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Abstract: Under conditions where a product is subjected to extreme mechanical loading over a very
short time period, the strain rate has considerable influence on the behaviour of the product’s material.
To simulate the behaviour of the material accurately under these loading conditions, the appropriate
strain-rate parameters for the selected material model should be used. The aim of this paper is to
present a quick method for easily determining the appropriate strain-rate-dependent parameter
values of the selected material model. The optimisation procedure described in the article combines
the design-of-experiment (DoE) technique, finite-element simulations, modelling a response surface
and an evolutionary algorithm. First, a non-standard dynamic experiment was designed to study
the behaviour of thin, flat, metal sheets during an impact. The experimental data from this dynamic
and the conventional tensile experiments for mild steel were the basis for the determination of the
Johnson-Cook material model parameters. The paper provides a comparison of two optimisation
processes with different DoE techniques and with three different optimisation algorithms (one
traditional and two metaheuristic). The performances of the presented method are compared, and the
engineering applicability of the results is discussed. The identified parameter values, which were
estimated with the presented procedure, are very similar to those from the literature. The paper
shows how the application of a properly designed plan of simulations can significantly reduce the
simulation time, with only a minor influence on the estimated parameters. Furthermore, it can be
concluded that in some cases the traditional optimisation method is as good as the two metaheuristic
methods. Finally, it was proven that experiments with different strain rates must be carried out when
estimating the corresponding material parameters.

Keywords: strain rate; finite-element method; design of experiment; Taguchi orthogonal array;
response surface; evolutionary algorithm; Johnson-Cook material model

1. Introduction

The implementation of complex numerical simulations together with design-of-experiment (DoE)
methods can have many positive effects on the R&D process. It can reduce costs, partially optimise the
design of the product or its effectiveness and reliability even before the prototype is built and tested.
Finite-element simulations play an important role in these situations, as they can be used to reproduce
the behaviour of the product under various operating conditions. Nowadays, they are mostly used to
analyse the load-bearing capacity or the resistance of a structure under extreme loading conditions in
the early stages of the R&D process. The DoE technique is a systematic procedure generally used to
understand how the process and the various product parameters affect response variables such as the
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physical properties. In other words, it is used to find the cause-effect relationships necessary to control
the process inputs in order to optimise the output. It uses a statistical methodology to analyse the data
under all possible conditions within the selected limits and can generate the required information with
the minimum number of experiments [1–3].

To correctly simulate and predict the behaviour of the product under extreme loading conditions,
the material properties of the product under consideration as well as the influences of the various
physical quantities on the behaviour of the material should be known. Some material properties
can be easily obtained from basic experiments, e.g., the elastic modulus or the yield stress from
a static tensile test, while some influences can be more difficult to obtain, e.g., the strain rate or
the effect of temperature on the behaviour of the material. To include these kinds of influences
in simulations, empirical relationships have been developed over decades by observing different
materials under various conditions and many approaches, e.g., Johnson-Cook [4], Zerilli-Armstrong [5,6],
or Cowper-Symonds [7], have been implemented as material models in commercial simulation software [8] or
used in researches as a reference to validate or compare other constitutive approaches [9–11]. The empirical
parameters of the material models are usually acquired through experiments (standard or non-standard),
which must be carried out under different operating conditions so as to include all possible effects.
The experimental results are then analysed using a suitable method to identify the optimum parameter
values that take into account all the results, usually with a linear or a non-linear curve-fitting
least-squares method [12–14] or with the help of numerical simulations used in the optimisation
method [15–17], repeating the actual experiment under exactly applied conditions.

One of these empirical relationships is the Johnson-Cook (J-C) material model [4]. This has
already been extensively investigated in many studies for different metallic materials: for mild steel
in [11,13,18], for various dual-phase steels in [10–12] and also for stainless steel and TRIP steel in [11,14].
Temperature and strain-rate effects, which influence the material behaviour at high-rate loads similar
as at low-rate loads [19], are considered in this material model through empirical parameters in the
J-C equation [4]. Their appropriate values can be applied in numerical simulations to obtain more
accurate physical reactions for a product under different loading conditions during its R&D process.
One problem is that the appropriate values of these parameters vary from one group of materials
to another and should therefore be determined individually for each group of similar materials in
order to accurately simulate and predict their response. In addition, limited information about the
parameter values is available in the literature, or there are different reported values for basically similar
materials. This could be due to a misinterpretation of the reference strain rate (Equation (3)), which was
not reported or assumed to be 1 s−1 in former studies [15–17,20,21], and disproved in more recent
studies [14,18,22], or the lack of experimental results over a wider range of strain rates (quasi-static,
low, intermediate and high values).

