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Abstract: In this paper we introduce a distribution which is an extension of the power Maxwell
distribution. This new distribution is constructed based on the quotient of two independent random
variables, the distributions of which are the power Maxwell distribution and a function of the
uniform distribution (0,1) respectively. Thus the result is a distribution with greater kurtosis than the
power Maxwell. We study the general density of this distribution, and some properties, moments,
asymmetry and kurtosis coefficients. Maximum likelihood and moments estimators are studied. We
also develop the expectation–maximization algorithm to make a simulation study and present two
applications to real data.
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1. Introduction

A distribution related to the normal distribution is the slash distribution. Its stochastic
representation is the quotient between two independent random variables: a normal distribution and
a function of the uniform distribution. Thus we say that S has a slash distribution if:

S = Z/U
1
q , (1)

where Z ∼ N(0, 1), U ∼ U(0, 1), Z is independent of U and q > 0. When q = 1 we obtain the slash
canonical distribution, and when q→ ∞ we obtain the standard normal distribution. The density of
the canonical slash is:

p(x) =

{
φ(0)−φ(x)

x2 x 6= 0
1
2 φ(0) x = 0

, (2)

where φ(x) represents the standard normal density defined in Appendix A (see Johnson et al. [1]).
This distribution has much heavier tails than the normal distribution; i.e., it has greater kurtosis.
Some properties of this family are discussed by Rogers et al. [2] and Mosteller et al. [3]. The maximum
likelihood (ML) estimators of scale and location are discussed in Kafadar [4]. One paper Wang et al. [5]
introduced a multivariate version of the slash distribution and a skew multivariate version. Reference
Gómez et al. [6] extended the slash distribution using the family of univariate and multivariate
elliptical distribution. Reference Gómez et al. [7] used this family to extend the Birnbaum–Saunders
distribution. Reference Iriarte et al. [8] and Gómez et al. [9] used this methodology to extend the
generalized Rayleigh distribution and Gumbel respectively. Reference Olmos et al. [10] also used
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this methodology to introduce the modified slashed half-normal distribution. Reference Olmos et al.
[11] recently introduced the confluent, hypergeometric slashed-Rayleigh distribution using the same
methodology.

The Maxwell distribution was first set out by Maxwell [12], and gave the distribution of velocities
among the molecules of a gas. Maxwell’s finding was generalized by Boltzmann [13–15], to express
the distribution of energies among molecules. It has several statistical applications in the areas of
physics, chemistry, and physical chemistry, (see Dunbar [16]). For example, in the context of the kinetic
molecular theory of gases, a gas contains a large number of particles in rapid motion. Each particle
has a different velocity, and each collision between particles changes the velocities of the particles. An
understanding of the properties of the gas requires an understanding of the distribution of particle
velocities (which is the Maxwell distribution). In addition to these areas, it also has uses in the theory
of relativity. Ideal plasmas, which are ionized gases of sufficiently low density, frequently have particle
distributions that follow the Maxwell distribution.

Coraddu et al. [17] discussed the physics of nuclear reactions in stellar plasma by checking with
special emphasis on the importance of the velocity distribution of ions. Then they claimed that the
properties (density and temperature) of the weak-coupled solar plasma were analyzed, showing that
the ion velocities should deviate from the Maxwell distribution and could be better described by a
"weakly-non-extensive Tsallis" distribution.

Singh et al. [18] introduced the power Maxwell (PM) distribution; i.e., we say that X has a PM
distribution if its density function is:

fX(x; α, β) =
4α3/2β√

π
x3β−1e−αx2β

, x ≥ 0,

where α > 0 is a scale parameter and β > 0 is a shape parameter. We denote it as X ∼ PM(α, β),
where:

E(Xr) =
2

αr/2β
√

π
Γ
(

3β + r
2β

)
and FX(x) =

∫ αx2β

0

u3/2−1e−u

Γ(3/2)
du.

The main object of this paper is to introduce an extension of the PM distribution using slash
methodology. This new distribution presents a greater kurtosis than the PM distribution, so we can
use it to model atypical data. In Section 2, we introduce the slash power Maxwell (SPM) distribution,
with its stochastic representation, its distribution and its survival and hazard functions. Then we focus
on the moments of the distribution, asymmetry and kurtosis coefficients. We devote Section 3 to the
study of some properties of the model, such as the mode, the convergence, and the distribution of the
stochastic order. We assign Section 4 to inference, wherein we obtain the moments and ML estimators,
and establishing the expectation–maximization (EM) algorithm. In Section 5 we present the simulation
study, focusing our attention on parameter recovery and criteria comparison. In Section 6, we present
two applications to real data, fitting the PM distribution to the datasets; and finally, in Section 7 we
present our conclusions.

2. Probability Density Function

2.1. Stochastic Representation

We consider that the random variable Z has a SPM distribution with parameters α, β and q if it
can be represented as

Z =
X

U1/q , (3)

where X ∼ PM(α, β) and U ∼ U(0, 1) are independent, and q > 0. We denote this by writing
Z ∼ SPM(α, β, q), where q is the kurtosis parameter.
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2.2. Density Function

The following proposition presents the probability density function (pdf) distribution that can be
generated using (3).

