choose the conditions

a110 = a120 = a130 = a210 = 0, a320 = −(a2
220 + ω2)/a230 and a330 = −a220, (10)

with a230ω 6= 0. So the origin of system (9) is a zero-Hopf equilibrium, and consequently system (8)
has a zero-Hopf equilibrium at the point (1, 1, 1). We remark that there are other conditions on the
parameters which also provide that the point (1, 1, 1) be a zero-Hopf equilibrium.

In what follows we shall study the periodic orbits bifurcating from the zero-Hopf equilibrium
(0, 0, 0) of system (9) under conditions (10). Note that according with conditions (10) not all coefficients
of the Lotka–Volterra system are positive, so we are working with non-competitive Lotka–Volterra
systems.

As we shall see the amount of computations for studying this Hopf-bifurcation following our
algorithm are huge due to the big number of parameters in system (9).

In order to study the periodic orbits bifurcating from the zero-Hopf equilibrium at the origin of
the differential system (9) using the averaging theory of third order (see the Appendix A), we need to
introduce a small parameter and take a new independent variable in which the differential system
be periodic.

The small parameter for the averaging theory will be the parameter ε, and we do the rescaling
(x, y, z) = (εX, εY, εZ). Then system (9) in the new variables (X, Y, Z) writes

Ẋ = ε(a111X + a121Y + a131Z) + ε2(a112X + a111X2 + a122Y+
a121XY + a132Z + a131XZ) + ε3(a113X + a112X2 + a123Y+
a122XY + a133Z + a132XZ) + O(ε4),

Ẏ = a220Y + a230Z + ε(a211X + a221Y + a220Y2 + a231Z + a230YZ)+
ε2(a212X + a222Y + a211XY + a221Y2 + a232Z + a231YZ)+
ε3(a213X + a223Y + a212XY + a222Y2 + a233Z + a232YZ) + O(ε4),

Ż = (a230a310X− a2
220Y− a220a230Z−Yω2)/a230 + ε(a230a311X+

a230a321Y + a230a331Z + a230a310XZ− a2
220YZ− a220a230Z2−

YZω2)/a230 + ε2(a312X + a322Y + a332Z + a311XZ + a321YZ+
a331Z2) + ε3(a313X + a323Y + a333Z + a312XZ + a322YZ+
a332Z2) + O(ε4).

(11)
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In order to simplify the computations of the averaging theory we shall write the linear part
of the differential system (11) into its real Jordan normal form doing the linear change of variables
(X, Y, Z)→ (u, v, w) given by

X = w,

Y =
a230a310w

ω2 +
a230ωv− a220a230u

a2
220 + ω2

,

Z = −a220a230a310w + a230ω2u.

Now the differential system (11) in the new variables (u, v, w) becomes

u̇ = −ωv +
ε

ω4(a2
220 + ω2)

(
(a131a3

220a310 − a121a2
220a230a310+

a131a220a310ω2 − a220a230a321ω2 + a2
220a331ω2 + a331ω4)ω2u+

a230(a121a220a310 + a321ω2)ω3v− (a2
220 + ω2)

(
(a131a2

220a2
310−

a121a220a230a2
310 − a111a220a310ω2 − a230a310a321ω2+

a220a310a331ω2 − a311ω4)w−ω5uv + a220a310ω3vw
))

+ O(ε2),

v̇ = ωu +
ε

a230ω3(a2
220 + ω2)

(
(−a3

220a221a230 + a4
220a231−

a131a2
220a230a310 + a121a220a2

230a310 − a2
220a2

230a321+

a3
220a230a331 − a220a221a230ω2 + 2a2

220a231ω2 − a131a230a310ω2+

a220a230a331ω2 + a231ω4)ω2u + a230(a2
220a221 − a121a230a310+

a220a230a321 + a221ω2)ω3v− (a2
220 + ω2)(−a2

220 a221a230a310+

a3
220a231a310 − a131a220a230a2

310 + a121a2
230a2

310−
a220a2

230a310a321 + a2
220a230a310a331 − a211a2

220ω2+

a111a230a310ω2 − a221a230a310ω2 + a220a231a310ω2−
a220a230a311ω2 − a211ω4)w− a220a2

230ω4u2 − a230(a3
220+

a2
220a230 + a220ω2 − a230ω2)ω3uv + a2

230a310(a2
220 + ω2)ω2uw+

a220a2
230v2ω4 + a220a230(a220 + a230)a310(a2

220 + ω2)ωvw
)
+ O(ε2),

ẇ =
ε

ω2(a2
220 + ω2)

(
(a131a2

220 − a121a220a230 + a131ω2)ω2u+

a121a230ω3v− (a2
220 + ω2)(a131a220a310 − a121a230a310 − a111ω2)w

)
+O(ε2).

