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Abstract: This paper describes the effect of perturbation of the kernel on the solutions of linear
Volterra integral equations on time scales and proposes a new perspective for the stability analysis of
numerical methods.
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1. Introduction

In this paper, we consider Volterra Integral Equations (VIEs) on time scales of the type

x(t) = g(t) +
∫ t

t0

k(t, s)x(s)∆s, t ∈ [t0,+∞)T = [t0,+∞) ∩T, (1)

where T is a time scale that is a nonempty, closed subset of R in Equation (1), t0 ∈ T, and the integral
sign is intended as a delta-integral (see Definition 4 in Section 2). We assume that the given real-valued
functions g(t) and k(t, s) are defined in [t0,+∞)T and [t0,+∞)T × [t0,+∞)T, respectively.

The theory of Volterra equations on time scales goes back to 2008 when, for the first time
in [1], qualitative and quantitative results on the solutions were given. This laid the foundations
for fruitful research and served as tools for continued works on VIEs. In addition, we refer to the book
by Adivar et al. [2] and the references therein for a complete and extensive studies on recent results
on the subject.

The study of integral equations in general stems from the study of existence and uniqueness
of solutions of nonlinear differential equations. To see this, we consider the ∆-differential equation
on time scale T as described above,

x∆(t) = a(t)x(t) + g(t, x(t)),

where a and g are continuous on their respective domains. Integrating the above equation from t0 to t
yields the VIE on time scales

x(t) = x(t0) +
∫ t

t0

[a(s)x(s) + g(s, x(s))]∆s, t ∈ [t0,+∞)T.
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For another important application to VIE, we look at the totally nonlinear delay dynamic equation

x∆(t) = −a(t)g(x(η(t)))η∆(t), t ∈ [t0, ∞)T , (2)

on a time scale T, such that supT = ∞. The delay function η : [t0, ∞)T → [η(t0), ∞)T
is invertible, strictly increasing and ∆–differentiable, such that t > η(t),

∣∣η∆(t)
∣∣ is bounded for t ∈ T,

and η(t0) ∈ T. In addition, the functions a and g are rd-continuous (see Definition 5 in Section 2).
Since the solution depends on a given initial function, we assume the existence of a rd-continuous
function ψ := [η(t0), t0]T→ R, then x(t) := x(t; t0, ψ) is the solution of (2) if x(t) = ψ(t) on [η(t0), t0]T
and satisfies (2) for all t ≥ t0. We notice that, under suitable conditions on the relevant coefficients,
(see [2]), Equation (2) can be put in the form

x∆(t) = −a
(

η−1(t)
)

g(x(t)) +
(∫ t

η(t)
a
(

η−1(s)
)

g(x(s))∆s
)∆

. (3)

If x is a solution of (3), then we have the VIE

x(t) = e−a(η−1)(t, t0)ψ(t0) +
∫ t

η(t) a
(
η−1(s)

)
g(x(s))∆s

−e−a(η−1)(t, t0)
∫ t0

η(t0)
a
(
η−1(s)

)
g(ψ(s))∆s

−
∫ t

t0
a
(
η−1(s)

)
e−a(η−1)(t, σ(s))

(∫ s
η(s) a

(
η−1(u)

)
g(x(u))∆u

)
∆s

+
∫ t

t0
a
(
η−1(s)

)
e−a(η−1)(t, σ(s)) [x(s)− g(x(s))]∆s,

(4)

where eα(t, t0) is the exponential function on time scales (see Definition 6 in Section 2). Note that (2)
is totally nonlinear and the integral equation form of its solution given by (4) allows us to use fixed
point theory and analyze the boundedness of solutions and the stability of its zero solution. A slight
variation of (4) permits us to show the existence of a periodic solution. For more on the above
discussion, we refer to [2].

From now on, we assume that, in Equation (1), the kernel k : [t0,+∞)T × [t0,+∞)T →
R is continuous and the forcing function g is continuous on [t0,+∞)T. This research utilizes
the asymptotic response of the solution of (1) and obtains results concerning the asymptotic response
when the kernel is perturbed.