Proposition 1. Let Z ∼ SPM(α, β, q). Then, the pdf of Z is given by

f (z; α, β, q) =
2qΓ

(
q+3β

2β

)
√

παq/2βzq+1 G
(

αz2β;
q + 3β

2β
, 1
)

, z ≥ 0,

where α > 0 is the scale parameter, β > 0 is the shape parameter, q > 0 is the kurtosis parameter, Γ(α) is the
gamma function defined in Appendix A and G(x; a, b) is the cumulative distribution function (CDF) of the
gamma distribution also defined in Appendix A.

Proof. Using the representation given in (3) and computing the Jacobian transformation, we have that

Z = X/U1/q

W = U1/q

}
⇒ X = ZW

U = Wq

}
⇒ J =

∣∣∣∣∣∣∣∣∣
∂x
∂z

∂x
∂w

∂u
∂z

∂u
∂w

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣ w z

0 qwq−1

∣∣∣∣∣ = qwq.

Then, fZ,W(z, w) = |J| fX,U (zw , wq) =
4α3/2βq√

π
z3β−1 w3β+q−1 exp

{
−α(zw)2β

}
, so that by

marginalizing with respect to the random variable W, we obtain the density function corresponding to
the random variable Z; namely:

fz(z; α, β, q) =
4α3/2βq√

π
z3β−1

∫ 1

0
w3β+q−1 exp

{
−α(zw)2β

}
dw,

so making the variable change u = α(zw)2β, the result is obtained.

Figure 1 shows the density of SPM for some values of parameter q. It reveals that the tails become
heavier as q becomes smaller.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

z

de
ns

ity

PM (1.5, 1.5)
SPM (1.5, 1.5, 3)
SPM (1.5, 1.5, 1)

Figure 1. Plots of the power Maxwell (PM) and slash power Maxwell (SPM) densities.
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In Table 1 we perform a brief comparison, illustrating that the tails of the SPM distribution
are heavier than those of the PM distribution, showing P(Z > z) for different values of z in the
distributions mentioned. It is clear that the SPM distribution may have much heavier tails than the PM
distribution.

Table 1. Tails comparison for different values for parameters of the SPM and PM (1.5, 1.5) distributions.

Distributions P(Z > 1.2) P(Z > 1.5) P(Z > 1.7) P(Z > 1.9)

PM (1.5, 1.5) 0.159 0.018 0.002 0.000
SPM (1.5, 1.5, 10) 0.282 0.075 0.026 0.009
SPM (1.5, 1.5, 5) 0.396 0.170 0.094 0.054
SPM (1.5, 1.5, 3) 0.509 0.293 0.203 0.146
SPM (1.5, 1.5, 1) 0.754 0.617 0.545 0.488

Proposition 2. Let Z ∼ SPM(α, β, q). Then the CDF of Z is given by:

FZ(z) = G(αz2β, 3/2, 1)−
2z−q Γ

(
q+3β

2β

)
√

π αq/2β
G
(

αz2β,
q + 3β

2β
, 1
)

.

Proof. By integrating by parts the kernel of the density

I =
∫ z

0
t−q−1G

(
αt2β,

q + 3β

2β
, 1
)

dt,

using u = G
(

αt2β, q+3β
2β , 1

)
and v = −t−q/q we finally obtain

I = − z−q

q
G
(

αz2β,
q + 3β

2β
, 1
)
+

1
q

2βα(3β+q)/(2β)

Γ
(

3β + q
2β

) ∫ z

0
t3β−1e−αt2β

dt,

and then, by substituting µ = αt2β in the last integral (i.e., I2), we obtain

I2 =
αq/2β

√
π

2qΓ
(

3β + q
2β

)G
(

αz2β, 3/2, 1
)

.

Thus the proof is complete.

Corollary 1. Let Z ∼ SPM(α, β, q). Then the survival function and the hazard function of Z are given

S(z) = 1 +
2z−q Γ

(
q+3β

2β

)
√

π αq/2β
G1 − G0, h(z) =

2qΓ
(

q+3β
2β

)
G1

zq+1
[√

παq/2β + 2z−q Γ( q+3β
2β )G1 − αq/2β

√
πG0

] ,

where G0 = G
(
αz2β; 3/2, 1

)
and G1 = G

(
αz2β; q+3β

2β , 1
)

.

In Figure 2, we show the CDF, survival and hazard functions. Additionally, we can see that the
curve related to the hazard function is unimodal, and that as "q" grows, the curve has longer tails and
extends to a greater range.
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Figure 2. Plots of the distribution function, survival function and hazard function for the SPM (1.5, 1.5, q).

Proposition 3. Let Z ∼ SPM(α, β, q). Then the mode of Z can be obtained by solving:

2qΓ
(

q+3β
2β

)
√

π αq/2β

[
2αβ z2β−q−2g1 − (q + 1)z−q−2G1

]
= 0,

where g1 = g
(

αz2β; q+3β
2β , 1

)
and G1 = G

(
αz2β; q+3β

2β , 1
)

. This equation must be solved numerically.

