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Abstract: We study general classes of discrete time dynamic optimization problems and dynamic
games with feedback controls. In such problems, the solution is usually found by using the Bellman
or Hamilton–Jacobi–Bellman equation for the value function in the case of dynamic optimization
and a set of such coupled equations for dynamic games, which is not always possible accurately.
We derive general rules stating what kind of errors in the calculation or computation of the value
function do not result in errors in calculation or computation of an optimal control or a Nash
equilibrium along the corresponding trajectory. This general result concerns not only errors resulting
from using numerical methods but also errors resulting from some preliminary assumptions related to
replacing the actual value functions by some a priori assumed constraints for them on certain subsets.
We illustrate the results by a motivating example of the Fish Wars, with singularities in payoffs.
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1. Introduction

Finding an optimal control in the feedback form or a feedback Nash equilibrium in a dynamic
game is complicated, especially if the analytic solution cannot be found. The appropriate methods,
based on the Bellman equation or a set of coupled Bellman equations, respectively, require finding
the value function on the whole state space or at least a large invariant subset of it (for the principle
of optimality, i.e., necessity of the Bellman equation in the infinite horizon see e.g., Stokey, Lucas
and Prescott [1], Kamihigashi [2], Wiszniewska-Matyszkiel and Singh [3]) with appropriate terminal
condition (for the infinite horizon, necessity has been proven in Wiszniewska-Matyszkiel and Singh [3]).

Currently, the substantial focus in research by mathematicians is on high accuracy of the solution
of the Bellman equation or the set of Bellman equations in the case of numerical solutions, as well
as the existence and uniqueness in some classes of functions or methods of estimating the infinite
horizon value function and accuracy of this estimation (e.g., Martins-Da-Rocha and Vailakis [4],
Le Van and Morhaim [5], Rincón-Zapatero and Rodríguez-Palmero [6], Matkowski and Nowak [7],
Kamihigashi [8], Wiszniewska-Matyszkiel, and Singh [3]).

An error in calculation or computation of the solution of the Bellman equation even on a very small
set may result in finding a function that is far from the actual value function while the resulting candidate
for the optimal control differs substantially from the actual optimal control on a considerable part of
the state set (see, e.g., Singh and Wiszniewska-Matyszkiel [9]). Moreover, the Bellman equation may have
multiple solutions (Rincón-Zapatero and Rodríguez-Palmero [6], Singh and Wiszniewska-Matyszkiel [10],
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Wiszniewska-Matyszkiel, and Singh [3], with the false value function more plausible than the actual
one in [3,10]). However, sometimes, errors in calculation and computation of the value function do not
propagate on optima and equilibria.

The research presented in this paper has been motivated by an analysis of the well-known Fish
Wars model as an example of games, which may be regarded as intractable by numerical methods due
to singularities in payoffs. Nevertheless, after applying numerical methods not taking into account
preliminary assumptions about the form of the solutions, and leaving the grid purposely sparse on
some sets, we have obtained an unexpectedly high level of accuracy of numerically computed optima
and Nash equilibria along the corresponding state trajectories in spite of inaccuracy of approximation
of the value functions on some intervals. This implies that, in some cases, using numerical methods to
solve dynamic games or dynamic optimization problems with singularities in payoffs may turn out to
be successful even if the type of singularity is not known a priori.

To explain this paradox, we derive general rules stating what kind of errors in calculation or
computation of the value function do not result in errors in calculation or computation of the optimal
control or a Nash equilibrium in a wide class of dynamic optimization problems or dynamic
games, depending on partial knowlegde about the optimal or Nash trajectory or its approximation.
These general results concern not only errors resulting from using numerical methods but also errors
resulting from some preliminary assumptions related to obvious constraints on the value function
or iterates approximating it as in Stokey, Lucas and Prescott [1], Martins-Da-Rocha and Vailakis [4],
Kamihigashi [8], and Wiszniewska-Matyszkiel and Singh [3].

Thus, the main result is theoretical—we study the conditions under which the paradox that we
have obtained in the motivating example appears in dynamic optimization problems or dynamic
games and we derive general conclusions concerning some simplifications which can be applied
while solving dynamic optimum or Nash equilibrium problems, not only in the case of singularities in
payoffs. Those conditions are related to some preliminary constraints of the region in which the optimal
or Nash trajectory, correspondingly, is, or to some constraints on where its approximate is, which can
be checked ex post.

Our research has been preceded by some papers on theory and applications in which the feedback
optimal control has been solved only along the optimal trajectory (e.g., Bock [11]), at the neighborhood
of the steady state of the optimal trajectory (e.g., Horwood and Whittle [12,13]), or at the steady
state only (e.g, Krawczyk and Tolwinsky [14]). This restriction is caused by either the fact that it is
impossible to solve the problem analytically or by the fact that computation in real time is needed.
All of those papers are dedicated to finding a partial solution of a dynamic optimization problem even
if initially the model is a dynamic game.

Another reason to restrict the calculation of the optimal control or Nash equilibrium problem only
to certain subsets of the state space or the product of the time set and the state space is the presence of
singularities, as in our motivating example—a model of exploitation of a common fishery by at least
two players (countries or fishermen) whose subsistence is based on fishing—which is an extension of
the Fish Wars model of Levhari and Mirman [15]. In the model, there is a singularity at the point of
extinction, which is not viable, and singularities at zero fishing decisions. The Fish Wars term comes
from the Cod Wars between Iceland and UK, which has been the motivation to the seminal paper
of Levhari and Mirman [15]. It is the first model of Fish Wars using tools of dynamic games, and it
has been designed to describe the situation of extraction of common resources which are the base of
subsistence of the fishing countries. In such a case, the depletion of the resource, which may mean even
extinction of the species being the base of subsistence of the community extracting it, is disastrous to
the community. Because of the same reason, not extracting at all at some time instant (i.e., year) means
starvation and is also not acceptable. To emphasize this fact, logarithmic instantaneous and terminal
payoff functions are introduced.

The results of Levhari and Mirman have been generalized to n players by Okuguchi [16],
Mazalov and Rettieva [17,18] and Rettieva [19], where also cooperative issues were considered.
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Besides the standard game with the discounted payoff, Nowak [20,21] considers an analogous problem
without discounting but either the overtaking optimality criterion or the limiting average and he
proves the convergence as the discount factor converges to 1.

Because of the simplicity of calculation of analytic solutions, especially for the infinite time
horizon, the model has been analyzed in many aspects and slight modifications. A far from
exhausive selection from the literature encompasses: Fischer and Mirman [22,23] (two species);
Wiszniewska-Matyszkiel [24] (increasing the number of players, considered not as a process of new
actual players entering the game, but the decomposition of the decision-making process among
increasing number of subsets of the same set of players), and [25] (analogous with asymmetric
players); Kwon [26] (partial cooperation); Breton and Keoula [27] (cooperation and coalition stability in
the case of delay in information) and [28] (asymmetric players); Koulovatianos [29] (randomness
in the growth function of the resource and assumption that players rationally learn about it);
Dutta and Sundaram [30] (a wider class of problems, defining “the tragedy of the commons” as
overexploitation of the resource above the “golden rule” level, and looking for dynamics for which
the inequality is opposite); Wiszniewska-Matyszkiel [31,32] (games with distorted information in
which players do not exactly know the actual bio-economic structure of the problem in which they are
involved, i.e., their influence on the resource, and belief-distorted Nash equilibria for such games—in
which players introduce beliefs, not necessarily consistent with the actual dynamics, they best-respond
to their beliefs, which results in self-verification of those beliefs) and Wiszniewska-Matyszkiel [33]
(continuous time); Hanneson [34] (similar games treated as infinitely repeated supergame in which
logarithmic part appears) and Górniewicz and Wiszniewska-Matyszkiel [35] (Allee effect causing
depletion below some minimal sustainable state), Breton, Daumouni and Zaccour [36] (two species
and many specialized players with different levels of cooperation examined). For more exhaustive
surveys of the subject of exploitation of common renewable resources, see, e.g., Carraro and Filar [37]
or Long [38,39]. This short selection of the papers on this subject shows how important this model is in
resource economics. Moreover, it has applications in games of capital accumulation (e.g., Nowak [20]).

If the model is substantially modified, then the analytic calculation of optima and equilibria
ceases to be feasible. In such a case, only numerical methods can be used. Therefore, the analysis of
dynamic optimization problems or dynamic games of this type using numerical methods is really
needed. To that end, one of the consequences of this paper is an answer to the question whether using
numerical methods in a dynamic game or dynamic optimization problems with singularities in payoffs
resulting from considering instantaneous and terminal payoffs with a logarithmic part, may result
in reasonable outcomes. Surprisingly, in this study, the answer is positive even without using any
knowledge about the type of singularity a priori.

The main theoretical finding is an answer to the question, whether such a phenomenon may
appear in a more general class of dynamic optimization problems or dynamic games and how one
can use very incomplete initial knowledge about the solution considered (the optimal control or Nash
equilibrium) and the value function to simplify derivation of this solution.

The paper is composed as follows. In Section 2, the Motivating Example of the Fish Wars model
with a finite horizon is presented. The problems of finding the dynamic optimum and Nash equilibrium
in feedback strategies are solved numerically by an algorithm that does not assume a priori any specific
form of solution and the grid is deliberately inaccurate on some subsets of the state space, and the
numerical solutions are compared to the analytical solution graphically in Section 2.2, while the
computational algorithms are presented in the Appendix. The results for this Motivating Example are
the motivation to the theoretical analysis of this paper: Section 3 analyses when, given a certain set of
initial conditions, the errors in the value function do not propagate on the optimal paths for a dynamic
optimization problem in the general form, while Section 4 analyses possible extensions of those results
to Nash equilibria in dynamic games in the general form.
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2. The Motivating Example—Fish Wars—The Optima and Equilibria

We consider a dynamic game with n players, being countries exploiting the same marine fishery
with one species of fish.