Since time scales calculus is now a well-established theory, we refer to the classical literature [3–6]
for a comprehensive review. Moreover, in Section 2, we state some background material that is useful
in this paper. The rest of the paper is organized as follows. In Section 3, we obtain some results on the
asymptotic behavior of the solution to (1), which are essentially the generalization to time scales of
two theorems proved in [7] for summation equations. In Section 4, the perturbed solution is written
in terms of the unperturbed one through a new equation where x acts as a forcing term, so the error
analysis is carried out by the definition of the resolvent related to the kernel of the new equation.

The use of time scales as a representation domain of mathematical problems allows unification
of continuous and discrete domains plus other time sets on which some phenomena can be more
realistically represented or defined. In this paper, our primary interest is to construct a single
environment for a consistent analysis of the stability of (1) and, at the same time, of numerical methods
for its resolution. Such numerical methods can be seen as integral Volterra equations on the time
scale hZ, where the new forcing function and kernel are still related to the known terms in (1).
The connection between the problem on R and the problem on hZ, will be emphasized in Section 5,
while, in Section 6, a general overview on the applications of the theory proposed in this paper
is discussed. Finally, some conclusions are drawn in Section 7.
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2. Background Material

In this section, we recall some definitions and theorems that have been used in the paper
(see [3,4,6] and the bibliography therein).

A time scale T is defined as an arbitrary closed and nonempty subset of R. We assume here that T
inherits the standard topology in R.

Definition 1. For all t ∈ T and t < supT , the forward jump operator σ : T→ T is given by

σ(t) = inf {τ > t : τ ∈ T},

and for t > infT the backward jump operator ρ : T→ T is given by

ρ(t) = sup {τ < t : τ ∈ T}.

The point t ∈ T is said to be right-scattered (resp. left-scattered) if σ(t) > t (resp. ρ(t) < t).
Furthermore, the point t ∈ T is said to be right-dense (resp. left-dense) if σ(t) = t (resp. ρ(t) = t).
A point t ∈ T that is simultaneously right and left-scattered is called isolated. The function µ : T→
[0,+∞), defined by µ(t) = σ(t)− t, is the grainess of the time scale T.

For the trivial examples of time scales T = R and T = Z, we have that σ(t) = t, µ(t) = 0,
and σ(t) = t + 1, µ(t) = 1, respectively.

Definition 2. [8] A function f : T→ R has a limit L at t0 ∈ T if and only if for every ε > 0 there exists δ > 0
such that, if t ∈ [t0 − δ, t0 + δ], then

| f (t)− L| < ε.

If t0 is an isolated point, then L = f (t0). If the limit exists, we write

lim
t→t0

f (t) = L.

If T has left-scattered maximum, then we define Tk = T−maxT, otherwise Tk = T.

Definition 3. Consider a function f : T→ R, and t ∈ Tk. Then, define f ∆(t) to be the number (if it exists)
such that, given any ε > 0, there is a neighborhood U of t such that

| f (σ(t))− f (s)− f ∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|,

for all s ∈ U. f ∆(t) is called the delta-derivative of f at t.

If T = R, then f ∆(t) = f ′(t), the usual derivative, and, if T = Z, then f ∆(t) = f (t + 1)− f (t),
the forward difference operator.

Definition 4. If F∆(t) = f (t), and t, t0 ∈ T, we define the delta-integral by

∫ t

t0

f (s)∆s = F(t)− F(t0).

If T = R, then
∫ t

t0
f (s)∆s corresponds to the Cauchy integral

∫ t
t0

f (s)ds and, if T = Z,

then
∫ t

t0
f (s)∆s = ∑t−1

s=t0
f (s).

Definition 5. A function f : T → R is right-dense (rd) continuous ( f ∈ Crd(T,R)) if it is continuous at
every right-dense point t ∈ T and lims→t− f (s) exists for every left-dense point t ∈ T. Similarly, a function
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f : T → R is left-dense (ld) continuous ( f ∈ Cld(T,R)) if it is continuous at every left-dense point t ∈ T
and lims→t+ f (s) exists for every right-dense point t ∈ T.

We remark that every rd-continuous function on T is delta-integrable on T (see, for example [9])
and that every continuous function on T is also rd and ld-continuous on T.

Define the set of regressive functions as

R = {α ∈ Crd and 1 + α(t)µ(t) 6= 0, ∀t ∈ T}.