Proof. We set
d
dz

fZ(z; α, β, q) = 0, we have

2qΓ
(

q + 3β

2β

)
√

παq/2β

{
∂

∂z

[
1

zq+1 G
(

αz2β;
q + 3β

2β
, 1
)]}

= 0.

Considering
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∂

∂z
G
(

αz2β;
q + 3β

2β
, 1
)
= 2αβz2β−1g

(
αz2β;

q + 3β

2β
, 1
)

,

the result is obtained.

2.3. Distribution Relationships

It is easy to see some special cases that are associated with SPM distribution.

1. According to a property that we will discuss later in Section 3, if q → ∞ then Z D→ X, where
X ∼ PM(α, β).

2. If β = 1 then Z = Y with α =
1
2

σ, where Y has slash Maxwell (SM) distribution (Iriarte et al. [8]).

3. If q→ ∞ and β = 1, then Z D→ M, where M has Maxwell distribution.

A diagram showing this relationship is presented in Figure 3.

SPM(α, β, q)

q→∞

zz

β=1, q→∞

��

β=1, α= 1
2 σ

''
PM(α, β)

β=1

..

SM(σ, q)

q→∞, σ=2α

ooM(α)

Figure 3. Relationship among distributions of the SPM family.

2.4. Moments

We present a general formula for the rth moment of the SPM distribution.

Proposition 4. Let Z ∼ SPM(α, β, q). Then, for r = 1, 2, . . . , it follows that the rth moment of Z can be
written as

µr = E(Zr) =
2q

(q− r) αr/2β
√

π
Γ
(

3β + r
2β

)
, for q > r.

Proof. Using the stochastic representation for the distribution given in (3), we have that

E
[(

X
Y1/q

)r]
= E(Xr)E(Y−r/q) =

2
αr/2β

√
π

Γ
(

3β + r
2β

)
q

q− r
,

where E(Y−r/q) = q
q−r , and E(Xr) are the moments of the PM(α, β).
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Corollary 2. If Z ∼ SPM(α, β, q), then it follows that

µ1 = E(Z) =
q

q− 1
k1 f or q > 1 , µ2 = E(Z2) =

q
q− 2

k2 f or q > 2,

µ3 = E(Z3) =
q

q− 3
k3 f or q > 3 , µ4 = E(Z4) =

q
q− 4

k4 f or q > 4,

Var(Z) =
q

q− 2
k2 − (

q
q− 1

k1)
2 f or q > 2,

where kr are the r-moments of the PM distribution.

Remark 1. The asymmetry and kurtosis coefficients can be obtained using:

√
β1 =

µ3 − 3µ1µ2 + 2µ3
1

[ µ2 − µ2
1 ]

3/2
and β2 =

µ4 − 4µ1µ3 + 6µ2µ2
1 − 3µ4

1
[ µ2 − µ2

1 ]
2

.

Corollary 3. Let Z ∼ SPM(α, β, q); then the asymmetry coefficient (
√

β1) and the kurtosis coefficient (β2)

for q > 3 and q > 4 respectively

√
β1 =

(q− 2)1/2[ (q− 1)3(q− 2)k3 − 3q(q− 1)2(q− 3)k1k2 + 2q2(q− 2)(q− 3)k3
1 ]√

q(q− 3)[ (q− 1)2k2 − q(q− 2)k2
1 ]

3/2
,

β2 =
(q− 2)[ (q− 1)3(q− 2)B1,q + 3q2(q− 3)(q− 4)k2

1B2,q ]

(q− 3)(q− 4)q[ (q− 1)2k2 − q(q− 2)k2
1 ]

2
,

where B1,q = (q− 1)(q− 3)k4 − 4q(q− 4)k1k3, B2,q = 2(q− 1)2k2 − q(q− 2)k2
1 and kr is the rth moment

of the PM distribution.

Figure 4a,b show in graphic form the asymmetry and kurtosis coefficients of the PM model for
different parameter values. Figure 4c,d show the asymmetry and kurtosis coefficients of the SPM
model for different parameter values. It can be seen that both coefficients increase when the parameter
q decreases. When observing the Figures for both models, it is evident that the SPM distribution
covers a wide range of values for the asymmetry and kurtosis coefficients, depending on the parameter
values, implying that the SPM model is sufficiently flexible to model real datasets. Table 2 reveals that
values for the asymmetry and kurtosis coefficients depend on the parameters β and q, and that as q
decreases and β increases, the asymmetry and kurtosis coefficients also increase. On the other hand, as
q increases the asymmetry and kurtosis coefficients are those of the PM distribution.

On the other hand, we also have that

lim
q→∞

√
β1 =

2πΓ3 − 12π
1
2 Γ1Γ2 + 16(Γ1)

3

(2π
1
2 Γ2 − 4(Γ1)2)

3
2

and lim
q→∞

β2 =
2π

3
2 Γ4 − 16πΓ1Γ3 + 48π

1
2 Γ2(Γ1)

2 − 48(Γ1)
4

(2π
1
2 Γ2 − 4(Γ1)2)2

,

are the asymmetry and kurtosis coefficients of the PM distribution, where Γr = Γ( 3β+r
2β ).
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(b) Plot of the kurtosis coefficients for the PM model.
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(c) Plot of the asymmetry coefficients for the SPM model.
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(d) Plot of the kurtosis coefficients for the SPM model.