The terminal time T is finite, while the initial time instant is t0. At T + 1, we calculate
the salvage value.

The state variable is the biomass, and it is denoted by x. The set of its possible values is X = [0, 1].
At state x, each of the countries can extract/consume not more than x

n , which reflects the situation
in which fish is uniformly distributed over the sea and each country can fish only in its Exclusive
Economic Zone, equal for each country.

In this paper, we consider the feedback information structure (according to the notation of
Haurie et al. [40]; in dynamic games called also closed loop no-memory or Markovian, while in
optimal control also closed loop), i.e., the strategies which we consider are feedback strategies, by
which we understand that consumption is a function of both time and state and it is independent
of the initial state. Explicitly stating the form of strategies is important, since, although for dynamic
optimization, the form of strategies does not influence the results, Nash equilibria for open loop
and feedback strategies are usually different, as well as methods to obtain them are different (discussion
about difference and rare cases of coincidence of those two kinds of equilibria can be found in
e.g., Wiszniewska-Matyszkiel [25]).

The consumption of country i is ci : {t0, . . . , T} ×X→ [0, 1] with ci(t, x) ≤ x
n . The set of all such

functions ci is denoted by Ci, while C = C1 × · · · × Cn

Instantaneous payoff of country i for given ci is ln ci (with ln 0 = −∞).
The terminal payoff is ln

( x
n
)
, which means that after the termination of the game the countries

divide the remaining biomass equally.
Payoffs are discounted by a discount factor β ∈ (0, 1).
The trajectory X of the biomass resulting from choosing a strategy profile c is

X(t + 1) =

(
X(t)−

n

∑
i=1

ci(t, X(t))

)α

, (1)

with the initial condition X(t0) = x0 and for some constant α ∈ (0, 1).
If we start at t0 from the state x0, then the total payoff (payoff for short) of player i in the game is

Ji (t0, x0, ci, c∼i) =
T

∑
t=t0

βt−t0 ln (ci(t, X(t))) + βT+1−t0 ln
(

X(T + 1)
n

)
, (2)

where c∼i denotes the vector of all ci for j 6= i.
The first notion we are interested in is the social optimum. Analogously to Levhari

and Mirman [15] and Okuguchi [16], where such profiles are called cooperative solutions, from a
wide class of Pareto optimal profiles, we restrict to strategy profiles c maximizing the sum of payoffs,

n
∑

i=1
Ji (t0, x0, ci, c∼i). This is an obvious choice from the set of optimal profiles if we assume that

players’ payoffs are transferable. We shall call such a profile the social optimum. It can be regarded as
the optimization of an abstract social planner whose aim is to maximize the joint payoff.

The other concept we are interested in is the Nash equilibrium.

Definition 1. a) A profile of strategies c̄ is a social optimum if

c̄ ∈ Argmax
c∈C

n

∑
i=1

Ji (t0, x0, ci, c∼i) .
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b) A Nash equilibrium is a profile of strategies c̄, such that no player can benefit from unilateral deviation
from it, i.e.,

c̄i ∈ Argmax
ci∈Ci

Ji (t0, x0, ci, c̄∼i) .

2.1. Analytic Solutions

The results for this model are regarded as quite standard and they have been calculated
by applying the standard backwards induction reasoning using the Bellman equation.
Although the original papers of Levhari and Mirman [15] and Okuguchi [16] do not state the whole
finite horizon solutions and value functions, they can be easily derived to the form presented below.
The specific form we cite here together with the proof can be found in Singh [41], the unpublished
thesis whose Chapter 5 is based on a part of this paper.

First, we cite the results for the problem of social optimum.

Proposition 1. There is a unique social optimum profile cS. It is symmetric and such that, for t = t0, . . . , T,
for every player, we have

cS
i (t, x) = aS

t · x for aS
t =

1
n · BS

t
,

where BS
t =

τ+1
∑

i=0
(αβ)i for τ = T − t. Moreover, for t = t0, . . . , T + 1, the value function VS

VS(t, x) := sup
c∈C

n

∑
i=1

Ji (t, x, ci, c∼i) = n(AS
t + BS

t ln x),

for AS
t = βτ+1 ln 1

n +
τ

∑
i=0

βτ−i
[
(BS

T−i − 1) ln
(

BS
T−i−1
BS

T−i

)
+ ln

(
1

nBS
T−i

)]
.

Next, we state the results for the Nash equilibrium.

Proposition 2. There is a unique Nash equilibrium profile cN . It is symmetric and such that for t = t0, . . . , T,
for every player i, we have

cN
i (t, x) = aN

t · x for aN
t =

1
n + BN

t
,

where BN
t =

τ+1
∑

i=1
(αβ)i for τ = T − t. Moreover, for t = t0, . . . , T + 1, the value function of player i VN

i given

the strategies of the other players are cN
∼i

VN
i (t, x) := sup

ci∈Ci

Ji

(
t, x, ci, cN

∼i

)
= AN

t + (BN
t + 1) ln x

for AN
t = βτ+1 ln 1

n + ∑τ
i=0 βτ−i

[
BN

T−i ln
(

BN
T−i

n+BN
T−i

)
+ ln

(
1

n+BN
T−i

)]
.

2.2. Comparison of Analytic and Numerical Results

Here, we compare the actual results, calculated in Section 2.1, to the results of numerical
computation according to the Algorithms A1 and A2 (precisely described in Appendix A).

The figures are for the values of the parameters: n = 2, α = 0.6, β = 1
1.02 , T = 10, t0 = 1,

x0 = 0.025x∗, where x∗ = (αβ)
α

1−α is the steady state of the infinite horizon social optimum problem.
Nevertheless, due to the reduction of the initial problem to Equations (A1) and (A2) for the social
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optimum problem and to Equations (A3) and (A4) for the Nash equilibrium problem, as it was done
in Appendix A, increasing n increases neither the complexity nor the errors.

We compare the actual results to the numerical results with an initial uniform grid for x of
100 points refined on the interval [0, 1

2 ] to about 104 points. For the Nash equilibrium, the number of
grid points for o—the sum of decisions of the other players (see Algorithm A2 in Appendix A), for each
iteration is 21, and the number of iterations is 4. Intentionally, we do not increase further the number
of points in the grid for state variable for very small x or x > 1

2 .

2.2.1. The Social Optimum

As we can see in Figure 1a, there is a substantial difference between the actual and numerical value
functions for two regions of the set of states x: close to 0, the point of a singularity of the actual value
function, where the approximate value function is substantially greater, and the interval ( 1

2 , 1], at which
the grid is sparse and the approximate value function is substantially less. In fact, using numerical
methods for problems with known points of singularities and not making the grid substantially finer as
it converges to the singularity point of the calculated function means that we purposely leave the grid
too sparse also for this region. Thus, our procedure means that we a priori allowed the value function
to have errors substantially larger on some regions than inherent errors resulting from using numerical
methods (if appropriate grids are used).

Despite those differences, both numerical and actual consumptions are apparently identical with
errors of rank 10−4 (see Figure 1b, mainly at the region with the sparse grid).

(a) (b)
Figure 1. (In-)accuracy of the value function versus the accuracy of the optimal control. (a): Numerical
and actual value functions, VS(t, x), for the social optimum; (b): The error in cS(t, x) (the difference
between numerical and actual values) for the social optimum.

Similarly, the optimal trajectory, as well as the optimal consumption along it, are apparently
identical to their numerically computed counterparts (Figures 2a and 3a). In this case, the rank of error
decreases to 10−6 (Figures 2b and 3b). This fact is explained by Theorem 1, especially 1c). Thus, there is
no need to refine the grid for x at the interval ( 1

2 , 1], at which it is sparse, as well as on the set of points
close to the singularity at 0, since neither numerical nor analytic optimal trajectory has a non-empty
intersection with those sets.

2.2.2. Nash Equilibrium

Analogously, for the Nash equilibrium, when we compare the actual results with the results of
the numerical analysis, we have the same observations: the difference between the value functions
(Figure 4a) is large on the same regions as for the social optimum, with apparently equal consumptions,
cN(x, t) of error of rank 10−4 (Figure 4b), with two ranks having better accuracy of the Nash equilibrium
consumption and state trajectories (Figures 5a and 6a) with errors of rank 10−6 (Figures 5b and 6b).
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Note that the rank of accuracy for computing equilibria is the same as for the less complex
problem of computing social optima. It means that the accuracy of finding the fixed point was very
high. Thanks to the iterative procedure of refining the grid on small intervals (see Algorithm A2
described in the Appendix A), it was at a reasonable time cost.

(a) (b)
Figure 2. Accuracy of the optimal state trajectory. (a): The trajectories of numerical (red) and actual
(blue dashed) state variable, X(t), for the social optimum; (b): The error in the trajectory of the state
variable, X(t), for the social optimum.

(a) (b)
Figure 3. Accuracy of the optimal control trajectory. (a): The optimal consumption path, cS(t, X(t)),
for the social optimum: numerical (red) and actual (blue dashed); (b): The error in the optimal
consumption path, cS(t, X(t)), for the social optimum.