Definition 6. For α ∈ R, the exponential function eα(t, t0), t ∈ T is defined as the unique solution of the initial
value problem

x∆ = α(t)x, x(t0) = 1. (5)

The explicit form of eα(t, t0) is given by

eα(t, t0) =


exp(

∫ t

t0

α(s)ds, if µ = 0

exp
(∫ t

t0

ln(1 + µ(s)α(s))
µ(s)

∆s
)

, if µ > 0.
(6)

3. Asymptotics for Linear Equations

Consider Equation (1). The resolvent kernel rk(t, s) associated with k(t, s) is defined as the solution
of the following equation:

rk(t, s) = k(t, s) +
∫ t

σ(s)
rk(t, τ)k(τ, s)∆τ, (7)

where σ(t) is the forward jump operator (see Definition 1 in Section 2). Then, the solution of the linear
Equation (1) may be written in terms of g as follows:

x(t) = g(t) +
∫ t

t0

rk(t, s)g(s)∆s. (8)

The resolvent rk(t, s) for the kernel k(t, s) may be defined equivalently as the solution of
the equation

rk(t, s) = k(t, s) +
∫ t

σ(s)
k(t, τ)rk(τ, s)∆τ. (9)

We refer the reader to [10] for sufficient conditions on the existence of the resolvent rk(t, s) when
k(t, s) is continuous on [t0,+∞)T × [t0,+∞)T. For weaker conditions, we refer the reader to [11],
in which existence is proven by asking just rd-continuity in both t and s.

Theorem 1. Considering the linear integral Equation (1), let k : [t0,+∞)T × [t0,+∞)T → R be continuous
in both variables and g : [t0,+∞)T → R be continuous. Furthermore, assume that there exists t̄ ∈ [t0,+∞)T
and R > 0 such that

sup
t∈[t̄,+∞)T

∫ t

t0

|rk(t, s)|∆s < R, (10)

then:
(i). if there exists a constant ḡ > 0 such that supt∈[t0,+∞)T

|g(t)| ≤ ḡ, then there exists a constant x̄ > 0
such that

sup
t∈[t0,+∞)T

|x(t)| < x̄,
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(ii). if limt→+∞ g(t) = 0, and
lim

t→+∞
rk(t, s) = 0, for all s ∈ [t0, t]T, (11)

then
lim

t→+∞
x(t) = 0.

Proof.
(i). if there exists a constant ḡ > 0 such that supt∈[t0,+∞)T

|g(t)| ≤ ḡ, then, from (8), we have

|x(t)| ≤ ḡ
(

1 +
∫ t

t0

|rk(t, s)|∆s
)
≤ ḡ(1 + R),

where the last inequality holds for any t ∈ [t̄,+∞)T. Since k(t, s) is continuous in t and s,
then it is bounded for (t, s) ∈ [t0, t̄]T × [t0, t̄]T, and therefore x(t) is also bounded (see [1,12])
by a positive constant ¯̄x , then |x(t)| ≤ x̄ = max{ ¯̄x, ḡ(1 + R)}.
(ii). Since g(t) vanishes at infinity, let ε > 0 and T > t̄ such that |g(t)| < ε

2(1+R) for each t > T.
Then, we write (8) as

x(t) = g(t) +
∫ T

t0

rk(t, s)g(s)∆s +
∫ t

T
rk(t, s)g(s)∆s,

and hence

|x(t)| ≤ ε

2
+
∫ T

t0

|rk(t, s)||g(s)|∆s.

Because of (11), there exists ν > 0 such that |rk(t, s)| < ε
2ḡT , for t > ν. Thus, consider t >

max
{

t̄, ν
}

, and the result follows straightforwardly.

Some assumptions on k(t, s), which assure that rk(t, s) satisfies (10) and/or (11), are given,
for example, in [13,14] when T = Z, and in [13,15] for T = R. A general result on time scales
can be found in [12].

When T = R or T = Z and the kernel k of Equation (1) is of convolution type, assumption (10)
states the summability of the resolvent rk. In this case, for any bounded function ψ on [t0,+∞)T and for
any T ∈ [t0,+∞)T, we have that

∫ T
t0
|rk(δ−(t, σ(s))||ψ(s)|∆s vanishes (see Section 3.2 for the definition

of shift operator δ−). This implies that assumption (11) is not necessary anymore to prove that
x(t) vanishes.