(12)

In the computations of the previous differential system we have obtained the expressions of u̇, v̇ and ẇ
until terms of O(ε4), but here we only present them until terms of order O(ε2), otherwise the expression
of system (12) would need several pages. Using an algebraic manipulator as mathematica or mapple it
is relatively easy to repeat our computations.

Now we write the differential system (12) in cylindrical coordinates (r, θ, w) where u = r cos θ

and v = r sin θ, and taking θ as the new independent variable of the differential system defined we get
the new differential system

r′ = εF11(θ, r, w) + ε2F21(θ, r, w) + ε3F31(θ, r, w) + O(ε4),

w′ = εF12(θ, r, w) + ε2F22(θ, r, w) + ε3F32(θ, r, w) + O(ε4),
(13)
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defined in in r > 0, where the prime denotes derivative with respect to the variable θ. Here we only
provide the explicit expressions of F11 = F11(θ, r, w) and F12 = F12(θ, r, w) which are the shorter ones,
but our next computations will use the expressions of F21, F22, F31 and F32. Thus we have

F11 =
1

a230ω5(a2
220 + ω2)

(
(a230(a131a3

220a310 − a121a2
220a230a310+

a131a220a310ω2 − a220a230a321ω2 + a2
220a331ω2 + a331ω4) cos2 θ+

(a4
220a231 − a3

220a221a230 − a131a2
220a230a310 + 2a121a220a2

230a310−
a2

220a2
230a321 + a3

220a230a331 − a220a221a230ω2 + 2a2
220a231ω2−

a131a230a310ω2 + a2
230a321ω2 + a220a230a331ω2 + a231ω4)ω cos θ sin θ+

a230(a2
220a221 − a121a230a310 + a220a230a321 + a221ω2)ω2 sin2 θ)ω2r−

(a2
220 + ω2)(a230(a131a2

220a2
310 − a121a220a230a2

310 − a111a220a310ω2−
a230a310a321ω2 + a220a310a331ω2 − a311ω4) cos θ + (a3

220a231a310−
a2

220a221a230a310 − a131a220a230a2
310 + a121a2

230a2
310 − a220a2

230a310a321+

a2
220a230a310a331 − a211a2

220ω2 + a111a230a310ω2 − a221a230a310ω2+

a220a231a310ω2 − a220a230a311ω2 − a211ω4)ω sin θ])w− (a230ω(a2
220+

a220a230 + ω2) cos2 θ sin θ + a230(a3
220 + a2

220a230 + a220ω2 − a230ω2)

cos θ sin2 θ − a220a2
230ω sin3 θ)ω4r2 + (a230(a220 + a230)a310ω3(a2

220+

ω2) cos θ sin θ + a220a230(a220 + a230)a310ω2(a2
220 + ω2) sin2 θ)rw

)
,

F12 =
1

ω3(a2
220 + ω2)

(
((a131a2

220 − a121a220a230 + a131ω2) cos θ+

a121a230ω sin θ)ω2r− (a2
220 + ω2)(a131a220a310 − a121a230a310−

a111ω2)w
)
,

We note that the differential system (13) is written in the normal form (A1) for applying the
averaging theory of third order described in the Appendix A, where the variables t and x of the
Appendix A are now θ and (r, w) respectively. Computing the averaged function of first order
f1(r, w) = ( f11(r, w), f12(r, w)) defined in the Appendix A we get

f11(r, w) = Ar, f12(r, w) = Bw,

where

A =
(a131a220 − a121a230)a310 + (a221 + a331)ω

2 + (a220 + a230)a310a220w
2ω3 ,

B =
(a121a230 − a131a220)a310 + a111ω2

ω3 .