(a) (b)
Figure 4. (In-)accuracy of the value function of a players versus the accuracy of the Nash equilibrium
strategy. (a): Numerical and actual value functions, VN(t, x), for the Nash equilibrium; (b): The error
in cN(t, x) (difference between numerical and actual values) for the Nash equilibrium.
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(a) (b)
Figure 5. Accuracy of the Nash equilibrium trajectory. (a): The trajectories of numerical (red) and actual
(blue dashed) state variable, X(t), for the Nash equilibrium; (b): The error in the trajectory of the state
variable, X(t), for the Nash equilibrium.

(a) (b)
Figure 6. Accuracy of the trajectory of the Nash equilibrium strategy. (a): The optimal consumption
path, cN(t, X(t)), numerical (red) and actual (blue dashed) for the Nash equilibrium; (b): The error in
the optimal consumption path, cN(t, X(t)), for the Nash equilibrium.

2.3. General Conclusions from the Analysis of the Fish Wars Example

In both cases: the social optimum and the Nash equilibrium, we obtained a substantial error
in the value functions on some intervals and high accuracy of the optimum/equilibrium trajectory
and consumption path. This situation is rather unusual.

It is worth emphasizing that this holds not only for specific parameters and grids which we
present graphically in this paper, but it is a more general rule. Even the first results obtained for
the procedure of finding social optima, with quite few points of the grid, assumed to be used to test
the code, before refinement of the grid on certain subsets of the set of states was introduced, revealed
the same apparent paradox. While there was a considerable error in the value function, especially at
the initial time and the regions close to boundaries of the set of states, the social optimum consumption
path cS(t, X(t)) as well as X(t) was computed with unexpected (for this inaccuracy of V) accuracy.

A similar paradox took place while computing the Nash equilibrium. In spite of inaccurate
computation of the value function close to the boundaries, the accuracy of computing the equilibrium
path is comparable to the distance between the grid points for the sum of decisions of the other players
o—the maximal precision that can be expected.

This has been obtained although we haven’t used knowledge about the actual value function
and optimal strategy/equilibrium specific to this model while preparing the code for the numerical
part, in order to be able to assess the applicability of this approach to a wider class of problems with
similar properties.
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The only information that we have used is the fact that the value function is continuous, regular
for x > 0 and V(t, 0) = −∞, the optimal trajectory remains below a certain level, (here, we took 1

2 )
whenever the initial condition x0 is below this level and it is over some small ε > 0 whenever x0 is,
while, in computation of equilibrium, we have also used the fact that the best response of a player is
a decreasing function of joint consumption of the others and that the equilibrium exists.

3. When and What Kind of Inaccuracies in Computation or Calculation of the Value Function Do
Not Propagate on the Optimal Path in Dynamic Optimization Problems

In this section, we return to the general theoretical motivation of this paper, which is
the explanation when paradoxes similar to those obtained for the Motivating Example in Section 2.3:
high accuracy of derived optimal state trajectory and consumption path despite the inaccuracy of
the corresponding value function on some intervals.

We want to emphasize that a situation in which substantial inaccuracy in a calculation of the value
function does not propagate on the optimum path is very unusual. There are examples of a sequence
of, regarded as regular, linear quadratic optimization problems, in which an error in calculation
of the value function and the resulting “candidate for the optimal control”, for which the Bellman
sufficient condition is fulfilled besides an interval with a length converging to zero as some parameter
converges to zero that result in false value function and false optimal control on a considerable part of
the set of states (Singh and Wiszniewska-Matyszkiel [9]).

We can prove the following theorems, which allow, in a very general environment of dynamic
optimization problems, to determine the type of errors in approximation of the value function—either
resulting from using numerical computation with low accuracy on some sets, or from replacing
the actual value function by some a priori estimation of it on some sets—which do not influence
the accuracy of the optimal trajectory and the optimal control path, i.e., the trajectory of the optimal
control along the corresponding trajectory.

We consider any discrete time dynamic optimization problem:

• with the time set {0, 1, . . . } or {0, 1, . . . , T}, denoted by T; the finite or infinite horizon is denoted
by T;

• with discount factor β ∈ (0, 1];
• the set of states X;
• the set of control parameters C;
• the current payoff function P : T×X×C→ R∪ {−∞};
• where we consider the feedback controls c : T× X → C (which, if independent of time, are

denoted as c : X→ C)
• with admissibility constraint c(t, x) ∈ C(t, x) for all t, x and for C : T × X ( C; the set of

admissible controls is denoted by C, and
• the transformation of the state variable is given by a function φ : T×X×C→ X or, more generally

φ : T×X×C → X̃ ⊇ X with φ(t, x, c) ∈ X for all (t, x, c) ∈ T×X×C with c ∈ C(t, x). In the
latter case, there is no need to specify X̃, as it does not influence the results.

• In the case when the time horizon is finite, we also consider a terminal payoff given by a function
G : X→ R∪ {−∞}, paid after the termination of the game.

The aim is to maximize, given t0 ∈ T and x0 ∈ X, the objective functional J(t0, x0, c) over the set
of admissible controls C, where J : T×X× C→ R∪ {−∞} is defined by

• J(t0, x0, c) =
∞
∑

t=t0

P(t, X(t), c(t, X(t)))βt−t0 for the infinite time horizon, while

• J(t0, x0, c) =
T
∑

t=t0

P(t, X(t), c(t, X(t)))βt−t0 + G(X(T + 1))βT+1−t0 for a finite time horizon T,

• where the trajectory X corresponding to c is given by X(t + 1) = φ(t, X(t), c(t, X(t)))
with the initial condition X(t0) = x0.
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• Whenever we want to emphasize the dependence of X on a control c, we write Xc, if we want to
emphasize the dependence of X on the initial condition, we write Xt0,x0 , while Xc

t0,x0
if we want

to emphasize both.
• We assume that the problem is such that J is always well defined although it may be ±∞.
• We restrict the set of initial conditions to x0 ∈ X0 ⊂ X.

In the finite time horizon case, the necessary and sufficient condition for a function
V : (T∪ {T + 1})×X→ R∪ {−∞} to be the value function, i.e., to fulfill for every (t, x), V(t, x) =
sup
c∈C

J(t, x, c) and an admissible control c̄ to be the optimal control, is the Bellman equation (see,

e.g., Bellman [42], Blackwell [43], Stokey and Lucas [1] Başar and Olsder [44] or Haurie, Krawczyk
and Zaccour [40] for various versions)

V(t, x) = max
c∈C(t,x)

P(t, x, c) + βV(t + 1, φ(t, x, c)) for all t ∈ T, x ∈ X; (3)

with the terminal condition
V(T + 1, x) = G(x) for all x ∈ X (4)

and the inclusion

c̄(t, x) ∈ Argmax
c∈C(t,x)

P(t, x, c) + βV(t + 1, φ(t, x, c)) for all t ∈ T, x ∈ X. (5)

For the infinite time horizon optimization, the Bellman Equation (3) and the inclusion (5) remain
the necessary condition, they also consitute a sufficient condition with certain terminal condition:
usually, the standard terminal condition (see, e.g., Stokey, Lucas and Prescott [1], Theorems 4.2–4.4)

lim sup
t→∞

βtV(t, X(t)) = 0 for every admissible trajectory X. (6)

Obviously, in the infinite time horizon version of our motivating example, the standard terminal
condition (6) does not hold, so it has to be replaced by a weaker one, which, together with the Bellman
Equation (3) and the inclusion (5), forms a sufficient condition (Wiszniewska-Matyszkiel [45],
Theorem 1):

lim sup
t→∞

V(t, X(t))βt ≤ 0 for every admissible trajectory X and (7)

lim sup
t→∞

V(t, X(t))βt < 0⇒ J(t̄, x̄, c) = −∞ (8)

for every (t̄, x̄) ∈ T×X and every control c such that X = Xc
t̄,x̄.

Terminal conditions (7) and (8) have been proven to be necessary in a large class of optimal control
problems including Fish Wars in Wiszniewska-Matyszkiel and Singh [3].

We introduce the following notation:

• V—the actual value function of the dynamic optimization problem;
• Vapprox—another function regarded as an approximation of V; it may be either a solution of

a numerical procedure or the actual V with values on certain subsets replaced by another value,
e.g., some constraint known a priori.

• RHSt,x(c) = P(t, x, c) + βV(t + 1, φ(t, x, c))—the maximized function on the right-hand side of
the Bellman Equation bellman-general (as a function of c).

• RHSapprox
t,x (c) = P(t, x, c) + βVapprox(t + 1, φ(t, x, c))—the maximized function on the right-hand

side of the Bellman Equation (3) with V replaced by Vapprox (as a function of c).
• OPT—the set of optimal controls; we assume that it is non-empty.
• OPTapprox—the set of controls c̃ ∈ C such that c̃(t, x) ∈ Argmax

c∈C
RHSapprox

t,x (c); we assume that it

is non-empty.
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• Ω = {(t, x) : Xc̄
t0,x0

(t) = x for some c̄ ∈ OPT and x0 ∈ X0}.
• For c̄ ∈ C, Ωc̄ = {(t, x) : Xc̄

t0,x0
(t) = x for some x0 ∈ X0}.

• Ωapprox = {(t, x) : Xc̃
t0,x0

(t) = x for some c̃ ∈ OPTapprox and x0 ∈ X0}.

We can state the following theorem, explaining the apparent paradox of low errors in
the computation of the optimal control path despite substantial errors in the computation of the value
function in our Motivating Example.