4. Linear Perturbed Equations

In this section, we investigate stability of the solution of Equation (1). Assume a continuous
perturbation p(t, s) of the kernel k(t, s), and then consider the perturbed equation

x̃(t) = g(t) +
∫ t

t0

(k(t, s) + p(t, s))x̃(s)∆s. (12)

Then, the solution can be rewritten as

x̃(t) = x(t) +
∫ t

t0

a(t, s)x̃(s)∆s, (13)

with

a(t, s) = p(t, s) +
∫ t

σ(s)
rk(t, τ)p(τ, s)∆τ. (14)
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Hence,

x̃(t) = x(t) +
∫ t

t0

r̃(t, s)x(s)∆s,

with r̃(t, s) satisfying

r̃(t, s) = a(t, s) +
∫ t

σ(s)
r̃(t, τ)a(τ, s)∆τ. (15)

Thus, r̃ is the resolvent corresponding to the kernel a of Equation (13). In order to prove (13),
consider Equation (12) written in the form

x̃(t) = G(t) +
∫ t

t0

k(t, s)x̃(s)∆s,

with G(t) = g(t) +
∫ t

t0
p(t, s)x̃(t)∆s. Since rk(t, s) is the resolvent corresponding to the kernel k(t, s),

we write the solution x̃(t) of the equation above in terms of G(t) as

x̃(t) =G(t) +
∫ t

t0

rk(t, s)G(s)∆s

=g(t) +
∫ t

t0

p(t, s)x̃(s)∆s +
∫ t

t0

rk(t, s)
(

g(s) +
∫ s

t0

p(s, u)x̃(u)∆u
)

∆ s

=g(t) +
∫ t

t0

rk(t, s)g(s)∆s +
∫ t

t0

p(t, s)x̃(s)∆s

+
∫ t

t0

(
rk(t, s)

∫ s

t0

p(s, u)x̃(u)∆u
)

∆s.

From (8), we obtain (13), which relates the perturbed solution of Equation (1) to the unperturbed one.
The resolvent r̃(t, s) associated with the kernel a(t, s) defined in (14) satisfies (15). For more on this,

we refer the reader to [10], and its relation with the kernel k, the resolvent rk and the perturbation p
is evident by the following equation:

r̃(t, s) = p(t, s) +
∫ t

σ(s)
rk(t, τ)p(τ, s)∆τ

+
∫ t

σ(s)

(
p(t, τ) +

∫ t

σ(τ)
rk(t, u)p(u, s)∆u

)
r̃(τ, s)∆τ.

(16)

The dependence of the perturbed equation on x(t), highlighted in (13)–(14), suggests that,
in order to obtain a coherent and reasonable behavior of the two solutions, it is necessary to make
some hypotheses on the known function p(t, s) and the resolvent rk(t, s) related to the unperturbed
Equation (1).

4.1. Stability

Theorem 2. Consider the linear integral Equation (1), let k : [t0,+∞)T × [t0,+∞)T → R be continuous
in both variables and g : [t0,+∞)T → R be continuous. Furthermore, assume that, for the resolvent rk(t, s),
defined by Equation (7), hypotheses (10) and (11) hold and that

∫ t

t0

|p(t, s)|∆s ≤ P(t), with lim
t→+∞

P(t) = 0, (17)
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where P(t) is a continuous function on [t0,+∞)T. Then, for the perturbed solution defined by Equations (13)
and (14), it holds:
(i). if there exists a constant x̄ such that supt∈[t0,+∞)T

|x(t)| ≤ x̄, then there exists X > such that

sup
t∈[t0,+∞)T

|x̃(t)| < X,

(ii). if limt→+∞ x(t) = 0, then
lim

t→+∞
x̃(t) = 0.

Proof.
(i). From (14), by changing the order of integration (see for example ([10] Lem.2.1)), it is obvious that

∫ t

t0

|a(t, s)|∆s ≤ |P(t)|+
∫ t

t0

|rk(t, s)||P(s)|∆s.

Thus, for t > t̄,

∫ t

t0

|a(t, s)|∆s ≤ |P(t)|+
∫ t̄

t0

|rk(t, s)||P(s)|∆s +
∫ t

t̄
|rk(t, s)||P(s)|∆s.

