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Abstract: We propose a new forecasting procedure that includes randomized hierarchical dynamic
regression models with random parameters, measurement noises and random input. We developed
the technology of entropy-randomized machine learning, which includes the estimation of
characteristics of a dynamic regression model and its testing by generating ensembles of predicted
trajectories through the sampling of the entropy-optimal probability density functions of the model
parameters and measurement noises. The density functions are determined at the learning stage by
solving the constrained maximization problem of an information entropy functional subject to the
empirical balances with real data. The proposed procedure is applied to the randomized forecasting
of the daily electrical load in a regional power system. We construct a two-layer dynamic model of
the daily electrical load. One of the layers describes the dependence of electrical load on ambient
temperature while the other simulates the stochastic quasi-fluctuating temperature dynamics.

Keywords: forecasting; randomization; dynamic regression; information entropy; empirical balance;
randomized machine learning

1. Introduction

Due to the gradually increasing resources and computational power of computers, huge amounts
of data can be accumulated and stored, both in natural and digitized formats. Then, the following
question arises immediately: what should be done with these data, except for storage? Extracting
new knowledge from data seems to be a very interesting idea. The concepts of Data Mining
(DM) [1,2], Big Data (BD) [3] and Data Science (DS) [4] were formulated and further developed
by researchers accordingly.

A very tempting goal—extracting new knowledge from data—inevitably leads to the verbal or
formal (mathematical) modeling of the “expected” knowledge. Therefore, any model has some
predictive properties, which can be implemented only under known values of its quantitative
characteristics (parameters). Data are a fundamental component of the three concepts above: data are
adopted for estimating the characteristics of a model using machine learning (ML) procedures, which
allows extracting new knowledge.

Unlike DM, BD, and DS, the concept of ML has a rich history of over 70 years as well as vast
experience in solving numerous problems. The first publication in this field of research dates back
to 1957; see [5]. The notion of empirical risk, a key element of ML procedures, was introduced in 1970
in the monograph [6]. The method of potential functions for classification and recognition problems
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was also presented in 1970 in another monograph [7]. The modern concept of ML is based on the
deterministic parametrization of models and estimates using data sets with postulated properties.
The quality of estimation is characterized by empirical risk functions, and their minimization gives
optimal estimates [8,9].

As a rule, real problems that are solved by ML procedures are immersed in some uncertain
environment. If the matter concerns data, they are acquired with inevitable errors, omissions or low
reliability. The design and parametrization of models is a non-formalizable and subjective process
that depends on the individual knowledge of a researcher. Therefore, in the mass application of ML
procedures, the level of uncertainty is quite high.

All these circumstances indicate that it is necessary to somehow compensate uncertainty. Here a
general trend is the application of its stochastic description to parametrized models and data. This
means that the model parameters are assumed to be random (appropriately randomized), and the
data are assumed to have random errors. Machine learning procedures with these properties belong
to the class of randomized machine learning (RML) procedures. Their difference from the conventional
ML procedures is that optimal estimates are constructed not for the parameters but for the probability
density functions (PDFs) of the random parameters and the PDFs of the worst-case random errors in
the data. In the entropy-based RML procedures, the functional of generalized information entropy [10]
is used as an optimality criterion for estimates.

The core of an RML procedure is a parametrized predictive model designed for simulating the
temporal (or spatiotemporal) evolution of a process under study. Therefore, such a model belongs
to the class of dynamic models. Parametric dynamic regression models (PDRMs) are most widespread
representatives of this class, in which the current state of a model is determined by its past states on a
certain time interval [11,12]. A formal image of PDRMs is difference equations, in the general case of
the pth order [13]. Most applications are described by linear PDRMs. In particular, they naturally occur
in many problems of macroeconomic modeling and forecasting, e.g., time series analysis of economic
indices [14], adequacy analysis of PDRMs [15], and prediction of exchange rates [16]. Linear PDRMs
are effective enough for short-term forecasting, yet causing significant errors on large forecasting
horizons. Therefore, attempts to improve forecasts by introducing various nonlinearities into PDRMs
are quite natural. The monograph [17] was dedicated to a general approach to the formation and use
of nonlinear PDRMs. However, applications require a more “personalized” approach to choosing the
most useful and effective nonlinearity. On this pathway, it seems fruitful, e.g., to forecast exchange
rates using logistic and exponential nonlinearities [18], or to predict the daily electrical load of a power
system using periodic autoregressive models [19] or multidimensional time series [20].

Since forecasting is performed under uncertainty, the resulting errors caused by some unaccounted
factors are often compensated, if possible, by assigning some probabilities to forecasts [21,22]. The most
common approach is the use of Bayes’ theorem on posterior probability. Let a parametrized conditional
probability density function of data and an a priori probability density function of parameters be
specified; then their normalized product will determine the posterior probability density function of the
parameters under fixed data. Fundamental problems in this field of investigations are connected with
the structural choice of the conditional and prior PDFs. Typically, Gaussian PDFs or their mixture are
selected, and the mixture weights are estimated using retrospective data [23–25]. A similar approach
was adopted in applications: population genetics [26], where the method of numerical approximation
of posterior PDFs was developed; the interaction between the financial sector of the economy and
the labor market [27], where the Metropolis–Hastings algorithm was used to estimate the parameters
of the above PDFs; population dynamics [28], where a hierarchy of Bayesian models was designed
to predict fertility, mortality and migration rates. Probabilistic forecasts are constructed by other
methods, taking into account the specifics of applications. In meteorology, retrospective weather
forecasts are accumulated for estimating the PDFs; subsequently, these PDFs are used for short-term
forecasting [29–32]. A rather interesting procedure is to form a probabilistic forecast as a mixture of
forecasts obtained by different methods [33].