To obtain the optimum values of the parameters for the J-C material model, researchers usually
analysed the results of high-speed loading experiments, e.g., the Taylor test in [4], or the split Hopkinson
tensile [12,13,21] or pressure bar test in [17], which are quite popular experimental procedure. In these
cases, numerous experiments were conducted at various loading rates (for strain rates from 102 to
2 × 103 s−1 or even higher), but reports like [12,13,18] that include strain rates across the full strain-rate
interval are rare. The problem with physical limits occurs in these experiments, especially in the
Taylor test at low strain rates, so conditions at intermediate strain rates or below (strain rates of
10–103 s−1) cannot be covered. When the observed product is subjected to the loading conditions
at intermediate strain rates (e.g., the impact during a burst or a crash test on a structure), the J-C
material parameters obtained only from high-rate loading experiments will provide an inadequate
simulation response compared to the real behaviour. Therefore, the optimum results are best acquired
with an experiment covering the whole range of loading speeds as in [10,11,23] or with a combination
of different experiments at different loading speeds [12,13,18]. In order to determine the optimum
parameter values, which can vary over a wide interval, as many experiments as possible are required
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for a single material. Therefore, the same procedure should be repeated when using a new material,
which would mean a time-consuming process.

The time necessary to determine the optimum parameter values can be shortened if the DoE
method is used in a way that minimises the amount of data to be analysed. With an appropriate DoE
technique from [1–3,24,25], the number of possible parameter values can be drastically reduced, but the
values would still be approximately evenly distributed for a given design space, without missing
important information about them. If an approximation function modelled over the analysed data is also
included in the procedure, it could even provide some information in areas where the parameter values
have not been selected for analysis. Using an optimisation algorithm (e.g., an evolutionary algorithm)
for this approximation function or response surface would speed up the entire identification process.

A method combining all the above aspects was presented in our previous research [26]. In the
present research, this approach is applied to identify the optimum parameter values for the empirical
relationships of the simplified J-C material model. In this empirical relationship, the B, n, C parameters
describe the plastic flow stress with the strain-rate effect and the intention of the paper is to determine
their values, which could be valid for static and dynamic conditions. This is achieved with two
types of experiments, the first at static reference strain rate and the second at higher strain rates.
The applied method combines a DoE technique, material experiments at different loading speeds,
explicit finite-element simulations, numerical modelling of an approximated response surface based
on the simulation results and an evolutionary optimisation algorithm.

Contrary to the referenced literature, the dynamic experiment used in the study was designed
replicating conditions in which real products operate. Actually, the experiment and the material
(structural steel E185, formerly Fe310-0 according to standard ISO 630:1995 A1:2003) were used in
a pilot project of the plastic turbocharger frame design. In this project, sheets of this material were
intended to be used as a shield to contain moving particles inside the frame in case of a turbocharger
burst. Due to its abilities in terms of plastic deformation and the low cost-efficiency, this material was
adequate for our application.

There are many known evolutionary algorithms to solve multi-dimensional optimisation problems,
e.g., particle swarm optimisation (PSO) [27], diferential evolution (DE) [28], biogeography-based
optimisation (BBO) [29] social network optimisation (SNO) [30]. The applied evolutionary optimisation
algorithm in this research was mainly selected based on our previous experiences. For different past
studies [31] in our research group, a few evolutionary algorithms were analysed, in particular PSO,
some versions of genetic algorithms [32,33], and differential ant stigmergy algorithm (DASA) [34].
It is known that optimisation results can be quite affected by the algorithm’s parameter settings and
in our past studies the most consistent behaviour with the same parameter settings for different
applications showed the real valued genetic algorithm (RVGA) [33] and the DASA [34]. The problem
with the PSO was that different settings had to be set practically for each study to get optimum results,
while the settings for the DASA or the RVGA were tuned through the first few studies and since
then these parameter settings have not been changed and they have given us the optimum results in
different researches.

The key contributions of this study are:

• The main objective is to obtain the optimum values for characterising the material behaviour of
the structural steel E185 at low, medium and high strain rates, which are difficult to find in the
literature. In most cases they can only be found for high-strain-rate applications.

• It is shown that the optimum material parameters can be estimated on the basis of non-standardised
experimental results using a reverse-engineering approach.

• A first comparison among the modelled response surfaces based on different DoE techniques and
different modelling settings is performed and presented.

• The second comparison among three optimisation algorithms, i.e., the traditional gradient descent
(GD), the real-valued genetic algorithm (RVGA) and the differential ant-stigmergy algorithm
(DASA), is presented to evaluate their effectiveness on the given response surfaces.
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The article consists of five sections, and is structured as follows. After the introduction,
an experimental setup within low and medium strain rates, static curve results and dynamic test
results are presented. The article continues with Section 3, where the applied methodology is briefly
presented. First, the explicit finite-element model and the required parameters for the J-C material
model are described. Then, a cost function is given, which includes the results from both experiments
and simulations, and a selection approach using the Taguchi orthogonal array to model the response
surface is shown. In Section 4, the results are presented and discussed, together with comparisons with
other optimisation methods and values from the literature. Finally, the conclusions and suggestions
for future work are given.

2. Experimental Arrangement

The experimental arrangements for the static and dynamic conditions were carried out to obtain
the results that formed the basis of our approach. The static material properties (modulus of elasticity,
yield stress, ultimate tensile stress) were measured on a Zwick/Roell Z050 test rig according to the
ASTM E8/E8M standard [35]. To study the dynamic behaviour, a similar experimental setup to that
described in the ASTM D5420 standard [36] was designed, i.e., a standard on a test method to measure
the impact resistance of a flat plastic specimen subjected to a drop weight.