Since P(t) vanishes for t→ +∞, then, let ε > 0, there exists ν1 > 0 such that |P(t)| < ε, for t > ν1.
Furthermore, because of assumption (11), which is rk(t, s)→ 0, for t→ +∞, it holds that for all s ∈
[t0, t̄)T there exists ν2 > 0 such that |rk(t, s)| < ε, for t > ν2. Considering t > ¯̄t = max {t̄, ν1, ν2} then

∫ t

t0

|a(t, s)|∆s ≤ ε + Pε + εR,

where P = maxt∈[t0,t̄]T P(t), which exists because P(t) is continuous (see for example [16]).
We arbitrarily choose ε = α

1+R+P , with 0 < α < 1. the boundedness of x̃ is implied by Theorem
7 in [12].
(ii). From part (i) of the proof we have that x̃(t) is bounded and

lim
t→+∞

∫ t

t0

|a(t, s)|∆s = 0, (18)

and thus, letting ε > 0, there exists a constant T > 0 such that
∫ t

t0
|a(t, s)|∆s ≤ ε < 1, for t > T.

From (12),

|x̃(t)| ≤ |x(t)|+
∫ T

t0

|a(t, s)||x̃(s)|∆s +
∫ t

T
|a(t, s)||x̃(s)|∆s.

Then,

lim sup
t→+∞

|x̃(t)| ≤ lim
t→+∞

|x(t)|+ sup
t0≤t≤T

|x̃(t)| lim
t→+∞

∫ T

t0

|a(t, s)|

+ sup
t≥T
|x̃(t)| sup

t≥T

∫ t

t0

|a(t, s)|∆s.
(19)

For t > T,
∫ T

t0
|a(t, s)|∆s <

∫ t
t0
|a(t, s)|∆s, and then limt→+∞

∫ T
t0
|a(t, s)|∆s = 0.

Passing to the limit as T → +∞, in (19), we arrive at

lim sup
t→+∞

|x̃(t)| ≤ 1
1− ε

lim
t→+∞

|x(t)|.

By the assumption that x(t) tends to zero, we have completed this proof.
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Part (ii) of Theorem 2 extends to the case limt→+∞ x(t) = x∞, as follows:

Corollary 1. Considering the linear integral Equation (1), let k : [t0,+∞)T × [t0,+∞)T → R be continuous
in both variables and g : [t0,+∞)T → R be continuous. Furthermore, assume that, for the resolvent rk(t, s),
associated with Equation (1), assumptions (10) and (11) hold. Let

lim
t→+∞

x(t) = x∞. (20)

Then, for the perturbed solution defined by Equations (13) and (14), with P(t) satisfying (17), we have that

lim
t→+∞

x̃(t) = x̃∞ = x∞.

Proof. This behavior is clear by applying Theorem 2 to Equation (13), which, in view of (18) and (20),
can be rewritten as

ṽ(t) = v(t) +
∫ t

t0

a(t, s)ṽ(s)∆s,

with ṽ(t) = x̃(t)− x̃∞ and v(t) = x(t)− x∞ + x∞
∫ t

t0
a(t, s)∆s.

Remark 1. As we remarked in Section 3, when T = R and when T = Z and the kernel k of Equation (1)
is of convolution type, assumption (11) is not necessary for the convergence of the perturbed solution.
Thus, condition (10) states the summability of the resolvent corresponding to the convolution part of the kernel
controls the stability of the system, a necessary and sufficient condition for rk(δ−(t, σ(s))) to be summable
whenever k(t) is summable is given by the Paley–Wiener results [17].

4.2. Summability

Theorem 3. Considering the linear integral Equation (1), let k : [t0,+∞)T × [t0,+∞)T → R be continuous
in both variables and g : [t0,+∞)T → R be continuous. Assume that, for the resolvent rk(t, s), associated
with Equation (1),

sup
s∈[t0,+∞)T

∫ +∞

s
|rk(t, s)|∆t ≤ ¯̄R. (21)

In addition, let ∫ +∞

σ(s)
|p(t, s)|∆t ≤ P(s), with lim

s→+∞
P(s) = 0, (22)

where P(s) is a continuous function on [t0,+∞)T. Then, if
∫ +∞

t0
|x(t)|∆t < +∞, the perturbed solution

defined by Equations (13) and (14), satisfies∫ +∞

t0

|x̃(t)|∆t < +∞.