Mathematics 2020, 8, 1119 3 of 20

In this paper, we propose a fundamentally different forecasting method—the so-called
entropy-randomized forecasting (ERF). In accordance with this method, an ensemble of random
forecasts is generated by a predictive dynamic regression model (PDRM) with random input and
parameters. The corresponding probabilistic characteristics, namely the probability density functions,
are determined using the entropy randomized machine learning procedure. The ensembles of
forecasting trajectories are constructed by the sampling of the entropy-optimal PDFs.

The proposed method is adopted for randomized prediction of the daily electrical load of a
regional power system. A hierarchical randomized dynamic regression model that describes the
dependence of the load on the ambient temperature is constructed. The temporal evolution of the
ambient temperature is represented by an oscillatory second-order dynamic regression model with
a random parameter and a random input. The results of randomized learning of this model on
the GEFCom2014 dataset [34] are given. A randomized forecasting technology is suggested and its
adequacy is investigated depending on the length of forecasting horizon.

2. Procedure of Entropy-Randomized Forecasting

Randomization as a means of imparting artificial and rationally organized random properties
to naturally nonrandom events, indicators, or methods is a fairly common technique that yields a
positive effect. There exist many examples in various fields of science, management, economics:
randomized numerical optimization methods [35,36]; the mixed (random) strategies of trading on
a stock exchange [37]; the randomized forecasting of population dynamics [38]; vibration control of
industrial processes [39]. As the result of randomization, nonrandom objects gain artificial stochastic
properties with optimal probabilistic characteristics in a chosen sense. The question on appropriate
quantitative characteristics of optimality has always been controversial and ambiguous. It requires
arguments that would somehow reflect the important specifics of a randomized object. In particular,
a fundamental feature of forecasting procedures is uncertainty in the data, predictive models, methods
for generating forecasts, etc.

In what follows, information entropy [40] will be used as a characteristic of uncertainty. In the
works [41–43], using the first law of thermodynamics it was demonstrated that entropy is a natural
functional describing the processes of universal evolution. Moreover, in accordance with the second law
of thermodynamics, entropy maximization determines the best state of an evolutionary process under
the worst-case external disturbance (maximum uncertainty). Also, note another quality of information
entropy associated with measurement errors and other types of errors, which are important attributes of
data: with the factor of such errors being considered in terms of informational entropy, the probabilistic
characteristics of noises exerting the worst-case impact on forecasting procedures can be estimated in
explicit form.

The technology of entropy-randomized forecasting consists of the following stages. At the
beginning (the first stage), a predictive randomized model (PRM) of a studied object is formed and its
parameters are designed. A PRM transforms real data into a model output. In the general case, these
transformations are assumed to be dynamic, i.e., the model output observed at a time instant n depends
on the states observed on some past interval. The PRM parameters are assumed to be of the interval
type and random, and their probabilistic properties are characterized by the corresponding PDFs.

The second stage of the technology under consideration—randomized machine learning (more
specifically, its entropy version)—is intended to estimate the PDFs. At this stage, the estimates of the
PDFs are calculated using learning data sets and also a learning algorithm in the form of a functional
entropy-linear programming problem.

At the third stage, the optimized PRM (with the entropy-optimal PDFs) is tested using a test data
set and accepted quantitative characteristics of the quality of learning. The optimized PRM actually
generates an ensemble of random trajectories, vectors, or events with the entropy-optimal values of
their parameters.
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The learned and tested PRMs serve for forecasting. In this case, the ensembles of random
forecasted trajectories generated by the entropy-optimal PRMs are used to calculate their numerical
characteristics such as mean trajectories, variance curves, median trajectories, the PDF evolution of
forecasted trajectories, etc.

3. Randomized Dynamic Regression Models with Random Input and Parameters

Randomized dynamic regression models (RDRMs) form a class of dynamic models with random
parameters that describe a parametrized dependence of the object’s state at a given time instant on
external factors and its states at some past time instants.

The structures of models are designed on the basis of existing knowledge and hypotheses about
the properties of an object, which often turn out to be very inaccurate. Moreover, the external factors
themselves can change over time and therefore should be predicted to model the object’s dynamics.
Reliable information on realistically measured impacts leading to the temporal evolution of external
factors is often unavailable. The aforementioned indicates the presence of uncertainty, both in the
development and further use of models. In [10], a method for reducing the influence of uncertainty
based on the randomization of models (including the class of RDRMs) was proposed. In the latter case,
this method extends the idea of randomization to the modeling of external factors and their evolution.

The structure of the RDRM is shown in Figure 1. It consists of a model of the main object
(RDRM-O) with random parameters a ∈ Rp and a model of external factors (RDRM-F) with random
parameters b ∈ Rs and a random input ζ ∈ Rq. The states of the object and its model belong to the
vector space Rm, in which x̂[n] are the state vectors of the object and x[n] ∈ Rm are the state vectors
of RDRM-O. The external factors are characterized by the vector ŷ[n] ∈ Rq while the changes in the
state of RDRM-F over time by the vector y[n] ∈ Rq. The variable n denotes discrete time taking integer
values on the interval L = [n−, n+].

ζ[n]

ξ[n]

y[n] z[n] v[n]

µ[n]

RDRM-F RDRM-O⊗ ⊗
x[n]

Figure 1. Structure of the RDRM.