2.1. Measuring a Static Stress-Strain Curve

The specimen geometry together with the Zwick/Roell test stand is shown in Figure 1. To obtain
the reference stress-strain curve of the observed material, 21 tensile tests with a controlled loading
speed of 100 mm/min were performed. The average yield stress and the ultimate tensile stress from the
tensile tests were about 185 MPa and 350 MPa, respectively. The resulting true-stress vs. true-strain
curve from the measured engineering stress-strain curves is presented in Figure 2. This true-stress vs.
true-strain curve was calculated according to Equations (1) and (2) and fitted to all the measured curves
using the least-squares method. The chemical composition of the observed material is listed in Table 1.

ε̃ = ln(1 + ε) (1)

σ̃ = σ(1 + ε) (2)

ε and σ were the corresponding average engineering strain and stress, respectively.
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Table 1. Chemical composition of carbon steel E185 (weight, %).

C Mn Si S P

≤0.12 ≤0.50 ≤0.30 ≤0.40 ≤0.035

The material properties acquired from the presented tests (Young’s modulus, Poisson’s ratio
and yield stress) were used in the J-C material model, while the average true-stress vs. true-strain
curve was used as the quasi-static reference conditions (

.
ε0 = 0.056 s−1). With the correct parameter

values for the J-C material model, a curve calculated with Equation (3) should be fitted to the reference
quasi-static curve.

2.2. Experimental Determination of the Material Behaviour at Higher Strain Rates

In our experimental setup, a steel ball with a diameter of 14 mm and a weight of 11 g was shot
at a flat specimen at an angle of 20◦ with different velocities depending on the specimen thickness.
Due to the limitations of the air gun used as part of the experimental setup, the lowest striking velocity
was 100 m/s and the maximum velocity was chosen so that the impact of the ball did not cause cracks
in the specimen, which happened at about 165 m/s. The specimens were sheet-metal plates measuring
98 mm × 60 mm and two different thicknesses (1 mm and 1.5 mm).

The specimens were fixed along the shorter side of the sample; therefore, the free area of the
specimen was 60 × 60 mm2. At least three impact tests were performed for each written combination
of sheet thickness and impact velocity (except for one combination of sheet thickness and impact
velocity). The average experimental results for 16 measurements, together with the standard deviation
for the indentation depth and the position of the indentation centre (Figure 3), are presented in Table 2.

The results in Table 2 show that the scatter of the experimental results is relatively small,
which means that the experimental design was appropriate for the study. Furthermore, it is clear that
the indentation depth increases with an increasing velocity. With a thickness of 1.5 mm, the indentation
depth is smaller than with the 1-millimetre-thick steel plate. Another clearly observed feature of the
different thicknesses is the point with the deepest indentation depth. For the samples with a thickness
of 1.5 mm, this point lies approximately in the centre of the impact. On the 1-mm-thick samples,
however, the point with the largest indentation depth is about 5 mm from the centre of the impact
(Table 2). This implies different impact dynamics for the specimens of different thicknesses, and this
should be replicated by the numerical simulations if the strain-rate parameters of the J-C material
model are properly identified.
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Figure 3. Two views of the experimental specimen.

Table 2. Combinations of boundary conditions and the results of the experiment.

Experimental
Condition Number

Specimen Thickness
t [mm]

Ball Velocity
v [m/s]

Measured Max.
Indentation Depth

Hexp [mm]

Position of the Max.
Indentation Depth

Zexp [mm]

Average St. deviation Average St. deviation
1 1 103 11.37 0.092 34.83 0.648
2 1 109 12.12 0.481 34.89 0.002
3 1 121 13.07 0.074 35.11 0.300
4 1.5 121 10.38 0.116 30.19 0.229

5 1 1.5 131 11.53 / 29.6 /
6 1.5 139 12.65 1.600 30.49 0.223

1 For this combination, only one measurement was performed.

3. Identification of the Optimum Parameter Values for the Johnson-Cook Material Model

3.1. FE Model for the Identification of the Material Parameters

To identify the material parameters of the J-C material model [4,8,37], the LS-DYNA explicit,
dynamic, finite-element code was used, whereby the investigated material model is implemented in its
original and simplified forms. The original J-C model considers temperature effects, but in our case,
these were neglected, and the parameter m was set to 0.