Proof. For the kernel a(t, s) of Equation (13) given in (14), we get

∫ +∞

σ(s)
|a(t, s)|∆t ≤

∫ +∞

σ(s)
|p(t, s)∆t +

∫ +∞

σ(s)

∫ t

σ(s)
|rk(t, τ)||p(τ, s)|∆τ∆t,

and thus, interchanging the order of integration, for s ≥ s̄ sufficiently large, it results in

∫ +∞

σ(s)
|a(t, s)|∆t ≤

∫ +∞

σ(s)
|p(t, s)|∆t +

∫ +∞

σ(s)

∫ +∞

σ(τ)
|rk(t, τ)||p(τ, s)|∆t∆τ ≤ (1 + ¯̄R)P(s) < ε < 1.
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By Equation (13), again interchanging the order of integrations, one has

∫ +∞

t0

|x̃(t)|∆t ≤
∫ +∞

t0

|x(t)|∆t +
∫ σ(s̄)

t0

∫ +∞

σ(s)
|a(t, s)||x̃(s)|∆t∆s +

∫ +∞

σ(s̄)

∫ +∞

σ(s)
|a(t, s)||x̃(s)|∆t∆s.

Thus,

(1− ε)
∫ +∞

t0

|x̃(t)|∆t ≤
∫ +∞

t0

|x(t)|∆t + C(s̄),

with C(s̄) being a positive constant bound for
∫ σ(s̄)

t0

∫ +∞
σ(s) |a(t, s)||x̃(s)|∆t∆s, which exists since,

with a(t, s) given by (14), assumptions (21) and (22) hold.

5. Time Scale and Stability of Numerical Methods

One of the main advantages of time scale is that continuous and discrete problems can be analyzed
within the same theoretical framework. This responds well to the needs of numerical analysis when
addressing the problem of numerical stability. As a matter of fact, in these cases, one may want
to identify a class of test equations and study the conditions for the analytical and numerical problems
under which some characteristics of the solutions are preserved.

The continuous (T = R) version of problem (1) is the following Volterra integral equation:

x(t) = g(t) +
∫ t

t0

k(t, s)x(s)ds, t ≥ t0, (23)

and we refer to [18] and the bibliography therein for a comprehensive account of theory development
and applications. For T = Z, the resulting Volterra summation equation reads

x(t) = g(t) +
t−1

∑
s=t0

k(t, s)x(s), t ≥ t0, (24)

whose analysis has been the subject of great interest over the years (see, for example [7,14,19–21])
due to its importance in some epidemic models (see e.g. [19]), in some engineering applications (see,
for example [22]) and, above all, for its direct connection with numerical methods for (23).

Let x0 = x(t0), and tn = t0 + nh, for n = 0, 1, . . . , be the time step with mesh size h > 0.
Then, a n0-step (n0 ≥ 1) (ρ, σ)-method for the approximation of (23) reads

xn = g(tn) + h
n0−1

∑
j=0

wnjk(tn, tj)xj + h
n

∑
j=n0

ωn−jk(tn, tj)xj, (25)

where x1, ..., xn0−1 are given starting values and xn ≈ x(tn) for n ≥ n0. Regarding the weights wnj
and ωn, we refer to [23] Section 2.6.

Equation (25) can be written as

X(t) = G(t) + h
t−1

∑
s=t0

K(t, s)X(s), t ∈ [t0,+∞] ∩ hZ. (26)

Here,

G(t) =
g(t) + h ∑n0−1

j=0 wnjk(t, tj)xj

1− hω0k(t, t)
,

K(t, s) =
ωn−jk(t, s)

1− hω0k(t, t)
,

(27)
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where n = t/h and n − j = (t − s)/h. Thus, a numerical (ρ, σ) method for (23) corresponds
to Equation (26) on the time scale hZ, where the forcing G and the kernel K are linked to their
continuous counterparts by (27).

All the results of this paper allow us a contextual discussion on the asymptotic properties of
the analytical solution to Volterra integral equations and of the approximate one, supposing that the
characteristics of the known terms k and g of (23) are inherited by K and G in (26). This is not obvious
and is of course one of the main concerns when dealing with the stability of numerical methods.
Some results, under additional assumptions on the regularity of the kernel and on the properties of
the weights, can be found, for example, in [24,25]. Here, it is proved that, if

(a) supt≥s |k(t, s)| < ∞, ∀t ≥ s ≥ 0,

(b) sup
t≥0

∫ t

0
|k(t, s)|ds ≤ α < 1, and

(c) sup
t≥0

∫ t

0

∣∣∣∣∂k(t, s)
∂s

∣∣∣∣ ds < +∞,

then, there exists a constant A > 0 such that

sup
n≥n0

h
n

∑
j=n0

ωn−j|knj| ≤ α + Ah.