We look for the zeros (r∗, w∗) of f1(r, w) with r > 0, and since the unique zero of the function
f1(r, w) is (0, 0), or a continuum of zeros if the coefficient A or B is zero, the averaged function of first
order does not give any information on the periodic solutions of system (13), see the Appendix A.
Therefore we force that the averaged function of first order be identically zero and we shall use the
averaged functions of higher order to obtain information on the periodic solutions of the differential
system (13).

Since the coefficient of rw in the function f11(r, w) is (a220 + a230)a310a220 we need to consider the
following three cases in order that the averaged function of first order be identically zero:

Case 1: a220 = −a230,
a331 = (a121a230a310 + a131a230a310 − a221ω2)/ω2,
a111 = (−a121a230a310 − a131a230a310)/ω2.

Case 2: a310 = 0, a331 = −a221, a111 = 0.
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Case 3: a220 = 0,
a331 = (a121a230a310 − a221ω2)/ω2,
a111 = −(a121a230a310)/ω2.

Case 1. Since the averaged function of first order f1(r, w) is identically zero, we compute the averaged
function of second order f2(r, w) = ( f21(r, w), f22(r, w)) and we obtain

f21(r, w) = (Cw + D)r, f22(r, w) = Ew,

where
C = −(−a121a2

230a2
310 − a131a2

230a2
310 + a121a230a310ω2 + a131a230a310ω2+

a221a230a310ω2 + a230a231a310ω2 + a211ω4)/(2ω),

D = −(a2
121a4

230a2
310 + 2a121a131a4

230a2
310 + a2

131a4
230a2

310 − 2a121a221a3
230a310ω2

−2a131a221a3
230a310ω2 − a121a3

230a231a310ω2 − a131a3
230a231a310ω2+

a121a3
230a310a321ω2 + a131a3

230a310a321ω2 − a121a211a2
230ω4−

a131a211a2
230ω4 − a131a221a230a310ω4 + a122a2

230a310ω4 + a132a2
230a310ω4

−a131a230a231a310ω4 + a121a2
230a311ω4 + a131a2

230a311ω4 − a131a211ω6−
a222a230ω6 − a230a332ω6)/(2a230ω7),

E = (a2
121a4

230a2
310 + 2a121a131a4

230a2
310 + a2

131a4
230a2

310 − 2a121a221a3
230a310ω2

−2a131a221a3
230a310ω2 − a121a3

230a231a310ω2 − a131a3
230a231a310ω2+

a121a3
230a310a321ω2 + a131a3

230a310a321ω2 − a121a211a2
230ω4−

a131a211a2
230ω4 − a131a221a230a310ω4 + a122a2

230a310ω4 + a132a2
230a310ω4

−a131a230a231a310ω4 + a121a2
230a311ω4 + a131a2

230a311ω4 − a131a211ω6+

a112a230ω6)/(a230ω7).

Again the unique zero of the averaged function of second order f2(r, w) is the (0, 0) or a continuum
of solutions in case that convenient coefficients C, D or E are zero. Therefore the averaging theory of
second order does not provide any information on the periodic solutions of the differential system (13).
Consequently we impose that the averaged function of second order f2(r, w) be identically zero,
and we obtain that

a211 =
(
a121a2

230a2
310 + a131a2

230a2
310 − a121a230a310ω2 − a131a230a310ω2−

a221a230a310ω2 − a230a231a310ω2)/ω4,

a332 =
(
a2

121a2
230a310 + 2a121a131a2

230a310 + a2
131a2

230a310 − a121a221a2
230a310−

a131a221a2
230a310 − a121a131a230a2

310 − a2
131a230a2

310 + a121a2
230a310a321+

a131a2
230a310a321 + a121a131a310ω2 + a2

131a310ω2 + a122a230a310ω2+

a132a230a310ω2 + a121a230a311ω2 + a131a230a311ω2 − a222ω4)/ω4,

a112 =
(
− a2

121a2
230a310 − 2a121a131a2

230a310 − a2
131a2

230a310 + a121a221a2
230a310

+a131a221a2
230a310 + a121a131a230a2

310 + a2
131a230a2

310 − a121a2
230a310a321

−a131a2
230a310a321 − a121a131a310ω2 − a2

131a310ω2 − a122a230a310ω2−
a132a230a310ω2 − a121a230a311ω2 − a131a230a311ω2)/ω4.