σflow =
[
σ0 + B ·

(
ε

p
eff

)n]
·

[
1 + C · ln

( .
ε

p

.
ε0

)]
·

(
T − Troom

Tmelt − Troom

)m

, (3)

Therefore, the simplified J-C (MAT98) material model from the LS-Dyna package software [37]
(p. 1697) was applied. It is defined by the following parameters: material density, modulus of elasticity,
Poisson’s ratio, yield stress σ0, and the three parameters B, n and C, which describe the plastic flow
stress and the strain-rate effect. The values of the first four parameters were determined from the
static tensile test shown in Section 2.1: the material density was 7850 kg/m3, the modulus of elasticity
2.1·105 N/mm2, the yield stress σ0 = 180 MPa at a reference strain rate

.
ε0 = 0.056 s−1 (see Figure 2)

and the Poisson’s ratio ν = 0.3. The last three parameters (B, n, C) cannot be easily estimated from a
tensile test like the elastic modulus or the yield stress and are determined differently. One possibility
is to perform the tensile or compressive tests at different loading rates and estimate the parameter
values using statistical methods [13,14,18], but tensile-test rigs usually have loading-rate limits that
prevent very high strain rates. The other possibility is to apply a reverse-engineering approach using
numerical simulations that reproduce the actual experiment [15–17,26,27], where the loading-speed
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conditions could have the same values as in real applications where exact strain rates cannot to be
estimated. The latter approach is also more convenient when the stress-strain results from tensile or
compressive tests at higher loading speeds are not available, as in our case.

The finite-element model used to simulate the ball-impact experiment from Section 2.2 is shown in
Figure 4. The steel-sheet model has 5436 four- and three-node-shell finite elements. The mesh density
around the impact area is greater than in the wider region of the specimen model in order to accurately
simulate the indentation. The rigid ball is modelled with 448 solid finite elements. In the finite-element
model, there are fixed nodes for all the degrees of freedom on both sides of the thin plate (Figure 4).
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Figure 4. 3D model of the experiment.
A rigid ball is shot into the centre of the plate at an angle of 20◦ with different velocities, which are

listed in Table 2. There is an automatic surface-to-surface contact between the steel plate and the rigid
ball with a coefficient of friction µ = 0.2. The strain on the left-hand side of the plate and the gross
geometric dimensions of the specimen were recorded during the simulation for further processing,
as in the experiment (Figure 3). For the investigated material model, the strain rate influences the flow
stress σ f low across its entire range and its non-linearity depends on the exponent n. The higher the strain
rate, the higher the flow-stress curve. This means that under quasi-static conditions (

.
ε0 = 0.056 s−1)

the true-stress vs. true-strain curve, calculated from [37] (p. 1697) with the correctly determined
parameters B, n and C, should be very similar or the same as the experimental curve from the static
tensile test.

In order to estimate the optimum values of the observed material parameters for a wide range of
strain rates (from quasi-static to high strain rates) the optimisation process must be carried out in such
a way that the results from the static and the dynamic experiments can be included. This is the main
reason why the two experimental arrangement results from Section 2 (the data from the impact test
and the static true-stress vs. true-strain curve) are essential for the proposed procedure.

3.2. Determination of the Cost Function

In order to identify the optimum combination of the applied material model parameters, we carried
out a procedure in which we combined an explicit, dynamic finite-element method, a method for DoEs,
the modelling of a response surface and an optimisation algorithm.

To estimate the parameter values of the J-C material model (B, n, C) a series of numerical
simulations should be performed with different combinations of material parameters to obtain the
combination that best fits the experimental results. The main problem is the range of possible parameter
values, which can span many orders of magnitude, so that numerous parameter combinations and
thus numerical simulations can occur. To reduce the number of numerical simulations, modelling the
response surface in a design space of parameters can be particularly useful. In this way, the response
surface can be used to search for the optimum combination of parameters. First, a cost function should
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be properly determined and its values together with combinations of parameter values represent the
exact points of the response surface.

For this reason, we designed a four-dimensional design space, where three independent parameters
of the J-C material model (i.e., B, n, C) represent the search domain, and the cost function is a dependent
variable. To find the optimum material parameter values for the observed material model, it is
necessary to define a cost function in which the experimental results for the quasi-static and dynamic
conditions from Section 2 can be used. Thus, the optimum combination of parameter values might
be suitable for high and intermediate strain rates (for which the J-C model was primarily intended)
and also for low strain rates (to obtain the same stress-strain curve under quasi-static conditions).
Consequently, the cost function for the optimisation procedure was a weighted sum of the squared
differences between the experimentally determined and simulated dynamic load data and a weighted
sum of the area differences between the experimentally determined and the calculated static curves:

f (B, n, C) = wstat · f (B, n, C)stat + wdyn · f (B, n, C)dyn. (4)

For a dynamic load, two post-impact geometrical deformation parameters of the specimen were
inspected: the indentation depth and the position of the indentation centre. The cost function is defined
as follows:

f (B, n, C)dyn =
1
n

w ·
n∑

i=1

(
Hexp −Hsim

)2
+ (1−w) ·

n∑
i=1

(
Zexp −Zsim

)2
 (5)

where n is the number of experimental results with different boundary conditions and w is the weighting
factor. Hexp, Zexp, Hsim, and Zsim are the indentation depth and its z-coordinate of the specimen for
the average measurements and simulations, respectively. In our case, n and w were equal to 6 and
0.5, respectively.