Figure 4. Plots of the asymmetry and kurtosis coefficients for the PM and SPM models.

Table 2. Asymmetry and kurtosis values for the SPM distribution.

β q
√

β1 β2

0.5 4.1 3.365 188.415
2 4.716 479.077

10 6.506 767.271
1000 6.636 789.663

0.5 4.5 2.780 36.686
2 3.545 81.509

10 5.323 144.018
1000 5.466 149.444

0.5 5 2.397 19.256
2 2.670 35.360

10 4.482 70.302
1000 4.648 73.800
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Table 2. Cont.

β q
√

β1 β2

0.5 7 1.893 9.480
2 1.155 8.844
10 3.085 25.013

1000 3.381 27.857

0.5 9 1.763 8.079
2 0.595 5.081
10 2.475 16.444

1000 2.940 19.755

0.5 10 1.732 7.791
2 0.440 4.360
10 2.252 14.224

1000 2.811 17.828

3. Properties

This section is devoted to studying some properties of the model.

Proposition 5. Let Z ∼ SPM(α, β, q) and X ∼ PM(α, β); then Z converges in distribution to X, as q→ ∞.

Proof. The proof will use Lehman’s and Slutsky’s theorem (Lehmann [19], p. 70). It is easy to see that

X D→ X, q→ ∞, and U1/q P→ 1, q→ ∞. Thus, if we define the function g(X, U1/q) = X
U1/q , then:

g(X, U1/q)
D→ g(X, 1) = X as q→ ∞. Thus, Z D→ X as q→ ∞.

Proposition 6. Let z(1), . . . , z(n) denote the order statistics of a random sample z1, . . . , zn from Z ∼
SPM(α, β, q). Then the pdf of Z(j), fZ(j)

(z), is:

n!
(j− 1)!(n− j)!

2qΓ
(

q+3β
2β

)
√

πα
q

2β zq+1
G1

 G0 −
2z−qΓ

(
q+3β

2β

)
√

πα
q

2β

G1

j−1 1 +
2z−qΓ

(
q+3β

2β

)
√

πα
q

2β

G1 − G0

n−j

,

where G1 = G
(

αz2β; q+3β
2β , 1

)
and G0 = G

(
αz2β, 3/2, 1

)
.

Proof. Let X(1), . . . , X(n) be the order statistics of a random sample, from a continuous population
with CDF FX(x) and pdf fX(x). Then, the pd f of X(j) is

fZ(j)
(z) =

n!
(j− 1)!(n− j)!

fX(x)[ FX(x) ]j−1[ 1− FX(x) ]n−j.

Now, replace fX(x) and FX(x) with the pdf and CDF of the SPM distribution respectively; then
the result is obtained.

Corollary 4. Let z(1), . . . , z(n) denote the order statistics of a random sample z1, . . . , zn from Z ∼
SPM(α, β, q). Then the pdfs of the minimum Z(1) and the maximum Z(n) are respectively:

fZ(1)
(z) = n

2qΓ
(

q+3β
2β

)
√

παq/(2β)zq+1
G1

1 +
2z−qΓ

(
q+3β

2β

)
√

παq/(2β)
G1 − G0

n−1

,

fZ(n)
(z) = n

2qΓ
(

q+3β
2β

)
√

παq/(2β)zq+1
G1

 G0 −
2z−qΓ

(
q+3β

2β

)
√

παq/(2β)
G1

n−1

,
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where G1 = G
(

αz2β; q+3β
2β , 1

)
and G0 = G

(
αz2β, 3/2, 1

)
.

Proposition 7. Let Z ∼ SPM(α, β, q), and X ∼ PM(α, β). with CDF FZ and FX respectively. Then FZ is
stochastically greater than FX .

Proof. Recall that FZ is stochastically greater than FX(x), if P(Z > t) ≥ P(X > t) for every t, which
implies FZ(t) ≤ FX(t). Now, notice that the second term of the distribution function of Z is always
greater than or equal to zero. Then we have:

G(αt2β, 3/2, 1) ≥ G(αt2β, 3/2, 1)−
2t−q Γ

(
q+3β

2β

)
√

π αq/2β
G
(

αt2β,
q + 3β

2β
, 1
)

,

which means that FZ(t) ≤ FX(t).

Table 3 shows the quantities of the mean, variance, median and mode when α, β and q are
increasing.

Table 3. Values of mean, variance, median and mode.