Referring to the kernel in (27), we have that

h
n

∑
j=n0

|K(tn, tj)| =
h ∑n−1

j=n0
ωn−j|knj|

|1− hω0knn|
,

which is still less than one. Indeed,

h
n−1

∑
j=n0

ωn−j|knj| =
n

∑
j=n0

ωn−j|knj| − hω0|knn| ≤ α + hA− hω0|knn|.

Then, when considering positive weights and a sufficiently small stepsize h, it is hω0knn < 1 and
|1− hω0knn| ≥ |1− hω0|knn|| = 1− hω0|knn|, thus

h ∑n−1
j=n0

ωn−j|knj|
|1− hω0knn|

≤ α + hA− hω0|knn|
1− hω0|knn|

=
α− hω0|knn|
1− hω0|knn|

+ h
A

1− hω0|knn|
.

The first term on the right side is less than 1 since α < 1.

6. Applications

The theorems reported in Section 4 give theoretical instruments to analyze the stability of VIEs
on time scales. As already mentioned, an interesting case arises when T = R or T = Z, and k(t, s) in (1)
is of convolution type i.e., (i.e., k(t, s) = k(t− s) and k(t, s) = k(t− s− 1), respectively) so Theorem 2
represents a perturbative approach whose aim is to obtain global results on non-convolution equations
through perturbation of convolution ones (see [15] Sections 9 and 10) for T = R). Another interesting
application consists of describing asymptotic properties of quasi–convolution equations characterized
by integral terms consisting of a convolution product plus a non-convolution one. In these cases,
the analysis of (13) in Theorem 2 serves to relate the behavior of the solution to the one of a convolution
equation, governed by the resolvent rk, corresponding to the convolution part of the kernel k, and thus
described by the Paley–Wiener results. These equations have been treated in [12,25–27] for T = R,
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T = Z and for numerical methods and have received particular attention since they arise in linearised
models of cell migration and collective motion, as described in [26,28,29]. For this reason, they will
be the subject of future studies.

Another advantage in studying the stability of (12) by splitting the kernel into two parts is that
Theorem 2 states the stability of the solution in weaker hypotheses than the ones in literature.
Among these, a typical one (see, for example [1]) is∫ t

t0

|k(t, s) + p(t, s)|∆s < 1.

In our case, it is sufficient to ask that
∫ t

t0
|k(t, s)|∆s < 1, in order to obtain (10) and (11) on rk(t, s),

while p(t, s) enjoys greater freedom, although being subject to (17).

7. Open Problem

In this article, we made use of the known characteristics of VIEs on time scales to analytically
and numerically analyze solutions of a perturbed Volterra Integral equation. As for an open problem,
we consider the Volterra integro-dynamical equations on time scales

x∆(t) = A(t)x(t) +
∫ t

t0

B(t, s)x(s)∆s, t ∈ [t0, ∞)T, (28)

where A is an n× n matrix function that is continuous on [t0, ∞)T, B is an n× n matrix function that
is continuous on

Ω := {(t, u) ∈ T×T : t0 ≤ u ≤ t < ∞} .

It was shown in [2] that the resolvent matrix solution R(t, s) of (28) is the unique solution of

R∆s(t, s) = −R(t, σ(s))A(s)−
∫ t

σ(s)
R(t, σ(u))B(u, s)∆u, R(t, t) = I, (29)

where I is the n× n identity matrix. To properly describe the solution of (28), we let ϕ(t) be a given
bounded and initial function. We say that x(t, τ0, ϕ) is a solution of (28) if x(t) = ϕ(t) for t0 ≤ t ≤ τ0

and x(t, τ0, ϕ) satisfies (28) for t ≥ τ0. Then, one can refer to [2] to show that, if ϕ is a given bounded
and continuous initial function defined on t0 ≤ t ≤ τ0, then x(t) is a solution of (28) if and only if

x(t) = R(t, τ0)ϕ(τ0) +
∫ t

τ0

R(t, σ(s))
∫ τ0

t0

B(s, u)ϕ(u)∆u∆s. (30)

The application of the study of this paper to (28) and its perturbed counterpart, using (29) and (30),
may be the subject of future work.
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