The trapezoidal integration rule was used to calculate the area differences between the
experimentally determined and the calculated curve:

f (B, n, C)stat =
n−1∑
i=1

∆x ·

(∣∣∣Ycalc,i −Yexp,i
∣∣∣+ ∣∣∣Ycalc,(i+1) −Yexp,(i+1)

∣∣∣)
2

, (6)

where n is the number of points for each stress-strain curve (experimental and calculated), Yexp is
the y component of the experimental stress-strain curve’s points and Ycalc is the y component of the
calculated stress-strain curve’s points. In addition, the results for the static case had to be divided by a
factor of 10 to achieve a similar size range compared to the dynamic case.

The combinations of the input parameter values and the corresponding cost-functions were
defined as points in a four-dimensional design space. Using these points, we created a response surface
using the global-local modelling method. Consequently, we obtained a mathematical function that
passed through each point in the observed design space defined by the parameter values and the
corresponding cost function. The global trend of the response surface f (x1, x2, x3) was modelled with
a full multivariate polynomial of the third degree [26], Equations (3) and (7). The local deviations
of the cost functions from the global trend ri were modelled with a mixture of multivariate elliptical
Gaussian functions [26], Equations (3) and (9) with diagonal covariance matrices (see [26] for details).
The diagonal elements of the individual covariance matrices were calculated on the basis of the distance
to the nearest neighbour along the corresponding coordinate axis. Before calculating the variance,
the nearest-neighbour distance was modified with a scaling factor. Two scaling factors were studied
in this research, i.e., the scaling factors of 0.40 and 0.45. Values smaller than that are inappropriate,
because they result in poor smoothing of the local response-surface geometry. Larger values cause an
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over-smoothing effect, which is not good for our purpose. This mathematical function was subsequently
used in the optimisation process to identify the optimum parameter values.

f (x1, x2, x3) = a0 +
3∑

r=1

3∑
i=1

ar,ixi
r + a2,4x1x2 + a2,5x1x3 + a2,6x2x3 + a3,4x1

2x2 + a3,5x1x2
2+

+a3,6x1
2x3 + a3,7x1x3

2 + a3,8x2
2x3 + a3,9x2x3

2 + a3,10x1x2x3

(7)

ri =
n∑

j=1

b j ·w j
(
xi − x j, Σ j

)
=

n∑
j=1

b j ·
1√

(2 ·π)3∣∣∣Σ j
∣∣∣ e(−

1
2 (xi−x j)

TΣ−1
j (xi−x j)), i = 1, . . . , n (8)

3.3. Selection of the DoE Technicque

The approximation accuracy of the modelled response surface depends on the number of
determined parameter combinations and the dimensions of the design space. Each parameter has its
own number of levels and since the range of each parameter spans more than one order of magnitude,
the logarithms of these values were used. To have a very accurate response surface, as many parameter
combinations as possible should be considered, but this leads to a problem in terms of processing
time. When a large number of simulations needs to be carried out, and if the simulation’s calculation
time, as in our case, is about two hours, this can be a very time-consuming process, even if the
simulation calculations are run in parallel. Therefore, a suitable number of simulations should be
chosen, depending on the parameter levels.

For example, if a full-factorial experiment (FFE) with an appropriate number of parameter levels
is used to select these points, it could represent the search space relatively accurately. However, as the
level of each parameter increases, the space points multiply exponentially. According to the FFE [1],
125 combination points for five-level parameters in the three-dimensional search space would be
required. With six different boundary conditions (for different thicknesses and velocities), this would
result in 750 simulation calculations in our case. If only one additional level was used for each
parameter, 1296 simulations would result. For this reason, a method to reduce the number of parameter
combinations is needed, but at the same time the information in the design space should not be reduced
significantly. With a suitable DoE method, the combination points can be distributed approximately
equally across the entire search-space domain, with the same parameter levels as in the FFE, but with a
lower density of combination points in the search-space domain.

As before [38], we decided to use Taguchi orthogonal arrays (TAs). We applied the L81(340)
orthogonal array and transformed it into the L81(910) orthogonal array using a linear graph [24,25].
This was done because many levels per parameter were needed, and the L81(910) was best suited for
this requirement. Using the L81(910) orthogonal array, the three material parameters (B, n and C for
the J-C material model) are assigned to the first three columns of the L81(910) array. The levels were
selected from a narrowed area from the previous study [38], where we found a domain with the best
solutions for the J-C material model. In that research, we used an assumed reference static strain rate
(

.
ε0 = 1 s−1), which was corrected for this study (

.
ε0 = 0.056 s−1). The same procedure was applied in

this article to define the parameter combination points used to model the response surface. For each
parameter we used the nearest equidistant logarithmic values in the TA (see Table 3).
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Table 3. Parameters levels for the Taguchi array (TA).

Values of Parameter B [GPa]

0.039811 0.059566 0.089125 0.13335 0.19953
0.29854 0.44668 0.66834 1.000

Values of Parameter n [/]

0.014125 0.024057 0.040973 0.069783 0.11885
0.20242 0.34475 0.58715 1.000

Values of Parameter C [/]

0.000501 0.001000 0.001995 0.003981 0.007943
0.015849 0.031623 0.063096 0.12589

In this way, 81 parameter combinations were defined for nine levels of each parameter
to cover the entire search domain on which the modelled response surface would be built.
Consequently, 486 simulations need to be performed with six different boundary conditions to
obtain the values of the cost function, which are almost ten times lower compared to the FFE for the
same nine-level parameters.