Consider the linear version of RDRM-O. Its state x[n] at a time instant n is changing under the
influence of p retrospective states x[n− 1], . . . , x[n− p] and measurable external factors z[n] ∈ Rq.
The corresponding equation has the form

x[n] = X(n,p)A(p) + A(p+1)z[n], (1)

with the following notations:

•
A(p) = bA1, . . . , Apcᵀ (2)

as the block column vector of parameters, where Ai is a random matrix of dimensions (m×m)

with random elements of the interval type, i.e.,

Ai ∈ Ai = [A−i , A+
i ], i = 1, p; (3)

• A(p+1) as a matrix of dimensions (m× q) with random elements of the interval type, i.e.,

A(p+1) ∈ A(p+1) = [A−
(p+1), A+

(p+1)]; (4)
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•
X(n,p) = bx[n− 1], . . . , x[n− p]c (5)

as the block row vector of p retrospective states, where b•c denotes a block row vector.

The probabilistic properties of the block vector A(p) and the matrix A(p+1) are characterized by a
joint PDF P(A(p)) and a PDF F(A(p+1)), respectively.

The state of RDRM-O is assumed to be measurable at each time instant n and also to contain an
additive noise µ[n]:

v[n] = x[n] + µ[n]. (6)

The random vectors µ[n] are of the interval type, i.e.,

µ[n] ∈ Mn = [µ−n , µ+
n ], (7)

with a PDF Mn(µ[n]). The random vectors measured at different time instants are assumed to be
statistically independent.

Consider the linear version of RDRM-F, which has a similar structure described by the equation

y[n] = Y(n,s)B(s) + ζ[n] (8)

with the following notations:

•
B(s) = bB1, . . . , Bscᵀ (9)

as a block column vector formed by matrices Bi of dimensions (q× q) with random elements of
the interval type, i.e.,

Bi ∈ Bi = [B−i , B+
i ], i = 1, s; (10)

•
Y(n,p) = by[n− 1], . . . , y[n− s]c (11)

as a block row vector.

The probabilistic properties of the parameters are characterized by a continuously differentiable
PDF W(B(s)).

The random vector ζ[n] is of the interval type, i.e.,

ζ[n] ∈ En = [ζ−n , ζ+n ], (12)

with a continuously differentiable PDF Qn(ζ[n]). The random vectors ζ[n] measured at different time
instants are statistically independent.

By analogy with RDRM-O, the state of RDRM-F is assumed to be measurable at each time instant
n and also to contain an additive noise ξ[n]:

z[n] = y[n] + ξ[n]. (13)

The random vectors ξ[n] are of the interval type, i.e.,

ξ[n] ∈ Ξn = [ξ−n , ξ+n ], (14)

with a continuously differentiable PDF Gn(ξ[n]). The random vectors measured at different time
instants are assumed to be statistically independent.
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Thus, in the RDRM (RDRM-O and RDRM-F), the unknown characteristics are the PDFs P(A(p)),
F(A(p+1)) and W(B(s)) of the model parameters and also the PDFs Mn(µ[n]), Qn(ζ[n]) and Gn(ξ[n])
of the measurement noises, n ∈ L.

4. Models of Learning Data Sets

The desired PDFs (see the previous section) are estimated using the learning data sets that are
obtained on a learning interval n ∈ L = [n−, n+] and are consistent with the RDRM.

Consider RDRM-O. On the learning interval,

x[n−] = X(n− ,p)A(p) + A(p+1)z[n
−],

x[n− + 1] = X(n−+1,p)A(p) + A(p+1)z[n
− + 1],

· · · = · · · · · · · · · · · · · · · ,

x[n+] = X(n+ ,p)A(p) + A(p+1)z[n
+]. (15)

The observable states of RDRM-O on the learning interval L represent the collection of vectors

v[n] = x[n] + µ[n], n = n−, n+. (16)

Hence, the learning data set consists of the data on retrospective states of the object,

X̂(n− ,p), X̂(n−+1,p), . . . , X̂(n+ ,p), (17)

and the data on observable current states,

v̂[n−], . . . , v̂[n+], ẑ[n−], . . . , ẑ[n+]. (18)

Consider RDRM-F. On the learning interval,

y[n−] = Y(n− ,s)B(s) + ζ[n−],

y[n− + 1] = Y(n−+1,s)B(s) + ζ[n− + 1],

· · · = · · · · · · · · · · · · · · · ,

y[n+] = Y(n+ ,p)B(s) + ζ[n+]. (19)

The observable states of RDRM-F on the learning interval L represent the collection of vectors

z[n] = y[n] + ξ[n], n = n−, n+. (20)

Hence, the learning data set consists of the data on retrospective states of the factors,

Ŷ(n− ,s), Ŷ(n−+1,s), . . . , Ŷ(n+ ,s), (21)

and the data on observable current states,

ẑ[n−], . . . , ẑ[n+]. (22)

Thus, the learning procedure of the RDRM involves three data sets, (18), (21) and (22).