Theorem 1. Assume that either the horizon is finite or the terminal condition (7) and (8) hold for V.
Assume also that one of the following holds:
a) V(t, x) = Vapprox(t, x) for all (t, x) ∈ Ωapprox, and V(t, x) ≤ Vapprox(t, x) for all (t, x) ∈ T×X;
b) V(t, x) = Vapprox(t, x) for all (t, x) ∈ Ω, and V(t, x) ≥ Vapprox(t, x) for all (t, x) ∈ T×X;
c) V(t, x) = Vapprox(t, x) for all (t, x) ∈ Ω ∪Ωapprox.
Then, Ω = Ωapprox, for every c̄ ∈ OPT there exist c̃ ∈ OPTapprox such that c̃|Ω = c̄|Ω and for every

c̃ ∈ OPTapprox there exist c̄ ∈ OPT such that c̃|Ω = c̄|Ω .

To prove Theorem 1, we formulate the following lemmata.

Lemma 1. Consider an arbitrary set C and two functions f , g : C → R̄ with f (c) = g(c) for all c ∈
Argmax f 6= ∅ and f (c) ≥ g(c) otherwise.

Then, Argmax f = Argmax g.

Proof. Take c̄ ∈ Argmax f and any other c.
By the assumptions, g(c) ≤ f (c) ≤ f (c̄) = g(c̄). Thus, c̄ ∈ Argmax g.
Next, take c̃ ∈ Argmax g and assume that c̃ /∈ Argmax f . Take c̄ ∈ Argmax f .
By the assumptions, g(c̄) ≤ g(c̃) ≤ f (c̃) < f (c̄) = g(c̄), which is a contradiction.

Lemma 2. Consider an arbitrary set C and two functions f , g : C → R̄ with f (c) = g(c) for all c ∈
Argmax f ∪Argmax g with both Argmax f , Argmax g 6= ∅.

Then, Argmax f = Argmax g.

Proof. Take c̃ ∈ Argmax g and c̄ ∈ Argmax f .
By the assumptions, f (c̃) ≤ f (c̄) = g(c̄) ≤ g(c̃) = f (c̃), which implies that f (c̃) = f (c̄)

and g(c̄) = g(c̃). Thus, c̃ ∈ Argmax f and c̄ ∈ Argmax g.

Proof of Theorem 1. We start by noting that if (t, x) ∈ Ω, then

for all c̄ ∈ Argmax
c∈C(t,x)

RHSt,x(c), (t + 1, φ(t, x, c̄)) ∈ Ω, (9)

and if (t, x) ∈ Ωapprox, then

for all c̃ ∈ Argmax
c∈C(t,x)

RHSapprox
t,x (c), (t + 1, φ(t, x, c̃)) ∈ Ωapprox. (10)

The proof will be by induction over t.
Together with Ω = Ωapprox, we prove that Argmax

c∈C(t,x)
RHSt,x(c) = Argmax

c∈C(t,x)
RHSapprox

t,x (c) for all

(t, x) ∈ Ω (and, consequently, for all (t, x) ∈ Ωapprox).
First, consider t = t0 and arbitrary x ∈ X0.
In this case, Ω ∩ {(t, y) ∈ T×X : t ≤ t0} = {t0} ×X0 = Ωapprox ∩ {(t, x) ∈ T×X : t ≤ t0} in all

the cases a)–c).
Next, consider any t ≥ t0 and any x such that (t, x) ∈ Ω.
Assume that Ω ∩ {(k, y) ∈ T×X : k ≤ t} = Ωapprox ∩ {(k, y) ∈ T×X : k ≤ t}.
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By Lemma 1 applied to the functions RHSapprox
t,x and RHSt,x, and Equations (10) and (9),

respectively, we obtain Argmax
c∈C(t,x)

RHSt,x(c) = Argmax
c∈C(t,x)

RHSapprox
t,x (c) in cases a) and b).

By Lemma 2 applied to the functions RHSapprox
t,x and RHSt,x, and any of Equation (10) or (9), we

obtain that Argmax
c∈C(t,x)

RHSt,x(c) = Argmax
c∈C(t,x)

RHSapprox
t,x (c) in case c).

Consequently, in all cases a)–c), Ω ∩ {(k, y) ∈ T×X : k ≤ t + 1} = Ωapprox ∩ {(k, y) ∈ T×X :
k ≤ t + 1}.

This ends the proof that Ω = Ωapprox and that Argmax
c∈C(t,x)

RHSt,x(c) = Argmax
c∈C(t,x)

RHSapprox
t,x (c) for all

(t, x) ∈ Ω.
Take any c̃ ∈ OPTapprox. Define c̄ ∈ C such that c̄(t, x) = c̃(t, x) for all (t, x) ∈ Ω and c̄(t, x) being

any selection from Argmax
c∈C(t,x)

RHSt,x(c), otherwise.

The terminal condition either (4) or (7) and (8) is fulfilled.
By the fact that Argmax

c∈C(t,x)
RHSt,x(c) = Argmax

c∈C(t,x)
RHSapprox

t,x (c) also the Bellman equation is fulfilled,

so c̄ ∈ OPT.
Next, take any c̄ ∈ OPT. Define c̃ ∈ C such that c̃(t, x) = c̄(t, x) for all (t, x) ∈ Ω and c̃(t, x) being

any selection from Argmax
c∈C(t,x)

RHSapprox
t,x (c), otherwise. Since Argmax

c∈C(t,x)
RHSt,x(c) = Argmax

c∈C(t,x)
RHSapprox

t,x (c),

by the definition, c̄ ∈ OPTapprox.

Theorem 1 states that any error described by a), b), or c) does not influence the quality of
computation or calculation of the optimal state trajectory of the state variable and the optimal
control path, c(t, X(t)), i.e., the approximate X and C(t, X(t)) are the same as for an optimal control
and every optimal control can be calculated using such an approximate value function and the
result will be correct along the corresponding trajectory. Thus, overestimation of V on the set of
points (i.e., states or time-state pairs) which never belong to the trajectory corresponding to the control
defined by maximization of the Bellman equation with the approximate value function, as well as
underestimation of the value function on the set of points which are suboptimal along the optimal
trajectory, does not lead to any errors in calculation of the optimal consumption path and the optimal
trajectory of the state variable. Similarly, this holds for any errors at points which are neither at
the optimal trajectory nor the trajectory corresponding to the control defined by maximization of
the Bellman equation with the approximate value function.

This is why we have purposely decreased the number of grid points in computation of
the solutions in the Fish Wars example for x > 1

2 , although on this set there is a very visible difference
between the actual and approximate value functions, in addition to us not caring about large, opposite
in sign, differences between the value functions for x very close to 0.

Theorem 2. Assume that either the horizon is finite or the terminal conditions (7) and (8) hold for V.
Consider a control c ∈ C.
Assume also that one of the following holds:
a) If c ∈ OPTapprox and V(t, x) = Vapprox(t, x) for all (t, x) ∈ Ωc, and V(t, x) ≤ Vapprox(t, x) for all

(t, x) ∈ T×X, then there exist c̄ ∈ OPT such that Ωc̄ = Ωc and c|Ωc = c̄|Ωc .
b) If c ∈ OPT and V(t, x) = Vapprox(t, x) for all ((t, x)) ∈ Ωc, and V(t, x) ≥ Vapprox(t, x) all

(t, x) ∈ T×X, then there exist c̃ ∈ OPTapprox such that Ωc̃ = Ωc c̃|Ω = c|Ω.

Proof. Following almost the same lines as proof of Theorem 1, we only concentrate on a single control
from OPT or OPTapprox.
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Illustration of Usefulness of Theorems 1 and 2 by Examples

For simplicity, we consider the social optimum problem and we show how Theorem 1 can be
applied in order to simplify the computation of the social optimum.

We consider the social optimum in the Levhari and Mirman model, either with a finite horizon,
like those analyzed in Section 2, or its infinite horizon version. In the analysis of the infinite horizon
problem, we consider the value function and controls dependent on the state variable only, while in
the finite horizon, they are dependent also on time.

To show that the method is general and it can be applied for the infinite time horizon, we introduce
the limit game of our Motivating Example with the infinite time horizon.

Proposition 3. Consider the game from Section 2 but with T = +∞. The social optimum
for the infinite horizon problem is cS

i (x) = x(1−αβ)
n with the value function VS

i (x) = n(AS +

BS ln(x)), for AS = 1
1−β

(
αβ

1−αβ ln(αβ) + ln(1− αβ)− ln(n)
)

and BS = 1
1−αβ , while the Nash

equilibrium is cN
i (x) =

(
1−αβ

n(1−αβ)+αβ

)
, with the value function VN

i (x) = AN + BN ln(x) for AN =

1
1−β

(
αβ

1−αβ ln
(

αβ
n(1−αβ)+αβ

)
+ ln

(
1−αβ

n(1−αβ)+αβ

))
and BN = 1

1−αβ .

Proof. The formulae have been proposed by Levhari, Mirman [15], and Okuguchi [16]. Checking
that the Bellman Equations (3) and (5) hold is just a substitution. Nevertheless, the proofs of [15,16]
lack checking the necessary terminal conditions (7) and (8), while the standard sufficient terminal
condition (6) does not hold.

Thus, to complete the proof, we check the terminal conditions (7) and (8). Equation (7) is
immediate by the fact that ln(ci) ≤ 0 for all admissible ci.