Parameters Mean Variance Median Mode

(0.3, 1.5, 3) 2.378 2.519 2.071 1.847
(1.5, 1.5, 3) 1.391 0.862 1.211 1.080
(3, 1.5, 3) 1.104 0.543 0.961 0.857

(1.5, 0.5, 3) 1.500 2.750 1.075 0.415
(1.5, 1.5, 3) 1.391 0.862 1.211 1.080
(1.5, 3, 3) 1.428 0.742 1.225 1.099

(1.5, 1.5, 2.1) 1.770 16.439 1.330 1.109
(0.3, 1.5, 3) 1.391 0.862 1.211 1.080
(0.3, 1.5, 4) 1.236 0.336 1.142 1.057
(0.3, 1.5, 4.5) 1.192 0.256 1.119 1.048

We note that the quantities decrease as long as q increases.

4. Inference

This section is devoted to inference aspects for the SPM model. Parameters are estimated based
on the moments and ML methods.

4.1. Moments Estimation

Replacing E(Z) by the sample mean Z, gives the equation:

Z =
q

q− 1
k1, (4)

by which we obtain the moment estimator of q:

q̃ =
Z

Z− k1
. (5)

Therefore, using (5) and replacing E(Z2) and E(Z3) with the second and third sampling moments,
we obtain the following equations:

Z2 =
Z

2k1 − Z
k2, (6)
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Z3 =
Z

3k1 − 2Z
k3, (7)

where kr is the r-th moment of the PM distribution.
The equation systems generated by (6) and (7) need to be solved numerically leading to the

estimators β̃ and α̃. The estimator q̃ is obtained from (5), replacing α by α̃ and β by β̃, which leads to
the moment estimators (α̃, β̃, q̃) for (α, β, q).

4.2. ML Estimation

In this section, we present the ML equations for parameters (α, β, q) of the SPM model. If
Z1, Z2, . . . , Zn is a random sample from the random variable Z ∼ SPM(α, β, q), the log-likelihood
function can be expressed as

l(θ, z) = n log(2) + n log(q)− n
2

log(π)− nq
2β

log(α)− (q + 1)
n

∑
i=1

log(zi) + n log Γ
(

3β + q
2β

)
+

n

∑
i=1

log H(zi),

(8)

where H(zi) = G
(

αz2β
i ; q+3β

2β , 1
)

and θ = (α, β, q).
The ML estimators are obtained by maximizing the log-likelihood function given in (8). By

deriving the log-likelihood function with respect to each parameter, the following estimating equations
are obtained:

∂

∂α
l(θ, z) =

nq
2αβ

+
n

∑
i=1

H1(zi)

H(zi)
= 0,

∂

∂β
l(θ, z) =

nq
2β2 log(α)− nq

2β2 ψ(1)
(

3β + q
2β

)
+

n

∑
i=1

H2(zi)

H(zi)
= 0,

∂

∂β
l(θ, z) =

n
q
− n

2β
log(α)−

n

∑
i=1

log(zi) +
n

2β
ψ(1)

(
3β + q

2β

)
+

n

∑
i=1

H3(zi)

H(zi)
= 0,

where H1(zi) =
∂

∂α
H(zi), H2(zi) =

∂

∂β
H(zi), H3(zi) =

∂

∂q
H(zi) and ψ(1) are the digamma function.

These equation systems need to be solved numerically using an adequate root finder procedure.
The moments estimator could be used to find initial values for the iterative procedure.

The EM algorithm (Dempster et al. [20]) defines an iterative process that allows the likelihood
function of a parametric model to be maximized in cases in which some variables of the model are (or in
our case, are treated as) "latent" or unknown. The advantage is simple: the EM algorithm is significantly
less computationally intensive and far more robust. However, we will use the expectation/conditional
maximization (ECM) algorithm (Meng and Rubin [21]), which is an extension of the EM algorithm.

4.3. EM Algorithm

Using the stochastic representation (3), but considering the following parametrization q∗ = q
β , we

obtain:

Zi =
Xi

U1/βq∗
i

, (9)

so we have the following hierarchical model
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Zi|Vi ∼ PM(αV2
i , β)

Vi ∼ β(q∗, 1),

where Vi = U
1

q∗
i is the latent variable, and Zi is the observable variable, for i = 1, . . . , n. Now,

consider Ψ = (α, β, q∗) the new parameter vector. In this case the complete-data log-likelihood or full
log-likelihood function is

lc(Ψ) =
3
2

n log(α) + n log(β) + n log(q∗) + (q∗ + 2)
n

∑
i=1

log(vi) + (3β− 1)
n

∑
i=1

log(zi)− α
n

∑
i=1

v2
i z2β

i ,

where lc(Ψ) is the full log-likelihood function. Then E(lc(Ψ)|zi, Ψ = Ψ(k)):

Q(Ψ, Ψ(k)) =
3n
2

log(α) + n log(β) + n log(q∗) + (q∗ + 2)
n

∑
i=1

̂log(vi)
(k)

+ (3β− 1)
n

∑
i=1

log(zi)

−α
n

∑
i=1

z2β
i v̂2

i

(k)
,

where v̂2
i

(k)
= E(V2

i |zi, Ψ = Ψ(k)) and ̂log(vi)
(k)

= E(log(Vi)|zi, Ψ = Ψ(k)). Normally, the next thing
to do is find the distribution of Vi|zi

f (vi|zi) ∝ f (zi, vi) ∝ vq∗+2e−αv2z2β
,

but instead, we will use the distribution of Wi = V2
i |zi:

f (wi|Ψ) ∝ w(q∗+3)/2−1
i e−αz2βwi I(0,1)(wi).