We compute the averaged function of third order f3(r, w) = ( f31(r, w), f32(r, w)) and we get

f31(r, w) =
a0r4 + a1r3 + a2r2w + a3r2 + a4rw + a5w2 + a6r + a7w

384a230(a2
230 + ω2)ω13r

,

f32(r, w) =
b0r3 + b1r2w + b2r2 + b3rw + b4r + b5w

24a230(a2
230 + ω2)2ω9

.

We do not provide the explicit expressions of the coefficients aj and bj because we shall need
approximately twenty pages for writing them.
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Now we shall study the zeros of the function f3(r, w). Since the variable w appears linearly in the
equation f32(r, w) = 0, we isolate it and we get w = W(r). Substituting w = W(r) into the equation
f31(r, w) = 0, we obtain an equation in the variable r of the form

n(r)
d(r)

=
c2r2 + c3r3 + c4r4 + c5r5 + c6r6 + c7r7 + c8r8

(d0 + d1r + d2r2)2 = 0. (14)

The coefficients cj and dj are polynomials in some of the coefficients of the
differential system (8), more precisely in the coefficients a113, a121, a122, a123, a131, a132, a133,
a212, a221, a222, a223, a230, a231, a232, a310, a311, a312, a321, a322, a333, ω. We have computed the rank
of the Jacobian matrix of the function (c2, c3, c4, c5, c6, c7, c8) with respect to the 21 previous coefficients,
it is the rank of a 7× 23 matrix, and we get that this rank is 7. Therefore the seven coefficients of
the polynomial n(r) are independent, and consequently we can choose them in such a way that the
polynomial n(r) has six positive real roots. Moreover, we also can choose those coefficients in such a
way that the resultant of the polynomials n(r) and d(r) is not zero, and consequently both polynomials
do not have a common root. So Equation (14) can have six positive solutions, r∗j for j = 1, 2, 3, 4, 5, 6.

In short, we have that (r∗j , W(r∗j )) for j = 1, 2, 3, 4, 5, 6 are six zeros of the third averaged function
f3(r, w). These zeros can be chosen simple, i.e., the Jacobian of the function f3(r, w) evaluated in
such zeros is not zero. Consequently by the averaging theory (see the Appendix A) the differential
system (13) has six periodic solutions (rj(θ, ε), wj(θ, ε)) such that (rj(0, ε), wj(0, ε))→ (r∗j , W(r∗j )) when
ε→ 0.

Going back to the differential system (12) we obtain for this system six periodic solutions
(uj(t, ε), vj(t, ε), wj(t, ε)) such that

(uj(0, ε), vj(0, ε), wj(0, ε))→ (r∗j , 0, W(r∗j )),

when ε→ 0. These periodic solutions provide six periodic solutions (Xj(t, ε), Yj(t, ε), Zj(t, ε)) for the
differential system (11) such that

Xj(0, ε)→W(r∗j ),

Yj(0, ε)→
a230a310W(r∗j )

ω2 −
a220a230r∗j
a2

220 + ω2
,

Zj(0, ε)→ a230ω2r∗j − a220a230a310W(r∗j ),

when ε → 0. Finally going back to the differential system (8) we obtain six periodic solutions
(xj(t, ε), yj(t, ε), zj(t, ε)) such that

xj(0, ε) = 1 + εW(r∗j ) + O(ε2),

yj(0, ε) = 1 + ε
( a230a310W(r∗j

ω2 −
a220a230r∗j
a2

220 + ω2

)
+ O(ε2),

zj(0, ε) = 1 + ε
(
a230ω2r∗j − a220a230a310W(r∗j )

)
+ O(ε2),

(15)

when ε → 0. Clearly from (15) these six periodic solutions (xj(t, ε), yj(t, ε), zj(t, ε)) tend to the
equilibrium point (1, 1, 1) of the differential system (8) when ε → 0. Hence they bifurcate from
that zero-Hopf equilibrium at ε = 0. This completes the proof of Theorem 1.