In addition, a second modelling procedure was carried out using the FFE in the similar search
domain with wider ranges of the parameters B and C instead of the orthogonal TA domain (Table 4).
This was to verify the accuracy of the response surface modelled using the points defined by TA with
the surface modelled using the points defined by the FFE. Since we can define the search-space domain
for the modelling of the response surface relatively accurately (depending on the number of parameter
levels) in the FFE, we compared it with the TA to find out whether the whole identification process
could be shortened without too much impact on the results. The search space boundaries of parameters
B and C in the FFE were selected wider from the TA to ensure the optimum point of the response
surface was located inside the domain and not at its boundaries and that no better optimum points
were missed with the TA procedure.

3.4. Applied Optimisation Algorithms

In the final part of the identification approach we applied a variation of the real-valued genetic
algorithm (RVGA) [32,33] as a reference optimisation scheme. Besides that, we also applied two other
optimisation methods (traditional and metaheuristic) to compare their performance on the modelled
response surface. The traditional one was a gradient-descent method (GD) and the evolutionary one
was a differential ant-stigmergy algorithm (DASA) [34]. To obtain properly comparable results, we had
to set the same general parameters for the applied algorithms. The evolutionary algorithms had a
population of 20 (genomes or ants, depending on the algorithm). Therefore, the GD had 20 randomly
selected starting points on a given response surface within the parameter’s limits. The maximum
number of iterations or generations was set to 10,000 in order to stop the algorithm. Each algorithm
was then repeated 30 times, which was similar in the literature [39], where also comparisons between
different algorithm’s performances were carried out. Other settings for the applied algorithms were
equal as in the previous studies [31] and are listed in Table 5.
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Table 4. Parameter levels for the full-factorial experiment (FFE).

Values of Parameter B [GPa]

0.04017 0.1200 0.3590 1.071 3.200

Values of Parameter n [/]

0.01394 0.03339 0.0800 0.1917 0.459
1.100

Values of Parameter C [/]

0.000241 0.000982 0.004000 0.01629 0.0663
0.2701 1.100 4.4800 18.2400

Table 5. Parameter settings for the RVGA and DASA optimisation algorithms.

Settings for GD Algorithm

Initial step size—h0 0.001
Final error size—e0 0.001

Settings for RVGA

Population size—m 20
Probability of crossover—pcr 0.5

Fraction of linear crossover—flin 0.6
Probability of mutation—pmut 0.05

Moment weight—wm 1.0
Moment threshold—thm 1.0

Settings for DASA

Number of ants—m 20
Logarithmic base— 10

DASA factor—s+ 0.02
DASA factor—s− 0.01

Pheromone evaporation factor—r 0.2

4. Results and Discussion

The finite-element simulations of the experimental setup were performed on a numerical server
with two Intel Xeon X5670 processors operating at 2.93 GHz, with 48 GB of RAM and a Linux operating
system. The average time required for a numerical simulation on a processor core was about one hour
and the maximum calculation time was set to two hours. The time limit was triggered if the calculation
time step during the simulation was reduced below reasonable values and the simulation termination
time could not be reached. To also be able to include in the optimisation process the results from the
calculations with error termination, we set their values to the maximum.

4.1. Comparison of the Results Based on the DoE Techniques

Tables 6 and 7 show five minimum cost-function values from the modelled surface and the
optimum solved by the RVGA, GD and DASA together with their parameter combinations. It turned
out that more consistent optimisation results were obtained if the nearest-neighbour distance was
scaled with a factor of 0.45 to obtain diagonal covariance matrices for the local modelling of the cost
function. All the results in the continuation are, therefore, presented using this scaling factor. Both DoE
approaches gave similar results, especially for the values of the parameters B and n, although in
the TA the DoE had 10 times fewer combinations for modelling the response surface. The values of
the parameters n and C from the response-surface points are different for the two DoE approaches,
but of the same order of magnitude. We can see that, in the FFE DoE approach, only the values of the
parameter C vary between five points with minimum values of the cost function, while in the TA DoE
approach, the value of the parameter B also varies between these points.
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Table 6. Taguchi response surface.

Parameter B Parameter n Parameter C Cost Function Value

Point 1 0.446687 0.587136 0.007943 1.44854
Point 2 0.446687 0.587136 0.011220 1.47317
Point 3 0.365177 0.587136 0.011220 1.47763
Point 4 0.365177 0.587136 0.007943 1.48633
Point 5 0.365177 0.587136 0.015890 1.50279
RVGA 0.385401 0.616693 0.017148 1.43668
DASA 0.385423 0.616664 0.017148 1.43668

GD 0.412950 0.587733 0.008947 1.42023

Table 7. Full-factorial experiment response surface.