To prove Equation (8) for the social optimum, we consider a strategy c for which lim sup
t→∞

βt ·

VS(Xc(t)) < 0. Thus, there exists a subsequence tk such that lim
k→∞

βtk VS(Xc(tk)) < 0. Thus,

lim
k→∞

βtk ln(Xc(tk)) < 0.
n
∑

i=1
Ji (t0, x0, ci, c∼i) =

n
∑

i=1

∞
∑

t=t0

βt−t0 ln(ci(Xc(t))) ≤
n
∑

i=1

∞
∑

k=0
βtk−t0 ln(ci(Xc(tk)))

≤
n
∑

i=1

∞
∑

k=0
βtk−t0 ln(Xc(tk))

n → −∞.

The proof for the Nash equilibrium is analogous.

Example 1. Assume that some preliminary analysis has been done for the problem resulted in finding an ε < x0

for which it has been proven that the optimal trajectory X(t) > ε for all t. Such an ε obviously exists.
Changing V by assigning Vapprox = −∞ for all x < ε

2 (see Figure 7) changes neither the optimal
trajectory nor the optimal control path.

Thus, if we want to compute the optimal control, this substitution allows us to look for the social optimum
and the value function for x ≥ ε

2 only and to avoid problems resulting from inaccuracies resulting from closeness
to the actual singularity.

Example 2. Assume again that some preliminary analysis done for the problem has resulted in finding an ε < x0

for which we know that the optimal trajectory X(t) > ε for all t.
Since V(x) ≥ J(t0, x, c) for every control c, changing V by assigning Vapprox(x) = J(t0, x, c̄) for all

x < ε
2 , for any control c̄ changes neither the optimal trajectory nor the optimal control path.
Thus, if we want to compute the optimal control, this substitution allows us to look for the value function

for x ≥ ε
2 only (and the resulting optimal control).
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Example 3. Assume that preliminary analysis done for the problem resulted in finding constants a and b for
which we know that ax + b is an upper bound for the value function for x > 1

2 (see Figure 8) and in discovering
the fact that if x0 ≤ 1

2 − ε, then, for all t, the optimal trajectory Xc̄
t0,x0

(t) ≤ 1
2 − ε.

If we change V by assigning Vapprox(x) = ax + b for all x > 1
2 , and calculate the maximand c̃ of

the right-hand side of the Bellman equation with Vapprox, then, if the trajectory Xc̃
t0,x0

(t) < 1
2 − ε for all t, then

c̃(t, Xc̃
t0,x0

(t)) is the accurate solution path.
Thus, if we want to compute the optimal control, this substitution allows us to restrict the computation of

the value function for x < 1
2 − ε with one restriction: it is proven that our result is really the optimal control

only when for all x0 < 1
2 − ε, the computed c̃ is such that Xc̃

t0,x0
(t) < 1

2 − ε for all t.

Figure 7. Intentional underestimation of the value function on some interval not influencing the optimal
state and consumption trajectories in Example 1.

Figure 8. Intentional overestimation of the value function on some interval not influencing the optimal
state and consumption trajectories in Example 3.

Example 4. To define our next Vapprox, we consider two small numbers 1 >> ε1 > ε > 0 (ε1 is fixed,
while ε will be adjusted) and some obvious overestimation V+ ≥ V, e.g., V+(x) = ln x. Next, we define
Vε : [ε, 1]→ R as the solution the Bellman equation with one change—V((x−∑ ci)

α) in its rhs is replaced by
V+((x−∑ ci)

α) whenever (x−∑ ci)
α < ε—that fulfills the terminal conditions (7) and (8). Note that such

a solution obviously exists and it is unique and it coincides with the actual value function of the problem with
an additional constraint on controls (x−∑ ci)

α ≥ ε besides a small neighbourhood of 0 if ε is small enough.
If ε is such that the solution Vε2 is invariant with respect to ε2 for 0 < ε2 < ε on the interval [ε1, 1],

then we can consider

Vapprox(x) =

{
V+(x) if x < ε,

Vε(x) otherwise.

This assumption is easy to check—it is enough to find ε for which the maximum in the rhs of the Bellman
equation with the corresponding Vapprox is attained only for c for which (x−∑ ci)

α ≥ ε1 whenever x ≥ ε1.
For our example, it obviously holds, since V+(x)→ −∞ as x→ 0.

Then, every control c̃ maximizing RHSapprox
t,x coincides with the actual optimal control whenever x0 ≥ ε1.
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Note that, in this case, the only knowledge that we used about the value function is its obvious
overestimation V+.

A theorem stating how to find over- and under-estimations of the actual value function by solving
some inequalities analogous to the Bellman equation with the terminal conditions (7) and (8) are in,
e.g., Kamihigashi [8].

Those two types of over- and under-estimations of the value functions in the infinite horizon
may also appear as a result of approximating the infinite horizon value function by its finite horizon
truncations—for nonnegative payoffs, they are underestimations while, for the nonpositive payoffs,
they are overestimations—or a result of an iterative procedure. Such procedures of estimating the value
function by value iterations is currently being extensively studied in the infinite horizon problems
(for various versions, see, e.g., Martins-da-Rocha and Vailakis [4] and Le Van and Morhaim [5] for
continuous problems and Kamihigashi [8] for discontinuous problems).

4. When and What Kind of Inaccuracies in Computation or Calculation of the Value Functions Do
Not Propagate on the Nash Equilibrium Path in Dynamic Games

Here, we extend the results of Section 3 for Nash equilibria in dynamic games.
We consider a discrete time dynamic game:

• with n players;
• with finite or infinite horizon T;
• the time set {0, 1, . . . } or {0, 1, . . . , T} is denoted by T;
• with discount factor β ∈ (0, 1];
• the set of states X;
• players’ sets of decisions Ci
• with notation C∼i = ×j 6=iCj and C = ×j=1,...,nCj;
• players’ current payoff functions Pi : T×X×Ci ×C∼i → R∪ {−∞};
• where we consider feedback strategies ci : T×X→ Ci (if independent of time, they are written

as ci : X→ Ci)
• which fulfill the admissibility constraint ci(t, x) ∈ Ci(t, x) for all t, x and for Ci : T×X ( Ci.
• We denote the set of admissible strategies of player i by Ci, while the set of strategies of

the remaining players by C∼i and the set of strategy profiles by C;
• For simplicity, we introduce the symbol [ci, c̄∼i] to denote the profile at which player i chooses ci

while the remaining players choose their strategies c̄∼i, which are their strategies resulting from c̄;
• the transformation of the state variable is determined by φ : T×X×C→ X or, more generally,

φ : T×X×C→ X̃ ⊇ X with φ(t, x, c) ∈ X for all (t, x, c) ∈ T×X×C with c ∈ C(t, x). Specifying
X̃ is unnecessary since it does not influence the results.

• In the case when the time horizon is finite, we also consider terminal payoffs given by functions
Gi : X→ R∪ {−∞}, paid after termination of the game.

• The payoff is Ji (t0, x0, ci, c∼i) =
∞
∑

t=t0

βt−t0 Pi (t, X(t), ci(t, X(t)), c∼i(t, X(t))) in the case of

the infinite time horizon

• and Ji (t0, x0, ci, c∼i) =
T
∑

t=t0

βt−t0 Pi (t, X(t), ci(t, X(t)), c∼i(t, X(t))) + βT+1−t0 G(X(T + 1)) for

finite time horizon T,
• where the trajectory X corresponding to a strategy profile c is given by

X(t + 1) = φ(t, X(t), c(t, X(t))) with the initial condition X(t0) = x0.
• Whenever we want to emphasize the dependence of X on a strategy ci of player i, we write Xci ,

if we want to emphasize the dependence of X on the initial condition, we write Xt0,x0 , while Xci
t0,x0

if we want to emphasize both. If we also want to emphasize the strategies of the remaining
players, we write X[ci ,c∼i ]

t0,x0
, or Xc

t0,x0
whenever c denotes the whole profile.

• We assume that the problem is such that Ji is always well defined although it may be ±∞.
• We restrict the initial condition to x0 ∈ X0 ⊂ X.
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At a feedback Nash equilibrium, given strategies of the other players c∼i ∈ C∼i, the aim of each
player is to maximize, for each t0 ∈ T and x0 ∈ X, the objective functional Ji (t0, x0, ci, c∼i) over the set
of admissible controls Ci. Formally, it can be defined as

Definition 2. A feedback Nash equilibrium is a profile of strategies c̄ such that for every player i, for every
strategy ci of player i, for every t0 and x0,

Ji (t0, x0, ci, c̄∼i) ≤ Ji (t0, x0, c̄i, c̄∼i) .

First, consider a profile of strategies c̄ and we fix the strategies of the others c̄∼i ∈ C∼i.
We introduce the following notations:

• Vi(·, ·, c̄∼i) : T̄× X → R̄—the actual value function of the dynamic optimization problem of
player i given c̄∼i, i.e., Vi(t, x, c̄∼i) = sup

ci∈Ci

Ji(t, x, ci, c∼i).