Thus, we conclude that W follows a truncated gamma in the interval (0, 1) (shown in the Appendix
A), that is, Wi ∼ TG(0,1)

(
q∗+3

2 , αz2β
i

)
. Then:

ŵ(k)
i =

G(1;
q∗(k) + 5

2
, α(k)z2β(k)

i )

G(1;
q∗(k) + 3

2
, α(k)z2β(k)

i )

q∗(k) + 3

2α(k)z2β(k)

i

, (10)

1
2

̂log[wi ]
(k)

=
1
2

(α(k)z2β(k)

i )(q
∗(k)+3)/2

Γ

(
q∗(k) + 3

2

)
G(1;

q∗(k) + 3
2

, α(k)z2β(k)

i )

∫ 1

0
log(wi)w

(q∗(k)+1)/2
i e−α(k)z2β(k)

i wi dwi,

which correspond to v̂2
i

(k)
and ̂log(vi)

(k)
respectively. The equations result from deriving Q(Ψ, Ψ(k))

with respect to the parameters:

α(k+1) =
3n

2 ∑n
i=1 z2β(k)

i v̂2
i

(k)
,

β(k+1) = −n

(
3

n

∑
i=1

log(zi)− α(k)
n

∑
i=1

2z2β(k+1)

i log(zi)v̂2
i

(k)
)−1

, (11)

q∗(k+1) = − n

∑n
i=1

̂log(vi)
(k)

.



Mathematics 2020, 8, 1116 13 of 20

The equation corresponding to β(k+1) must be solved numerically. Finally, we obtain the following
EM algorithm.

Step E: calculate v̂2
i

(k)
and ̂log(vi)

(k)
using (10).

Step M: update Ψ̂(k+1) using (11).

Once some stop criteria have been completed, calculate q = q∗β to obtain the estimators of
(α, β, q). For example, one stop criteria could be Ψ̂(k+1) − Ψ̂(k) < 0.0001.

5. Simulation

In this section we present the simulation study, which aims to investigate the ML estimation
performance for parameters α, β, q under the SPM model; then we focus on comparison, using the AIC
(Akaike [22]), BIC (Schwarz [23]), ADR and AD2R (Anderson et al. [24]) criteria. First, we present
the algorithm that was used to generate samples for Z ∼ SPM(µ, σ, q).

1. Generate Pi ∼ χ2
3 (chi squared with 3 degrees of freedom), i = 1, 2, . . . , n.

2. Compute Xi = (
√

Pi√
2α
)1/β, i = 1, 2, . . . , n.

3. Generate Ui ∼ U(0, 1), i = 1, 2, . . . , n.
4. Compute Zi =

Xi

U1/q
i

∼ SPM(α, β, q), i = 1, 2, . . . , n,

where χ2
3 and U(0, 1) are the chi-squared distribution with three degrees of freedom and the standard

uniform distribution respectively.
The algorithm that was used to calculate the ADR and AD2R values is described below:

ADR =
n
2
− 2 ∑n

i=1 F(x(i))−
1
n ∑n

i=1(2i− 1) log(1− F(x(n+1−i))),

AD2R = −2 ∑n
i=1 log(1− F(x(i))) +

1
n ∑n

i=1
(2i− 1)

(1− F(x(n+1−i)))
,

where F(x) is the CDF, and x(i) the i-th statistic of order. To calculate AIC and BIC values:
AIC = 2 k− 2 l(θ̂; z),
BIC = k log(n)− 2 l(θ̂; z),

where k is the number of parameters, n the sample size and l(θ̂; z) the value of the log-likelihood
function using the ML estimator of θ.

5.1. Parameter Recovery

Using the algorithm, we generate 1000 random samples of sizes n = 50, n = 100 and n = 200
under the SPM model, with different parameter values. In Table 4 we present a summary of the study
results. For each sample, an ML estimator was computed numerically using the EM algorithm, where
the means and the standard deviations are reported. As expected, as the sample size increases, its
standard deviation decreases and therefore the parameter estimate approaches the true simulated
value. We conclude that the ML estimates are quite stable.

5.2. Criteria Comparison

We generated 1000 random samples of sizes n = 50, n = 100 and n = 200 under the SPM
model using different parameter values. The following tables show the proportions of times that
the respective criteria (detailed in the previous section) chose the SPM over the PM model. Table 5
corresponds to data simulated by the SPM model. Results show that when the data are drawn from
the SPM distribution, the four criteria corresponding to the SPM model are usually lower than the
criteria for the PM model. We also conclude that for models with heavy tails, ADR and AD2R are
better criteria for evaluating model fitness.
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Table 4. Mean of each maximum likelihood (ML) estimate with standard deviations in parentheses.

n (α, β, q) α̂ β̂ q̂

50 1.007(0.336) 0.527(0.121) 1.349(1.257)
100 (1, 0.5, 1) 1.005(0.207) 0.515(0.080) 1.066(0.262)
200 1.001(0.135) 0.507(0.054) 1.029(0.147)