Parameter B Parameter n Parameter C Cost Function Value

Point 1 0.358475 0.459020 0.016285 1.54070
Point 2 0.358475 0.459020 0.003999 1.62438
Point 3 0.358475 0.459020 0.008070 1.64237
Point 4 0.358475 0.459020 0.000487 1.67314
Point 5 0.358475 0.459020 0.000982 1.69466
RVGA 0.339225 0.449630 0.014670 1.52192
DASA 0.339211 0.449630 0.014670 1.52192

GD 0.337760 0.446682 0.014904 1.52231

The following figures (Figures 5 and 6) show the points of the calculated cost function from the
Taguchi array (TA) and the full-factorial experiment (FFE) with the corresponding response surfaces
in the four-dimensional design space. The parameter’s logarithmic values from Tables 3 and 4 are
the coordinates of a single combination point and its colour represents the corresponding logarithmic
value of the cost function. In the two figures on the right we see two modelled response surfaces (the
FFE and TA modelled response surface), which have similar shapes for the two cases. Although the
FFE modelled response surface has wider ranges of the parameters B and C (see Table 4), it is limited
to the similar domain as the TA modelled response surface in the Figure 6. This is only to clearly
present similarities between both modelled surfaces with quite different set of modelling points in the
observed search space.

The domain of points with minimum values of the cost function (purple region) extends almost
vertically through the design space as a kind of 3D curve surrounded by areas of points with higher
values (the blue and green regions). A red region (the points with the highest values of the cost function)
is located on the outside (FFE modelled) or at the edges of the design space under consideration (TA
modelled). The optimum combination of the FFE-modelled response surface (a single grey point on
the left-hand-side graphs) is located around very similar values in both response surfaces, although the
value of the parameter n is slightly different. On the TA-modelled response surface, the purple
region is wider and extends almost to the highest limit of the parameter n. The main reason for this
extension is the lack of points in its vicinity defined by the Taguchi array. By selecting the Taguchi array
differently, we would be able to define more points in this zone and obtain a more accurate response
surface. Regardless of this, we obtained very similar optimum parameter values with the Taguchi
array, although we had very few defined points around the actual optimum.
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4.2. Comparison of the Results from the Optimisation Algorithms

Tables 8 and 9 show the results for a comparison of all three optimisation algorithms. For each
algorithm the average values and the standard deviations of the final cost function from the
30 repeated runs are presented. For each repetition, the initial values of the parameters were
set randomly from different search-space points. Given these results, we can see that all the methods
received similar parameter values for the J-C material model, although there were some differences.
Furthermore, there were also time calculations to evaluate which algorithm would perform best.
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Table 8. Results of the comparison among the applied algorithms for the TA.

RVGA DASA GD

Cost-function average values 1.5629 1.5679 1.4324
Standard deviation 2.4925 × 10−1 9.4369 × 10−2 1.6443 × 10−2

Calculation time for 30 repetition [s] 40 45 395

Table 9. Results of the comparison among the applied algorithms for the FFE.

RVGA DASA GD

Cost-function average values 1.6647 1.5633 4.4973
Standard deviation 3.5692 × 10−1 3.4237 × 10−2 9.5355 × 10−1

Calculation time for 30 repetition [s] 90 100 1917

For the TA-modelled response surface (Table 8), the best average value of the cost functions was
achieved using the GD and the standard deviations of the best values obtained in each repetition were
relatively small, indicating a very small dispersion of the resulting cost-function values. Thus, the most
consistent results were given by the GD, which also achieved the minimum cost function in this
procedure (Table 6). The other two algorithms achieved practically the same average values, which were
about 10% higher than in the GD, but the scatter of the resulting cost-function values was higher.
This shows the standard deviation, which is approximately twice as high in the RVGA as in the DASA
and ten times higher than in the GD.

This was not the case in the FFE-modelled response surface (Table 9), where the best average value
of the cost function was obtained from the DASA with the smallest scatter of the best cost-function
values. The RVGA had 6% higher average values, but with a much greater dispersion, showing that
the DASA was able to provide us with more consistent results in the FFE. The performance of the GD
was much worse in this case, as the average value obtained was three times higher than the average
value obtained with the DASA and also the standard deviation of the cost-function values was more
than ten times higher. The reason for this is the much larger search space in the FFE process, and it
happened that the GD was trapped in a local optimum, from which it could not escape. If the search
space had been narrowed, like with the TA-modelled surface, the GD would probably also have been
more competitive with the FFE surface.

In terms of calculation time, the best performance was obtained with the RVGA; the DASA was
10% slower and the GD was three to ten times slower compared to the other two. Even though
the RVGA was 10% faster than the DASA, both algorithms achieved practically the same results,
especially regarding the minimum values of the cost function. In conclusion, all three algorithms
showed similar results, thus, all of them could be competitive for our presented procedure. If we take
into account the well-known disadvantages of the GD method (which sometimes cannot escape from a
local minimum) and the calculation time, the best performance in our procedure was achieved with
the DASA algorithm.