• Vapprox
i (·, ·, c̄∼i) : T̄×X→ R̄—another function regarded as approximation of Vi(·, ·, c̄∼i); it may

be either a solution of a numerical procedure or the actual Vi(·, ·, c̄∼i) with values on certain
subsets replaced by another values, e.g., some constraints; we assume a priori that, in the finite
time horizon T, Vapprox

i (T + 1, x, c̄∼i) = G(x).
• RHSi,t,x,c̄∼i (ci) = Pi(t, x, ci, c̄∼i(t, x)) + βVi(t + 1, φ(t, x, [ci, c̄∼i]), c̄∼i)—the maximized function

on the right-hand side of the Bellman Equation (3) rewritten to maximization of player i given c̄∼i;
• RHSapprox

i,t,x,c̄∼i
(ci) = Pi(t, x, ci, c̄∼i(t, x)) + βVapprox

i (t + 1, φ(t, x, [ci, c̄∼i]), c̄∼i)—the maximized
function on the right-hand side of the Bellman Equation (3) rewritten to maximization of player i
given c̄∼i with Vi replaced by Vapprox

i .
• BESTi(c̄∼i)—the set of strategies of player i which are best responses to c̄∼i; we assume that it is

non-empty;
• BESTapprox

i (c̄∼i)—the set of strategies c̃i such that

c̃i(t, x) ∈ Argmax
ci∈Ci(t,x)

RHSapprox
i,t,x,c̄∼i

(ci); we assume that it is non-empty;

• For ci ∈ Ci: Ωci
i (c̄∼i) = {(t, x) : X[ci ,c̄∼i ]

t0,x0
(t) = x for some x0 ∈ X0};

• For c ∈ C: Ωc = {(t, x) : Xc
t0,x0

(t) = x for some x0 ∈ X0};
• Ωi(c̄∼i) = {(t, x) : X[ci ,c̄∼i ]

t0,x0
(t) = x for some ci ∈ BESTi(c̄∼i) and x0 ∈ X0};

• Ωapprox
i (c̄∼i) = {(t, x) : X[ci ,c̄∼i ]

t0,x0
(t) = x for some c ∈ BESTapprox

i (c̄∼i), x0 ∈ X0}.

We can state the following theorem, being an immediate corollary of Theorem 1.

Theorem 3. Consider a profile c̄ and assume that all players besides i play c̄j and in the case of the infinite time
horizon Vi(·, ·, c̄∼i) fulfills the terminal conditions (7) and (8).

Assume also that one of the following holds:
a) Vi(t, x, c̄∼i) = Vapprox

i (t, x, c̄∼i) for all (t, x) ∈ Ωapprox
i (c̄∼i) and Vi(t, x, c̄∼i) ≤ Vapprox

i (t, x, c̄∼i),
otherwise;

b) Vi(t, x, c̄∼i) = Vapprox
i (t, x, c̄∼i) for all (t, x) ∈ Ωi(c̄∼i) and Vi(t, x) ≥ Vapprox

i (t, x, c̄∼i), otherwise;
c) Vi(t, x, c̄∼i, ) = Vapprox

i (t, x, c̄∼i) for all (t, x) ∈ Ωi(c̄∼i) ∪Ωapprox
i (c̄∼i).

Then, Ωapprox
i (c̄∼i) = Ωi(c̄∼i), for every c̄i ∈ BESTi(c̄∼i) there exist c̃i ∈ BESTapprox

i (c̄∼i) such that
c̃i|Ωi(c̄∼i)

= c̄|Ωi(c̄∼i)
and for every c̃i ∈ BESTapprox

i (c̄∼i) there exist c̄i ∈ BESTi(c̄∼i) such that c̃i|Ωi(c̄∼i)
=

c̄i|Ωi(c̄∼i)
.

Proof. Immediately, by Theorem 1 applied to the optimization of player i given the strategies of
the others c̄∼i.

Theorem 3 for c̄ being the Nash equilibrium profile states that, given the initial state x0 ∈ X0

and correct expectation of the other players’ strategies c̄∼i, overestimation of Vi(t, x, c̄∼i) on the set of
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(t, x) which never belong to the trajectory corresponding to the control defined by maximization of
the corresponding Bellman equation with the approximate value function, as well as underestimation
of the value function on the set of points which are suboptimal along the Nash equilibrium trajectory, as
well as any error appearing outside the union of those sets does not lead to any errors in calculation of
the Nash equilibrium consumption path and trajectory of the state variable. It may help in calculation
or computation of a Nash equilibrium only if we know Nash equilibrium strategies of all players
but one.

The next question is what we can expect if the expectation of the other players’ strategies c̃∼i is
correct only on some subset of T×X.

Generally, we cannot expect that a profile resulting from solving the approximate equation is
a Nash equilibrium, since the fixed point may be violated on state or time-state pairs outside Ω,
while the definition of feedback Nash equilibrium requires that the whole profile is a fixed point of
the joint best response correspondence. Nevertheless, we are able to prove some results.

Theorem 4. Consider player i and two profiles of strategies of the other players c̄∼i and c̃∼i and assume that
c̄∼i|Ωi(c̄∼i)∪Ωi(c̃∼i)

= c̃∼i|Ωi(c̄∼i)∪Ωi(c̃∼i)
.

In the case of the infinite time horizon, we assume also that

∀ε > 0, (t, x) ∈ Ω(c̄∼i) ∃ t̄ ≥ t such that ∀s > t̄, ∀i ∈ I, ci ∈ Ci, βs
∣∣∣Ji

(
s, X[ci ,c̄∼i ]

t,x (s), ci, c̄∼i

)∣∣∣ < ε (11)

Then,

Ωi(c̄∼i) = Ωi(c̃∼i),

BESTi(c̄∼i)|Ωi(c̄∼i)
= BESTi(c̃∼i)|Ωi(c̄∼i)

,

Vi(·, ·, c̄∼i)|Ωi(c̄∼i)
= Vi(·, ·, c̃∼i)|Ωi(c̄∼i)

.

Proof. First, we prove that Vi(·, ·, c̄∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)
= Vi(·, ·, c̃∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)

and that
Argmax
ci∈Ci(t,x)

RHSi,t,x,c̄∼i (ci) = Argmax
ci∈Ci(t,x)

RHSi,t,x,c̃∼i (ci) for every (t, x) ∈ Ωi(c̄∼i) ∪Ωi(c̃∼i).

We start the proof from the case of a finite time horizon T.
By the definition of the value function, Vi(T + 1, x, c̄∼i) = Vi(T + 1, x, c̃∼i) = Gi(x).
We use Lemma 2 to RHSi,T,x,c̄∼i (ci) and RHSi,T,x,c̃∼i (ci).
First, note that for every x such that (T, x) ∈ Ωi(c̄∼i), for every ĉi ∈ Argmax

ci∈Ci(t,x)
RHSi,T,x,c̄∼i (ci),

(T + 1, φ(T, x, [ĉi, c̄∼i])) = (T + 1, φ(T, x, [ĉi, c̃∼i])) ∈ Ωi(c̄∼i).
Thus, for every x such that (T, x) ∈ Ωi(c̄∼i), Argmax

ci∈Ci(t,x)
RHSi,T,x,c̄∼i (ci) = Argmax

ci∈Ci(t,x)
RHSi,T,x,c̃∼i (ci)

and max
ci∈Ci(t,x)

RHSi,T,x,c̄∼i (ci) = max
ci∈Ci(t,x)

RHSi,T,x,c̃∼i (ci) by Lemma 2.

Similarly, we obtain the same for every x such that (T, x) ∈ Ωi(c̃∼i).
Consequently, by the Bellman Equation (3) (rewritten to the game notation), for every x such that

(T, x) ∈ Ωi(c̄∼i) ∪Ωi(c̃∼i), Vi(T, x, c̃∼i) = Vi(T, x, c̄∼i).
Next, consider any t ≤ T− 1 and assume that for every x such that (t + 1, x) ∈ Ωi(c̄∼i) ∪Ωi(c̃∼i),

Vi(t + 1, x, c̃∼i) = Vi(t + 1, x, c̄∼i).
We apply Lemma 2 to RHSi,t,x,c̄∼i (ci) and RHSi,t,x,c̃∼i (ci).
First, note that for every x such that (t, x) ∈ Ωi(c̄∼i), for every ĉi ∈ Argmax

ci∈Ci(t,x)
RHSi,t,x,c̄∼i (ci),

(T, φ(t, x, [ĉi, c̄∼i])) = (T, φ(t, x, [ĉi, c̃∼i])) ∈ Ωi(c̄∼i).
Thus, for every x such that (t, x) ∈ Ωi(c̄∼i), Argmax

ci∈Ci(t,x)
RHSi,t,x,c̄∼i (ci) =

Argmaxci∈Ci(t,x)
RHSi,t,x,c̃∼i (ci) and max

ci∈Ci(t,x)
RHSi,t,x,c̄∼i (ci) = max

ci∈Ci(t,x)
RHSi,t,x,c̃∼i (ci).

Similarly, we obtain the same for every x such that (t, x) ∈ Ωi(c̃∼i).
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Consequently, for every x such that (t, x) ∈ Ωi(c̄∼i) ∪ Ωi(c̃∼i), Vi(t, x, c̃∼i) = Vi(t, x, c̄∼i)

and Argmax
ci∈Ci(t,x)

RHSi,t,x,c̄∼i (ci) = Argmax
ci∈Ci(t,x)

RHSt,x,c̃∼i (ci), which ends the proof that Vi(·, ·, c̄∼i)|Ωi(c̄∼i)
=

Vi(·, ·, c̃∼i)|Ωi(c̄∼i)
and BESTi(c̄∼i)|Ωi(c̄∼i)

= BESTi(c̃∼i)|Ωi(c̄∼i)
in the case of finite time horizon T.

To prove for the infinite time horizon, consider truncations of the game with finite time horizon
T and the terminal payoff 0. We denote the payoffs in those games by JT

i , the values function by VT
i

and the best response by cT
i .

First, note that, with our assumption for the infinite time horizon, if VT
i (t, x, c̄∼i) converges

(to a finite or infinite limit), then Vi(t, x, c̄∼i) is equal to the limit (by Wiszniewska-Matyszkiel
and Singh [3]). Thus, since for every finite T, VT

i (t, x, c̄∼i) = VT
i (t, x, c̃∼i), the same applies to the limit.