5. Algorithm of Randomized Machine Learning

The entropy version [10] of RML algorithms is used for estimating the PDFs of the model
parameters and measurements noises of RDRM-O and RDRM-F. For RDRM-O, the corresponding
algorithm has the form
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HO = −
∫
A

P(A(p)) ln P(A(p))dA(p) −
∫
A(p+1)

F(A(p+1)) ln F(A(p+1))dA(p+1) −

−
n+

∑
n=n−

∫
Mn

Mn(µ[n]) ln Mn(µ[n])dMn(µ[n])⇒ max (23)

subject to the following constraints:

- the normalization conditions of the PDFs given by∫
A

P(A(p))dA(p) = 1,
∫
A(p+1)

F(A(p+1))dA(p+1) = 1,∫
Mn

Mn(µ[n])dMn(µ[n]) = 1, n = n−, n+;

- the empirical balances given by∫
A

P(A(p))X̂(n,p)A(p)dA(p) +
∫
A(p+1)

F(A(p+1))A(p+1)ẑ[n]dA(p+1) +

+
∫
Mn

Mn(µ[n])µ[n]dµ[n] = v̂[n], n = n−, n+. (24)

Please note that the empirical balances represent a system of (n+ − n−) blocks composed of m
equations. With each block an m-dimensional vector of Lagrange multipliers θ(n) is associated. This
optimization problem belongs to the class of entropy-linear programming problems of the Lyapunov
type [44]. It has an analytic solution parametrized by the Lagrange multipliers:

P∗(A(p)) =
exp

(
−∑n+

n=n−〈θ(n), X̂(n,p)A(p)〉
)

P(θ) ,

F∗(A(p+1)) =
exp

(
−∑n+

n=n−〈θ(n), A(p+1)ẑ[n]〉
)

F (θ) ,

M∗n(µ[n]) =
exp

(
−〈θ(n), µ[n]〉

)
Mn(θ(n))

, n = n−, n+. (25)

In the above formulas,

P(θ) =
∫
A

exp

(
−

n+

∑
n=n−
〈θ(n), X̂(n,p)A(p)〉

)
dA(p),

F (θ) =
∫
A(p+1)

exp

(
−

n+

∑
n=n−
〈θ(n), A(p+1)ẑ[n]〉

)
dA(p+1),

Mn(θ
(n)) =

∫
Mn

exp
(
−〈θ(n), µ[n]〉

)
dµ[n], n = n−, n+. (26)

The matrix of Lagrange multipliers θ = [θ(n
−), . . . , θ(n

+)] is determined by solving the
balance equations
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1
P(θ)

∫
A

exp

(
−

n+

∑
n=n−
〈θ(n), X̂(n,p)A(p)〉

)
X̂(n,p)A(p)dA(p) +

+
1
F (θ)

∫
A(p+1)

exp

(
−

n+

∑
n=n−
〈θ(n), A(p+1)ẑ[n]〉

)
A(p+1)ẑ[n]dA(p+1) +

+
1

Mn(θ(n))

∫
Mn

exp
(
−〈θ(n), µ[n]〉

)
µ[n]dµ[n] = x̂[n], n = n−, n+. (27)

From (25)–(27) it follows that the PDFs P∗(A(p)) and F∗(A(p+1)) of the model parameters
of RDRM-O and the PDFs M∗n(µ[n]), n = n−, n+, of the measurement noises are found using
the retrospective learning data sets X̂(n−, p), X̂(n− + 1, p), . . . , X̂(n+, p), the current state data sets
x̂[n−], . . . , x̂[n+] and the data sets ẑ[n−], . . . , ẑ[n+] generated by RDRM-F.

For obtaining the latter collections, the RML algorithm is applied to estimate the PDFs of the
model parameters and measurement noises of RDRM-F. In accordance with [10],

HF = −
∫
B

W(B) ln W(B)dB−

−
n+

∑
n=n−

∫
En

Qn(ζ[n]) ln Qn(ζ[n])dQn(ζ[n])−

−
n+

∑
n=n−

∫
Ξn

Gn(ξ[n]) ln Gn(ξ[n])dGn(ξ[n])⇒ max (28)

subject to the following constraints:

- the normalization conditions of the PDFs given by∫
B

W(B)dB = 1,∫
En

Qn(ζ[n])dQn(ζ[n]) = 1,
∫

Ξn
Gn(ξ[n])dGn(ξ[n]) = 1, n = n−, n+;

- the empirical balances given by∫
B

W(B(s))Ŷ(n,s)B(s)dB(s) +
∫
En

Qn(ζ[n])ζ[n]dζ[n] +

+
∫

Ξn
Gn(ξ[n])ξ[n]dξ[n] = ẑ[n], n = n−, n+. (29)

This problem is from the same class as (25)–(27). It has the following analytic solution in terms of
Lagrange multipliers:

W∗(B(s)) =
exp

(
−∑n+

n=n−〈η(n), Ŷ(n,s)B(s)〉
)

W(η)
, (30)

Q∗n(ζ[n]) =
exp

(
−〈ζ[n], η(n)〉

)
Qn(η(n))

,

G∗n(ξ[n]) =
exp

(
−〈ξ[n], η(n)〉

)
Gn(η(n))

, n = n−, n+.

η = [η(n−), . . . , η(n+)].
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In the above formulas,

W(η) =
∫
B

exp

(
−

n+

∑
n=n−
〈η(n), Ŷ(n,s)B(s)

)
dB(s), (31)

Qn(η
(n)) =

∫
En

exp
(
−〈ζ[n], η(n)〉

)
dζ[n], Gn(η

(n)) =
∫

Ξn
exp

(
−〈ξ[n], η(n)〉

)
dξ[n],

n = n−, n+.