50 0.979(0.285) 0.529(0.108) 4.099(3.960)
100 (1, 0.5, 2) 0.981(0.188) 0.509(0.066) 2.886(2.283)
200 0.987(0.130) 0.503(0.043) 2.318(1.053)

50 0.975(0.284) 0.526(0.103) 6.684(5.245)
100 (1, 0.5, 3) 0.976(0.179) 0.506(0.056) 5.231(3.717)
200 0.982(0.128) 0.503(0.040) 4.237(2.540)

50 0.282(0.091) 1.599(0.368) 4.064(3.745)
100 (0.3, 1.5, 3.1) 0.293(0.066) 1.539(0.231) 3.349(0.861)
200 0.295(0.046) 1.522(0.154) 3.194(0.483)

50 1.56(0.559) 1.581(0.364) 4.119(3.951)
100 (1.5, 1.5, 3.1) 1.536(0.367) 1.549(0.239) 3.314(0.819)
200 1.510(0.231) 1.523(0.160) 3.190(0.477)

50 1.571(0.619) 1.598(0.370) 6.712(7.256)
100 (1.5, 1.5, 4.1) 1.521(0.348) 1.541(0.219) 4.668(2.119)
200 1.504(0.209) 1.519(0.143) 4.277(0.820)

Table 5. SPM simulation, criteria comparison.

AIC BIC ADR AD2R

n (α, β, q) SPM PM SPM PM SPM PM SPM PM

50 0.627 0.373 0.479 0.521 0.804 0.196 0.999 0.001
100 (0.8, 0.7, 2.1) 0.863 0.137 0.772 0.228 0.801 0.199 1.000 0.000
200 0.993 0.007 0.970 0.030 0.798 0.202 1.000 0.000

50 0.643 0.357 0.501 0.499 0.777 0.223 1.000 0.000
100 (1, 1, 3.1) 0.874 0.126 0.758 0.242 0.768 0.232 1.000 0.000
200 0.982 0.018 0.952 0.048 0.794 0.206 1.000 0.000

50 0.432 0.568 0.303 0.697 0.804 0.196 0.998 0.002
100 (1, 1, 4.1) 0.681 0.319 0.539 0.461 0.783 0.217 1.000 0.000
200 0.899 0.101 0.762 0.238 0.795 0.205 0.999 0.001

50 0.993 0.007 0.992 0.008 0.539 0.461 0.999 0.001
100 (3, 4, 3.1) 1.000 0.000 1.000 0.000 0.502 0.498 1.000 0.000
200 1.000 0.000 1.000 0.000 0.453 0.547 0.976 0.024

50 0.880 0.120 0.862 0.138 0.630 0.370 0.997 0.003
100 (3, 4, 4.1) 0.980 0.020 0.980 0.020 0.629 0.371 1.000 0.000
200 0.998 0.002 0.996 0.004 0.587 0.413 0.980 0.020

6. Applications

We now present two applications to real datasets showing descriptive analysis and ML estimators
for the M, PM and SPM models with their AIC, BIC, ADR and AD2R criteria, histograms and Q-Q
plots.

6.1. Application 1

We consider a dataset of fund-raising expenses as a percentage of total expenditure for a random
sample of 60 charities from the United States. These observations can be found in Devore [25], p. 4.
These are:

6.1,12.6,34.7,1.6,18.8,2.2,3.0,2.2,5.6,3.8,2.2,3.1,1.3,1.1,14.1,4.0,21.0,6.1,1.3,20.4



Mathematics 2020, 8, 1116 15 of 20

7.5,3.9,10.1,8.1,19.5,5.2,12.0,15.8,10.4,5.2,6.4,10.8,83.1,3.6,6.2,6.3,16.3,12.7,1.3,
0.8,8.8,5.1,3.7,26.3,6.0,48.0,8.2,11.7,7.2,3.9,15.3,16.6,8.8,12.0,4.7,14.7,6.4,17.0,
2.5,16.2

In Table 6, we can see from the descriptive analysis that this dataset has high kurtosis.
Table 7 shows the ML estimates for the parameters of the M, PM and SPM distributions. For each

model, we apply the statistical criteria named at the beginning of this section; we see that all four
criteria choose the SPM model over the M and PM models.

Table 6. Descriptive analysis for the charities data.

Mean S.D. Median Interquartile Range Min. Max. Asymmetry Kurtosis

10.892 12.741 6.800 10.375 0.800 83.100 3.602 19.360

Table 7. ML estimates for the charities data with standard deviations in parentheses.

Parameter M PM SPM

α 0.005(0.0006) 0.196(0.047) 0.198(0.059)
β — 0.436(0.039) 0.563(0.080)
q — — 2.122(0.733)
l 277.564 201.531 199.017

AIC 557.127 407.063 404.034
BIC 559.228 411.251 410.317

ADR 65.062 26.711 25.425
AD2R 2.752 × 1015 2799.457 269.557

Figure 5 depicts the histogram of the dataset, where we can check that the SPM model has a
greater reach than the other models.