Does VT
i (t, x, c̄∼i) converge?

There are the following cases:
a) Vi(t, x, c̄∼i) is finite. Denote an optimal control by ĉi.
Then, ∀ε > 0, ∃ Tε such that for T > Tε,

∣∣JT
i (t, x, ĉi, c̄∼i)− Ji(t, x, ĉi, c̄∼i)

∣∣ < ε and

βT+1
∣∣∣Ji

(
T + 1, Xci ,c̄∼i

t,x (T + 1), ci, c̄∼i

)∣∣∣ < ε for every ci.

Thus, Ji (t, x, ĉi, c̄∼i)− ε < JT
i (t, x, ĉi, c̄∼i) ≤ VT

i (t, x, c̄∼i) = JT
i
(
t, x, cT

i , c̄∼i
)

= Ji
(
t, x, ĉT

i , c̄∼i
)
− βT+1Vi

(
T + 1, X

[ĉT
i ,c̄∼i ]

t,x , c̄∼i

)
≤ Vi (t, x, c̄∼i) + ε

for ĉT
i :=

{
cT

i for t ≤ T,

ĉi otherwise,
which implies existence of a limit.

b) Vi(t, x, c̄∼i) = +∞. Denote an optimal control by ĉi.
Then, ∀M > 0, there exists TM such that for all T > TM, JT

i (t, x, ĉi, c̄∼i) > M.
Thus, M < JT

i (t, x, ĉi, c̄∼i) ≤ VT
i (t, x, c̄∼i), which implies that the limit is +∞.

c) Vi(t, x, c̄∼i) = −∞. This means that for every ĉi, Ji(t, x, ĉi, c̄∼i) = −∞.
Thus, ∀M < 0, there exists TM such that for all T > TM, JT

i (t, x, ĉi, c̄∼i) < M. Since this holds for
all ĉi, VT

i (t, x, c̄∼i) ≤ M, which implies convergence to −∞.
This ends the proof that Vi(·, ·, c̄∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)

= Vi(·, ·, c̃∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)
.

Argmax
ci∈Ci(t,x)

RHSi,t,x,c̄∼i (ci) = Argmax
ci∈Ci(t,x)

RHSi,t,x,c̃∼i (ci) for all (t, x) ∈ Ωi(c̄∼i) ∪ Ωi(c̃∼i) in the case

of the infinite time horizon.
The proof that BESTi(c̄∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)

= BESTi(c̃∼i)|Ωi(c̄∼i)∪Ωi(c̃∼i)
is immediate by the fact

that, by (5) rewritten to the game notation, BESTi(c̄∼i) is the set of all functions ĉi(t, x) defined by
ĉi(t, x) ∈ Argmax

ci∈Ci(t,x)
RHSi,t,x,c̄∼i (ci) (by Wiszniewska-Matyszkiel and Singh [3]).

The only thing that remains to be proven is Ωi(c̄∼i) = Ωi(c̃∼i), which we prove by forward
induction, as in the proof of Theorem 1.

First, consider t = t0 and arbitrary x ∈ X0.
In this case, Ωi(c̄∼i)∩ {(t, y) ∈ T×X : t ≤ t0} = {t0} ×X0 = Ωi(c̃∼i)∩ {(t, x) ∈ T×X : t ≤ t0}.
Next, consider any t ≥ t0 and any x such that (t, x) ∈ Ω.
Assume that Ωi(c̄∼i) ∩ {(k, y) ∈ T×X : k ≤ t} = Ωi(c̃∼i) ∩ {(k, y) ∈ T×X : k ≤ t}.
Since Argmax

ci∈Ci(t,x)
RHSi,t,x,c̄∼i (ci) = Argmax

ci∈Ci(t,x)
RHSi,t,x,c̃∼i (ci), Ωi(c̄∼i) ∩ {(k, y) ∈ T×X : k ≤ t + 1} =

Ωi(c̃∼i) ∩ {(k, y) ∈ T×X : k ≤ t + 1}.
This ends the proof that Ωi(c̄∼i) = Ωi(c̃∼i).

Nevertheless, the above results do not guarantee the equivalence of equilibria and profiles
calculated using the approximate value function even on the graph of the optimal trajectory, since for
a profile to be a feedback Nash equilibrium, also its values for other (t, x) matter, since it may happen
a Nash equilibrium being an extension of a profile with a Nash equilibrium along the corresponding
strategy does not exist.

Therefore, let us introduce the following notation.
Consider a profile c ∈ C. For this c, we introduce two types of one stage games.
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• Gt,x,c̄—a one stage game with strategies si ∈ Ci(t, x), and payoffs Pi(t, x, si, s∼i) + βVi(t +
1, φ(t, x, s), c̄∼i).

• G
approx
t,x,c̄ —a one stage game with strategies si ∈ Ci(t, x), and payoffs Pi(t, x, si, s∼i) + βVapprox

i (t +
1, φ(t, x, s), c̄∼i).

Note that, in Gt,x,c and G
approx
t,x,c , dependence on c̄ reduces to c̄(τ, x) for τ > t only.

Since feedback Nash equilibrium c̄ has to be defined for all (t, x) and its value at (t, x) should
coincide with the Nash equilibrium in Gt,x,c̄, to prove the equivalence, we have to guarantee that there
will be no problem with the existence of a Nash equilibrium also off the steady state trajectory.

• CN,t is the set of profiles from c ∈ C for which a Nash equilibrium in Gs,x,c exists for each
x ∈ X, s ≥ t.
We assume that CN,t0 6= ∅, which is equivalent to the existence of a Nash equilibrium.

• CNapprox,t is the set of profiles from c ∈ C for which a Nash equilibrium in G
approx
t,x,c exists for each

x ∈ X, s ≥ t.
We assume that CNapprox,t0 6= ∅.

In the finite horizon, these two sequences of sets of strategy profiles can be defined recursively
starting from t = T + 1 downwards as follows.

• CN,t by:

– CN,T+1 = C,
– CN,t being the set of profiles from c ∈ CN,t+1 for which a Nash equilibrium in Gt,x,c exists for

each x ∈ X.

• CNapprox,t by

– CNapprox,T+1 = C,
– CNapprox,t being the set of profiles from c ∈ CNapprox,t+1 for which a Nash equilibrium in

G
approx
t,x,c exists for each x ∈ X.

For finite T, we can also define the following sets of profiles.

• CN being the set of feedback Nash equilibria.
• CNapprox being the set of profiles c ∈ C that fulfill, starting from T backwards, that c(t, x) is a Nash

equilibrium of the static game G
approx
t,x,c .

In the infinite horizon, those sets still fulfill the recurrence relation, but we lack a terminal condition.

Theorem 5. Consider a game with a finite time horizon T.
a) If c̄ is a Nash equilibrium, and for every i, both the pair Vi(·, ·, c̄∼i) and Vapprox

i (·, ·, c̄∼i) as well as the
pairs Vi(·, ·, c∼i) and Vapprox

i (·, ·, c∼i) for every c ∈ CNapprox fulfill the assumptions of Theorem 3, then there
exists a profile c̃ which fulfills

c̄|Ωc̄ = c̃∼i|Ωc̄ and such that for all i, c̃i ∈ BESTapprox
i (c̃∼i).

b) If c̃ ∈ CNapprox and for every i, both the pair Vi(·, ·, c̃∼i) and Vapprox
i (·, ·, c̃∼i) as well as the pairs

Vi(·, ·, c∼i) and Vapprox
i (·, ·, c∼i) for every c ∈ CN (Nash equilibrium) fulfill the assumptions of Theorem 3,

there exists a Nash equilibrium c̄ which fulfills c̄|Ωc̃ = c̃∼i|Ωc̃ .

Proof. The proof is based on a recursive construction of a profile coinciding with c̄ or c̃, respectively.
By Theorem 3, for every c ∈ C, from a) and b), Ωapprox

i (c∼i) = Ωi(c∼i), for every ĉi ∈ BESTi(c∼i),
there exist c̆i ∈ BESTapprox

i (c∼i) such that ĉi|Ωi(c∼i)
= c̆|Ωi(c∼i)

and for every c̆ ∈ BESTapprox
i (c∼i) there

exist ĉ ∈ BESTi(c∼i) such that ĉi|Ωi(c∼i)
= c̆i|Ωi(c∼i)

.
a) This applies both to c̄ and the profile c̃ which we are going to construct. To simplify the notation,

let us denote by Ω̄ the union of all Ωi(c̄∼i).
We define c̃ recursively, starting from t = T as follows.
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(i) c̃(T, x) = c̄(T, x) for all x such that (T, x) ∈ Ω̄ and c̃(T, x) is an equilibrium of G
approx
T,x,c .

For another x, this part of defining a profile is correct whatever c we write, since G
approx
T,x,c is independent

of c.
(ii) having defined c̃(τ, x) for all τ > t, x ∈ X, define c̃(t, x) = c̄(t, x) for all x such that (t, x) ∈ Ω̄,

c̃(t, x) being any equilibrium of Gapprox
t,x,c̃ for other x ∈ X.

This definition is correct since G
approx
t,x,c̃ depends only on c̃(τ, x) for τ > t.

By Theorem 4, c̃ has the assumed property.
b) Analogously, in the opposite direction.