The matrix of Lagrange multipliers η is determined by solving the balance equations

W (−1)(η)
∫
B

exp

(
−

n+

∑
n=n−
〈η(n), Ŷ(n,s)B(s)

)
Ŷ(n,s)B(s)dB(s) +

+ Q(−1)
n (η(n))

∫
En

exp
(
−〈ζ[n], η(n)〉

)
ζ[n]dζ[n] +

+ G(−1)
n (η(n))

∫
Ξn

exp
(
−〈ξ[n], η(n)〉

)
ξ[n]dξ[n] = ẑ[n], (32)

n = n−, n+.

6. Entropy-Randomized Forecasting of Daily Electrical Load of Power System

The daily electrical load L of a power system depends on many various factors. The analysis
below is restricted to one of the most significant external factors—the ambient temperature T. The daily
temperature variations are fluctuating [45,46]. These fluctuations affect electrical load, but with
some time delay due the inertia of a power network supplying electrical energy from the generator
to consumers.

(1). Dynamic Regression Model.

In accordance with the general structure of the RDRM (see Section 2), the electrical load model
(the LT model) describes the dynamic relationship between electrical load and ambient temperature
while the ambient temperature model (the Tξ model) describes the daily dynamics of ambient
temperature. There exist quite a few versions of the LT model, albeit all being static, i.e., describing the
relationship between electrical load and ambient temperature at current time instants [47]. The daily
temperature dynamics are fluctuating, and such fluctuations are described, in particular, by the periodic
autoregressive model [48].

Please note that the effect of ambient temperature on electrical load is dynamic, i.e., the change
in load due to temperature at a given time instant depends on its value at a previous time instant. A
similar property applies to ambient temperature fluctuations.

Therefore, following the general randomized approach, the LT model is designed as a first-order
dynamic regression model with random parameters, while the Tξ model is designed as a second-order
dynamic regression with a random parameter and a random input ξ. Then the LTξ model is the
composition of the two models above.

In the class of linear models, the randomized dynamic regression load–temperature model (LT
model) of the first order can be written in the form

L[n] = aL[n− 1] + bT[n],

v[n] = L[n] + µ[n], n = n−, n+, (33)

where random independent parameters a and b take values within intervals

a ∈ A = [a−, a+], b ∈ B = [b−, b+]. (34)
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The probabilistic properties are characterized by PDFs P(a) and F(b) defined on the sets A and B,
respectively. The random noise µ[n] that simulates electrical load measurement errors is of the interval
type as well. In the general case, for each time instant the intervals may have different limits, i.e.,

µ[n] ∈ Mn = [µ−[n]], µ+[n]], (35)

with PDFs Mn(µ[n]), ], n = n−, n+.
Consider the Tξ model. The fluctuating character of the daily temperature variations is described

by the randomized dynamic regression model of the second order

τ[n] = c (2.1τ[n− 1]− 1.1τ[n− 2]) ,

T[n] = t + τ[n] + ξ[n], (36)

where t is the mean daily temperature. These parameters are random and take values within given
intervals c ∈ [c−, c+]. The probabilistic properties of the parameters are characterized by PDFs W(c)
defined on corresponding intervals.

Equation (36) contains random noises described by independent random variables ξ[n]; in each
measurement n, their values may lie in different intervals, i.e.,

ξ[n] ∈ Ξn = [ξ−n , ξ+n ]. (37)

The probabilistic properties of the random variable ξ[n] are characterized by a PDF Qn(ξ[n]), n =

n−, n+.
Thus, Equations (33) and (36) describing electrical load dynamics in a power system are

characterized by the following PDFs:

• the LT model, by the PDFs P(a) and F(b) of the model parameters and the PDF Mn(µ[n]), of the
measurement noises, n = n−, n+;

• the Tξ model, by the PDFs W(c) of the model parameters and the PDFs Qn(ξ[n]) of the
measurement noises , n = n−, n+.

(2). Learning Data Set.

For estimating the PDFs, the normalized real data from the GEFCom2014 dataset (see [34]) on
daily electrical load variations 0 ≤ L(i)

r [n] ≤ 1, mean daily temperature variations 0 ≤ t(i)r ≤ 1 and
temperature deviations 0 ≤ τ

(i)
r [n] ≤ 1 from the mean daily value can be used. (Here normalization

means the reduction to the unit interval.)
The normalization procedure is performed in the following way:

L(i)
r [n] =

L̂(i)
r [n]− L̂(i)

min

L̂(i)
max − L̂(i)

min

,

τ
(i)
r [n] =

τ̂
(i)
r [n]− τ̂

(i)
min

τ̂
(i)
max − τ̂

(i)
min

,

t(i)r =
1

n+ − n−
n+

∑
n=n−

τ
(i)
r [n], (38)

where L̂(i)
min = min

n
L̂(i)[n], L̂(i)

max = max
n

L̂(i)[n], τ̂
(i)
min = min

n
τ̂(i)[n], τ̂

(i)
max = max

n
τ̂(i)[n].

In accordance with (33) and (36), the model variables and the corresponding real data on the
learning interval n ∈ Tl are described by the vectors



Mathematics 2020, 8, 1119 11 of 20

L(i)(Tl) = {L(i)[1], . . . , L(i)[24]}, L(i)
r (Tl) = {L(i)

r [1], . . . , L(i)
r [24]},

L(i)(Tl − 1) = {L(i)[0], . . . , L(i)[23]}, L(i)
r (Tl − 1) = {L(i)

r [0], . . . , L(i)
r [23]},

V(i)(Tl) = {v(i)[1], . . . , v(i)[24]}, V(i)
r (Tl) = {v(i)r [1], . . . , v(i)r [24]},

T(i)(Tl) = {τ(i)[1], . . . , τ(i)[24]}, T(i)
r (Tl) = {τ(i)

r [1], . . . , τ
(i)
r [24]},

T̃(i)(Tl − 1, Tl − 2) = {2, 1τ(i)[0]− 1, 1τ(i)[−1], . . . , 2, 1τ(i)[23]− 1, 1τ(i)[22]},
T̃(i)

r (Tl − 1, Tl − 2) = {2, 1τ
(i)
r [0]− 1, 1τ

(i)
r [−1], . . . , 2, 1τ

(i)
r [23]− 1, 1τ

(i)
r [22]},

µ(i)(Tl) = {µ(i)[1], . . . , µ(i)[24]}, ξ(i)(Tl) = {ξ(i)[1], . . . , ξ(i)[24]}.