Case 2. Again, since the averaged function of first order f1(r, w) is identically zero, we compute the
averaged function of second order f2(r, w) = ( f21(r, w), f22(r, w)) and we obtain

f21(r, w) = (Cw + D)r, f22(r, w) = Ew,
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where

C =
a220(a211a2

220 + a211a220a230 + a220a230a311 + a2
230a311 + a211ω2)

2a230ω3 ,

D =
1

2a230ω3

(
a121a211a220a230 − a131a211a2

220 − a131a220a230a311+

a121a2
230a311 − a131a211ω2 − a222a230ω2 − a230a332ω2),

E =
1

a230ω3

(
a121a211a220a230 − a131a211a2

220 − a131a220a230a311+

a121a2
230a311 − a131a211ω2 + a112a230ω2).

As in the previous case the unique zero of the averaged function of second order f2(r, w) is the (0, 0)
or a continuum of solutions in case that convenient coefficients C, D or E are zero. Consequently we
impose that the averaged function of second order f2(r, w) be identically zero, but since the coefficient
of rw in the function f21(r, w) is a product of two factors we have to consider two subcases.

Subcase 2.1: a220 = 0. Then, in order that the averaged function of second order f2(r, w) be identically
zero we take

a332 =
a121a2

230a311 − a131a211ω2 − a222a230ω2

a230ω2 ,

a112 =
a131a211ω2 − a121a2

230a311

a230ω2 .

We compute the averaged function of third order f3(r, w) = ( f31(r, w), f32(r, w)) and we get

f31(r, w) =
a0r3 + a1r2 + a2rw + a3w2 + a4r + a5w

384a2
230ω5r

,

f32(r, w) =
b0r3 + b1r2 + b2rw + b3r + b4w

24a2
230ω5

.

(16)

Here the expressions of the coefficients aj’s and bj’s are relatively short, but we do not need
them explicitly.

We shall study the zeros of the function f3(r, w). Since the variable w appears linearly in the
equation f32(r, w) = 0, we isolate it and we get w = W(r). Substituting w = W(r) into the equation
f31(r, w) = 0, we obtain an equation in the variable r of the form

c2r2 + c3r3 + c4r4 + c5r5 + c6r6

(d0 + d1r + d2r2)2 = 0.

So at most we have four positive solutions for the variable r, and consequently at most four zeros
for the averaged function of third order f3(r, w). In any case less than the six obtained in Case 1.

Subcase 2.2: a211a2
220 + a211a220a230 + a220a230a311 + a2

230a311 + a211ω2 = 0. Then in order that the
averaged function of second order f2(r, w) be identically zero we take

a311 = −
a211a2

220 + a211a220a230 + a211ω2

a230(a220 + a230)
,

a332 = − a121a211 + a131a211 + a220a222 + a222a230

a220 + a230
,

a112 =
a121a211 + a131a211

a220 + a230
.

We compute the averaged function of third order f3(r, w) = ( f31(r, w), f32(r, w)) and we get again
the expressions given in (16), of course the coefficients aj’s and bj’s are now different. Repeating the
arguments of the previous subcase we obtain at most four zeros for the averaged function of third
order f3(r, w).
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Case 3. Again since the averaged function of first order f1(r, w) is identically zero, we compute the
averaged function of second order f2(r, w) = ( f21(r, w), f22(r, w)) and we obtain

f21(r, w) = (Cw + D)r, f22(r, w) = Ew,

where

C = − a310(a121 − a221)a230

2 ω3 ,

D = − 1
2a230ω5

(
a121a3

230a310a321 − a131a221a230a310ω2 + a122a2
230a310ω2+

a121a2
230a311ω2 − a131a211ω4 − a222a230ω4 − a230a332ω4),

E =
1

a230ω5

(
a121a3

230a310a321 − a131a221a230a310ω2 + a122a2
230a310ω2+

a121a2
230a311ω2 − a131a211ω4 + a112a230ω4).

As in the previous case the unique zero of the averaged function of second order f2(r, w) is the
(0, 0) or a continuum of solutions in case that convenient coefficients C, D or E are zero. Consequently
we impose that the averaged function of second order f2(r, w) be identically zero, but since the
coefficient of rw in the function f21(r, w) is a product of two factors which can be zero, namely
a310(a121 − a221), we have two consider two subcases.

Subcase 3.1: a310 = 0. Then in order that the averaged function of second order f2(r, w) be identically
zero we take

a332 =
a121a2

230a311 − a131a211ω2 − a222a230ω2

a230ω2 ,

a112 =
−a121a2

230a311 + a131a211ω2

a230ω2 .