Example 5. Application to the Motivating Example.
Assume that, by some preliminary analysis, we know that the equilibrium profile c̄ exists and we know

some superset of Ωc̄ given X0 (e.g., the fact that for x0 ∈ ( 1
100 , 1

2 ), Xc̄
x0,t0

(t) ∈ ( 1
100 , 1

2 ) for all t). We also know
that the assumption of Theorem 5 b) is fulfilled. By Theorem 5, there exists a profile c̃ with c̃i ∈ BESTapprox

i (c̃∼i)

such that c̄∼i|Ωc̃ = c̃∼i|Ωc̃ .
We have obtained a single-valued BESTapprox

i (c̃∼i) for every i and every c∼i, and a unique solution to
the fixed point problem of the approximate joint best response (if we do not assume symmetry a priori, then we
get it as a result, recursively, starting from the terminal time).

Thus, by Theorem 5, the profile c̃ calculated by the approximate procedure coincides with the Nash
equilibrium profile on Ωc̃. Thus, having calculated c̃, we know the equilibrium c̄ on the set Ωc̃.

5. Conclusions and Further Research

After analyzing numerically the problems of social optima and Nash equilibria for Levhari
and Mirman Fish Wars model, a dynamic game with logarithmic instantaneous and terminal payoffs,
with an algorithm in which we have purposely left the grid sparse on some sets and we haven’t
assumed a specific form of solutions a priori, we have obtained a surprisingly good quality of
approximation of optima and equilibria along the corresponding trajectories although the value
functions were substantially overestimated on some sets and underestimated on some other sets.

This has been a starting point to the main achievement of the paper: formulation of general rules
of what type of over- or under-estimation of the value function does result either in incorrectness of
the optimal trajectory or in incorrectness of the optimal strategy along it. This applies both to dynamic
optimization problems and to Nash equilibria in dynamic games. In this general rule, the over- or
under-estimation is not restricted to over- or under-estimation resulting from using numerical methods
with grids sparse on some sets, it may also be a result of replacing the value function which is not known
exactly by a constraint for it on some intervals a priori in order to simplify further computation or
calculation. Depending on whether we allow the value function to be under-estimated, over-estimated,
or just incorrectly calculated, on some subsets, we do it at the cost of previous knowledge about
the regions in which the optimal trajectory is never in, checking ex post whether the approximate
trajectory has non-empty intersection with those subsets, or both, respectively.

Among other things, our results prove that, in some dynamic optimization problems, solving
the Bellman equation and finding the maximand of its rhs as the candidate for optimal control for
the steady state of the state variable only, may yield a correct result. It also justifies the procedure of
calculating the optimal control only along the optimal trajectory. Those two hold with the restrictions
as stated above.

The results of this paper are mainly theoretical. Some of them assume some other method of
restriction of the set in which the optimal trajectory may be, which has to be used a priori. Some of
them require checking ex post whether the calculated trajectory has empty intersections with the sets
on which the value function is incorrectly calculated. Although we are able to do this in a specific
example, as we have done in Example 4, further research is required to develop more general methods
of applying the theoretical results to larger classes of problems. Similarly, how the theoretical findings
of this paper can be used for developing numerical methods, in which the approximate solution is not
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exactly equal to the accurate solution, to obtain criteria of determining when the paradox from our
motivating example holds, has to be further studied.

It is worth emphasizing that the results for Nash equilibria are weaker than those for optima. They
require an additional assumption that the procedure of calculation of a feedback Nash equilibrium
never ends by a dead end. This is because of coupling the players’ dynamic optimization problems in
order to find a fixed point in the space of profiles of feedback strategies. This coupling is reduced to
finding a sequence of fixed points in spaces of profiles of decisions only if we replace the concept of
Nash equilibrium by pre-belief distorted Nash equilibrium (pre-BDNE) mentioned in the introduction
in the context of their applications to Fish Wars. Thus, an extension of the results for that solution
concept seems a natural next step of this analysis and, by partial de-coupling of the solutions, stronger
results can be expected. Another next step is extension of the results to stochastic optimal control
problems and stochastic games.
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Appendix A. Numerical Solutions for the Motivating Example

In this Appendix, we present the algorithms used for the motivating Fish Wars example. Generally,
the same method of dynamic programming or Bellman equation is used both in analytic and numerical
approaches, but, in numerical analysis, we restrict ourselves a priori to symmetric solutions only.

In the numerical approach, like in the analytic approach, we use the Bellman equation to find
the value function first, then the optimal solution using it (the social optimum or the best response
to the others’ strategies, depending on the case), starting from terminal time T. We do it stage by
stage, recursively.

It is important that we purposely don’t use any knowledge about the value function having
a special form (in the opposite case, it is enough to approximate numerically the unknown coefficients).
All the theoretical assumptions that we make before solving the problem numerically are that
the solution exists, it is unique, and symmetric. For the Nash equilibrium, we additionally assume
monotonicity of the best responses.

In the procedure of computing the Nash equilibrium, starting from the terminal time, we first
calculate an approximate of the value function of a player for optimization given the sum of decisions
of the remaining players at this stage o—which, since we assume symmetry, simplifies to knowing
the current decision of the other players, o

n−1 , and the best response to o; then, we look for a fixed point
at this stage. Subsequently, with the fixed point and the value function for the equilibrium at this stage,
we switch to the previous period.

In the calculation of the value function for each stage, we approximate the continuous state space
by a finite grid. In the case of computing the Nash equilibrium, we also need a grid for the sum of
consumptions of the other players o.

Appendix A.1. Computation of Social Optimum

In this approach, we assume the symmetry of the solution (all ci identical) a priori, which reduces
the computation of the maximum at each stage to one-dimensional.

Since we know that the social optimum profile is symmetric, we can a priori assume this in
the Bellman equation and reduce optimization in each stage to one-dimensional.
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In this case, the Bellman equation and maximization of its right hand simplify to

V(t, x) = sup
c∈[0, x

n ]

n ln c + βV
(
t + 1, (x− nc)α) , (A1)

and
ci(t, x) ∈ Argmax

c∈[0, x
n ]

n ln c + βV
(
t + 1, (x− nc)α) . (A2)

There is no need to do it a priori in the analytic approach since the symmetry is obtained
almost immediately in calculations; nevertheless, in the numerical approach, it substantially
reduces complexity.

We use a grid for the state variable x ∈ [0, 1]. The grid is not uniform—we refine it on
the subinterval [0. 1

2 ]. The same applies to the computation of a Nash equilibrium.

Algorithm A1. Computation of the social optimum.

1. We compute VS(T + 1, x) = n ln
( x

n
)

for all x in the x grid.
2. Starting from t = T backwards to 1, we compute VS(t, x) from Equation (A1) and cS

i (t, x) from
Formula (A2) for all grid points of x, using computed VS(t + 1, . . .). Since (x− nci)

α is usually not
a grid point of x, we use cubic interpolation. Those two are calculated in the same operation, using
fminbnd function in Matlab.

3. Using computed cS(t, x), starting from t = 1 to T, we calculate X(t) and cS(t, X(t)).

Appendix A.2. Computation of Nash Equilibria

Since we look for symmetric equilibria only, this can be further reduced to one V and one ci
for all players and finding ci being the best response to the sum of strategies chosen by the others
o = (n− 1)ci; therefore, the Bellman equation and maximization of its right-hand side given a profile
of strategies of the others can be replaced by the following:

V(t, x) = sup
c∈[0, x

n ]

ln c + βV
(
t + 1, (x− c− o)α) , (A3)

while the equilibrium profile is every profile which fulfills for every t

ci(t, x) ∈ Argmax
c∈[0, x

n ]

ln c + βV
(
t + 1, (x− c− o)α) . (A4)

Again, this restriction is not needed for analytic calculation of equilibrium, in which we obtain
uniqueness of Nash equilibrium, and we are able to prove that this unique equilibrium is symmetric.

In the case of numerical computation, we use the reduced Conditions (A3) and (A4) in order to
reduce dimensionality.

Besides the grid for the state variable, we need a grid for o ∈ [0, (n− 1)x]. The initial grid for o is
not very fine since its size is the main component of the cost—we are going to further refine it only on
small subsets; initially, it is obtained by taking a uniform grid in [0, n− 1] and multiplying it by x.

From the fact that the value function tends to −∞ as x tends to 0, as well as instantaneous payoff
tends to −∞ as c tends to 0, we recognize that, for small x, we need a finer grid for o. Therefore, c
in the social optimization and both c and o in computation of equilibrium are written in a form a · x
and optimization is taken for a over fixed interval [0, 1

n ] or [0, n−1
n ] and the grid is uniform in a.

For the same reason, the grid for x was not uniform—it was denser for small x.
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Algorithm A2. Computation of the Nash Equilibrium.

1. We compute VN(T + 1, x) = ln
( x

n
)

for all x in the x grid.
2. Starting from t = T backwards to 1 for every grid point of x,

(a) we compute an auxiliary VB(t, x, o) from Equation (A3) and cB(t, x, o) from Equation (A4). We do it
for all grid points of o ∈ [0, (n− 1)x], using computed VN(t + 1, ·, o). Since (x− c− o)α is usually
not a grid point of x, we use cubic interpolation. Those two are calculated in the same operation,
using fminbnd function in Matlab.

(b) We find ô in the grid minimizing |o− cB(t, x, o)(n− 1)|.
(c) We take the interval of two neighboring points of ô unless ô is the first or the last point of the grid—in

this case, we take the interval with ends in ô and its neighbor in the grid. We divide the chosen
interval into a sub-grid, as in the initial stage, and we repeat (a), (b) on this grid, until the distance of
points in the sub-grid is of required accuracy.

(d) We substitute VN(t, x) = VB(t, x, ô) and cN(t, x) = cB(t, x, ô).
3. Using the computed cN(t, x), starting from t = 1 to T, we calculate X(t) and cN(t, X(t)).
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