In terms of (39), the LT and Tξ models on the learning interval Tl have the form

L(i)(Tl) = aL(i)(Tl − 1) + bT(i)(Tl),

V(i)(Tl) = L(i)(Tl) + µ(i)(Tl),

T(i)(Tl) = c T̃(i)(Tl − 1, Tl − 2), (39)

T(i)(Tl) = t + T̃(i)(Tl) + ξ(i)(Tl).

The random parameters take values within the intervals

A = [0.05, 0.15], B = [0.5, 1.0], C = [0.75, 0.85]. (40)

The measurement noises take values within the intervals

Mn = [−0.1, 0.1], Ξn = [−0.1, 0.1]. (41)

(3). Entropy-Optimal Probability Density Functions of Parameters and Noises.

In accordance with the approach described in Section 5, for the LT model (33)–(35) the PDFs
parametrized by the Lagrange multipliers θ(i) = {θ(i)1 , . . . , θ

(i)
24 } have the form

P∗i (a, θ(i)) =
l(i)r (θ) exp

(
−al(i)r (θ)

)
exp(−a−l(i)r (θ))− exp(−a+l(i)r (θ))

,

F∗i (b, θ(i)) =
h(i)r (θ) exp

(
−bh(i)r (θ)

)
exp(−b−h(i)r (θ))− exp(−b+h(i)r (θ))

, (42)

M∗i,n(µ[n]) =
θ
(i)
n exp

(
−θ

(i)
n µ[n]

)
exp(−µ−[n]θ(i)n )− exp(−µ+[n]θ(i)n )

, n = 1, 24,

where

l(i)r (θ) =
24

∑
n=1

θnL(i)
r [n− 1], h(i)r (θ) =

24

∑
n=1

θnT(i)
r [n]. (43)

The Lagrange multipliers θ(i) are calculated by solving the system of balance equations

L(i)(θ(i)) + T(i)(θ(i)) + M(i)
n (θ

(i)
n ) = L(i)

r [n], n = 1, 24, (44)
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where

L(i)(θ(i)) =
exp(−a−l(i)r (θ(i)))(a−l(i)(θ(i)) + 1)− exp(−a+l(i)r (θ(i)))(a+l(i)(θ(i)) + 1)

exp(−a−l(i)(θ(i)))− exp(−a+l(i)(θ(i)))
,

T(i)(θ(i)) =
exp(−b−h(i)r (θ(i)))(b−h(i)(θ(i)) + 1)− exp(−b+h(i)r (θ(i)))(b+h(i)(θ(i)) + 1)

exp(−b−h(i)(θ(i)))− exp(−b+h(i)(θ(i)))
,

M(i)
n (θ

(i)
n ) =

exp(−µ−[n]θ(i)n )(µ−[n]θ(i)n ) + 1)− exp(−µ+[n]θ(i)n )(µ+[n]θ(i)n ) + 1)

θ
(i)
n

(
exp(−µ−[n]θ(i)n )− exp(−µ+[n]θ(i)n )

) . (45)

Consider the Tξ model. The corresponding entropy-optimal PDFs parametrized by the Lagrange
multipliers have the form

W∗i (c, η(i)) =
h̃(i)r (η) exp

(
−ch̃(i)r (η)

)
exp(−a− h̃(i)r (η))− exp(−a+ h̃(i)r (η))

,

Q∗i,n(ξ[n]) =
η
(i)
n exp

(
−η

(i)
n ξ[n]

)
exp(−ξ−[n]η(i)

n )− exp(−ξ+[n]η(i)
n )

, n = 1, 24,

where

h̃(i)r (η) =
24

∑
n=1

ηn(2, 1T(i)
r [n− 1]− 1, 1T(i)

r [n− 2]), q(i)(η(i)) =
24

∑
n=1

η
(i)
n . (46)

The Lagrange multipliers η(i) are calculated by solving the system of balance equations

D(i)(η(i)) + N(i)(η(i)) + K(i)
n (η

(i)
n ) = T(i)

r [n], n = 1, 24, (47)

where

D(i)(η(i)) =
exp(−t−q(i)(η(i)))(t−q(i)(η(i)) + 1)− exp(−t+q(i)(η(i)))(t+q(i)(η(i)) + 1)

exp(−t−q(i)(η(i)))− exp(−t+q(i)(η(i)))
,

N(i)(η(i)) =
exp(−c− h̃(i)r (η(i)))(c− h̃(i)(η(i)) + 1)− exp(−c+ h̃(i)r (η(i)))(c+ h̃(i)(η(i)) + 1)

exp(−c− h̃(i)(η(i)))− exp(−c+ h̃(i)(η(i)))
,

K(i)
n (η

(i)
n ) =

exp(−ξ−[n]η(i)
n )(ξ−[n]η(i)

n ) + 1)− exp(−ξ+[n]η(i)
n )(ξ+[n]η(i)

n ) + 1)

η
(i)
n

(
exp(−ξ−[n]η(i)

n )− exp(−ξ+[n]η(i)
n )
) . (48)

(4). Results of Model Learning.