Finally, Figure 6a,b show the Q-Q plots for the PM and SPM models respectively; Figure 6c shows
the empirical plot, which tells us that the SPM model is preferable.
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Figure 5. Histogram of the charities data fitted with the M, PM and SPM distributions.
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Figure 6. QQ and empirical plot, charaties data.

6.2. Application 2

We consider a dataset of the copper content of 24 Bidri products (a traditional Indian handicraft);
this study was performed because Bidri crafts are soldered with an alloy containing mainly zinc and
some copper (Devore [25], page 33). These are:

2.0, 2.4, 2.5, 2.6, 2.6, 2.7, 2.7, 2.8, 3.0, 3.1, 3.2, 3.3, 3.3, 3.4, 3.6, 3.6, 3.6,
3.7, 4.4, 4.6, 4.7, 4.8, 5.3, 10.1

In Table 8, we can see from the descriptive analysis that this dataset has high kurtosis, so it is
interesting to see what our model can do here.

Table 9 shows the ML estimates for the parameters of the M, PM, and SPM distributions. For each
model we apply the statistics criteria named at the beginning of this section, and we see that all four
criteria choose the SPM model over the M and PM models.
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Table 8. Descriptive analysis for the copper data.

Mean S.D. Median Interquartile Range Min. Max. Asymmetry Kurtosis

3.666 1.612 3.300 1.75 2 10.1 2.760 11.689

Table 9. ML estimates for the copper data with standard deviations in parentheses.

Parameter M PM SPM

α 0.094(0.015) 0.097(0.043) 0.006(0.005)
β — 0.989(0.130) 2.704(0.517)
q — — 3.591(1.083)
l −42.193 −42.190 −34.567

AIC 86.386 88.380 75.135
BIC 87.564 90.736 78.670

ADR 0.762 0.753 0.106
AD2R 160.036 138.239 2.061

Figure 7 depicts the histogram of the dataset, where we can check that the SPM model has a
greater reach than the other models.

Finally, Figure 8a,b show the Q-Q plots for the PM and SPM models respectively, and Figure 8c
shows the empirical plot, which tells us that the SPM model is preferable.

It is interesting to note that the estimate of the shape parameter β of the PM model is almost 1;
remember that if β = 1, then we obtain the classic M distribution.
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Figure 7. Histogram of the copper data fitted with the M, PM and SPM distributions.
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Figure 8. QQ and empirical plot, copper data.

7. Conclusions

The slash methodology has often been used recently to extend a variety of well-known
distributions, resulting in a flexible distribution that has high kurtosis, and of course heavier tails, as
we discuss above. Here we introduced the SPM distribution, where following the same methodology,
we extended the PM distribution by using the PM instead of the normal model; see Equation (1). So
the PM is a special case of the SPM model. As we saw in Figure 1, the new distribution does indeed
present a more flexible kurtosis coefficient than that of the PM model; moreover, as we saw in Table 1,
the tails become heavier as parameter q becomes smaller.

We discussed some properties, such as the distribution, survival and hazard functions. We also
studied the mode; moments; statistic order; and of course, asymmetry and kurtosis. They all have
closed form, which makes computational implementation easier. We also presented two stochastic
representations: One is defined as a quotient between two independent random variables: PM in the
numerator and the power of a standard uniform distribution in the denominator. The second is a
mixture of a PM and a beta distribution, used to establish the EM algorithm.
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Parameters could be estimated using the moments method and ML estimators using log-likelihood
or EM algorithm methodology, although the EM algorithm is more stable, as we obtained closed
expressions.

The results of a simulation study were presented, indicating good parameter recovery. In the
simulation study for the criteria, we concluded that the criterion which best explained the fit of the
SPM model was AD2R.

In the application we used datasets with high kurtosis, which seems logical considering the object
of the work. Four model comparison criteria statistics were used; all four criteria indicate that the SPM
model shows the best fit for this dataset. The ADR and AD2R criteria are more reliable for comparing
distributions using two real datasets; this can be seen in the application, where these criteria showed a
better fit for the SPM model.
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Appendix A. Definitions of Some Distributions

The pdf and CDF of the gamma distribution are given, respectively, by:

g(t; a, b) =
ba

Γ(a)
ta−1e−bt, t > 0, a > 0, b > 0.

G(x; a, b) =
∫ x

0
g(t; a, b)dt.

The pdf of the truncated gamma TG(0,1)(a, b) distribution is given, by:

f (x; a, b) =
ba

Γ(a)
xa−1e−bx 1

G(1; a, b)
, x > 0; a, b > 0.

If X follows a truncated gamma distribution in the interval (0, 1), that is X ∼ TG(0,1)(a, b), so:

E(X) =
G(1; a + 1, b)

G(1; a, b)
a
b

,

E(log(x)) =
ba

Γ(a)G(1; a, b)

∫ 1

0
log(x)xa−1e−bx dx.

The density of the standard normal distribution is given by

φ(x) =
1√
2π

e−
1
2 x2

.

The gamma function is defined as follows

Γ(α) =
∫ ∞

0
xα−1e−x dx.
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