4.3. Comparison of the Results with the Data in the Literature

In the final comparison we used the parameter values from Tables 6 and 7 for each algorithm in
both modelled response surfaces. With these parameter values we simulated the dynamic experiment
from Section 2.2 to obtain the real cost-function values for the modelled optimum parameter values.
These results gave us the final information about the accuracy of the modelled response surface. We can
see (Table 10) that with the TA procedure the most accurate cost-function value was obtained with
the GD, while with the FFE procedure the most accurate was defined by the other two algorithms.
Although the cost-function values calculated from the simulations are different, we have to take into
account how much information about the cost function was known in the vicinity of the optimum values.
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Table 10. Comparison of the cost-function values between the modelled and the calculated.

TA—Procedure FFE—Procedure

Calculated
Simulations Response Surface Calculated

Simulations Response Surface

RVGA CF—value 2.06102 1.43668 1.5767 1.52192
DASA CF—value 2.06331 1.43668 1.5769 1.52192

GD CF—value 1.87518 1.42023 1.6633 1.52231

In the last table (Table 11) we compared the obtained parameters in our TA procedure with some
from the literature. It is clear that our values are comparable to those in literature, although those were
achieved with a completely different dynamic experiment (mostly the SHB test or the Taylor test).
Furthermore, with a correctly defined reference strain rate under quasi-static conditions, the values of
the parameter C are also similar or the range of those in the literature data.

Table 11. Comparison with other parameter values in the literature.

Parameter B [GPa] Parameter n [/] Parameter C [/]

Average value from Table 6 (TA—procedure) 0.395 0.6 0.013
Marais et al. [17] 0.292 0.310 0.025
Singh et al. [18] 0.779–2.692 0.743–0.928 0.0144–0.021

Johnson et al. [4], Tanimura et al. [23] 0.380 0.32 0.06
Vedantam et al. [21] 0.234 0.6428 0.0756

Paul et al. [9] 1 / / 0.085–0.1
1 In the referenced literature B and n parameters were not reported, only parameter C beside yield stresses in range
0.165−0.190 MPa.

5. Conclusions

This article presents a general approach to estimate the parameters that determine the behaviour
of a material subjected to high strain rates. In our approach, the Taguchi experimental design was
combined with the finite-element code LS-DYNA, the modelled response surface and three optimisation
algorithms to estimate the material parameters based on the results of a standard static tensile test and
a non-standard impact test between a ball and a thin sheet. With a reverse-engineering procedure and
a completely different experiment, when compared to the literature data, the presented approach was
applied to the realistic case of a material parameter estimation for the Johnson-Cook material model at
low and intermediate values of the strain rates. Additionally, the second approach was performed
using a full-factorial DoE technique to compare the accuracy of the presented approach.

It turned out that it is possible to obtain reliable estimates of the Johnson-Cook parameters (B, n,
C) with a suitable design-of-simulation approach using only two iteration runs, i.e., first with the
wide-domain approach from which the narrower domain of the design space was isolated. Nevertheless,
even with two iteration runs using the Taguchi-array approach, the total number of simulations was
significantly lower than with the full-factorial arrangement of the design-space combinations in the
narrower domain. The optimisation process based on TA points had 2.5 times less simulations for the
similar range of parameters, but with higher number of parameter levels as the optimisation process
based on the FFE points. If the calculation time for the whole TA procedure is accounted, this is
approximately more than two times faster than for the FFE procedure. Further, it was shown that the
GD algorithm found a better optimum with a smaller dispersion in 30 repetitions on the TA modelled
response surface as the other two algorithms, even though it was much slower. On the FFE modelled
response surface the two metaheuristic algorithms were evidently better. The most consistent results
were given by DASA, but with slightly slower calculation time than RVGA. Moreover, the estimated
material parameters for the observed material model are consistent and comparable with the results
from the literature. The results from our study are practically in the same order of magnitude.
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The optimum value of parameter B is about 30% higher in comparison with [17,21] but two times
smaller than [18], while the optimum value of the parameter n is in the middle of the range found in
the literature and the optimum value of the parameter C is in fact the lowest in comparison with those
from the literature, but only 10% lower than the smallest value reported in [17].

Author Contributions: All authors contributed equally in this research paper. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency (ARRS), grant research programme P2-0182
(R&D evaluations—Razvojna vrednotenja).

Conflicts of Interest: The authors declare no conflict of interest

Nomenclature and Abbreviations

n Johnson-Cook material parameter RVGA real valued genetic algorithm
t specimen thickness TA Taguchi array

v ball velocity Zexp
z-coord. of ind. centre from
experiment

w cost function weight Zsim
z-coord. of ind. centre from
simulation

B Johnson-Cook material parameter ε engineering strain
C Johnson-Cook material parameter ε̃ true strain
DASA differential ant stigmergy algorithm

.
ε strain rate

DoE design of experiment ν Poisson’s number
FFE full factorial experiment µ coefficient of friction
GD gradient descent σ engineering stress
Hexp height of indentation from experiment σ̃ true stress
Hsim height of indentation from simulation σflow plastic flow stress
J-C Johnson-Cook σ0 yield stress
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