Using the available data on daily variations of electrical load and ambient temperature (see
Figure 1) for the three days indicated above, the balance Equations (44), (45), (47) and (48) were formed.
Their solution was determined by minimizing the quadratic residual between the left- and right-hand
sides of the equations. Since the equations are significantly nonlinear, the resulting values of the
Lagrange multipliers (see Table 1) correspond to a local minimum of the residual. All calculations
were implemented in MATLAB; optimization was performed using the fsolve function.
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Table 1. Lagrange multipliers θ, η.

Time Instants θ(1) θ(2) θ(3) η(1) η(2) η(3)

1 −29.72 7009.28 1038.07 14.63 21.22 17.34
2 1.58 230.89 35.35 19.52 26.71 28.32
3 −4.09 369.96 26.23 35.91 31.60 26.33
4 −4.68 29.93 11.96 55.83 127.82 52.08
5 −7.21 24.25 1.03 96.85 642.35 110.94
6 −9.26 13.72 −15.76 592.99 7009.28 4729.52
7 −59.09 −5.96 −7009.28 7009.28 183.92 7009.28
8 −7009.28 −33.99 −767.99 48.21 39.94 23.16
9 −766.00 −1409.28 −22.91 66.58 12.28 −1.26

10 −50.90 −4229.90 −4.27 37.38 2.35 −19.78
11 −18.97 −45.22 3.72 22.51 −8.82 −22.73
12 −11.42 −15.07 9.17 7.16 −27.06 −23.06
13 −13.94 2.59 17.38 5.72 −172.25 −27.06
14 −17.62 5.82 14.94 2.83 −65.29 −23.02
15 −18.18 9.33 17.74 −0.30 −57.45 −23.15
16 −27.28 11.35 21.85 −1.24 −482.69 −47.78
17 −49.55 4.50 22.68 −5.49 −889.02 −130.49
18 −25.41 −7.09 29.39 −0.89 −28.12 −60.71
19 −8.20 −4.66 98.03 −4.23 −14.20 −270.17
20 0.95 −4.89 52.27 3.70 −6.41 −31.47
21 1.01 −16.37 8.15 21.16 2.48 −1.23
22 22.00 −8.24 7.45 17.85 12.15 14.86
23 2881.43 17.00 902.73 26.78 9.98 26.39
24 512.14 36.30 355.47 27.32 24.65 121.44

l(i)r (θ∗) 9.71 6.04 6.09
h(i)r (θ∗) 0.06 0.58 0.81
h̃(i)r (η∗) 0.41 0.05 0.19

Because the parameters of the LT model are independent, the joint PDFs U∗i (a, b) = P∗i (a)F∗i (b)
of the parameters and noises have the form

U∗1 (a, b) = 53.09 exp(−9.72a) exp(0.06b),

U∗2 (a, b) = 55.49 exp(−6.04a) exp(0.58b), (49)

U∗3 (a, b) = 65.81 exp(−6.09a) exp(−0.81b),

(a, b) ∈ [0.05, 0.15]
⋃
[0.5, 1.0], µ ∈ [−0.1, 0.1], i = 1, 24.

Clearly, the PDFs are of exponential type. For i = 1, the graphs are shown in Figure 2.
For the Tξ model, the PDFs of the parameters and noises have the form

W∗1 (c) = 13.90 exp(−0.41c),

W∗2 (c) = 10.43 exp(−0.05c),

W∗3 (c) = 11.65 exp(−0.19c),

c ∈ [0.75, 0.85], ξ ∈ [−0.1, 0.1], i = 1, 24.

For i = 1, the graphs can be seen in Figure 3.
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Thus, the randomized LTξ model generates random trajectories with the entropy-optimal PDFs
of the model parameters and measurement noises:

L[n] = aL[n− 1] + bT[n], (P∗(a), F∗(b)) ,

v[n] = L[n] + µ[n], M∗n(µ[n]);

τ[n] = c (2.1τ[n− 1]− 1.1τ[n− 2]) , W∗(c), i = 1, 3, (50)

T[n] = t + τ[n] + ξ[n], Q∗n(ξ[n]).

The corresponding ensembles are generated by the sampling procedure of the resulting PDFs of the
parameters and noises using the acceptance-rejection (AR) method (also known as rejection sampling
(RS); see [49]). During calculations, 100 samples for each parameter and 100 samples for each noise
were used; in other words, the ensemble consisted of 104 trajectories.
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Figure 2. PDFs of the parameters and noises for i = 1.
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Figure 3. PDFs of the parameters and noises for i = 1.

(5). Model Testing.