We compute the averaged function of third order f3(r, w) = ( f31(r, w), f32(r, w)) and we get again
the expression given in (16), consequently at most four solutions.

Subcase 3.2: a221 = a121. Then in order that the averaged function of second order f2(r, w) be identically
zero we take

a332 =
1

a230ω2

(
a121a3

230a310a321 − a121a131a230a310ω2 + a122a2
230a310ω2+

a121a2
230a311ω2 − a131a211ω4 − a222a230ω4),

a112 =
1

a230ω4

(
a121a131a230a310ω2 − a121a3

230a310a321 − a122a2
230a310ω2−

a121a2
230a311ω2 + a131a211ω4).

We compute the averaged function of third order f3(r, w) = ( f31(r, w), f32(r, w)) and we get

f31(r, w) =
a0r4w + a1r4 + a2r2w2 + a3r3 + a4r2w + a5w3 + a6r2 + a7rw + a8w2

384a2
230ω9r

,

f32(r, w) =
b0r3 + b1r2w + b2r2 + b3rw + b4w2 + b5r + b6w

24a2
230ω7

.

Here the explicit expressions of the coefficients aj’s and bj’s only should need approximately three
pages for writing them. However, unfortunately in this case we do not know how to control the zeros
(r∗, w∗) of the function f3(r, w) with r∗ > 0. We think that in this subcase it is possible that more than
six simple zeros can be obtained, but for the moment this is an open problem.
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Appendix A. The Averaging Theory of First, Second and Third Order

The averaging theory of third order for studying periodic orbits was developed [35] and in [34] at
any order. It can be summarized as follows.

Consider the differential system

ẋ = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε), (A1)

where F1, F2, F3 : R× D → R, R : R× D× (−ε f , ε f )→ R are continuous functions, T–periodic in the
first variable, and D is an open subset of Rn. Assume that the following hypotheses (i) and (ii) hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1, DxF2 are locally Lipschitz with

respect to x, and R is twice differentiable with respect to ε.

We define Fk0 : D → R for k = 1, 2, 3 as

f1(x) =
1
T

∫ T

0
F1(s, x)ds,

f2(x) =
1
T

∫ T

0
[DxF1(s, x) · y1(s, x) + F2(s, x)] ds,

f3(x) =
1
T

∫ T

0

[1
2

y1(s, x)T ∂2F1

∂x2 (s, x)y1(s, x) +
1
2

∂F1

∂x
(s, x)y2(s, x)

+
∂F2

∂x
(s, x)y1(s, x) + F3(s, x)

]
ds,

where
y1(s, x) =

∫ s

0
F1(t, x)dt,

y2(s, x) =
∫ s

0

[
∂F1

∂x
(t, x)

∫ t

0
F1(r, x)dr + F2(t, x)

]
dt.

(ii) For an open and bounded set V ⊂ D and for each ε ∈ (−ε f , ε f ) \ {0}, there exists a ∈ V such
that f1(a) + ε f2(a) + ε2 f3(a) = 0 and dB( f1 + ε f2 + ε2 f3, V, aε) 6= 0 (i.e., the Brouwer degree of the
function f1 + ε f2 + ε2 f3 at the point a is not zero).

Then for |ε| > 0 sufficiently small there exists a T–periodic solution x(t, ε) of system (A1) such that
x(0, ε)→ a when ε→ 0.

A sufficient condition in order that dB( f1 + ε f2 + ε2 f3, V, aε) 6= 0 is that the Jacobian of the function
f1 + ε f2 + ε2 f3 at a is not zero, see for details [36].

The averaging theory of first order takes place when f1 is not identically zero. Therefore the zeros
of f1 + ε f2 + ε2 f3 are mainly the zeros of f1 for ε sufficiently small.

The averaging theory of second order takes place when f1 is identically zero and f2 is not
identically zero. Then the zeros of f1 + ε f2 + ε2 f3 are mainly the zeros of f2 for ε sufficiently small.
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Finally the averaging theory of third order takes place when f1 and f2 are identically zero and
f3 is not identically zero. Therefore the zeros of f1 + ε f2 + ε2 f3 are mainly the zeros of f3 for ε

sufficiently small.
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