The adequacy of the model was analyzed by the self- and cross-testing of the LT and Tξ models
on the real load–temperature data for 3–5 July 2016 (i = 1, 2, 3). Self-testing means generating an
ensemble of trajectories with the entropy-optimal parameters and noises for day i, calculating the
mean (mean) and median (med) trajectories and also the variance curve (std±) of the ensemble, and
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comparing the mean trajectory with the real counterparts by electrical load and ambient temperature
for the same day i. The quality of approximation is characterized by relative errors,

δ
(i)
L =

24
∑

n=1

(
L(i)

mean[n]− L(i)
r [n]

)2

24
∑

n=1
(L(i)

mean[n])2 +
24
∑

n=1
(L(i)

r [n])2
, i = 1, 3, (51)

in electrical load and

δ
(i)
T =

24
∑

n=1

(
T(i)

mean[n]− T(i)
r [n]

)2

24
∑

n=1
(T(i)

mean[n])2 +
24
∑

n=1
(T(i)

r [n])2
, i = 1, 3, (52)

in ambient temperature.
Cross-testing represents a similar procedure in which the mean trajectories are compared with the

real counterparts in terms of electrical load and ambient temperature for days j 6= i. The quality of
approximation is characterized by relative errors,

δ
(i,j)
L =

24
∑

n=1

(
L(i)

mean[n]− L(j)
r [n]

)2

24
∑

n=1
(L(i)

mean[n])2 +
24
∑

n=1
(L(j)

r [n])2
, i = 1, 3, i 6= j, (53)

in electrical load and

δ
(i,j)
T =

24
∑

n=1

(
T(i)

mean[n]− T(j)
r [n]

)2

24
∑

n=1
(T(i)

mean[n])2 +
24
∑

n=1
(T(j)

r [n])2
, i = 1, 3, i 6= j, (54)

in ambient temperature.
Self-testing. For the LT model, the real ambient temperature data T(i)

r [n] as well as the
entropy-optimal PDFs P∗i (a) and F∗i (b) of the parameters (a, b) and the PDFs M∗1(µ[1]), . . . , M∗24(µ[24])
of the measurement noises µ[n] were used. The ensembles L(i) were generated using the sampling
procedure of the above PDFs. The mean trajectory L(i)

mean[n], the median trajectory L(i)
med[n] and also

the trajectories L(i)
std±[n] corresponding to the limits of the variance graph were found. The errors

δ
(i)
L were calculated. The resulting ensembles and relative errors δ

(i)
L for the three indicated days are

demonstrated in Figure 4.
The Tξ model was tested by generating the ensemble T(i) of random trajectories T(i)[n], n = 1, 24

with the entropy-optimal PDFs W(i)(c) and Q∗1(ξ[1]), . . . , Q∗24(ξ[24]) through sampling. The mean

trajectory T(i)
mean[n], the median trajectory T(i)

med[n] and the trajectory T(i)
std±[n] corresponding to the limits

of the variance curve are calculated. The resulting ensembles and relative errors δ
(i)
T for the three days

are shown in Figure 5.
Cross-testing. For cross-testing, the LT and LTξ models learned on the data for day i were used,

and their mean trajectories were compared with the data for days j 6= i. The resulting errors are
combined in Tables 2–4.
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Table 2. Values δL obtained by cross-testing of LT model. Mean value δL = 0.0530.

i/j 1 2 3

1 0.0495 0.1052
2 0.0858 0.1428
3 0.0569 0.0364

Table 3. Values δT obtained by cross-testing of Tξ model. Mean value δL = 0.0757.

i/j 1 2 3

1 0.1051 0.1079
2 0.1506 0.1185
3 0.1315 0.0676

Table 4. Values δT obtained by cross-testing of LTξ model. Mean value δL = 0.1478.

i/j 1 2 3

1 0.1437 0.2659
2 0.1756 0.2322
3 0.3475 0.1655

(a) δ
(1)
L = 0.0703. (b) δ

(2)
L = 0.0523.

(c) δ
(3)
L = 0.1038.

Figure 4. Ensembles of LT model.



Mathematics 2020, 8, 1119 17 of 20

(a) δ
(1)
T = 0.1004. (b) δ

(2)
T = 0.0582.

(c) δ
(3)
T = 0.0942.

Figure 5. Ensembles of Tξ model.

(6). Randomized Prediction of N-Daily Load.

In the randomized prediction of the N-daily load, the LTξ model learned on the interval Tl was
used. The quality of the forecast was characterized using the LTξ model with the entropy-optimal
PDFs obtained on the real data for the first (i = 1) day.

The 1-day (n ∈ [1, 24]), 2-day (n ∈ [1, 48]) and 3-day (n ∈ [1, 72]) ensembles were constructed by
the sampling procedure of the above PDFs. For these ensembles, the mean trajectories Lmean[n], the
median trajectories Lmed[n] and also the limiting trajectories Lstd±[n] of the variance curve were found.
The forecast results were compared with the real data for 3–7 July 2006 (i = 1, 4). The forecasting
quality was characterized by the relative errors calculated similar to (53) and (54).

The resulting 24-h, 48-h and 72-h randomized forecasts of electrical load and their probabilistic
characteristics (the mean and median trajectories, the limit trajectories of the variance curves) are
presented in Figure 6. The errors, i.e., the deviations between the model forecasts and real data, can be
seen in Table 5.

Table 5. Accuracy of 24-h, 48-h and 72-h forecasts using LTξ model.

δ
(2)
L δ

(3)
L δ

(4)
L

0.1509 0.2515 0.2133
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Figure 6. 24-h, 48-h and 72-h forecasts using LTξ model.

7. Conclusions

The article proposes a new forecasting approach based on the idea of generation not the only
forecast and not a set of forecasts with the scenario’s model parameters, and not forecasts with
assigned probabilities, but the ensemble of random forecasts with entropy-optimal model parameters
and measurement noises.

For the randomized forecasting we propose a structure of predictive dynamical model which uses
as real data as optimized noises. The latter are the source of ensemble of predictive trajectories,
which allow computing deterministic trajectories of its different numerical characteristics and
probabilistic estimates.
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